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In linear mixed-effects  models, random effects are used to capture the heterogeneity and variability between 
individuals due to unmeasured covariates or unknown biological differences. Testing for the need of random 
effects is a non-standard problem  because it requires testing on the boundary of parameter space where the 
asymptotic chi-squared distribution  of the classical tests such as likelihood ratio and score tests is incorrect. 
In the literature  several tests have been proposed to overcome this difficulty, however all of these tests 
rely on the restrictive assumption of i.i.d. measurement errors. The presence of correlated errors, which 
often happens in practice, makes testing random effects much more difficult. In this paper, we propose a 
permutation test for random effects in the presence of serially correlated errors. The proposed test not only 
avoids issues with the boundary of parameter space, but also can be used for testing multiple random effects 
and any subset of them. Our permutation procedure includes the permutation procedure in Drikvandi et al. 
(2013)  as a special case when errors are i.i.d., though the test statistics are different. We use simulations 
and a real data analysis to evaluate the performance of the proposed permutation test. We have found that 
random slopes for linear and quadratic time effects may not be significant  when measurement errors are 
serially correlated. 
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1   Introduction 
 

Longitudinal,  panel, and clustered data arise in medical,  economical,  and behavioural  studies, when a 

number of individuals or subjects are followed  over time and repeated measurements on each individual 

are recorded at different time points. Linear mixed-effects models are a routine tool for analysing such data 

when the response variable is continuous. Linear mixed-effects models incorporate subject-specific random 

effects into the model to capture the heterogeneity and variability between individuals  due to unmeasured 

covariates or unknown biological differences. Furthermore, they account for the serial correlation among 

the repeated data within individuals by allowing serially correlated errors. 

This paper introduces a permutation test for testing random effects in linear mixed-effects models with 

serially correlated errors. Unlike the existing tests for random effects, our proposed test does not require 

the measurement errors to be independent and identically  distributed (i.i.d.). This makes the proposed test 

very useful for practical  use, also because the case of i.i.d. errors is a special case of our test when there is 

no serial correlation  (see Section 2). 

It is important to test for the need of random effects in linear mixed-effects models to decide which 

random effects should be included or excluded from the model. While several practical examples on testing 

random effects are given in (Drikvandi et al., 2012, 2013), there are some theoretical  and computational 

reasons why such a test on random effects is important. For example, if unnecessary random effects 
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are included  in the model, the parameter estimates will not be efficient. On the other hand, ignoring 

an important random effect could substantially affect the estimates of parameters including  fixed-effects 

parameters (see, e.g., Heagerty and Kurland  (2001);  Drikvandi et al. (2017)). Moreover, adding many 

random effects will result in a more complicated  covariance structure and possibly an overparameterised 

model. 

There is a large literature  on testing random effects when measurement errors are assumed to be i.i.d.; 

see, for example, Stram and Lee (1994); Miller (1977); Verbeke and Molenberghs (2003); Crainiceanu and 

Ruppert (2004); Fitzmaurice et al. (2007); Saville and Herring (2009); Sinha (2009); Giampaoli and Singer 

(2009); Lee and Braun (2012); Drikvandi  et al. (2012); Drikvandi et al. (2013). It is well understood that 

the main challenge with testing random effects is that the null hypothesis puts the true values of variance 

components on the boundary of parameter space, and hence the asymptotic chi-squared distribution  of 

the classical  tests such as likelihood ratio, Wald, and score tests is incorrect. The correct asymptotic 

distribution is a mixture  of chi-squared distributions  whose weights are generally unknown,  except for 

very special cases such as testing a single random effect (see, e.g., Crainiceanu and Ruppert (2004)). 

Testing random effects is much more difficult in the presence of correlated errors. The correct asymp- 

totic distribution of the likelihood ratio or score test statistic for testing random effects in the presence of 

correlated errors is still unknown. We develop a permutation  test for testing random effects in the pres- 

ence of serially  correlated errors which  avoids the issues with testing on the boundary of parameter space. 

Beneficially, our permutation test can be used for testing multiple  random effects and any subset of them. 

Our permutation procedure includes the permutation procedure in Drikvandi et al. (2013) as a special  case 

when errors are i.i.d., though the test statistics are different. 

While random effects mainly account for the between-individual variability,  they also contribute to the 

within-individual association.  However, with the assumption of i.i.d. errors it is not clear how one can 

model the serial correlation using random effects. On the other hand, as shown  in Chi and el (1989), 

random effects for time effects (i.e. random slopes) may not be significant  when measurement errors are 

serially correlated. In other words, instead of a model with i.i.d. errors and many random effects, it might 

be more appropriate to use a model  with serially correlated errors and a fewer number of random effects. 

It is also in line with the parsimony principle. Therefore,  a test for random effects in the presence of 

correlated errors is very helpful to find out which random effects should be present in the model. 

Finally, we should point out that Baltagi and Li (1995), Baltagi and Wu (1999), Wooldridge (2002), 

Baltagi et al. (2010) and Montes-Rojas (2010) have suggested tests for random effects and serial correlation 

within each spatial unit in a panel data model, where they mainly  aimed to test whether the error model 

is AR(1) or not. The test by Baltagi et al. (2010) is particularly useful to check if the errors are serially 

correlated.  However,  the panel data model considered in these papers is a special  case of linear mixed- 

effects models since it contains only one random effect (a random intercept). 
 

 

2 The linear mixed-effects model with serially correlated errors 
 

Given N individuals, the linear mixed-effects model is expressed as (Laird and Ware (1982)) 
 

yit  = xt β + zt bi + εit , i = 1, . . . , N,  t = 1, . . . , ni , (1)
 

it it 
 

where yit  denotes the response for individual i measured at time t, xit is an m × 1 vector of covariates for 

individual i, β is an m × 1 vector of regression parameters known as fixed effects, zit  is a q × 1 vector of 

random effects’ covariates, bi is a q × 1 vector of random effects following a normal distribution  with mean 

0 and covariance matrix D, and εit is the measurement error at time t. The within-individual  measurement 

errors εit ’s are assumed to be serially correlated with order p (i.e., AR(p)), that is, for each time point t, 
 

p 

εit  = 
    

ρk εi(t 
k=1 

 

 

k) + wit , (2) 



 

i 

i 

i 

i i i 

p   = 
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where the ρk are unknown coefficients (with |ρk | < 1), and wit ’s are independent error terms, each nor- 
mally distributed with mean 0 and variance σ2 . 

Note that the linear mixed-effects model (1) with serially correlated errors in (2) includes the linear 

mixed-effects model with i.i.d. errors as a special case when ρk = 0 for each k. 

Let θ = (βt, vecht(D), σ2 , ρk )
t represent all unknown parameters in the linear mixed-effects model 

(1), where vech(D) denotes the vector of q(q + 1)/2 unique elements of the symmetric matrix D.  The 

normality  assumption on the random effects and errors makes the marginal likelihood  function of model 

(1) available in closed-form, which is as follows (see, e.g., Verbeke and Molenberghs  (2009)) 
 

N 

L(θ) = 
n[

(2π)− ni /2 |Zi DZ t + σ2 Γi |
− 1/2

 

i=1 

 

 
(3) 

1 2  − 1  
\\ 

× exp −  
2 
(Yi −  Xi β)t(Zi DZ t + σ Γi ) 

(Yi −  Xi β)  , 

 

where Yi  = (yi1 , . . . , yin  )
t, Xi  = [xi1 , . . . , xin ]

t, Zi  = [zi1 , . . . , zin  ]
t, and σ2 Γi  is the residual covari- 

ance matrix with Γ− 1  whose (i, j)-th element is given by (Galbraith and Galbraith (1974)) 
 
 

γij 
i− 1 

 
h=0 

 

ρh ρh+j− i −  
p+i− j 

 
h=p+1− j 

 

ρh ρh+j− i , 1 ≤  i ≤  j ≤  p, 

 

in which ρ0 = − 1. 
The maximum likelihood estimates of the model  parameters can then be obtained  using  a standard 

software package like R or SAS. For this, we use PROC MIXED  in SAS which allows to specify multiple 

random effects and serially correlated errors. 
 
 

3 Testing all random effects in the presence of serially correlated  errors 
 

To test whether or not all the random effects bi  can be excluded from the linear mixed-effects model (1), 

we need to test H0  : D = 0 versus HA : D > 0, where the inequality D > 0 means that D is a positive 

definite matrix. 

The marginal likelihood (3) obtained under the normality  assumption on the random effects and errors 

enables us to utilise the likelihood  ratio test statistic, which is defined as 
 

λ = 2[log L(θ̂) −  log L(θ̂0 )],  (4) 

 

where L(θ̂)  = sup{L(θ) : θ ∈  Θ} and L(θ̂0 ) = sup{L(θ) : θ ∈  H0 }.  Large values of λ lead to the 

rejection of H0 , indicating that the random effects bi  are needed in the model. 

Because the null hypothesis puts the true values of variance components on the boundary of parameter 

space, the asymptotic chi-squared distribution of the likelihood ratio statistic λ under H0  is incorrect. To 

the best of our knowledge, the correct asymptotic distribution  of λ (or other test statistics like the Wald 

and score statistics) is not available for linear mixed-effects models with correlated errors. Note that when 

the measurement errors are assumed to be i.i.d., the correct asymptotic distribution of the likelihood ratio 

statistic for testing a single random effect is a mixture  of two chi-squared distributions  (see, for example, 

Crainiceanu  and Ruppert (2004)). But, in general, for testing multiple random effects the asymptotic 

distribution is not available even with the assumption of i.i.d. errors. 

To avoid the challenges with the boundary of parameter  space and to overcome the difficulty with 

testing multiple random effects in the presence of correlated errors, we propose a permutation procedure 

to approximate the null distribution of the likelihood  ratio statistic λ. For this, we first substitute (2) into 
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(1) to get 

 

yit  = xt β + zt bi +
 

 
p 

ρk ε
 

 

 
+ w  ,

 
it it  

k=1 

i(t− k) it 

 

which can be rewritten as 
 

yit  = xt β + zt bi +
 

 

p 

ρk [y
 

 

−  xt 

 

β −  zt 

 

 
bi ] + wit . (5) it it  

k=1 

i(t− k) i(t− k) i(t− k) 

 

Next, we adjust the observations yit ’s to be permutable among individuals  for each time point t. To do this, 

by considering (5) we define 

 

it = yit −  xit β −
 
 
p 

ρk [yi(t− k) −  xi(t− k) β], i = 1, . . . , N,  t = 1, . . . , ni , (6)
 

y∗  t
 

t 
 

k=1 

and then, from (5) and (6), we obtain that y∗
 
= zt bi  −  

   p 
ρk z

t 
 

bi  + wit . Now, under the null it it k=1 i(t− k) 

hypothesis H0   : D  = 0, the random effects bi  will be 0 almost surely, and consequently we get y∗   = 
wit  under H0 . Therefore, under the null hypothesis, y∗  ’s are i.i.d. random variables and hence they are 
exchangeable or permutable. 

However, y∗  in (6) depends on the unknown  parameters β and ρk .  We replace β and ρk  by their 

maximum likelihood estimates to obtain ŷ∗  as an estimate  of y∗  . Clearly, ŷ∗  ’s are not i.i.d. variables. it it it 

Nonetheless, the following theorem shows that, under H0 , the adjusted observations ŷ∗  ’s are permutable 
among individuals for each time point t.  Note that Theorem 1 below for serially correlated errors is an 

extension of the exchangeability proof for i.i.d. errors in Drikvandi et al. (2013). 

Theorem 1: Under the null hypothesis H0  : D = 0, ŷ∗  ’s are exchangeable among individuals  for each 
time point t. 

Proof: To prove the exchangeability of ŷ∗  ’s for each time point t, we need to show that for each t the 

joint distribution of ŷ∗  , . . . , ŷ
∗  

is the same for any order of the variables. Let β̂  and ρ̂k  be the maximum 

1t N t 

likelihood  estimators of β and ρk , respectively. Then, under H0 , for each t 
 

     

f (ŷ∗  , . . . , ŷ∗    ) 
=

 
f (ŷ∗  , . . . , ŷ
∗  

|β̂ = β, ρ̂k  = ρk )dFβ̂,ρ̂  (β, ρk )
 

1t N t 1t N t  k 

      [ N 

 
(7) 

= 
n 

f (ŷ∗  |β̂ = β, ρ̂k  = ρk )
\

dF ̂
 (β, ρk ),

 
it 

i=1 

β,ρ̂k 

where the second equality is obtained since, under H0 , the random variables ŷ∗  , . . . , ŷ∗
 

 

are i.i.d. given 
1t N t 

β̂ = β and ρ̂k  = ρk . From (7), the exchangeability of ŷ∗  ’s holds for each t. 
The exchangeability of ŷ∗  , . . . , ŷ∗  for each time point t enables us to conduct a permutation  test based 

1t N t 

on the likelihood  ratio test statistic (4). By regarding the adjusted observations {ŷ∗  : i = 1, . . . , N, t = 
1, . . . , ni } as the original  sample, we set up our permutation test for testing H : D = 0 as follows: 

 

1. Calculate the likelihood  ratio test statistic (4) for the original  sample and denote it by λobs . 
 

2. For b = 1, . . . , B, repeat the following two steps: 

(i) Obtain a permutation sample under H0  by randomly permuting the individual indices of ŷ∗  ’s for 

each t. 

(ii)  Calculate the likelihood  ratio test statistic (4) for the permutation sample obtained in step (i) and 



 

denote it λb . 



 

Dl
 

Dt 

it 

it 
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3. Compute the empirical p-value as the proportion of λb exceeding λobs . 

 
4. Given the significance level α, reject H0  if α is greater than the empirical p-value. 

 
It should be mentioned that, in our permutation procedure, the number of repeated measurements for 

each individual is kept the same as in the original sample because for each time point t we permute the 

individual indices only among those individuals  that are measured at time t. In fact, the proposed permu- 

tation procedure can be easily applied to both balanced and unbalanced data. Furthermore, none of the 

covariates are permuted. 
 
 

4 Testing a subset of random effects in the presence of serially correlated 
errors 

 
It is often of interest to test for a subset  of random effects, for example, to test if a random  slope for 

some covariate (e.g., time) is needed while a random intercept is already present in the model. Finding the 

correct asymptotic distribution of the likelihood ratio statistic for testing a subset of random effects is more 

complicated. 

In model (1), suppose that bi  = (bt  , bt )t and we wish to test whether the set of random effects b2i
 

1i     2i 

can be excluded while the random effects b1i  are present in the model. Also, let z1it  and z2it  be the 
corresponding random effects’s design matrices for b1i  and b2i , respectively. Then, similar to (5), we can 
rewrite the linear mixed-effects model (1) as follows 

 
 

yit  = xt β + zt 

 

b1i + zt 
p 

b2i +
 

 
ρk [y

 
 

−  xt 

 

β −  zt 

 

b1i −  zt 
 
b2i ] + wit . (8) it 1it 2it  

k=1 

i(t− k) i(t− k) 1i(t− k) 2i(t− k) 

 

 

Let D =
 
   

D11  D12 

l 

be the covariance matrix of b
 

 

= (bt  , bt )t. Then, to test if the random effects
 

12 D22 
i 1i     2i 

b2i  can be left out while retaining the random effects b1i  in the model is equivalent to testing 
 

 
H0  : D = 

   
D11  0 

l 

0 0 

 

 
versus  HA : D = 

   
D11  D12   

l 

. 

12  D22 

 

To develop a permutation  test for testing the above null hypothesis, we first define (similar to (6)) 
 

p 

it  = yit − xit β − z1it b1i −
 

 

ρk [yi(t− k) −  xi(t− k) β −  z1i(t− k) b1i ],  i = 1, . . . , N,  t = 1, . . . , ni .
 

y∗ ∗
 

t t t t 
 

k=1 

 
 
(9) 

 

Next, from (8) and (9), we obtain that y∗ ∗  = 
zt 

b2i  −
 p  

ρk z
t b2i  + wit , which then becomes 

it 2it k=1 2i(t− k) 

it  = wit  under the null hypothesis H0  above. Therefore, yit   are i.i.d. random variables under the null.
 

y∗ ∗  ∗ ∗
 

However, y∗ ∗  depends on the unknown parameters β and ρk as well as the random effects b1i  which are 

unobservable.  We replace β and ρk  by their maximum likelihood estimates and b1i  by their predicted 
values to obtain ŷ∗ ∗  as an estimate of y∗ ∗ . Although ŷ∗ ∗ ’s are not i.i.d. variables, the following 
theorem it it it 
shows that, under H0 , they are permutable among individuals  for each time point t.  Again, Theorem 2 
below for serially correlated errors is an extension of the Drikvandi  et al. (2013) result of i.i.d. errors.    

D11  0 
l 

Theorem 2: Under the null hypothesis H0  : D = 

uals for each time point t. 

, ŷ∗ ∗ ’s are exchangeable among individ- 
0 0 



 

it 

it 
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Proof: Let b̂1i  be the prediction of b1i . Under H0 , for each t 
 

f (ŷ∗ ∗ , . . . , ŷ∗ ∗  ) = f (ŷ∗ ∗ , . . . , ŷ∗ ∗  |β̂ = β, ρ̂k  = ρk , ̂b1i  = b1i )dF
β̂,ρ̂  

,b̂

 

 
 
 
(β, ρk , b1i )

 

1t N t 1t N t 
 
N 

k   1i  
(10) 

= 
[ n 

f (ŷ∗ ∗ |β̂ = β, ρ̂k  = ρk , ̂b1i  = b1i )
\

dF ̂
 

ˆ  (β, ρk , b1i ),
 

it 

i=1 

β,ρ̂k ,b1i 

where the second equality is obtained since, under H0 , the random variables ŷ∗ ∗ , . . . , ŷ∗ ∗   are i.i.d. given
 

1t N t 

β̂ = β and ρ̂k  = ρk and b̂1i  = b1i . From (10), the exchangeability of ŷ∗ ∗ ’s holds for each t. 
 

Now, for testing H0  : D = 
D11  0 

l
 

0 0 

 

, the proposed permutation algorithm in Section 3 can be used 

but with {ŷ∗ ∗  : i = 1, . . . , N, t = 1, . . . , ni } as the original 

sample. 

 
5 Simulation study 

 

We conducted a simulation study to investigate the performance and properties of the proposed permutation 

test in testing all random effects as well as in testing  a subset of random effects. In the simulations, we 

considered the following linear mixed-effects model with random intercepts and random slopes and with 

serially correlated errors: 
 

yit  = β0 + β1 x1it + β2 x2it + β3 t + b0i + b1i t + εit , i = 1, . . . , N,  t = 1, . . . , ni , (11) 
 

where yit  is the outcome (e.g., a disease biomarker)  for individual i measured at time t, x1it  is a time- 

invariant binary covariate (e.g., treatment indicator), and x2it  is a time-varying  continuous covariate (e.g., 

heart rate). In our simulations, we set β0  = 10, β1  = 2, β2  = 3, β3  = − 2, and generated x1it ’s 
from a Bernoulli  distribution  with parameter 0.5, while x2it ’s were generated from a normal  distribution 
with mean 80 and variance 5. We generated the random effects (b0i , b1i ) from two different distributions: 

first, a bivariate normal distribution  with mean 0 and covariance matrix D = 
d11  d12 

d12 d22 

l 

and, second, 

a bivariate t-distribution  with degree of freedom df  = 3, mean 0 and scale matrix (df −  2/df )D.  Note 
that the bivariate t-distribution  was considered to evaluate the performance of our permutation test under 

misspecification of the random-effects distribution  since we fit the model assuming the bivariate normal 

distribution for (b0i , b1i ). Also, the measurement errors εit ’s were assumed to be serially correlated fol- 

lowing an autoregressive pattern with order 1, i.e. εit  = ρεi,t− 1  + wit  where we generated wit ’s from a 

normal distribution with mean 0 and variance σ2 = 1. 

We first focused on testing whether or not both random effects b0i and b1i can be left out from the model 

(11). For this, we set the covariance matrix D to    
0   0 

l 

(to examine the Type I error),   
0.05   0.02 

l

, 

0.1 0.05 
l 

0.2   0.1 
l 

0   0 

0.5   0.1 
l 

0.02   0.05 

, 
0.05 0.1 

 

0.1   0.2 
, and  

0.1   0.5 
to compute the empirical power of our permutation test 

at significant level α = 0.05. Under each of the two above distributions as well as each of these covariance 

matrices and for each sample size N = 10, 30, 50 and with ni  = 5 repeated measurements per individual, 

we generated 500 data sets from the linear mixed-effects model (11) with the autocorrelation parameter ρ 

set to 0.3, 0.5 and 0.7, respectively.  In each simulation  replication,  we used B = 200 permutation samples 

to perform the permutation test by determining  the rejection rates (power) at the nominal level 0.05. 

The simulation results for testing for the need of both random intercepts b0i  and random slopes b1i  are 

presented in Table 1 (for the bivariate normal distribution) and Table 2 (for the bivariate t-distribution).  The 
results indicate that the Type I error of the proposed permutation test is stable across the two distributions 
as well as the three values of ρ and is close to the nominal level 0.05. Also, the power of our test is 



 

high for all the three values of ρ, and the test has a remarkable power when N  ≥  30. Note that the test 



 

l 
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Table 1   The power of our permutation test in testing all random effects at the significance level α = 0.05 

with ni  = 5, ρ = 0.3, 0.5, 0.7, and with random effects generated from the bivariate normal distribution. 
 

ρ = 0.3 ρ = 0.5 ρ = 0.7 
 

D  N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 
0   0 

l
 

0   0 
0.03 0.04 0.05

 

0.05  0.02 
l
 

0.02  0.05 
0.06 0.60 0.84

 

0.1 0.05 
l
 

0.05 0.1 
0.13 0.86 1.00

 

0.2   0.1 
l
 

0.1   0.2 
0.40 0.99 1.00

 

0.5   0.1 
l
 

0.1   0.5 
0.67 1.00 1.00 

0.04 0.05 0.05 

 
0.05 0.46 0.81 

 
0.12 0.82 0.99 

 
0.38 0.97 1.00 

 
0.68 1.00 1.00 

0.04 0.05 0.05 

 
0.05 0.54 0.83 

 
0.21 0.85 0.99 

 
0.52 0.99 1.00 

 
0.77 1.00 1.00 

 

 
Table 2   The power of our permutation test in testing all random effects at the significance level α = 0.05 

with ni  = 5, ρ = 0.3, 0.5, 0.7, and with random effects generated from the bivariate t-distribution. 
 

ρ = 0.3 ρ = 0.5 ρ = 0.7 
 

D  N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 
0   0 

l
 

0   0 
0.03 0.04 0.04

 

0.05  0.02 
l
 

0.02  0.05 
0.05 0.50 0.73

 

0.1 0.05 
l
 

0.05 0.1 
0.12 0.78 0.93

 

0.2   0.1 
l
 

0.1   0.2 
0.25 0.96 1.00

 

0.5   0.1 
l
 

0.1   0.5 
0.55 0.98 1.00 

0.03 0.04 0.05 

 
0.06 0.42 0.69 

 
0.11 0.70 0.87 

 
0.23 0.95 1.00 

 
0.58 0.99 1.00 

0.04 0.05 0.04 

 
0.05 0.48 0.71 

 
0.16 0.78 0.93 

 
0.38 0.96 1.00 

 
0.69 1.00 1.00 

 

 
shows a lower power for the bivariate t-distribution case compared to the correctly-specified case (bivariate 

normal), however the power loss is not large and the power is high under this misspecification when N 

is sufficiently  large (N  ≥  30). The reason is that, in our testing procedure, the assumption of normally 
distributed random effects is only needed for construction of the likelihood ratio test statistic, while our 

permutation procedure does not require the normality  assumption. Overall, for testing all random effects, 

the power tends to get closer to 1 as the sample size increases, and it reaches 1 even with the sample size 

of N = 50 suggesting that the test is consistent. 

We repeated the above simulation for two other covariance matrices: 
0.2 0 

0 0.0005 
and 

0.0005 0   
l

, 
0 0.2 

in order to evaluate the power of our test in situations where one of the random effects has a very small 

variance. The results (not shown here) indicate that the power of the test is low (0.06 for N = 30 and 0.10 

for N = 50) when the random slope has a very small variance, while the power is much higher (0.99 for 

N = 30 and 1.00 for N = 50) when the random intercept has a very small variance.  This suggests that 

the test is not powerful enough to detect a significant  random intercept when the random slope has a very 

small variance. So, caution is necessary when applying  the proposed test to such a situation. 

Next, we examined the behaviour of the proposed test for testing a subset of random effects. For this, 
we considered testing whether or not the random slopes b1i in model (11) can be left out whilst the random 

intercepts b0i  are present in the model. The null hypothesis of this test is H0  : d22  = d12  = 0, d11  > 
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Table 3   The power of our permutation test in testing a subset of random effects at the significance level 
α = 0.05 with ni  = 5, ρ = 0.3, 0.5, 0.7, and with random effects generated from the bivariate normal 

distribution. 
 

ρ = 0.3 ρ = 0.5 ρ = 0.7 
 

D  N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 
1   0 

l
 

0   0 
0.03 0.04 0.04

 

1 0 
l
 

0   0.05 
0.11 0.25 0.31

 

1 0  
l
 

0   0.1 
0.22 0.54 0.66

 

1 0  
l
 

0   0.2 
0.34 0.88 0.93

 

1 0  
l
 

0   0.5 
0.68 0.99 1.00 

0.03 0.05 0.04 

 
0.12 0.19 0.30 

 
0.20 0.49 0.61 

 
0.30 0.86 0.95 

 
0.70 1.00 1.00 

0.03 0.04 0.05 

 
0.09 0.27 0.35 

 
0.21 0.53 0.73 

 
0.34 0.94 0.96 

 
0.72 1.00 1.00 

 
 

 
Table 4   The power of our permutation  test in testing  a subset of random effects at the significance 
level α = 0.05 with ni   = 5, ρ = 0.3, 0.5, 0.7, and with random effects generated from the bivariate 

t-distribution. 
 

ρ = 0.3 ρ = 0.5 ρ = 0.7 
 

D  N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 N = 10 N = 30 N = 50 
1   0 

l
 

0   0 
0.03 0.04 0.04

 

1 0 
l
 

0   0.05 
0.11 0.18 0.25

 

1 0  
l
 

0   0.1 
0.13 0.39 0.64

 

1 0  
l
 

0   0.2 
0.26 0.76 0.85

 

1 0  
l
 

0   0.5 
0.55 0.96 1.00 

0.03 0.04 0.05 

 
0.09 0.18 0.26 

 
0.12 0.43 0.52 

 
0.25 0.75 0.86 

 
0.59 0.97 1.00 

0.04 0.06 0.05 

 
0.10 0.22 0.28 

 
0.15 0.43 0.63 

 
0.30 0.87 0.88 

 
0.67 0.98 1.00 

 

 
 
 

0. However, for simplicity in the simulations, we here assumed that the random effects b0i  and b1i  are 

independent, implying that d12  = 0. Note that this assumption may not be realistic  in practice and we 

would not make such an assumption in our real data analysis in the next section.  We fixed d11  = 1 for 

the random intercepts b0i , and then varied d22 from 0 to 0.5 to examine the power of our test in detecting 

significant random slopes b1i . The simulation results are reported in Table 3 (for the bivariate normal) and 

Table 4 (for the bivariate t-distribution). It can be seen that the Type I error rate of our permutation test 

is close to the nominal 0.05 level across the the two distributions  as well as the three values of ρ. Also, 

the test shows a reasonably high power for all the three values of ρ, and the power increases rapidly  when 

the variance component d22 or the sample size N increases. Again,  the test shows a lower power for the 

bivariate t-distribution case compared to the correctly-specified case (bivariate normal), however the power 

loss is not large when N is sufficiently large (N ≥  30). 

Further simulations (not reported here) showed that the performance of the test under negative serial 

correlation values is very similar to the results for the positive  ones. Also, by increasing the number of 

repeated measurements to ni  = 10, we observed a generally higher power for our permutation test. 



 

l 
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6 Real data example 

 

In this section, we apply the proposed permutation test to the plasma inorganic phosphate flux data obtained 

from a study of the association of hyperglycemia and relative hyperinsulinemia performed in the Pediatric 

Clinical Research Ward of the University of Colorado Medical Centre (Zerbe (1979); Zerbe and Murphy 

(1986)). In the study, standard glucose tolerance tests were administered to three groups of patients: 13 

controls, 12 non-hyperinsulinemic obese patients, and 8 hyperinsulinemic  obese patients. For each patient, 

plasma inorganic phosphate measurements were obtained from blood samples taken at 0, 0.5, 1, 1.5, 2, 3, 

4, and 5 hours after the glucose challenge. The main objectives were to investigate the changes of plasma 

level over time and to see whether  these changes are treatment-dependent. 

From the individual profiles  presented in Figure 1, there is a high variability (at baseline and over 

time) between patients within each group, and further  the plasma level exhibits  a quadratic response as a 

function of time. Drikvandi  et al. (2013) considered a linear mixed-effect model with linear and quadratic 

time effects to analyse this dataset. They assumed that the measurement errors are i.i.d., but Chi and el 

(1989) have shown that there is a significant  autocorrelation  in the within-individual  measurement errors. 

Therefore, we here consider the following linear mixed-effects model with serially correlated errors: 
 
β1 + β2 t + β3 t

2 + b1i + b2i t + εij , if control 

yit  = 
 
β4 + β5 t + β6 t

2 + b1i + b2i t + εij , if non-hyperinsulinemic  obese 
 
β7 + β8 t + β9 t

2 + b1i + b2i t + εij , if hyperinsulinemic  obese, 
 

where yit  is the plasma level for patient i measured at time t (in hours), the βl  (l = 1, . . . , 9) are fixed- 

effects parameters, the b1i  are random intercepts representing the baseline heterogeneity between patients, 

the b2i are random slopes representing the heterogeneity between patients over time, and finally the εij  are 

measurement errors following an AR(1) process (acording to Chi and el (1989)). 

In the above model, there exists no random effect for quadratic time effects because the estimate of 

its variance component is 0 and consequently it is not included in the model. The maximum likelihood 

estimate of the covariance matrix of random effects bi  = (b1i , b2i )
t in the model, obtained using PROC 

MIXED, is given by 

D̂ 
M L = 

0.232 − 0.009 
. 

− 0.009 0.0004 
 

Note that the existence of autocorrelation in the within-individual measurement errors can also be con- 

firmed from the estimate of the autocorrelation  parameter which is 0.51 with a standard  error of 0.08 

(p-value < 0.0001). 

We use 1000 permutation  samples in all tests performed  in the following.  We first test whether all 

random effects can be removed from the model for the plasma data. For this, our permutation test with a 
test statistic of 8.52 produces a p-value of 0.10, suggesting that the random effects can be removed from 

the model. But as shown in the simulations,  because the random slope has a very small variance, the test 

might not have power to detect significant  random intercepts. Therefore, we need to test whether or not the 
random slope b2i  can be removed from the model whilst the random intercept b1i  is present in the model. 

For this, the proposed test with a test statistic  being equal to 0.43 gives a p-value  of 0.53. Hence, the 

random slope b2i  is not significant and should be removed from the model. 

The next step is to test whether or not the random intercept b1i  is significant.  The permutation test with 
a test statistic of 8.09 produces a p-value of 0.001, confirming that the random intercepts are needed in the 

model. So, the results of our permutation  test suggest that a more appropriate model for the plasma data 

would  be as follows 
 
β1 + β2 t + β3 t

2 + b1i + εij , if control 

yit  = 
 
β4 + β5 t + β6 t

2 + b1i + εij , if non-hyperinsulinemic obese 
 
β7 + β8 t + β9 t

2 + b1i + εij , if hyperinsulinemic obese, 

(12) 
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Group 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0  0.5  1  1.5  2  3  4  5 

Time 
 

Group 2 Group 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0.5 1 1.5 2 3 4 5  0 0.5 1 1.5 2 3 4 5 
   Time         Time     

 
Figure 1   Individual profiles of control  and obese patients in the plasma inorganic phosphate experiment. 

 
 

 
in which the measurement errors εij ’s are serially correlated with an AR(1) pattern. The main conclusion 

here is that the random slopes for linear and quadratic time effects are not needed when measurement 

errors are serially correlated.  This result is also in accordance with the findings of Chi and el (1989), 

though the validity of the random-effects part is now confirmed using our formal test of random effects in 

the presence of serially correlated errors. For the final model (12), the maximum likelihood  estimates of 

parameters along with associated standard errors are calculated and reported in Table 5. 
 

 
 

7 Discussion 
 

We developed a permutation  test for testing random effects in the presence of serially correlated errors, 

which can also be used when the errors are independent. Our permutation procedure includes the permu- 

tation procedure in Drikvandi et al. (2013) as a special case when errors are i.i.d. (i.e., ρk = 0), though the 
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Table 5 Plasma data: the maximum likelihood estimates of parameters and associated standard errors 

obtained from the final model (12) fitted using PROC MIXED in SAS. 
 

Parameter Estimate Standard error 
Fixed effects:   
β1 3.840 0.179 
β2 − 0.781 0.119 
β3 0.162 0.022 
β4 4.290 0.186 
β5 − 0.789 0.124 
β6 0.148 0.023 
β7 4.754 0.228 
β8 − 0.908 0.152 
β9 0.154 0.028 
Residual variance:   
σ2 0.251 0.040 

Autocorrelation: 

ρ 0.512 0.078 

Variance component of b1i : 

d 0.190 0.069 

− 2 log-likelihood 355.1 
 

 
 
 

test statistics are different. The permutation  test avoids issues with the boundary of parameter space and 

can be applied for testing all random effects and any subset of them. 
 

The simulations  suggested that the proposed permutation  test has Type I error rate close to the nominal 

level and produces a high power in detecting significant random effects. The power of the test increases 

rapidly when sample size or variance components increase. Also, in our simulations, the permutation test 

appears to show a reasonably high power for the different values of the autocorrelation within-individual 

measurement errors. 
 

We also found that the test has a good power  to detect significant  random slopes when the random 

intercept has a very small variance, but it is not powerful enough to detect a significant  random intercept 

when the random slope has a very small variance. So, caution is needed when applying  the proposed test 

to situations where random slopes have very small variances. 
 

Our real data analysis showed that random slopes for linear and quadratic time effects may not be needed 

when measurement errors are serially correlated. This result is in accordance with the results of Chi and el 

(1989) and also in line with the parsimony principle. 
 

In our simulations we considered AR(1) errors, however the proposed test can be easily used for au- 

toregressive errors with any order as the permutation  procedures in Sections 3 and 4 were developed with 

AR(p) errors. 
 

Finally,  we used the likelihood  ratio test statistic which requires some distributional assumption (often 

normality)  on the random effects and errors. However, our permutation procedure works with any other test 

statistics, especially those obtained from distribution-free  methods though power loss in anticipated with 

distribution-free  test statistics.  It would be useful to check the normality  assumption on random effects 

before applying the proposed test. Drikvandi  et al. (2017) have developed a diagnostic tool for assessing 

the random-effects distribution  which can be applied to mixed models with multiple random effects and 

correlated errors (see also Drikvandi, 2017). 
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