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Abstract. Let X be a complete, simply connected harmonic manifold of

purely exponential volume growth. This class contains all non-flat harmonic
manifolds of non-positive curvature and, in particular all known examples of

non-compact harmonic manifolds except for the flat spaces.

Denote by h > 0 the mean curvature of horospheres in X, and set ρ = h/2.
Fixing a basepoint o ∈ X, for ξ ∈ ∂X, denote by Bξ the Busemann function

at ξ such that Bξ(o) = 0. then for λ ∈ C the function e(iλ−ρ)Bξ is an

eigenfunction of the Laplace-Beltrami operator with eigenvalue −(λ2 + ρ2).

For a function f on X, we define the Fourier transform of f by

f̃(λ, ξ) :=

∫
X
f(x)e(−iλ−ρ)Bξ(x)dvol(x)

for all λ ∈ C, ξ ∈ ∂X for which the integral converges. We prove a Fourier

inversion formula

f(x) = C0

∫ ∞
0

∫
∂X

f̃(λ, ξ)e(iλ−ρ)Bξ(x)dλo(ξ)|c(λ)|−2dλ

for f ∈ C∞c (X), where c is a certain function on R − {0}, λo is the visibility

measure on ∂X with respect to the basepoint o ∈ X and C0 > 0 is a con-
stant. We also prove a Plancherel theorem, and a version of the Kunze-Stein

phenomenon.
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1. Introduction

Throughout this article, all Riemannian manifolds are assumed to be complete
and simply connected. A harmonic manifold is a Riemannian manifold X such that
for any point x ∈ X, there exists a non-constant harmonic function on a punctured
neighbourhood of x which is radial around x, i.e. only depends on the geodesic
distance from x. Copson and Ruse showed that this is equivalent to requiring that
sufficiently small geodesic spheres centered at x have constant mean curvature, and
moreover such manifolds are Einstein manifolds [CR40]. Hence they have constant
curvature in dimensions 2 and 3. The Euclidean spaces and rank one symmetric
spaces are examples of harmonic manifolds. The Lichnerowicz conjecture asserts
that conversely any harmonic manifold is either flat or locally symmetric of rank
one. The conjecture was proved for harmonic manifolds of dimension 4 by A. G.
Walker [Wal48]. In 1990 Z. I. Szabo proved the conjecture for compact simply
connected harmonic manifolds [Sza90]. In 1995 G. Besson, G. Courtois and S. Gal-
lot proved the conjecture for manifolds of negative curvature admitting a compact
quotient [BCG95], using rigidity results from hyperbolic dynamics including the
work of Y. Benoist, P. Foulon and F. Labourie [BFL92] and that of P. Foulon and
F. Labourie [FL92]. Using their results it was shown in 2012 by the second author
[Kni12] that the Lichnerowicz conjecture even holds for manifolds of non-positive
curvature (or more generally no focal points) provided they admit a compact quo-
tient. Furthermore, he also verified the conjecture for harmonic manifolds admitting
a compact quotient with Gromov hyperbolic fundamental group.

In 2005 Y. Nikolayevsky proved the conjecture for harmonic manifolds of di-
mension 5, showing that these must in fact have constant curvature [Nik05]. An-
other fundamental result states that harmonic manifolds of subexponential volume
growth are flat [RS02].

In 1992 however E. Damek and F. Ricci had already provided in the non-compact
case a family of counterexamples to the Lichnerowicz conjecture, which have come
to be known as harmonic NA groups, or Damek-Ricci spaces [DR92]. These are
solvable Lie groups X = NA with a suitable left-invariant Riemannian metric,
given by the semi-direct product of a nilpotent Lie group N of Heisenberg type
(see [Kap80]) with A = R+ acting on N by anisotropic dilations. While the non-
compact rank one symmetric spaces G/K may be identified with harmonic NA
groups (apart from the real hyperbolic spaces), there are examples of harmonic NA
groups which are not symmetric. In 2006, J. Heber proved that the only complete
simply connected homogeneous harmonic manifolds are the Euclidean spaces, rank
one symmetric spaces, and harmonic NA groups [Heb06].

Though the harmonic NA groups are not symmetric in general, there is still a
well developed theory of harmonic analysis on these spaces which parallels that of
the symmetric spaces G/K. For a non-compact symmetric space X = G/K, an
important role in the analysis on these spaces is played by the well-known Helgason
Fourier transform [Hel94]. For harmonic NA groups, F. Astengo, R. Camporesi
and B. Di Blasio have defined a Fourier transform [ACB97], which reduces to the
Helgason Fourier transform when the space is symmetric. In both cases a Fourier
inversion formula and a Plancherel theorem hold.
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The aim of the present article is to generalize these results to a large class
of non-compact harmonic manifolds. Our analysis will be concerned with har-
monic manifolds of purely exponential volume growth which include all non-flat
harmonic manifolds of non-positive sectional curvature or, more generally, all non-
flat harmonic manifolds without focal points as was shown by the second author
(see [Kni12, Theorem 6.5]). In particular, this class includes all known examples
of non-flat and non-compact harmonic manifolds. By purely exponential volume
growth, we mean that there are constants C > 1, h > 0 such that for all R > 1 the
volume of metric balls B(x,R) of radius R and center x ∈ X is given by

(1)
1

C
ehR ≤ vol(B(x,R)) ≤ CehR.

Let X be a simply connected noncompact harmonic manifold of purely expo-
nential volume growth with a fixed basepoint o ∈ X. It was shown in [Kni12] that
for such harmonic manifolds the condition of purely exponential volume growth is
equivalent to either of the following three conditions:

1) X is Gromov hyperbolic.
2) X has rank one.
3) The geodesic flow of X is Anosov with respect to the Sasaki metric.

Moreover, it follows from the work in [KP16] that the Gromov boundary agrees
with the visibility boundary ∂X introduced in [EO73]. The set X ∪ ∂X equipped
with the cone topology defines a topological space homeomorphic to a closed unit
ball in Rn, where n = dimX. For a given ξ ∈ ∂X and any geodesic ray γ : [0,∞)→
X representing ξ (see section 2 for a precise definition) the Busemann function Bξ
with Bξ(o) = 0 is given by

Bξ(y) = lim
t→∞

(d(y, γ(t))− d(o, γ(t))).

The level sets of Bξ are called horospheres in X. The manifold X, being harmonic, is
also asymptotically harmonic, i.e. the mean curvature of all horospheres is equal to
a constant h ≥ 0. If X has purely exponential volume growth then h is positive and
agrees with the constant h appearing in (1). An easy computation shows that for
ρ = h/2 and any λ ∈ C and ξ ∈ ∂X, the function f = e(iλ−ρ)Bξ is an eigenfunction
of the Laplace-Beltrami operator ∆ on X with eigenvalue −(λ2 + ρ2).

The Fourier transform of a function f ∈ C∞c (X) is then defined to be the function
on C× ∂X given by

f̃(λ, ξ) =

∫
X

f(x)e(−iλ−ρ)Bξ(x)dvol(x).

When X is a non-compact rank one symmetric space, this reduces to the Helgason
Fourier transform.

The normalized canonical measure of the unit tangent sphere T 1
oX induced by

the Riemannian metric is denoted by θo. The unit tangent sphere T 1
oX is identified

with the boundary ∂X via the homeomorphism pro : v ∈ T 1
oX 7→ ξ = γv(∞) ∈ ∂X,

where γv is the unique geodesic ray with γ′v(0) = v. Pushing forward the measure
θo on T 1

oX by the map pro gives a measure on ∂X called the visibility measure,
which we denote by λo. We have the following Fourier inversion formula:
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Theorem 1.1. Let (X, g) be a simply connected, harmonic manifold of purely
exponential volume growth. Then there is a constant C0 > 0 and a function c on
C− {0} such that for any f ∈ C∞c (X), we have

f(x) = C0

∫ ∞
0

∫
∂X

f̃(λ, ξ)e(iλ−ρ)Bξ(x)dλo(ξ)|c(λ)|−2dλ

for all x ∈ X.

We also obtain a Plancherel formula:

Theorem 1.2. Let (X, g) be a simply connected, harmonic manifold of purely
exponential volume growth. For any f, g ∈ C∞c (X), we have∫

X

f(x)g(x)dvol(x) = C0

∫ ∞
0

∫
∂X

f̃(λ, ξ)g̃(λ, ξ)dλo(ξ)|c(λ)|−2dλ.

The Fourier transform extends to an isometry of L2(X, dvol) into L2((0,∞) ×
∂X,C0dλo(ξ)|c(λ)|−2dλ).

The function c in the previous two theorems is holomorphic on Imλ < 0 and has
the following integral representation:

Theorem 1.3. Let (X, g) be a simply connected harmonic manifold of purely ex-
ponential volume growth and c be the c-function of the radial hypergroup of X. Let
Imλ < 0. Then we have

c(λ) =

∫
∂X

e−2(iλ−ρ)(ξ|η)xdλx(η).

for any x ∈ X, ξ ∈ ∂X, where (ξ|η)x is the Gromov product on X given in Definition
2.3 below.

We define a notion of convolution with radial functions and prove the following
version of the Kunze-Stein phenomenon:

Theorem 1.4. Let (X, g) be a simply connected harmonic manifold of purely ex-
ponential volume growth. Let x ∈ X and let 1 ≤ p < 2. Let g ∈ C∞c (X) be radial
around the point x. Then for any f ∈ C∞c (X) the inequality

||f ∗ g||2 ≤ Cp||g||p||f ||2
holds for some constant Cp > 0. It follows that for any g ∈ Lp(X) radial around x,
the map f ∈ C∞c (X) 7→ f ∗ g extends to a bounded linear operator on L2(X) with
operator norm at most Cp||g||p.

The article is organized as follows. In section 2 we recall basic facts about Gro-
mov hyperbolic spaces and harmonic manifolds which we require. In section 3 we
compute the action of the Laplacian ∆ on spaces of functions constant on geodesic
spheres and horospheres respectively. In section 4 we carry out the harmonic analy-
sis of radial functions, i.e. functions constant on geodesic spheres centered around a
given point. Unlike the well-known Jacobi analysis [Koo84] which applies to radial
functions on rank one symmetric spaces and harmonic NA groups, our analysis
here is based on hypergroups [BH95]. We define a spherical Fourier transform for
radial functions, and obtain an inversion formula and Plancherel theorem for this
transform. In section 5 we prove the inversion formula and Plancherel formula for
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the Fourier transform. The main point of the proof is an identity expressing radial
eigenfunctions in terms of an integral over the boundary ∂X. The integral formula
for the function c (Theorem 1.3) is proved in section 6. In section 7 we define an
operation of convolution with radial functions, and show that the L1 radial func-
tions form a commutative Banach algebra under convolution. Finally in section 8
we prove a version of the Kunze-Stein phenomenon.

Acknowledgements. The first author would like to thank Swagato K. Ray
and Rudra P. Sarkar for generously sharing their time and knowledge over the
course of numerous educative and enjoyable discussions. The other two authors
like to thank the MFO for hospitality during their stay in the ”Research in Pairs”
program in 2019 and the SFB/TR191 ”Symplectic structures in geometry, algebra
and dynamics”. This article generalizes an earlier version by the first author in the
case of negatively curved harmonic manifolds.

2. Basics about harmonic manifolds and Gromov hyperbolic spaces

2.1. Gromov hyperbolic spaces. We recall briefly basic facts and definitions
about Gromov hyperbolic spaces. Standard references for this section include
[BH99], [BS07].

Let (X, d) be a metric space. We assume that X is geodesic, i.e. any two points
x, y can be joined by a geodesic, which is an isometric embedding γ : [0, T ] → X
satisfying γ(0) = x, γ(T ) = y, where T = d(x, y). A geodesic metric space is called
Gromov hyperbolic if there exists a δ > 0 such that geodesic triangles are δ-thin,
that is each side is contained in the union of the δ-neighbourhoods of the other two
sides.

A geodesic ray is an isometric embedding γ : [0,∞) → X. Two geodesic rays
γ1, γ2 are said to be equivalent if {d(γ1(t), γ2(t)) : t ≥ 0} is bounded. The boundary
at infinity ∂X of X is defined to be the set of equivalence classes of geodesic rays
in X. The equivalence class of a geodesic ray γ is denoted by γ(∞) ∈ ∂X. For any
x ∈ X and ξ ∈ ∂X there exists a geodesic ray γ with γ(0) = x, γ(∞) = ξ. For any
two distinct points ξ, η ∈ ∂X, there is a bi-infinite geodesic γ : R → X such that
γ(−∞) = ξ, γ(∞) = η. We remark that while these geodesics need not be unique,
any two such geodesics lie within bounded distance of each other.

The cone topology on X := X ∪ ∂X is defined as follows:

We fix an origin o ∈ X. A basis of neighbourhoods for a boundary point ξ ∈ ∂X
is given by sets of the form U(γ,R, ε), where γ is a geodesic ray with γ(0) =

o, γ(∞) = ξ, and R, ε > 0, and where U(γ,R, ε) is the set of y ∈ X −B(o,R) such
that any geodesic α joining o to y satisfies d(α(R), γ(R)) < ε. Neighbourhoods of
points x ∈ X are the usual neighbourhoods for the metric topology on X.

The cone topology is independent of the choice of origin o. The space X is
compact if and only if the metric space X is proper, that is closed and bounded
balls in X are compact.

Given x, y, z ∈ X, the Gromov product of y, z with respect to x is defined by

(y|z)x :=
1

2
(d(x, y) + d(x, z)− d(y, z)) .
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For ξ, η ∈ X the Gromov product of ξ, η with respect to x ∈ X is defined by

(ξ|η)x := lim inf
y→ξ,z→η

(y|z)x ∈ [0,+∞]

(where y, z tend to ξ, η in the cone topology). This extends the Gromov product
to a function (.|.)x : X ×X → [0,+∞] which satisfies (ξ|η)x = +∞ if and only if
ξ = η ∈ ∂X. Moreover, for a sequence xn ∈ X and ξ ∈ ∂X, we have xn → ξ (in
the cone topology) if and only if (xn|ξ)x → +∞.

2.2. Harmonic manifolds. We present some fundamental facts about non-compact
simply connected harmonic manifolds. References for this class of manifolds include
[RWW61], [Sza90], [Wil93], [KP13] and [Kni16]. Such manifolds do not have con-
jugate points and, for every x ∈ X, the exponential map expx : TxX → X is a
diffeomorphism. (See e.g [Kni02] on basic geometric and dynamical properties of
spaces without conjugate points.) The absence of conjugate points in X allows
to define Busemann functions associated to geodesic rays γv : [0,∞) → X with
γ′v(0) = v. These functions are of central importance in our paper and are given by

bv(y) = lim
t→∞

(d(y, γv(t))− t).

The level sets of these functions are called horospheres and can be viewed as spheres
with center at infinity.

For any v ∈ T 1
xX and r > 0, let A(v, r) denote the Jacobian of the map v 7→

expx(rv). The definition of harmonicity given in the Introduction is equivalent to
the fact that this Jacobian does not depend on v, i.e. there is a function A on (0,∞)
such that A(v, r) = A(r) for all v ∈ T 1X. See [Wil93, p. 224] for the equivalence of
this property with the property given in the Introduction. The function A is called
the density function of the harmonic manifold.

For x ∈ X, let dx denote the distance function from the point x, i.e. dx(y) =
d(x, y). A function f on X is said to be radial around a point x of X if f is constant
on geodesic spheres centered at x. For each x ∈ X, we can define a radialization
operator Mx, defined for a continuous function f on X by

(Mxf)(z) =

∫
S(x,r)

f(y)dσr(y)

where S(x, r) denotes the geodesic sphere around x of radius r = d(x, z), and
σr denotes surface area measure on this sphere (induced from the metric on X),
normalized to have mass one. The operator Mx maps continuous functions to
functions radial around x, and is formally self-adjoint, meaning∫

X

(Mxf)(z)h(z)dvol(z) =

∫
X

f(z)(Mxh)(z)dvol(z).

for all continuous functions f, h with compact support. Introducing polar coordi-
nates around x this follows easily from∫
X

(Mxf)(z)h(z)dvol(z) =

∫ ∞
0

∫
T 1
xX

f(γv(r))dθx(v)

∫
T 1
xX

h(γw(r))dθx(w)A(r)dr,

where θx is the normalized canonical measure on the unit tangent space T 1
xX

induced by the Riemannian metric and γv : R → X is the geodesic satisfying
γ′v(0) = v.
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Using these concepts, we have the following equivalent conditions for harmonic-
ity:

(1) For any x ∈ X, ∆dx is radial around x.
(2) The Laplacian ∆ = div ◦ ∇ commutes with all the radialization operators

Mx, i.e. Mx∆u = ∆Mxu for all smooth functions u on X and all x ∈ X.
(3) For any smooth function u radial around any x ∈ X the function ∆u is

radial around x, as well.

Let us now discuss basic properties of the density function A(r) of a non-
compact harmonic manifold. The function A(r) is increasing in r, and the quantity
(A′/A)(r) ≥ 0 equals the mean curvature of geodesic spheres S(x, r) of radius r,
which decreases monotonically as r → ∞ (see [RS03, Corollary 2.1, Proposition
2.2] and [Kni02, Section 1.2]). Furthermore, the mean curvature (A′/A)(r) of the
geodesic sphere S(x, r) at a point z ∈ S(x, r) equals ∆dx(z), hence we have

∆dx =
A′

A
◦ dx.

The limit limr→∞(A′/A)(r) is equal to the mean curvature h ≥ 0 of horospheres.
Therefore, all harmonic manifolds are in particular asymptotically harmonic, mean-
ing they are manifolds without conjugate points such that all horospheres have the
same constant mean curvature.

Using the density function A(r), harmonic manifolds are of purely exponential
volume growth if and only if there exist constants C > 1, h > 0 such that we have
for all R > 1

1

C
ehR ≤ A(R) ≤ CehR.

In this particular case it turns out that the constant h > 0 agrees with the mean
curvature of the horospheres.

Let us finish this section by discussing specific properties of non-compact simply
connected harmonic manifolds (X, g) of purely exponential volume growth as defined
in (1). As mentioned in the introduction, in this setting purely exponential volume
growth, Anosov geodesic flow and Gromov hyperbolicity are equivalent properties
(see [Kni12]).

Let X = X ∪ ∂X be as defined in the previous section. For each x ∈ X, we
introduce the following bijective map prx : B1(x)→ X̄, where B1(x) ⊂ TxX is the
closed ball of radius 1:

prx(v) =

{
γv(∞) if ‖v‖ = 1,

expx

(
1

1−‖v‖v
)

if ‖v‖ < 1.

Then the map prx is a homeomorphism (where X is equipped with the cone topol-
ogy) (see [KP16] section 3 and 4).

Since the horospheres are the footpoint projections of the stable manifolds of the
geodesic flow, we have the following convergence property of asymptotic geodesic
starting from the same horosphere in the case of Anosov geodesic flow:

Lemma 2.1. Given ξ = γv(∞) ∈ ∂X and x, y ∈ X such that bv(x) = bv(y) = 0,
and geodesics γ1, γ2 : [0,+∞) → X such that γ1(0) = x, γ2(0) = y and γ1(∞) =
γ2(∞) = ξ, we have that d(γ1(t), γ2(t))→ 0 as t→∞.
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Proof: Let v1 = γ′1(0), v2 = γ′2(0), then by hypothesis v1, v2 lie in the same strong
stable manifold for the Anosov geodesic flow, hence dT 1X(φt(v1), φt(v2)) → 0 as
t → +∞ (where dT 1X denotes the distance on T 1X induced by the Sasaki metric
and (φt)t∈R denotes the geodesic flow), hence d(γ1(t), γ2(t))→ 0 as t→ +∞, since
the canonical projection π : T 1X → X is 1-Lipschitz. �

Using this fact we define Busemann functions alternatively with respect to bound-
ary points as follows:

Lemma 2.2. Let (X, g) be a simply connected harmonic manifold of purely ex-
ponential volume growth and x ∈ X and ξ ∈ ∂X. Then the Busemann function
Bξ,x : X → R is defined by

Bξ,x(y) = lim
t→∞

(d(y, γ(t))− d(x, γ(t)))

where γ : [0,∞) → X is a geodesic ray with γ(∞) = ξ. This definition does not
depend on the choice of γ.

Proof: Let γ0 : [0,∞) → X be the geodesic ray with γ0(0) = x and γ0(∞) = ξ.
Let v = γ′0(0). Then there exists t0 ∈ R such that we have

d(γ0(t+ t0), γ(t))→ 0 for t→∞,

and we have

d(y, γ(t))− d(x, γ(t)) = d(y, γ0(t+ t0)) + (d(y, γ(t))− d(y, γ0(t+ t0)))

− d(x, γ0(t+ t0))− (d(x, γ(t))− d(x, γ0(t+ t0))).

Since

(2) |d(z, γ(t))− d(z, γ0(t+ t0))| ≤ d(γ(t), γ0(t+ t0))→ 0 for t→∞,

we obtain

lim
t→∞

(d(y, γ(t))− d(x, γ(t))) = lim
t→∞

(d(y, γ0(t+ t0))− d(x, γ0(t+ t0))) =

lim
t→∞

(d(y, γ0(t+ t0))− (t+ t0)) = bv(q).

This shows the independence of the limit of the choice of geodesic ray. �
The level sets of Bξ,x are called horospheres centered at ξ and their mean curva-

tures agree with ∆Bξ,x for all ξ ∈ ∂X, x ∈ X. Since they have the same constant
mean curvature h ≥ 0, we have

∆Bξ,x = h.

In the case of purely exponential volume growth the constant h is positive. The
Busemann cocycle B : X ×X × ∂X → R is defined by

B(x, y, ξ) := Bξ,y(x),

and it is easy to see that it satisfies the following cocycle property:

B(x, z, ξ) = B(x, y, ξ) +B(y, z, ξ).

Since (X, g) is a Gromov hyperbolic space by [Kni12], it is equipped with the
Gromov product defined in section 2.1. It will be necessary for our purposes to work
however with the modified version of the Gromov product given by the following
lemma:
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Lemma 2.3. Let (X, g) be a simply connected harmonic manifold of purely expo-
nential volume growth. For ξ, η ∈ ∂X, and γ1, γ2 : [0,∞) → X any two geodesic
rays with γ1(∞) = ξ and γ2(∞) = η, the limit

lim
s,t→∞

(γ1(s)|γ2(t))x,

exists and is independent of the choice of the geodesic rays γ1, γ2.

Proof: We first assume ξ 6= η. Since X is Gromov hyperbolic, there exists a
geodesic γ : R → X with γ(−∞) = ξ and γ(∞) = η (see, e.g., [DK18, Lemma
11.83]). Using Lemma 2.1, we conclude that there exist s0, t0 ∈ R such that

d(γ1(s), γ(−s+ s0))→ 0 as s→∞
and

d(γ2(t), γ(t+ t0))→ 0 as t→∞.
Using these limits and similar arguments as in the proof of Lemma 2.2 (in particular
(2)), we derive

lim
s,t→∞

(γ1(s)|γ2(t))x = lim
s,t→∞

1

2
(d(γ1(s), x) + d(γ2(t), x)− d(γ1(s), γ2(t)))

= lim
s,t→∞

1

2
(d(γ(−s+ s0), x) + d(γ(t+ t0), x)− d(γ(−s+ s0), γ(t+ t0)))

=
1

2
( lim
s→∞

(d(γ(−s+ s0), x)− (s− s0))) +
1

2
( lim
t→∞

(d(γ(t+ t0), x)− (t+ t0)))

=
1

2
(Bξ,γ(0)(x) +Bη,γ(0)(x)).

Next we assume ξ = η. Let γ, γ1, γ2 : [0,∞) → X be geodesic rays with γ(0) = x
and γ(∞) = γ1(∞) = γ2(∞) = ξ. Again, we can find t1, t2 ∈ R such that for
i ∈ {1, 2},

d(γi(t), γ(t+ ti))→ 0 as t→∞.
Using these limits again we derive

lim
s,t→∞

(γ1(s)|γ2(t))x = lim
s,t→∞

1

2
(d(γ1(s), x) + d(γ2(t), x)− d(γ1(s), γ2(t)))

= lim
s,t→∞

1

2
(d(γ(s+ t1), x) + d(γ(t+ t2), x)− d(γ(s+ t1), γ(t+ t2)))

= lim
s,t→∞

1

2
(s+ t1 + t+ t2 − |s+ t1 − (t+ t2)|) =∞.

�
For the rest of the article, by the Gromov product we will mean the limit given

by the above lemma, and denote it by the same symbol (.|.)x. We remark that this
definition of Gromov product may not agree with the definition given for general
Gromov hyperbolic spaces in section 2.1 as a liminf, however the two definitions
do agree in the case of CAT(-1) spaces, in particular if the manifold X has strictly
negative curvature.

The main reason for introducing this modified version of the Gromov product
is that we then have the following relation between Busemann functions and the
Gromov product in our setting (it also holds in any CAT(-1) space):
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Lemma 2.4. Let X be a noncompact, simply connected harmonic manifold of
purely exponential volume growth. For x ∈ X and η ∈ ∂X, let γx,η : [0,∞) → X
be a geodesic ray with γx,η(0) = x and γx,η(∞) = η. Then we have for all ξ ∈ ∂X:

lim
r→∞

(Bξ,x(γx,η(r))− r) = −2(ξ|η)x.

Proof: Let α : [0,∞)→ X be a geodesic ray with α(0) = x and α(∞) = ξ. Then
by the previous Lemma, the double limit

lim
s,r→∞

d(α(s), γx,η(r))− (r + s)

exists and equals −2(ξ|η)x. Since the double limit exists, it can be evaluated as an
iterated limit, so we have:

−2(ξ|η)x = lim
r→∞

(
lim
s→∞

d(α(s), γx,η(r))− (r + s)
)

Now for a fixed r we have lims→∞(d(α(s), γx,η(r)) − (r + s)) = Bξ,x(γx,η(r)) − r,
so substituting this in the previous equation gives the result. �

Finally, we define the family of visibility measures λx on harmonic manifolds
(X, g) of purely exponential volume growth. For x ∈ X, let θx denote the normal-
ized canonical measure on T 1

xX induced by the Riemannian metric and λx be the
push forward of θx to the boundary ∂X under prx. The visibility measures λx are
pairwise absolutely continuous with Radon-Nykodym derivative given by

(3)
dλy
dλx

(ξ) = e−hBξ,x(y).

This result was shown in [KP16, Theorem 1.4] in the more general setting of asymp-
totically harmonic manifolds of purely exponential volume growth with curvature
tensor bounds ‖R‖∞ ≤ R0, ‖∇R‖∞ ≤ R′0 for some R0, R

′
0 > 0. These curvature

tensor bounds are satisfied for harmonic manifolds by [Bes78, Propositions 6.57 and
6.68].

3. Radial and horospherical parts of the Laplacian

Let X be a non-compact simply connected harmonic manifold. Let h ≥ 0 denote
the mean curvature of horospheres in X, let ρ = 1

2h, and let A : (0,∞)→ R denote
the density function of X.

Lemma 3.1. For f a C2 function on X and u a C∞ function on R, we have

∆(u ◦ f) = (u′′ ◦ f)|∇f |2 + (u′ ◦ f)∆f.

Proof: Let γ be a geodesic, then (u ◦ f ◦ γ)′(t) = (u′ ◦ f)(γ(t)) < ∇f, γ′(t) >, so

(u ◦ f ◦ γ)′′(t) = (u′′ ◦ f)(γ(t)) < ∇f, γ′(t) >2 +(u′ ◦ f)(γ(t)) < ∇γ′∇f, γ′(t) > .
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Now let {ei} be an orthonormal basis of TxX, and let γi be geodesics with γ′i(0) = ei.
Then

∆(u ◦ f)(x) =

n∑
i=1

< ∇ei∇(u ◦ f), ei >

=

n∑
i=1

(u ◦ f ◦ γi)′′(0)

= (u′′ ◦ f)(x)

n∑
i=1

< ∇f, ei >2 +(u′ ◦ f)(x)

n∑
i=1

< ∇ei∇f, ei >

= (u′′ ◦ f)(x)|∇f(x)|2 + (u′ ◦ f)(x)∆f(x).

�

Any C∞ function on X radial around x ∈ X is of the form f = u ◦ dx for some
even C∞ function u on R, where dx denotes the distance function from the point x,
while any C∞ function which is constant on horospheres at ξ ∈ ∂X is of the form
f = u ◦Bξ,x for some C∞ function u on R. The following proposition says that the
Laplacian ∆ leaves invariant these spaces of functions, and describes the action of
the Laplacian on these spaces:

Proposition 3.2. Let x ∈ X, ξ ∈ ∂X.

(1) For u a C∞ function on (0,∞),

∆(u ◦ dx) = (LRu) ◦ dx

where LR is the differential operator on (0,∞) defined by

LR =
d2

dr2
+
A′(r)

A(r)

d

dr

(2) For u a C∞ function on R,

∆(u ◦Bξ,x) = (LHu) ◦Bξ,x

where LH is the differential operator on R defined by

LH =
d2

dt2
+ 2ρ

d

dt

Proof: Noting that |∇dx| = 1, |∇Bξ,x| = 1, and ∆dx = (A′/A) ◦ dx,∆Bξ,x = 2ρ,
the Proposition follows immediately from the previous Lemma. �

Accordingly, we call the differential operators LR and LH the radial and horo-
spherical parts of the Laplacian respectively. It follows from the above proposition
that a function f = u ◦ dx radial around x is an eigenfunction of ∆ with eigenvalue
σ if and only if u is an eigenfunction of LR with eigenvalue σ. Similarly, a function
f = u ◦Bξ,x constant on horospheres at ξ is an eigenfunction of ∆ with eigenvalue
σ if and only if u is an eigenfunction of LH with eigenvalue σ. In particular, we
have the following:
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Proposition 3.3. Let x ∈ X, ξ ∈ ∂X. Then for any λ ∈ C, the function

f = e(iλ−ρ)Bξ,x

is an eigenfunction of the Laplacian with eigenvalue −(λ2 +ρ2) satisfying f(x) = 1.

Proof: This follows from the fact that the function u(t) = e(iλ−ρ)t on R is an
eigenfunction of LH with eigenvalue −(λ2 + ρ2), and Bξ,x(x) = 0 gives f(x) = 1. �

4. Analysis of radial functions

As we saw in the previous section, finding radial eigenfunctions of the Laplacian
amounts to finding eigenfunctions of its radial part LR. When X is a rank one
symmetric space G/K, or more generally a harmonic NA group, then the volume

density function is of the form A(r) = C
(
sinh

(
r
2

))p (
cosh

(
r
2

))q
, for a constant

C > 0 and integers p, q ≥ 0, and so the radial part LR = d2

dr2 + (A′/A) ddr falls into
the general class of Jacobi operators

Lα,β =
d2

dr2
+ ((2α+ 1) coth r + (2β + 1) tanh r)

d

dr

for which there is a detailed and well known harmonic analysis in terms of eigen-
functions (called Jacobi functions) [Koo84]. For a general harmonic manifold X,
the explicit form of the density function A is not known, so it is unclear whether the
radial part LR is a Jacobi operator. However, there is a harmonic analysis, based
on hypergroups ([Che74], [Che79], [Tri81], [Tri97b], [Tri97a], [BX95], [Xu94]), for
more general second-order differential operators on (0,∞) of the form

(4) L =
d2

dr2
+
A′(r)

A(r)

d

dr

where A : [0,∞) → [0,∞) is a function satisfying certain hypotheses which allow
one to endow [0,∞) with a hypergroup structure, called a Chebli-Trimeche hy-
pergroup. We first recall some basic facts about Chebli-Trimeche hypergroups, and
then show that the density function of a harmonic manifold satisfies the hypotheses
required in order to apply this theory.

4.1. Chebli-Trimeche hypergroups. A hypergroup (K, ∗) is a locally compact
Hausdorff space K such that the space M b(K) of finite Borel measures on K is
endowed with a product (µ, ν) 7→ µ ∗ ν turning it into an algebra with unit, and
K is endowed with an involutive homeomorphism x ∈ K 7→ x̃ ∈ K, such that the
product and the involution satisfy certain natural properties (see [BH95] Chapter
1 for the precise definition). A motivating example relevant to the following is
the algebra of finite radial measures on a noncompact rank one symmetric space
G/K under convolution; as radial measures can be viewed as measures on [0,∞),
this endows [0,∞) with a hypergroup structure (with the involution being the
identity). It turns out that this hypergroup structure on [0,∞) is a special case of a
general class of hypergroup structures on [0,∞) called Sturm-Liouville hypergroups
(see [BH95], section 3.5). These hypergroups arise from Sturm-Liouville boundary
problems on (0,∞). We will be interested in a particular class of Sturm-Liouville
hypergroups called Chebli-Trimeche hypergroups. These arise as follows (we refer
to [BH95], section 3.5, for proofs of statements below):
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A Chebli-Trimeche function is a continuous function A : [0,∞) → [0,∞) which
is C∞ and positive on (0,∞) and satisfies the following conditions:

(H1) A is increasing, and A(r)→ +∞ as r → +∞.

(H2) A′/A is decreasing, and ρ = 1
2 limr→∞A′(r)/A(r) > 0.

(H3) For r > 0, A(r) = r2α+1B(r) for some α > −1/2 and some even, C∞ function
B on R such that B(0) = 1.

Let L be the differential operator on C2(0,∞) defined by equation (4), where A
satisfies conditions (H1)-(H3) above. Define the differential operator l on C2((0,∞)2)
by

l[u](x, y) = (L)xu(x, y)− (L)yu(x, y)

=

(
uxx(x, y) +

A′(x)

A(x)
ux(x, y)

)
−
(
uyy(x, y) +

A′(y)

A(y)
uy(x, y)

)

For f ∈ C2([0,∞)) denote by uf the solution of the hyperbolic Cauchy problem

l[uf ] = 0,

uf (x, 0) = uf (0, x) = f(x),

(uf )y(x, 0) = 0,

(uf )x(0, y) = 0 for x, y ∈ [0,∞).

For x ∈ [0,∞), let εx denote the Dirac measure of mass one at x. Then for all
x, y ∈ [0,∞), there exists a probability measure on [0,∞) denoted by εx ∗ εy such
that ∫ ∞

0

fd(εx ∗ εy) = uf (x, y)

for all even, C∞ functions f on R. We have εx ∗ εy = εy ∗ εx for all x, y, and the
product (εx, εy) 7→ εx∗εy extends to a product on all finite measures on [0,∞) which
turns [0,∞) into a commutative hypergroup ([0,∞), ∗) (with the involution being
the identity), called the Chebli-Trimeche hypergroup associated to the function A
([BH95], section 3.5).

A measure µ on a commutative hypergroup (K, ∗) is called a Haar measure for
the hypergroup if ∫

K

fd(εx ∗ µ) =

∫
K

fdµ

for all f ∈ Cc(K) and all x ∈ K. Any commutative hypergroup has a Haar measure
([BH95], Theorem 1.3.15), which in the case of the Chebli-Trimeche hypergroup
([0,∞), ∗) is given by the measure A(r)dr on [0,∞).

For a commutative hypergroup K with a Haar measure dk, a Fourier analysis can
be carried out analogous to the Fourier analysis on locally compact abelian groups
([BH95], section 2.2). There is a dual space K̂ of characters, which are bounded

multiplicative functions on the hypergroup χ : K → C satisfying χ(x̃) = χ(x),
where multiplicative means that∫

K

χd(εx ∗ εy) = χ(x)χ(y)
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for all x, y ∈ K. For f ∈ L1(K), the Fourier transform of f is the function f̂ on K̂
defined by

f̂(χ) =

∫
K

fχdk.

The Levitan-Plancherel Theorem ([BH95], Theorem 2.2.13) states that there is a

measure dχ on K̂ called the Plancherel measure, such that the mapping f 7→ f̂
extends from L1(K)∩L2(K) to an isometry from L2(K) onto L2(K̂). The inverse

Fourier transform of a function σ ∈ L1(K̂) is the function σ̌ on K defined by

σ̌(k) =

∫
K̂

σ(χ)χ(k)dχ.

The Fourier inversion theorem ([BH95], Theorem 2.2.36) then states that if f ∈
L1(K) ∩ C(K) is such that f̂ ∈ L1(K̂), then f = (f̂ )̌, i.e.

f(x) =

∫
K̂

f̂(χ)χ(x)dχ

for all x ∈ K.

For the Chebli-Trimeche hypergroup, it turns out that the multiplicative func-
tions on the hypergroup are given precisely by eigenfunctions of the operator L.
For any λ ∈ C, the equation

(5) Lu = −(λ2 + ρ2)u

has a unique solution φλ on (0,∞) which extends continuously to 0 and satisfies
φλ(0) = 1 (note that the coefficient A′/A of the operator L is singular at r = 0 so
existence of a solution continuous at 0 is not immediate). The function φλ extends
to a C∞ even function on R. Since equation (5) reads the same for λ and −λ, by
uniqueness we have φλ = φ−λ.

The multiplicative functions on [0,∞) are then exactly the functions φλ, λ ∈ C.
The functions φλ are bounded if and only if | Imλ| ≤ ρ. Furthermore, the involution
on the hypergroup being the identity, the characters of the hypergroup are real-
valued, which occurs for φλ if and only if λ ∈ R ∪ iR. Thus the dual space of the
hypergroup is given by ([BH95], Theorem 3.5.50)

K̂ = {φλ|λ ∈ [0,∞) ∪ [0, iρ]}
which we identify with the set Σ = [0,∞) ∪ [0, iρ] ⊂ C.

The hypergroup Fourier transform of a function f ∈ L1([0,∞), A(r)dr) is given
by

f̂(λ) =

∫ ∞
0

f(r)φλ(r)A(r)dr

for λ ∈ Σ (when the hypergroup arises from convolution of radial measures on a rank
one symmetric space G/K, then this is the well-known Jacobi transform [Koo84]).
The Levitan-Plancherel and Fourier inversion theorems for the hypergroup give
the existence of a Plancherel measure σ on Σ such that the Fourier transform
defines an isometry from L2([0,∞), A(r)dr) onto L2(Σ, σ), and, for any function

f ∈ L1([0,∞), A(r)dr) ∩ C([0,∞)) such that f̂ ∈ L1(Σ, σ), we have

f(r) =

∫
Σ

f̂(λ)φλ(r)dσ(λ)

for all r ∈ [0,∞).
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In [BX95], it is shown that under certain extra conditions on the function A, the
support of the Plancherel measure is [0,∞) and the Plancherel measure is absolutely
continuous with respect to Lebesgue measure dλ on [0,∞), given by

dσ(λ) = C0|c(λ)|−2dλ

where C0 > 0 is a constant, and c is a certain complex function on C − {0}. The
required conditions on A are as follows:

Making the change of dependent variable v = A1/2u, equation (5) becomes

(6) v′′(r) = (G(r)− λ2)v(r)

where the function G is defined by

(7) G(r) =
1

4

(
A′(r)

A(r)

)2

+
1

2

(
A′

A

)′
(r)− ρ2

If the function G tends to 0 fast enough near infinity, then it is reasonable to
expect that equation (6) above has two linearly independent solutions asymptotic
to exponentials e±iλr near infinity. Bloom-Xu show that this is indeed the case
[BX95] under the following hypothesis on the function G:

(H4) For some r0 > 0, we have∫ ∞
r0

r|G(r)|dr < +∞

and G is bounded on [r0,∞).

Under hypothesis (H4), for any λ ∈ C−{0}, there are unique solutions Φλ,Φ−λ
of equation (5) on (0,∞) which are asymptotic to exponentials near infinity [BX95],

Φ±λ(r) = e(±iλ−ρ)r(1 + o(1)) as r → +∞

The solutions Φλ,Φ−λ are linearly independent, so, since φλ = φ−λ, there exists a
function c on C− {0} such that

φλ = c(λ)Φλ + c(−λ)Φ−λ

for all λ ∈ C − {0}. We will call this function the c-function of the hypergroup.
We remark that if the hypergroup ([0,∞), ∗) is the one arising from convolution of
radial measures on a noncompact rank one symmetric spaceG/K, then this function
agrees with Harish-Chandra’s c-function only on the half-plane {Imλ ≤ 0} and not
on all of C.

If we furthermore assume the hypothesis |α| 6= 1/2, then Bloom-Xu show that
the function c is non-zero for Imλ ≤ 0, λ 6= 0, and prove the following estimates:

There exist constants C,K > 0 such that

1

C
|λ| ≤ |c(λ)|−1 ≤ C|λ|, |λ| ≤ K

1

C
|λ|α+ 1

2 ≤ |c(λ)|−1 ≤ C|λ|α+ 1
2 , |λ| ≥ K
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Moreover they prove the following inversion formula: for any even function f ∈
C∞c (R),

f(r) = C0

∫ ∞
0

f̂(λ)φλ(r)|c(λ)|−2dλ

where C0 > 0 is a constant.

It follows that the Plancherel measure σ of the hypergroup is supported on
[0,∞), and absolutely continuous with respect to Lebesgue measure, with density
given by C0|c(λ)|−2. Bloom-Xu also show that the c-function is holomorphic on
the half-plane {Imλ < 0}.

4.2. The density function of a harmonic manifold. Throughout this section
and the next, we denote by X a simply connected, n-dimensional harmonic manifold
of purely exponential volume growth.

Let A be the density function of X. We check that A is a Chebli-Trimeche func-
tion, so that we obtain a commutative hypergroup ([0,∞), ∗), and that the condi-
tions of Bloom-Xu are met so that the Plancherel measure is given by C0|c(λ)|−2dλ
on [0,∞).

The function A(r) equals, up to a constant factor, the volume of geodesic spheres
S(x, r), which is increasing in r and tends to infinity as r tends to infinity, so
condition (H1) is satisfied. As stated in section 2.2, the function A′(r)/A(r) equals
the mean curvature of geodesic spheres S(x, r), which decreases monotonically to a
limit h = 2ρ which is positive (and equals the mean curvature of horospheres), so
condition (H2) is satisfied.

Fixing a point x ∈ X, for r > 0, the density function A(r) is given by the
Jacobian of the map φ : v 7→ expx(rv) from the unit tangent sphere T 1

xX to the
geodesic sphere S(x, r). Let T be the map v 7→ rv from the unit tangent sphere
T 1
xX to the tangent sphere of radius r, T rxX ⊂ TxM , then φ = expx ◦T , so the

Jacobian of φ is given by the product of the Jacobians of T and expx, hence

A(r) = rn−1B(r)

where the function B is given by

B(r) = det(D expx)rv

where v is any fixed vector in T 1
xX. Since B is independent of the choice of v, in

particular is the same for vectors v and −v, the function B is even, and C∞ on R
with B(0) = 1. Thus condition (H3) holds for the function A, with α = (n− 2)/2.

The density function A is thus a Chebli-Trimeche function, so we obtain a hy-
pergroup structure on [0,∞), which we call the radial hypergroup of the harmonic
manifold X (the reason for this terminology will become clear from the the following
sections).

We proceed to check that condition (H4) is satisfied. For this we will need the
following theorem of Nikolayevsy:
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Theorem 4.1. [Nik05] The density function of a harmonic manifold is an expo-
nential polynomial, i.e. a function of the form

A(r) =

k∑
i=1

(pi(r) cos(βir) + qi(r) sin(βir))e
αir

where pi, qi are polynomials and αi, βi ∈ R, i = 1, . . . , k.

It will be convenient to rearrange terms and write the density function in the
form

(8) A(r) =

l∑
i=1

mi∑
j=0

fij(r)r
jeαir

where α1 < α2 < · · · < αl, and each fij is a trigonometric polynomial, i.e. a finite
linear combination of functions of the form cos(βr) and sin(βr), β ∈ R, with fimi
not identically zero, for i = 1, . . . , l. For an exponential polynomial written in this
form, we will call the largest exponent αl which appears in the exponentials the
exponential degree of the exponential polynomial.

Lemma 4.2. With the density function as above, we have αl = 2ρ,ml = 0 and
fl0 = C for some constant C > 0. Thus the density function is of the form

A(r) = Ce2ρr + P (r)

where P is an exponential polynomial of exponential degree δ < 2ρ.

Proof: Since X has purely exponential volume growth, there exists a constant
C > 1 such that

(9)
1

C
≤ A(r)

e2ρr
≤ C

for all r ≥ 1. If αl < 2ρ, then A(r)/e2ρr → 0 as r → ∞, contradicting (9)
above, so we must have αl ≥ 2ρ. On the other hand, if αl > 2ρ, then since flml is a
trigonometric polynomial which is not identically zero, we can choose a sequence rm
tending to infinity such that flml(rm) → α 6= 0. Then clearly A(rm)/e2ρrm → ∞,
again contradicting (9). Hence αl = 2ρ.

Using (8) and αl = 2ρ, we have

A′(r)

A(r)
− 2ρ =

f ′lml(r) + o(1)

flml(r) + o(1)

as r →∞, thus

f ′lml(r) + o(1) = (flml(r) + o(1))

(
A′(r)

A(r)
− 2ρ

)
→ 0

as r →∞ since flml is bounded and A′(r)/A(r)− 2ρ→ 0 as r →∞. Thus f ′lml is
a trigonometric polynomial which tends to 0 as r → ∞, so it must be identically
zero, hence flml = C for some non-zero constant C.

It follows that
A(r) = Crmle2ρr(1 + o(1))
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as r →∞. If ml ≥ 1 then A(r)/e2ρr →∞ as r →∞, so we must have ml = 0. �

Lemma 4.3. Condition (H4) holds for the density function A, i.e.∫ ∞
r0

r|G(r)|dr < +∞

and G is bounded on [r0,∞) for any r0 > 0, where

G(r) =
1

4

(
A′(r)

A(r)

)2

+
1

2

(
A′

A

)′
(r)− ρ2

Proof: By the previous lemma, A(r) = Ce2ρr + P (r), where P is an exponential
polynomial of exponential degree δ < 2ρ. We then have

A′(r)

A(r)
− 2ρ =

P ′(r)− 2ρP (r)

Ce2ρr + P (r)

=
Q(r)

Ce2ρr + P (r)

where Q is an exponential polynomial of exponential degree less than or equal to
δ. Putting κ = (2ρ − δ)/2, it follows that A′(r)/A(r) − 2ρ = O(e−κr) as r → ∞.
Differentiating, we obtain(

A′

A

)′
(r) =

(Ce2ρr + P (r))Q′(r)−Q(r)(2ρCe2ρr + P ′(r))

(Ce2ρr + P (r))2

=
Q1(r)

(Ce2ρr + P (r))2

where Q1 is an exponential polynomial of exponential degree less than or equal to
(2ρ+δ). Since the denominator of the above expression is of the form ke4ρr+P1(r)
with P1 an exponential polynomial of exponential degree strictly less than 4ρ, it
follows that (A′/A)′(r) = O(e−κr) as r →∞.

Now we can write the function G as

G(r) =
1

4

(
A′(r)

A(r)
− 2ρ

)(
A′(r)

A(r)
+ 2ρ

)
+

1

2

(
A′

A

)′
(r)

Since (A′(r)/A(r) + 2ρ) is bounded, it follows from the previous paragraph that
G(r) = O(e−κr) as r →∞. This immediately implies that condition (H4) holds. �

In order to apply the result of Bloom-Xu on the Plancherel measure for the
hypergroup, it remains to check that |α| 6= 1/2. Since α = (n − 2)/2, this means
n 6= 3. Now the Lichnerowicz conjecture holds in dimensions n ≤ 5 ([Lic44],
[Wal48], [Bes78], [Nik05]), i.e. the only harmonic manifolds in such dimensions are
the rank one symmetric spaces X = G/K, for which as mentioned earlier the Jacobi
analysis applies, and the Plancherel measure of the hypergroup is well known to be
given by C0|c(λ)|−2dλ where c is Harish-Chandra’s c-function. Thus in our case
we may as well assume that X has dimension n ≥ 6, so that |α| 6= 1/2, and we may
then apply the results of Bloom-Xu stated in the previous section.
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4.3. The spherical Fourier transform. Let φλ denote as in section 4.1 the
unique function on [0,∞) satisfying LRφλ = −(λ2+ρ2)φλ and φλ(0) = 1. For x ∈ X
let dx denote as before the distance function from the point x, dx(y) = d(x, y). We
define the following eigenfunction of ∆ radial around x:

φλ,x := φλ ◦ dx
The uniqueness of φλ as an eigenfunction of LR with eigenvalue −(λ2 + ρ2) and
taking the value 1 at r = 0 immediately implies the following lemma:

Lemma 4.4. The function φλ,x is the unique eigenfunction f of ∆ on X with
eigenvalue −(λ2 + ρ2) which is radial around x and satisfies f(x) = 1.

Note that for λ ∈ R, the functions φλ,x are bounded. Let dvol denote the
Riemannian volume measure on X.

Definition 4.5. Let f ∈ L1(X, dvol) be radial around the point x ∈ X. We define
the spherical Fourier transform of f by

f̂(λ) :=

∫
X

f(y)φλ,x(y)dvol(y)

for λ ∈ R.

For f a function on X radial around the point x, let f = u ◦ dx where u is a
function on [0,∞), then evaluating the integral over X in geodesic polar coordinates
gives ∫

X

|f(y)|dvol(y) =

∫ ∞
0

|u(r)|A(r)dr

thus f ∈ L1(X) if and only if u ∈ L1([0,∞), A(r)dr). In that case, again integrating
in polar coordinates gives

f̂(λ) =

∫ ∞
0

u(r)φλ(r)A(r)dr = û(λ)

where û is the hypergroup Fourier transform of the function u. Moreover f ∈
C∞c (X) if and only if u extends to an even function on R such that u ∈ C∞c (R).
Applying the Fourier inversion formula of Bloom-Xu for the radial hypergroup
stated in section 4.1 to the function u then leads immediately to the following
inversion formula for radial functions:

Theorem 4.6. Let (X, g) be a simply connected harmonic manifold of purely ex-
ponential volume growth and f ∈ C∞c (X) be radial around the point x ∈ X. Then

f(y) = C0

∫ ∞
0

f̂(λ)φλ,x(y)|c(λ)|−2dλ

for all y ∈ X. Here c denotes the c-function of the radial hypergroup and C0 > 0 is
a constant. Moreover, the c-function is holomorphic on the half-plane {Imλ < 0}.

Proof: As shown in the previous section, all the hypotheses required to apply the
inversion formula of Bloom-Xu are satisfied, hence

u(r) = C0

∫ ∞
0

û(λ)φλ(r)|c(λ)|−2dλ.
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Since f = u ◦ dx, this gives

f(y) = u(dx(y))

= C0

∫ ∞
0

û(λ)φλ(dx(y))|c(λ)|−2dλ

= C0

∫ ∞
0

f̂(λ)φλ,x(y)|c(λ)|−2dλ.

For the holomorphicity of the function c in {Imλ < 0} see the proof of Proposition
3.17 in [BX95]. �

The Plancherel theorem for the radial hypergroup leads to the following:

Theorem 4.7. Let (X, g) be a simply connected harmonic manifold of purely expo-
nential volume growth. Let L2

x(X, dvol) denote the closed subspace of L2(X, dvol)
consisting of those functions in L2(X, dvol) which are radial around the point x.
For f ∈ L1(X, dvol) ∩ L2

x(X, dvol), we have∫
X

|f(y)|2dvol(y) = C0

∫ ∞
0

|f̂(λ)|2|c(λ)|−2dλ

The spherical Fourier transform f 7→ f̂ extends to an isometry from L2
x(X, dvol)

onto L2([0,∞), C0|c(λ)|−2dλ).

Proof: The map u 7→ f = u ◦ dx defines an isometry of L2([0,∞), A(r)dr) onto
L2
x(X, dvol), which maps L1([0,∞), A(r)dr)∩L2([0,∞), A(r)dr) onto L1(X, dvol)∩

L2
x(X, dvol). The statements of the theorem then follow from the Levitan-Plancherel

theorem for the radial hypergroup and from the fact that the Plancherel measure
is supported on [0,∞), given by C0|c(λ)|−2dλ. �

5. Fourier inversion and Plancherel theorem

As before, we assume throughout this section that (X, g) denotes a simply con-
nected harmonic manifold of purely exponential volume growth. We proceed to
the analysis of non-radial functions on X. Our definition of Fourier transform will
depend on the choice of a basepoint x ∈ X.

Definition 5.1. Let x ∈ X. For f ∈ C∞c (X), the Fourier transform of f based at
the point x is the function on C× ∂X defined by

f̃x(λ, ξ) =

∫
X

f(y)e(−iλ−ρ)Bξ,x(y)dvol(y)

for λ ∈ C, ξ ∈ ∂X. Here as before Bξ,x denotes the Busemann function at ξ based
at x such that Bξ,x(x) = 0.

We remark that the Fourier transform defined in the Introduction is the Fourier
transform based at o ∈ X. Using the formula

Bξ,x = Bξ,o −Bξ,o(x)

for points o, x ∈ X, we obtain the following relation between the Fourier transforms
based at two different basepoints o, x ∈ X:



FOURIER TRANSFORM ON HARMONIC MANIFOLDS 21

(10) f̃x(λ, ξ) = e(iλ+ρ)Bξ,o(x)f̃o(λ, ξ)

The key to passing from the inversion formula for radial functions of section 4.3
to an inversion formula for non-radial functions will be a formula expressing the
radial eigenfunctions φλ,x as an integral with respect to ξ ∈ ∂X of the eigenfunctions

e(iλ−ρ)Bξ,x (Theorem 5.6). This will be the analogue of the well-known formulae for
rank one symmetric spaces G/K and harmonic NA groups expressing the radial
eigenfunctions φλ,x as matrix coefficients of representations of G on L2(K/M) and
NA on L2(N) respectively.

We start with a basic relation between eigenfunctions of the Laplacian:

Lemma 5.2. Let x ∈ X and ξ ∈ ∂X. Then for all λ ∈ C,

φλ,x = Mx(e(iλ−ρ)Bξ,x)

(where Mx is the radialisation operator around the point x). In particular, φλ,x(y)
is entire in λ for fixed y ∈ X, and is real and positive for λ such that (iλ − ρ) is
real and positive.

Proof: Since the function e(iλ−ρ)Bξ,x is an eigenfunction of the Laplacian ∆ with
eigenvalue −(λ2 + ρ2) and the operator Mx commutes with ∆, the function f =
Mx(e(iλ−ρ)Bξ,x) is also an eigenfunction of ∆ for the eigenvalue −(λ2 + ρ2). Since
f is radial around x and f(x) = 1, it follows from Lemma 4.4 that f = φλ,x. �

The next proposition provides a connection between the Fourier transform and
the spherical Fourier transform for radial functions:

Proposition 5.3. Let f ∈ C∞c (X) be radial around the point x ∈ X. Then the
Fourier transform of f based at x coincides with the spherical Fourier transform,

f̃x(λ, ξ) = f̂(λ)

for all λ ∈ C, ξ ∈ ∂X.

Proof: Let f = u ◦ dx where u ∈ C∞c (R). By Lemma 5.2 above,

φλ(r) = φ−λ(r) =

∫
S(x,r)

e(−iλ−ρ)Bξ,x(y)dσr(y)

where σr is normalized surface area measure on the geodesic sphere S(x, r). Eval-

uating the integral defining f̃x in geodesic polar coordinates centered at x we have

f̃x(λ, ξ) =

∫ ∞
0

∫
S(x,r)

f(y)e(−iλ−ρ)Bξ,x(y)dσr(y)A(r)dr

=

∫ ∞
0

u(r)φλ(r)A(r)dr

= f̂(λ)

�
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We recall that the visibility measure λx on the boundary ∂X with respect to a
basepoint x ∈ X, defined in section 2.2, is given by the push-forward (prx)∗θx of
the normalized canonical measure θx on T 1

xX under the map prx.

For λ ∈ C and x ∈ X, define the function φ̃λ,x on X by

φ̃λ,x(y) =

∫
∂X

e(iλ−ρ)Bξ,x(y)dλx(ξ)

It follows from the above equation that φ̃λ,x(y) is entire in λ for fixed y ∈ X,
and is real and positive for λ such that (iλ − ρ) is real and positive. Moreover,

by Proposition 3.3, the function φ̃λ,x is an eigenfunction of the Laplacian ∆ with

eigenvalue −(λ2 + ρ2), and φ̃λ,x(x) = 1.

Our next aim is to show that φ̃λ,x is radial around x and, therefore, agrees with
the function φλ,x introduced in Lemma 4.4. We start with a crucial property of
non-compact harmonic manifolds without any further assumptions, derived from a
result of Szabo that the volume of the intersection of a metric ball B(x, r1) with a
geodesic sphere S(y, r2) depends only on the radii r1, r2 and the distance d = d(x, y)
of their centers ([Sza90], Corollary 2.1). We will therefore denote this volume by
v(r1, r2, d).

Proposition 5.4. For v ∈ T 1
xX and r > 0, let brv(y) = d(y, γv(r)) − r. Then for

every continuous function φ : R→ C, the function

F (y) :=

∫
T 1
xX

φ(brv(y))dθx(v)

is radial around x.

Proof: Let ψ(s) = φ(s− r). Then

φ(brv(y)) = φ(d(y, γv(r))− r) = ψ(d(y, γv(r)))

and

(11) F (y) =

∫
T 1
xX

φ(brv(y))dθx(v) =

∫
T 1
xX

ψ(d(y, γv(r))dθx(v).

Next, we consider the following expression:

(12)

∫
B(x,r)

ψ(d(y, z))dvol(z) =

∫ r

0

A(t)

∫
T 1
xX

ψ(d(y, γv(t)))dθx(v)dt.

On the other hand, we have

(13)

∫
B(x,r)

ψ(d(y, z))dvol(z) =

∫ ∞
0

∫
B(x,r)∩S(y,t)

ψ(d(y, z))dσSy(t)(z)dt

=

∫ ∞
0

∫
B(x,r)∩S(y,t)

ψ(t)dσSy(t)(z)dt

=

∫ ∞
0

volS(y,t)(B(x, r) ∩ S(y, t))ψ(t)dt =

∫ ∞
0

v(r, t, d(x, y))ψ(t)dt.

Now, we combine (12) and (13) and differentiate with respect to r and obtain

A(r)

∫
T 1
xX

ψ(d(y, γv(r))dθx(v) =

∫ ∞
0

∂v

∂r
(r, t, d(x, y))ψ(t)dt.
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In view of (11), this implies that

F (y) =
1

A(r)

∫ ∞
0

∂v

∂r
(r, t, d(x, y))ψ(t)dt,

which is obviously independent of the position of y within the sphere S(R, x) with
R = d(x, y). This shows that the function F is radial around x. �

We remark that the above proposition holds without the assumption of purely
exponential volume growth. The analogous statement for Busemann functions is
obtained via a limiting argument:

Corollary 5.5. Let φ : R→ C be a continuous function. Then the function

F (y) :=

∫
T 1
xX

φ(bv(y))dθx(v)

is a radial function around x.

Proof: Note that we have pointwise convergence φ(brv(y)) → φ(bv(y)) for r → ∞
and, since

|brv(y)| ≤ d(x, y) for all r ≥ 0,

we can apply Lebesgue’s dominated convergence. �

This proposition also holds without the assumption of purely exponential volume
growth. As a corollary we obtain the following theorem giving the required formula
for the radial eigenfunctions φλ,x as an integral with respect to ξ ∈ ∂X of the

eigenfunctions e(iλ−ρ)Bξ,x :

Theorem 5.6. Let λ ∈ C and x ∈ X. Then

φλ,x(y) =

∫
T 1
xX

e(iλ−ρ)bv(y)dθx(v)

for all y ∈ X.

Proof: Both sides are eigenfunctions of the Laplacian ∆ with eigenvalue −(λ2+ρ2).
Moreover, both sides assume the value 1 at y = x, φλ,x is radial around x, by

definition, and the right hand side is radial by Corollary 5.5 with φ(s) = e(iλ−ρ)s.
Therefore, both expressions agree by the uniqueness of radial solutions of ∆u =
−(λ2 + ρ2)u, u(x) = 1. �

As with the previous two propositions, the above theorem also holds without the
assumption of purely exponential volume growth. We can now prove the Fourier
inversion formula:

Theorem 5.7. Fix a basepoint o ∈ X. Then for f ∈ C∞c (X) we have

f(x) = C0

∫ ∞
0

∫
∂X

f̃o(λ, ξ)e(iλ−ρ)Bξ,o(x)dλo(ξ)|c(λ)|−2dλ

for all x ∈ X (where C0 > 0 is a constant).
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Proof: Given f ∈ C∞c (X) and x ∈ X, the function Mxf is in C∞c (X), is radial
around the point x and satisfies (Mxf)(x) = f(x). By Theorem 4.6 applied to the
function Mxf we have

f(x) = (Mxf)(x) = C0

∫ ∞
0

M̂xf(λ)φλ,x(x)|c(λ)|−2dλ

= C0

∫ ∞
0

M̂xf(λ)|c(λ)|−2dλ

since φλ,x(x) = 1. Now using the formal self-adjointness of the operator Mx,
Theorem 5.6, the fact that φλ,x is radial around x and φλ,x = φ−λ,x we obtain

M̂xf(λ) =

∫
X

(Mxf)(y)φ−λ,x(y)dvol(y)

=

∫
X

f(y)(Mxφ−λ,x)(y)dvol(y)

=

∫
X

f(y)φ−λ,x(y)dvol(y)

=

∫
X

f(y)

(∫
T 1
xX

e(−iλ−ρ)bv(y)dθx(v)

)
dvol(y)

=

∫
T 1
xX

(∫
X

f(y)
(
e(−iλ−ρ)bv(y)dvol(y)

)
dθx(v)

)
=

∫
∂X

(∫
X

f(y)e(−iλ−ρ)Bξ,x(y)dvol(y)

)
dλx(ξ)

=

∫
∂X

f̃x(λ, ξ)dλx(ξ).

Using the relations (10), namely

f̃x(λ, ξ) = e(iλ+ρ)Bξ,o(x)f̃o(λ, ξ)

and (3), that is
dλx
dλo

(ξ) = e−2ρBξ,o(x),

we get

M̂xf(λ) =

∫
∂X

e(iλ+ρ)Bξ,o(x)f̃o(λ, ξ)e−2ρBξ,o(x)dλo(ξ)

=

∫
∂X

f̃o(λ, ξ)e(iλ−ρ)Bξ,o(x)dλo(ξ).

Substituting this last expression for M̂xf(λ) in the equation

f(x) = C0

∫ ∞
0

M̂xf(λ)|c(λ)|−2dλ

gives

f(x) = C0

∫ ∞
0

∫
∂X

f̃o(λ, ξ)e(iλ−ρ)Bξ,o(x)dλo(ξ)|c(λ)|−2dλ
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as required. �
The Fourier inversion formula leads immediately to a Plancherel theorem:

Theorem 5.8. Fix a basepoint o ∈ X. For f, g ∈ C∞c (X), we have∫
X

f(x)g(x)dvol(x) = C0

∫ ∞
0

∫
∂X

f̃o(λ, ξ)g̃o(λ, ξ)dλo(ξ)|c(λ)|−2dλ

where C0 is the constant appearing in the Fourier inversion formula.

The Fourier transform f 7→ f̃o extends to an isometry of L2(X, dvol) into
L2([0,∞)× ∂X,C0|c(λ)|−2dλdλo(ξ)).

Proof: Applying the Fourier inversion formula to the function g gives∫
X

f(x)g(x)dvol(x)

= C0

∫
X

f(x)

(∫ ∞
0

∫
∂X

g̃o(λ, ξ)e(−iλ−ρ)Bξ,o(x)dλo(ξ)|c(λ)|−2dλ

)
dvol(x)

= C0

∫ ∞
0

∫
∂X

(∫
X

f(x)e(−iλ−ρ)Bξ,o(x)dvol(x)

)
g̃o(λ, ξ)dλo(ξ)|c(λ)|−2dλ

= C0

∫ ∞
0

∫
∂X

f̃o(λ, ξ)g̃o(λ, ξ)dλo(ξ)|c(λ)|−2dλ.

Taking f = g gives that the Fourier transform preserves L2 norms,

||f ||2 = ||f̃o||2
for all f ∈ C∞c (X). It follows from a standard argument that the Fourier transform
extends to an isometry of L2(X, dvol) into L2([0,∞)× ∂X,C0|c(λ)|−2dλdλo(ξ)). �

6. An integral formula for the c-function

In this section we prove the following identity which can be viewed as an analogue
of a well-known integral formula for Harish-Chandra’s c-function (formula (18) in
[Hel94], pg. 108):

Theorem 6.1. Let (X, g) be a simply connected harmonic manifold of purely ex-
ponential volume growth and c be the c-function of the radial hypergroup of X. Let
Imλ < 0. Then we have

lim
r→∞

φλ(r)

e(iλ−ρ)r = c(λ) =

∫
∂X

e−2(iλ−ρ)(ξ|η)xdλx(η).

for any x ∈ X, ξ ∈ ∂X, where (ξ|η)x is the Gromov product given in Lemma 2.3.

For the proof of this identity we need some preparations.

For x, y, z ∈ X, the Gromov product (y|z)x satisfies the following straightforward
consequence of the triangle inequality: let γ be a geodesic joining y, z ∈ X. Then
for any point w on this geodesic γ we have

(y|z)x ≤ d(x,w).

This inequality extends to the boundary:

(ξ|η)x ≤ d(x,w),
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for all points w on any geodesic connecting ξ, η ∈ ∂X (where (ξ|η)x is the Gromov
product as defined in Lemma 2.3).

If the sectional curvatures of X are bounded above by −1 so that X is a CAT(-1)
space, then for x ∈ X there is a well-known metric on ∂X called the visual metric
or Bourdon metric, defined by ρx(ξ, η) = e−(ξ|η)x ([Bou96]). In our setting where X
is only Gromov hyperbolic, this formula may not define a metric on the boundary,
but we can still use the Gromov product to define ”balls” in the boundary ∂X with
center ξ ∈ ∂X and radius r > 0 by putting

B(x)(ξ, r) := {η ∈ ∂X | e−(ξ|η)x < r}.
We need the following geometric result.

Lemma 6.2. Let x ∈ X, ξ ∈ ∂X and let γx,ξ : [0,∞) → X be a geodesic ray with
γx,ξ(0) = x and γx,ξ(∞) = ξ. Then we have for all ε ∈ (0, 1), y = γx,ξ(log(1/ε))

and all η ∈ B(x)(ξ, ε):

(14) |Bη,y(x)− d(x, y)| ≤ 6δ.

Proof: Let η ∈ B(x)(ξ, ε) be fixed and R = log(1/ε). Then (ξ|η)x ≥ R. Let
γξ,η : R→ X be a geodesic connecting ξ and η and γx,η : [0,∞)→ X be a geodesic
ray connecting x and η. Let y0 = γx,ξ(R − 2δ). Then y0 is not contained in the
δ-tube around γξ,η(R) since d(x, y0) = R − 2δ and d(x, γξ,η(R)) ≥ (ξ|η)x ≥ R.
Since triangles are δ-thin, y0 is contained in the δ-tube around γx,η(0,∞). Let
z0 ∈ γx,η(0,∞) with d(y0, z0) ≤ δ and, therefore, d(y, z0) ≤ 3δ. This implies for
z = γx,η(t) and t > 0 large:

|d(x, z)− d(y, z)− d(x, y)| ≤
|d(x, z)− d(z0, z)− d(x, z0)|+ |d(z0, z)− d(y, z)|+ |d(x, z0)− d(x, y)| ≤ 6δ

since x, z0, z lie on the geodesic γx,η and, therefore, d(x, z)− d(z0, z)− d(x, z0) = 0
and |d(z0, z) − d(y, z)|, |d(x, z0) − d(x, y)| ≤ d(y, z0) ≤ 3δ. The result follows then
by taking the limit t→∞. �

This result has the following consequence:

Lemma 6.3. Let (X, g) be a non-compact simply connected δ-hyperbolic harmonic
manifold with horospheres of mean curvature h > 0. Then we have for all x ∈ X,
ξ ∈ ∂X and ε ∈ (0, 1):

λx(B(x)(ξ, ε)) ≤ e6δhεh.

Proof: Recall that Gromov hyperbolicity and purely exponential volume growth
are equivalent in the setting of non-compact simply connected harmonic manifolds
([Kni12]). We use [KP16, Theorem 1.4] (see also (3)) about the Radon-Nykodym
derivative and (14) to obtain for y = γx,ξ(log(1/ε)) with γx,ξ a geodesic ray con-
necting x and ξ:

λx(B(x)(ξ, ε)) =

∫
B(x)(ξ,ε)

dλx(η) =

∫
B(x)(ξ,ε)

dλx
dλy

dλy(η)

=

∫
B(x)(ξ,ε)

e−hBη,y(x)dλy(η) =

∫
B(x)(ξ,ε)

e−hBη,y(x)dλy(η)

=

∫
B(x)(ξ,ε)

e−hd(x,y)e−h(Bη,y(x)−d(x,y))dλy(η) ≤ εh
∫
B(x)(ξ,ε)

e6δhdλy(η) = e6δhεh.
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�

With these results we can now present the proof of Theorem 6.1:

Proof: For Imλ < 0, using φλ = c(λ)Φλ + c(−λ)Φ−λ and

Φ±λ(r) = e(±iλ−ρ)r(1 + o(1)) as r →∞,

we have

φλ(r)

e(iλ−ρ)r = c(λ)(1 + o(1)) + c(−λ)e−2iλr(1 + o(1))(15)

→ c(λ)

as r →∞. This proves the first equation in the theorem.

For the second equation in the theorem, we first consider the case λ = it where
t ≤ −ρ, so that µ := iλ − ρ ≥ 0. Fix x ∈ X and ξ ∈ ∂X. For η ∈ ∂X, let
γx,η : [0,∞) → X be the geodesic ray satisfying γx,η(0) = x and γx,η(∞) = η.
The normalized surface area measure on the geodesic sphere S(x, r) is given by the
push-forward of λx under the map η 7→ γx,η(r), so by Lemma 5.2

φλ(r)

e(iλ−ρ)r =

∫
∂X

e(iλ−ρ)(Bξ,x(γx,η(r))−r)dλx(η)

We will apply the dominated convergence theorem to evaluate the limit of the
above integral as r →∞. First note that by Lemma 2.4, for any η not equal to ξ,

Bξ,x(γx,η(r))− r → −2(ξ|η)x

as r →∞, so the integrand converges a.e. as r →∞,

e(iλ−ρ)(Bξ,x(y(η,r))−r) → e−2(iλ−ρ)(ξ|η)x .

Now, using |Bξ,x(γx,η(r))| ≤ d(x, γx,η(r)) = r and µ ≥ 0 we have

eµ(Bξ,x(γx,η(r))−r) ≤ 1.

So dominated convergence applies and we conclude that

φλ(r)

e(iλ−ρ)r →
∫
∂X

e−2(iλ−ρ)(ξ|η)xdλx(η)

as r →∞. This shows the equation

c(λ) =

∫
∂X

e−2(iλ−ρ)(ξ|η)xdλx(η)

for λ = it, t ≤ −ρ. Since c(λ) is holomorphic for Imλ < 0, we need to show that
the right hand side is also holomorphic for Imλ < 0. Then both expressions must
be equal for Imλ < 0, finishing the proof of the theorem.

Since e−2(iλ−ρ)(ξ|η)x is holomorphic for all λ ∈ C, we need to show that∫
∂X

|e−2(iλ−ρ)(ξ|η)x |dλx(η) <∞

for Imλ < 0. Then the function
∫
∂X

e−2(iλ−ρ)(ξ|η)xdλx(η) will be holomorphic for
Imλ < 0 by Morera’s Theorem. Let λ = σ − iτ with σ ∈ R and τ > 0. Then we



28 KINGSHOOK BISWAS, GERHARD KNIEPER AND NORBERT PEYERIMHOFF

have∫
∂X

|e−2(iλ−ρ)(ξ|η)x |dλx(η) =

∫
∂X

e−2(τ−ρ)(ξ|η)xdλx(η)

=

∫ ∞
0

λx({η ∈ ∂X | e−2(τ−ρ)(ξ|η)x > t})dt.

If τ ≥ ρ then the set {η ∈ ∂X | e−2(τ−ρ)(ξ|η)x > t} is empty for t > 1, and so the
last integral reduces to an integral over [0, 1], which is bounded above by one since
λx is a probability measure.

Since X is of purely exponential volume growth, it is a δ-hyperbolic space for
some δ > 0 ([Kni12]). For 0 < τ < ρ using Lemma 6.3 and the fact that λx is a
probability measure we obtain with h = 2ρ∫ ∞

0

λx({η | e−2(τ−ρ)(ξ|η)x > t})dt ≤ 1 +

∫ ∞
1

λx(B(x)(ξ, (1/t)1/(2(ρ−τ))))dt

≤ 1 + e6δh

∫ ∞
1

(
1

t

) 2ρ
2(ρ−τ)

dt

< ∞.

�

7. The convolution algebra of radial functions

In this section, we assume (X, g) to be a non-compact simply connected harmonic
manifold without any further assumption unless stated otherwise. Fix a basepoint
o ∈ X. We define a notion of convolution with radial functions as follows:

For a function f radial around the point o, let f = u ◦ do, where u is a function
on R. For x ∈ X, the x-translate of f is defined to be the function

τxf = u ◦ dx

Note that if f ∈ L1(X, dvol), then evaluating integrals in geodesic polar coordinates
centered at o and x gives

||f ||1 =

∫ ∞
0

|u(r)|A(r)dr = ||τxf ||1

Definition 7.1. For f an L1 function on X and g an L1 function on X which is
radial around the point o, the convolution of f and g is the function on X defined
by

(f ∗ g)(x) =

∫
X

f(y)(τxg)(y)dvol(y)
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Note that, if g = u ◦ do, then

||f ∗ g||1 ≤
∫
X

∫
X

|f(y)||(τxg)(y)|dvol(y)dvol(x)

=

∫
X

|f(y)|
(∫

X

|u(d(x, y))|dvol(x)

)
dvol(y)

=

∫
X

|f(y)|
(∫ ∞

0

|u(r)|A(r)dr

)
dvol(y)

= ||f ||1||g||1
< +∞

so that the integral defining (f ∗ g)(x) exists for a.e. x, and f ∗ g ∈ L1(X, dvol).

Theorem 7.2. Let (X, g) be a non-compact simply connected harmonic manifold.
Let L1

o(X, dvol) denote the closed subspace of L1(X, dvol) consisting of those L1

functions which are radial around the point o. Then for f, g ∈ L1
o(X, dvol) we have

f ∗ g ∈ L1
o(X, dvol), and L1

o(X, dvol) forms a commutative Banach algebra under
convolution.

Proof: We first consider functions f, g ∈ C∞c (X) which are radial around o. It was
shown in [PS15, Lemma 2.8] that f ∗ g is again radial around o and it follows from
[PS15, Remark 1, p.127] that f ∗ g = g ∗ f .

Now the inequality ||f ∗ g||1 ≤ ||f ||1||g||1 implies, by the density of smooth,
compactly supported radial functions in the space L1

o(X, dvol), that for f, g ∈
L1
o(X, dvol) we have f ∗g = g∗f ∈ L1

o(X, dvol), so L1
o(X, dvol) forms a commutative

Banach algebra under convolution. �

Now we derive a basic identity about the Fourier transform of a convolution.
We assume here additionally that (X, g) is of purely exponential volume growth
to guarantee the existence of the Fourier transform. Note if f, g ∈ C∞c (X) with
g = u ◦ do radial around o, then f ∗ g is compactly supported. For the Fourier
transform of f ∗ g based at o, using the identity Bξ,o(x) = Bξ,o(y) + Bξ,y(x) we
have

f̃ ∗ g
o
(λ, ξ) =

∫
X

(∫
X

f(y)u(d(x, y))dvol(y)

)
e(−iλ−ρ)Bξ,o(x)dvol(x)

=

∫
X

f(y)e(−iλ−ρ)Bξ,o(y)

(∫
X

u(d(x, y))e(−iλ−ρ)Bξ,y(x)dvol(x)

)
dvol(y)

=

∫
X

f(y)e(−iλ−ρ)Bξ,o(y)ũ ◦ dy
y

(λ, ξ)dvol(y)

= f̃o(λ, ξ)û(λ)

= f̃o(λ, ξ)ĝ(λ)

where we have used the fact that for the function u ◦ dy which is radial around y
we have

ũ ◦ dy
y

(λ, ξ) = û(λ) = ĝ(λ)
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where û is the hypergroup Fourier transform of u and ĝ is the spherical Fourier
transform of the function g which is radial around o.

Finally, we remark that the radial hypergroup of a harmonic manifold (X, g) of
purely exponential volume growth can be realized as the convolution algebra of finite
radial measures on the manifold: convolution with radial measures can be defined,
and the convolution of two radial measures is again a radial measure. This can be
proved by approximating finite radial measures by L1 radial functions and applying
the Theorem 7.2. The convolution algebra L1

o(X, dvol) is then identified with a
subalgebra of the hypergroup algebra of finite radial measures under convolution.

8. The Kunze-Stein phenomenon

In this section we assume that (X, g) is a simply connected harmonic manifold of
purely exponential volume growth and we prove a version of the Kunze-Stein phe-
nomenon: for 1 ≤ p < 2, convolution with a radial Lp-function defines a bounded
operator on L2(X).

Lemma 8.1. Let x ∈ X, let q > 2, and let γq = 1− 2
q . Then for any t ∈ (−γqρ, γqρ),

for any λ ∈ C with Imλ = t we have

||φλ,x||q ≤ ||φit,x||q < +∞

Proof: Given t ∈ (−γqρ, γqρ), by Theorem 5.6, for λ with Imλ = t, we have for
any y ∈ X,

|φλ,x(y)| =
∣∣∣∣∫
∂X

e(iλ−ρ)Bξ,x(y)dλx(ξ)

∣∣∣∣
≤
∫
∂X

e(−t−ρ)Bξ,x(y)dλx(ξ)

= φit,x(y)

hence

||φλ,x||q ≤ ||φit,x||q
If t 6= 0, then since φit,x = φ−it,x, we may as well assume that t > 0, in which case
we have, letting r = d(x, y),

φit,x(y) = c(it)Φit(r) + c(−it)Φ−it(r)

= c(it)e(−t−ρ)r(1 + o(1)) + c(−it)e(t−ρ)r(1 + o(1))

= c(−it)e(t−ρ)r(1 + o(1))

as r → ∞, so |φit,x(y)| ≤ Ce(t−ρ)r for r ≥ M for some constants C,M > 0. We
may also assume A(r) ≤ Ce2ρr for r ≥ M . Then, evaluating integrals in geodesic
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polar coordinates centered at x, we have∫
d(x,y)≥M

|φit,x(y)|qdvol(y) ≤
∫ ∞
M

(Ce(t−ρ)r)q(Ce2ρr)dr

< +∞

since (t− ρ)q + 2ρ < 0 for 0 < t < γqρ, thus ||φit,x||q < +∞.

For t = 0, applying Hölder’s inequality we have, for any ε > 0,

φ0,x(y) =

∫
∂X

e−ρBξ,x(y)dλx(ξ)

=

(∫
∂X

e−(1+ε)ρBξ,x(y)dλx(ξ)

)1/(1+ε)

= φiε,x(y)1/(1+ε)

from which it follows that by choosing ε small enough so that q/(1+ ε) > 2 we have
||φ0,x||q < +∞. �

We remark that while the spherical Fourier transform was originally defined for
radial L1 functions, after fixing a basepoint x ∈ X it can also be defined for general
L1 functions by the same formula

ĝ(λ) :=

∫
X

g(y)φλ,x(y)dvol(y) , λ ∈ R

We then have the following Lemma:

Lemma 8.2. Let x ∈ X, let 1 ≤ p < 2 and let g be an Lp-function on X. Let
q > 2 be such that 1

p + 1
q = 1. Then the spherical Fourier transform ĝ of g extends

to a holomorphic function of λ on the strip Sq := {| Imλ| < γqρ}, and is bounded
on any closed sub-strip {| Imλ| ≤ t} for 0 < t < γqρ. In particular ĝ on R satisfies
a bound

||ĝ||∞ ≤ Cp||g||p
for a constant Cp > 0.

Proof: Given 0 < t < γqρ, for any λ ∈ C with | Imλ| ≤ t, by the previous Lemma
||φλ,x||q ≤ C for some constant C only depending on q and t, so it follows from
Holder’s inequality that the function

ĝ(λ) :=

∫
X

g(y)φλ,x(y)dvol(y)

is well-defined and bounded for | Imλ| ≤ t by a constant Cq,t times ||g||p. The holo-
morphicity of the function ĝ follows from Morera’s theorem, using the holomorphic
dependence of φλ,x on λ. �

We can now prove the following version of the Kunze-Stein phenomenon:
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Theorem 8.3. Let (X, g) be a simply connected harmonic manifold of purely ex-
ponential volume growth. Let x ∈ X and let 1 ≤ p < 2. Let g ∈ C∞c (X) be radial
around the point x. Then for any f ∈ C∞c (X) we have

||f ∗ g||2 ≤ Cp||g||p||f ||2
for some constant Cp > 0. It follows that for any g ∈ Lp(X) radial around x,
the map f ∈ C∞c (X) 7→ f ∗ g extends to a bounded linear operator on L2(X) with
operator norm at most Cp||g||p.

Proof: Recall that for f, g ∈ C∞c (X) with g radial around x, the Fourier transform
of a convolution satisfies

f̃ ∗ g
x
(λ, ξ) = f̃x(λ, ξ)ĝ(λ)

for λ ∈ R, ξ ∈ ∂X. Applying the Plancherel theorem and Lemma 8.2 above, we
have

||f ∗ g||2 = ||f̃ ∗ g
x
||2

= ||f̃xĝ||2
≤ ||ĝ||∞||f̃x||2
≤ Cp||g||p||f ||2

The above inequality, valid for C∞c -functions, implies by a standard density argu-
ment that for any Lp radial function g, the map f ∈ C∞c (X) 7→ f ∗ g extends to a
bounded linear operator on L2(X) with norm at most Cp||g||p. �
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