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Abstract

This paper contains two parts. In the �rst part, we study the ergodicity of

periodic measures of random dynamical systems on a separable Banach space.

We obtain that the periodic measure of the continuous time skew-product

dynamical system generated by a random periodic path is ergodic if and only

if the underlying noise metric dynamical system at discrete time of integral

multiples of the period is ergodic. For the Markov random dynamical system

case, we prove that the periodic measure of a Markov semigroup is PS-ergodic

if and only if the trace of the random periodic path at integral multiples of

period either entirely lies on a Poincaré section or completely outside a Poincaré

section almost surely. In the second part of this paper, we construct sublinear

expectations from periodic measures and obtain the ergodicity of the sublinear

expectations from the ergodicity of periodic measures. We give some examples

including the ergodicity of the discrete time Wiener shift of Brownian motions.

The latter result would have some independent interests.
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1. Introduction

Ergodic theory is one of the most important observations in mathematics made in the last

century with signi�cance in many areas of physics such as statistical physics (cf [4, 30–32]).

Concerning the spreading and irreducibility nature of random systems, ergodicity is a fun-

damentally natural phenomenon to many stochastic systems (cf [8, 10, 11, 22]). The theory

was substantially developed for (weakly) mixing invariant measures/stationary processes in

the stationary regime. Many useful results were obtained especially in the Markovian case.

It is noted that the classical ergodic theory excludes random periodic cases. However, ran-

dom periodicity is ubiquitous. Randomness and periodicity are present simultaneously in many

real world problems e.g. maximum daily temperature, sunspot activities, economic cycles,

business cycles, El Nino phenomena, ice age and interglacial transitions etc. The concept of

random periodic paths and periodic measures were recently introduced to describe random

periodicity ([15, 16, 18, 34]). See also [13, 14].

It is worth mentioning that the notion of classical periodic paths cannot be adopted to inter-

pret random periodicity as periodicity breaks under random perturbations. Unless in a very

restrictive circumstance, a randomprocess cannot follow a periodic path even if one �xes a real-

ization. The idea of randomperiodic paths is different. Employing the notion of randomdynam-

ical systems and its underlyingmeasure preservingmetric dynamical systems (Ω,F ,P, (θt)t∈I),
a random periodic path of period τ is a random path satisfying for P− a.e.ω ∈ Ω,

Y(s+ τ ,ω) = Y(s, θτω), for all s ∈ I,

or equivalently for P− a.e.ω ∈ Ω, Y(s+ τ , θ−τω) = Y(s,ω), foralls ∈ I. Here I is a two-sided
time set of discrete or continuous type,I = Z, or I = R. This is very different from the classical

periodic function. It is only ‘periodic’ if one prepares to kick the noise backward. However,

the pull-back process φ(s,ω) = Y(s, θ−sω) is a periodic function of s. Note (φ(s,ω))s∈I is not a
path of the random dynamical system but the set

Lω = {φ(s,ω) : 0 6 s 6 τ} (1.1)

is an invariant set of the random dynamical system Φ such that Φ(t,ω)Lω = Lθtω . The set Lω is

a closed curve if I is continuous. This suggests that the random periodic path actually moves

from one closed curve to another closed curve. Moreover, the law ρs of Y(s, ·) de�ned by

ρs(Γ) = P(ω : Y(s,ω) ∈ Γ) for any Γ ∈ B(X)

is a measure-valued function satisfying periodic condition ρs+τ = ρs, for any s ∈ R.

The ergodic theory of periodic random dynamical system was observed recently in [18].

The concept of periodic measure was introduced and its ‘equivalence’ with random periodic

processes was established. Moreover, the average of a periodic measure over one period is

an invariant measure from which the ergodicity can be studied. It is de�ned as the ergodic-

ity of a measure preserving canonical dynamical system lifted from the invariant measure on

the phase space. From the ergodic theory of periodic random dynamical systems in [18], the

distinction between the stationary regime and random periodic regime is characterised by the

spectral structure of Markov semigroups or their in�nitesimal generators. In the stationary

regime, Koopman–von Neumann theorem tells us that 0 is a simple and unique eigenvalue

5325



Nonlinearity 33 (2020) 5324 C Feng et al

of the generator on the imaginary axis (cf [8]), while in the periodic regime, the in�nitesimal

generator has in�nitely many equally spaced eigenvalues (including 0), which are simple, and

no other eigenvalues, on the imaginary axis ([18]).

Random periodic paths have been found in many stochastic systems. We will quote two

examples in section 2 to demonstrate the idea. Needless to say that the existence of peri-

odic measures can be studied without referring to random periodic paths. See [19] for recent

progress. These concepts have been used in the study of bifurcations ([33]), random attractors

([3]), stochastic resonance ([6]), modelling El Nino phenomena ([5]) and strange attractors

([23]).

In this paper, we continue the study on the ergodicity of periodic measures and obtain some

new results. First we study random periodic paths on a separable Banach space and associated

periodic measures µs = δY(s,θ−sω) × dP on the product space (Ω̄, F̄) = (Ω× X,F ⊗ B(X)).
Then {µs}s>0 is a periodic measure with respect to the skew product (Θ̄t)t>0. We prove in

the �rst part of the paper that (Ω,F ,P, (θnτ)n>0) is ergodic if and only if (Ω̄, F̄ ,µs, (Θ̄nτ )n>0)

is ergodic, i.e. the dynamical system (Ω̄, F̄ , {µs}s∈R, (Θ̄t)t>0) is PS-ergodic. Note here there is

no need of any other conditions on its random periodic paths Y apart from the existence.

The metric dynamical system (Ω,F ,P, (θnτ )n>0) being ergodic is stronger than the state-

ment that (Ω,F ,P, (θt)t>0) is ergodic. They are not normally equivalent. We will give

an example that (Ω,F ,P, (θt)t>0) is ergodic, but the discrete metric dynamical system

(Ω,F ,P, (θnτ)n>0) is not ergodic. However, we will prove in this paper, for the canonical

Wiener process and the Brownian shift, both the discrete dynamical systems and continuous

time dynamical systems are ergodic. The result of the discrete dynamical systems of Wiener

space is new. This means that our results can apply to stochastic differential equations and

stochastic partial differential equations driven by Wiener processes. Suggested by fundamen-

tal results of [1, 12, 20, 25–27], these equations can generate random dynamical systems, of

which the noise metric dynamical system over a group of discrete time is ergodic according to

our result here.

For the Markov random dynamical systems, the random periodic paths give rise to periodic

measures (ρs)s∈R on the state space X. For each s, ρs is an invariant measure with respect to

discrete semigroupP(nτ ), n ∈ N (as a convention,we always assume that 0 ∈ N). We will give

a necessary and suf�cient condition for the periodic measure (ρs)s∈R being PS-ergodic (i.e. for

each s ∈ R, ρs is ergodic as an invariant measure with respect to P(nτ ), n ∈ N), which says

for any invariant set Γ such that Pτ IΓ = IΓρs − a.s., the section Lωs := {Y(s+ kτ ,ω), k ∈ Z}
satis�es Lωs ⊂ Γ or Lωs ∩ Γ = ∅, P− a.s.. However, it is not known whether or not this result

is true in the stationary case.

Sublinear expectation is used to model uncertainty and ambiguity of probabilities such as

subjective probabilities due to heterogeneity of expectation formation process (cf [2, 9, 29]).

An ergodic theory of sublinear expectation was developed recently by [17]. In the second part

of this paper, we construct an ergodic sublinear expectation from an ergodic periodic measure

as an upper expectation for the �rst time in literature. We prove that if a periodic measure is

ergodic, then the generated sublinear expectation, which is invariant with respect to the skew

product dynamical system or the Markov semigroup, is ergodic. As for the Birkhoff’s type

of ergodic theorem, i.e. the law of large number, we obtain the convergence in the quasi-sure

sense when we apply the ergodic theory of upper expectations, whilst we can only obtain the

convergence in the almost-sure sense by the ergodic theory of periodic measures ([18]). This

provides justi�cations for the construction of upper expectation and the investigation of its

ergodicity, which can provide useful new information. The point of view of upper expecta-

tions from periodic measures could also be interesting to the study of �nance or coherent risk

measure.

5326



Nonlinearity 33 (2020) 5324 C Feng et al

2. Ergodicity of skew product dynamical systems: necessary and sufficient

conditions

2.1. Random periodic paths and periodic measures on product spaces

Consider a random dynamical system Φ : R+ × Ω× X→ X over a metric dynamical sys-

tem (Ω,F ,P, (θt)t∈R) on a separable Banach space X. It is a measurable mapping and almost

surelyΦ0 = id andΦ(t+ s,ω) = Φ(t, θsω) ◦ Φ(s,ω) for any t, s > 0. The map θ :R× Ω→ Ω

is measurable with respect to (B(R)⊗F ,F ) such that θt ◦ θs = θt+s, t, s ∈ R and preserves

the measure P, i.e. θsP = P. Random dynamical systems can be generated by stochastic dif-

ferential equations ([1, 12, 25, 26]), stochastic partial differential equations ([20, 21, 27]) and

Markov chains ([24]).

Let us recall the de�nition of random periodic paths ([15, 16, 18, 34]).

Definition 2.1. A random periodic path of period τ of the random dynamical system

Φ : R+ × Ω× X→ X is an (B(R)⊗F ,B(X))-measurable map Y : R× Ω→ X such that for

almost all ω ∈ Ω,

Φ(t, θsω)Y(s,ω) = Y(t + s,ω), Y(s+ τ ,ω) = Y(s, θτω), for all t > 0, s ∈ R. (2.1)

It is called a random periodic path with the minimal period τ if τ > 0 is the smallest num-

ber such that (2.1) holds. It is a stationary path of Φ if Y(s, θ−sω) = Y(0,ω)=:Y0(ω) for all
s ∈ R,ω ∈ Ω i.e. Y0 :Ω→ X is a stationary path if for almost all ω ∈ Ω,

Φ(t,ω)Y0(ω) = Y0(θtω), for all t ∈ R
+. (2.2)

As we mentioned in the introduction, random periodicity is a common phenomenon. We

quote the following two examples for convenience. Detailed proof can be found in [18] and is

omitted here.

Example 2.2. Consider the following stochastic differential equation on R2

{

dx1 = [−x2 + x1(1− x21 − x22)]dt + x1 dW1(t),

dx2 = [x1 + x2(1− x21 − x22)]dt + x2 dW2(t),
(2.3)

here W1(t) and W2(t) are two independent one-dimensional two-sided Brownian motions on

the probability space (Ω,F ,P) with (W1(0),W2(0))
T = (0, 0)T. DenoteW(t) = (W1(t),W2(t))T.

Set F t
s = σ(W(u)−W(v) : s 6 v 6 u 6 t), F t

−∞ = Vs6tF t
s and θ :R× Ω→ Ω the measure

preserving metric dynamical system given by

(θsω)(t) = W(t + s)−W(s), s, t ∈ R.

It is well known that the noiseless system











dx1
dt

=−x2 + x1(1− x21 − x22),

dx2
dt

= x1 + x2(1− x21 − x22),

has a periodic solution (x1(t), x2(t)) = (cos t, sin t). It is proved in [18] that equation (2.3) has a
unique random periodic solution x∗(t) = (x∗1(t), x

∗
2(t)) 6= (0, 0) with a positive minimumperiod

satisfying for a.s. ω ∈ Ω,

x∗(t+ π, θ − πω) = −x∗(t,ω), (2.4)
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x∗(t+ 2π, θ − 2πω) = x∗(t,ω). (2.5)

Numerical simulations are also borrowed from [18] to provide numerical evidence of the main

result (2.4) and (2.5) of this example (�gure 1). They describe the random periodicity in the

sense of backward kicked noise.

Example 2.3. Consider the following well known example of a discrete time Markov chain

with three states {1, 2, 3} and the transition probability matrix

P =







0
1

2

1

2
1 0 0

1 0 0






.

Recall that in the theory of Markov chain the period d(i) of the state i is de�ned as the great-
est common divisor of {n : Pnii > 0}. From this de�nition, it is easy to see that d(1) = d(2)
= d(3) = 2 in this case. de�nition 2.1 looks completely different from the greatest common

divisor de�nition. However, it was shown in [18] that these two de�nitions are equivalent. We

can set up a randomdynamical system from thisMarkov chain and construct a randomperiodic

path.

Now we introduce the idea of periodic measures on product space generated by random

periodic paths. Consider a standard product measurable space (Ω̄, F̄) = (Ω× X,F ⊗ B(X))
and the skew-product of the metric dynamical system (Ω,F ,P, (θt)t∈R) and the cocycleΦ(t,ω)
on X, Θ̄t : Ω̄→ Ω̄

Θ̄t(ω̄) = (θtω,Φ(t,ω)x), for all ω̄ = (ω, x) ∈ Ω̄, t ∈ R
+. (2.6)

Set

PP(Ω× X) := {µ : probabilitymeasure on (Ω× X,F ⊗ B(X))withmarginalP on (Ω,F )}

and

P(X) = {ρ : probabilitymeasure on (X,B(X))}.

The following de�nition was given in [18].

Definition 2.4. A map µ : R→PP(Ω× X) is called a periodic probability measure of

period τ on (Ω× X,F ⊗ B(X)) for the random dynamical system Φ if

µs+τ = µs and Θ̄tµs = µt+s, for all t > 0, s ∈ R. (2.7)

It is called a periodic measure with minimal period τ > 0 if τ is the smallest number such that

(2.7) holds. It is an invariant measure if it also satis�es µs = µ0 for any s ∈ R, i.e. µ0 is an

invariant measure of Φ if µ0 ∈ PP(Ω× X) and

Θ̄tµ0 = µ0, for all t ∈ R
+. (2.8)

Theorem 2.5 ([18]). If a random dynamical system Φ : R+ × Ω× X→ X has a random
periodic path Y : R× Ω→ X, it has a periodic measure on (Ω× X,F ⊗ B(X)), µ : R→
PP(Ω× X), given by

µs(A) =

∫

Ω

δY(s,ω)(Aθsω)P(dω), (2.9)
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Figure 1. From the top to bottom, �rst coordinate of random periodic paths with one
realization ω, its pullbacks θ−πω and θ−2πω respectively. Red paths are identical up to
a shift and the blue path is the �ipped over image of the red paths up to a shift.

where Aω is the ω-section of A. Moreover, the time average of the periodic measure de�ned by

µ̄ =
1

τ

∫ τ

0

µsds (2.10)

is an invariant measure ofΦ whose random factorization is supported by Lω de�ned in (1.1).

Remark 2.6. For a periodic path Y, it is easy to see that the factorization of µs de�ned in

theorem 2.5 is

(µs)ω = δY(s,θ−sω) (2.11)
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and

(µs+τ )ω = (µs)ω, Φ(t,ω)(µs)ω = (µt+s)ω. (2.12)

In this section, we always assume the following condition and use the construction of

periodic measure given in (2.9).

Condition P. There exists a random periodic path Ywith period τ for the random dynamical

system Φ.

Throughout the paper, we adopt the standard de�nition of ergodicity of ameasure preserving

dynamical system, i.e. any invariant set of the dynamical system has either full measure or zero

measure.

2.2. The ergodicity of metric dynamical system on the Wiener space

When we consider stochastic differential equations e.g. in example 2.2, we need to consider

metric dynamical systems onWiener space, the shift of Brownian motion, of which the ergod-

icity under discrete time is one of the important conditions in our later set up. We establish the

result here �rst.

It is well known that, for a canonical Wiener space (Ω,F ,P), the corresponding canonical
dynamical system (Ω,F ,P, (θt)t>0) is ergodic, where θt is the Brownian shift. We will prove

the discrete dynamical system (Ω,F ,P, (θnτ)n>0) is also ergodic. Thus our results in this paper

can apply to stochastic differential equations and stochastic partial differential equations driven

by Brownian motions.

A standard Brownian motion or Wiener process (Wt)t∈T (T = R
+ (one-sided time) or

T = R (two-sided time)) in R
m is a process with W0 = 0 and stationary independent incre-

ments satisfying Wt −Ws ∼ N (0, |t− s|I). The corresponding measure P on (Ω,F ), where

Ω = C0(T,Rm) and F is the Borel σ-algebra on Ω, is called Wiener measure, the probability

space (Ω,F ,P) is called Wiener space. The corresponding canonical metric dynamical sys-

tem Σ = (Ω,F ,P, (θt)t∈T) describes Brownian motion or (Gaussian) white noise as a metric

dynamical system of random dynamical systems generated by stochastic differential equations

or stochastic partial differential equations driven by Brownian motions.

Let Σ = (Ω,F ,P, (θt)t∈T) be one of the canonical dynamical system introduced above,

with the canonical �ltrationF t
s := σ(Wu −Wv , s 6 u, v 6 t), s 6 t. The following notations are

standard (cf [1]),

T ∞ :=
⋂

t∈T

F∞
t ,

and for two-sided time

T−∞ :=
⋂

t∈T

F t
−∞,

as the tail σ-algebras (T−∞: remote past, T ∞: remote future). Set

I := {A ∈ F : θ−1
t A = A, for all t ∈ T},

and for a given τ > 0, de�ne

Iτ := {A ∈ F : θ−1
τ A = A}.
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We say A ⊂ B mod P if for each A ∈ A, there is a B ∈ B with P(A△ B) = 0.

Proposition 2.7. Assume that I, Iτ , T ∞ and T−∞ are de�ned as above. Then

(a) If T is one-sided (T = R
+): I ⊂ Iτ ⊂ T ∞.

(b) If T is two-sided (T = R): I ⊂ Iτ ⊂ T ∞ mod P, and I ⊂ T−∞ mod P.

Proof. Obviously, by the de�nitions of I, Iτ , we have I ⊂ Iτ .

(a) We just need to prove that Iτ ⊂ T ∞. For any A ∈ Iτ , since

F = B(Ω) = σ(Wt, t ∈ R
+) = σ(Wu −Wv , 0 6 u, v < ∞) = F∞

0

and

θ−1
τ F∞

t = F∞
t+τ for all t ∈ R

+,

then

A = θ−1
τ A ∈ θ−1

τ F∞
0 = F∞

τ .

By induction, we have A ∈ F∞
nτ for all n ∈ N. Then A ∈

⋂

n∈NF
∞
nτ . But

T ∞
=
⋂

t∈R+

F∞
t =

⋂

n∈N

F∞
nτ ,

thus A ∈ T ∞. This means Iτ ⊂ T ∞.

(b) Without loss of generality, we just need to prove Iτ ⊂ T ∞ mod P. Similarly we can prove

Iτ ⊂ T−∞ mod P. To prove the desired result, for any A ∈ Iτ , we set

An := {ω ∈ Ω : there existsω′ ∈ A such thatω(t) = ω′(t) for all t ∈ [−nτ ,∞)}

for all n ∈ N. We can conclude that An ∈ F∞
−nτ and An ⊃ An+1 ⊃ A. Assume An ↓ Ã, then

A ⊂ Ã and P(A) 6 P(Ã). But since

F = σ(Wt, t ∈ R)

= {A| there exist {tn}
∞
n=1 ⊂ R,B ∈ B((Rm)N) such thatA = {ω : {ω(tn)}

∞
n=1 ∈ B}},

so for a given A ∈ Iτ , there exist a sequence {tn}∞n=1 and a set B ∈ B((Rm)N) such that

A = {ω : {ω(tn)}∞n=1 ∈ B}. Let

Bn = {Πnx = {xr}
n
r=1 : x = {xr}

∞
r=1 ∈ B}

be the projection of B from (Rm)N to (Rm)n and

Bn = {ω : (ω(t1),ω(t2), . . . , ω(tn)) ∈ Bn}.

Then we know that P(A) = limn→∞P(Bn) from construction of �nite dimensional distri-

bution of Wiener measure. By the de�nition of Ã we have Ã ⊂ Bn for all n, then P(Ã) 6
limn→∞P(Bn) = P(A). Since we know that P(A) 6 P(Ã), so we conclude P(Ã) = P(A).

Next we prove the following claim.

Claim (∗). For all n > 2, we have θ−1
τ An ⊃ An−1 ⊃ An.

Proof of claim (∗). The claim An−1 ⊃ An is obvious. Now for any ω ∈ An−1, there exists

ω′ ∈ A such that ω(t) = ω′(t) for all t ∈ [−(n− 1)τ ,∞), then θτω(s) = ω(s+ τ )− ω(τ )
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= ω′(s+ τ )− ω′(τ ) = θτω
′(s) for all s ∈ [−nτ ,∞). Since A is θτ -invariant set and ω′ ∈ A,

so θτω
′ ∈ A. Thus θτω ∈ An and ω ∈ θ−1

τ An. This means claim (∗) holds.
Now we continue our proof. Since θτ preserves probability P, then by claim (∗), we have

P(An) = P(θ−1
τ An) > P(An−1) > P(An).

It turns out that

P(An) = P(Ã) = P(A) for all n ∈ N.

Let Bk = θ−1
kτ A2. By claim (∗), θ−1

τ A2 ⊃ A2, i.e. θτA2 ⊂ A2. So for any ω ∈ Bk = θ−1
kτ A2,

then θkτω ∈ A2, thus θτ (θkτω) = θ(k+1)τω ∈ A2, therefore ω ∈ θ−1
(k+1)τA2 = Bk+1. This means

Bk ⊂ Bk+1. And also we have that

P(Bk) = P(θ−1
kτ A2) = P(A2) = P(An) = P(Ã) = P(A),

for all k, n ∈ N. Since A2 ∈ F∞
−2τ , then Bk = θ−1

kτ A2 ∈ F∞
(−2+k)τ . Let

B̃ = lim
k→∞

Bk =
⋃

k∈N

Bk.

Then

B̃ ∈
⋂

k∈N

F∞
(−2+k)τ = T ∞

and

B̃ ⊃ Bk ⊃ An ⊃ Ã ⊃ A

and

P(B̃) = P(Bk) = P(An) = P(Ã) = P(A),

for all k, n ∈ N.

Then for any A ∈ Iτ , there exist B̃ ∈ T ∞ such that P(A△ B̃) = P(B̃\A) = P(B̃)− P(A)
= 0, i.e. Iτ ⊂ T ∞ mod P. �

Theorem 2.8. The canonical dynamical systems driven by Brownian motion
Σ = (Ω,F ,P, (θt)t∈T) (T = R

+ orR) and their discrete dynamical systems Σ
τ

= (Ω,F ,P, (θnτ )n>0) are ergodic.

Proof. By proposition 2.7, if T ∞ is trivalmodP,Σ andΣτ are ergodic. Since these canonical

dynamical systems Σ,Στ are driven by a standard Brownian motion, then the tail σ-algebra
T ∞ is trival mod P by Kolmogorov’s zero-one law. �

Remark 2.9. (i) It is noted that the ergodicity ofΣ in theorem 2.8was known in literature (cf

[1]). The main purpose of the theorem is to proveΣτ is ergodic in the discrete case. This result

is new. But the continuous case Σ being ergodic is proved as a byproduct of the techniques we

build here.

(ii) Proposition 2.7 and theorem 2.8 hold also for Wiener process on a separable Hilbert

space where the Wiener measure was given in [7]. The proof is exactly the same.

(iii) For a given two-sided dynamical system (Ω,F ,P, (θt)t∈R), we know that the trans-

formation θt : Ω→ Ω is invertible and θ−1
t = θ−t for each t ∈ R. Then it is easy to ver-

ify that θ−1
t A = A for all t ∈ R if and only if θ−1

t A = A for all t > 0, which indicates that
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‘(Ω,F ,P, (θt)t∈R) being ergodic’ is equivalent to ‘(Ω,F ,P, (θt)t>0) being ergodic’. In the fol-

lowing, we will always only assume that (Ω,F ,P, (θt)t>0) is ergodic, which actually also

indicates the ergodicity of the dynamical system (Ω,F ,P, (θt)t∈R).

2.3. Ergodicity of skew product dynamical systems in the case of periodic measures

Theorem 2.10. Assume condition P. If the metric dynamical system (Ω,F ,P, (θnτ )n>0) is
ergodic, then the skew product dynamical systems (Ω̄, F̄ ,µs, (Θ̄

n
τ )n>0) for each s ∈ R and

(Ω̄, F̄ , µ̄, (Θ̄t)t>0) are ergodic.

Proof. First, note by theorem 2.5, that µs de�ned in (2.9) is a periodic measure on (Ω̄, F̄),

so Θ̄τ preserves measures µs for each s ∈ R and (Θ̄t)t>0 preserves the measure µ̄.
Next, we will show that the dynamical system (Ω̄, F̄ ,µs, (Θ̄

n
τ )n>0) is ergodic for any �xed

s ∈ R. By de�nition of ergodicity, we need to show that for any A ∈ F̄ with Θ̄−1
τ A = A, either

µs(A) = 0 or 1. De�ne As := {ω : (ω, Y(s, θ−sω)) ∈ A}, then

µs(A) =

∫

Ω

IAω (Y(s, θ−sω))P(dω)

= P({ω : (ω, Y(s, θ−sω)) ∈ A})

= P(As). (2.13)

Moreover

θ−1
τ As = {ω : θτω ∈ As}

= {ω : (θτω, Y(s, θ−sθτω)) ∈ A}

= {ω : Θ̄τ (ω, Y(s− τ , θ−(s−τ )ω)) ∈ A}

= {ω : (ω, Y(s− τ , θ−(s−τ )ω)) ∈ Θ̄
−1
τ A}

= {ω : (ω, Y(s− τ , θ−(s−τ )ω)) ∈ A}

= {ω : (ω, Y(s, θ−sω)) ∈ A}

= As,

for all s ∈ R. Thus As is an invariant set with respect to θτ .
Since (Ω,F ,P, (θnτ)n>0) is ergodic, then we have P(As) = 0 or P(As) = 1. Thus

µs(A) = P(As) = 0 or 1 from (2.13).

Let us show that the dynamical system (Ω̄, F̄ , µ̄, (Θ̄t)t>0) is ergodic, i.e. for any A ∈ F̄ with

Θ̄−1
t A = A for all t ∈ R

+, we need to prove that µ̄(A) = 0 or 1. For such A, by what we just

proved, we know that µs(A) = 0 or 1 for all s ∈ R. On the other hand, since

θ−1
t As = {ω : θtω ∈ As}

= {ω : (θtω, Y(s, θ−sθtω)) ∈ A}

= {ω : Θ̄t(ω, Y(s− t, θ−(s−t)ω)) ∈ A}

= {ω : (ω, Y(s− t, θ−(s−t)ω)) ∈ Θ̄
−1
t A}

= {ω : (ω, Y(s− t, θ−(s−t)ω)) ∈ A}

= As−t, (2.14)

5333



Nonlinearity 33 (2020) 5324 C Feng et al

we have µs(A) = P(As) = P(θ−1
t As) = P(As−t) = µs−t(A). This means µs(A) = µ0(A). Hence

µ̄(A) = 1
τ

∫ τ

0
µs(A)ds = µ0(A) = 0 or 1. �

The following theorem shows that the converse of theorem 2.10 also holds.

Theorem 2.11. Assume condition P. If (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0) is ergodic for some s ∈ R, then

(Ω,F ,P, (θnτ)n>0) is ergodic.

Proof. Fix an F ∈ F with θ−1
τ F = F. Let F̄ = F × X ∈ F̄ , then we have

Θ̄
−1
τ F̄ = {(ω, x) : Θ̄τ (ω, x) ∈ F̄}

= {(ω, x) : (θτω,Φ(τ ,ω)x) ∈ F × X}

= {(ω, x) : θτω ∈ F}

= (θ−1
τ F)× X = F × X = F̄. (2.15)

And by (2.13), we also have

µs(F̄) = P(F̄s) for all s ∈ R,

where F̄s = {ω : (ω, Y(s, θ−sω)) ∈ F̄} = {ω : (ω, Y(s, θ−sω)) ∈ F × X} = F. Thus

µs(F̄) = P(F) for all s ∈ R. (2.16)

Since (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>1) for some s ∈ R is ergodic, by (2.15) and (2.16) we have

P(F) = µs(F̄) = 0 or 1.

�

Remark 2.12. (i). From theorems 2.10 and 2.11, we can conclude that (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0) is

ergodic for some s ∈ R implies that (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0) is ergodic for all s ∈ R. This conclusion

does not seem to be true in the phase space case, which we will consider in the next section.

(ii). It is easy to check that if the dynamical system (Ω,F ,P, (θnτ)n>0) is ergodic, then

(Ω,F ,P, (θt)t>0) will be ergodic. The converse is not true in general. A counterexample is

given below.

Example 2.13 (A metric dynamical system on torus). Now we consider Ω̃ = [0, 1)× [0, 1)

and F̃ :=B(Ω̃). De�ne the map θ̃α : R× Ω̃→ Ω̃ by

θ̃αt (r, x) := ((r + t) mod1, (x + tα) mod 1) for all t ∈ R, (r, x) ∈ Ω̃,

where α is a �xed positive irrational number. Then it is easy to check that (Ω̃, F̃ , (θ̃αt )t∈R) is a
dynamical system. Let L be the Lebesgue measure on [0, 1) and P(Ω̃) be the set of probability

measures on (Ω̃, F̃). De�ne µ : R→P(Ω̃) by

µs := δ{s mod 1} × L,

then µ is a periodic probability measure with period 1 on (Ω̃, F̃ ). Let µ̄ :=
∫ 1

0
µs ds.

Proposition 2.14. The dynamical systems (Ω̃, F̃ ,µs, ((θ̃
α
1 )
n)n>0) for all s ∈ R and

(Ω̃, F̃ , µ̄, (θ̃αt )t>0) are ergodic.

Proof. Let Ω := [0, 1),F :=B(Ω) and θα : Ω→ Ω, θα(x) = (x + α)mod1. It is well known

that the dynamical system (Ω,F , L, (θnα)n∈N) with an irrational number α is ergodic.
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Fix an Ã ∈ F̃ with (θ̃α1 )
−1Ã = Ã. De�ne Ãr := {x : (r, x) ∈ Ã} for all r ∈ [0, 1), then for any

s ∈ R

µs(Ã) =

∫

Ω̃

IÃ(r, x)δ{s mod 1}(dr)L(dx) =

∫ 1

0

IÃ(s mod 1, x)L(dx) = L(Ã(s mod 1)), (2.17)

and

θ−1
α Ã(s mod 1) = {x : θαx ∈ Ã(s mod 1)}

= {x : (s mod1, (x + α) mod 1) ∈ Ã}

= {x : θ̃α1 (s mod 1, x) ∈ Ã}

= {x : (s mod1, x) ∈ (θ̃α1 )
−1Ã = Ã}

= Ã(s mod 1). (2.18)

Applying the ergodicity of the dynamical system (Ω,F , L, (θnα)n>0) and (2.17), (2.18), we

have

µs(Ã) = L(Ã(s mod 1)) = 0 or 1.

This means the dynamical systems (Ω̃, F̃ ,µs, ((θ̃
α
1 )
n)n>0) for all s ∈ R are ergodic.

Again for any Ã ∈ F̃ with (θ̃αt )
−1Ã = Ã for all t ∈ R, then (θ̃α1 )

−1Ã = Ã and µ0(Ã) = 0 or

1. Since

Ã =
⋃

s∈[0,1)

({s} × Ãs)

and

(θ̃αt )
−1Ã =

⋃

r∈[0,1)

(θ̃αt )
−1({r} × Ãr)

=
⋃

r∈[0,1)

{(s, x) : s ∈ [0, 1), θ̃αt (s, x) ∈ {r} × Ãr}

=
⋃

r∈[0,1)

{(s, x) : s ∈ [0, 1), ((s+ t) mod1, (x + tα) mod1) ∈ {r} × Ãr}

=
⋃

r∈[0,1)

{(s, x) : s ∈ [0, 1), (s+ t) mod1 = r, θtαx ∈ Ãr}

=
⋃

r∈[0,1)

{(s, x) : s ∈ [0, 1), (s+ t) mod1 = r, θtαx ∈ Ã((s+t) mod 1)}

=
⋃

s∈[0,1)

{(s, x) : θtαx ∈ Ã((s+t) mod 1)}

=
⋃

s∈[0,1)

({s} × θ−1
tα Ã((s+t) mod 1)),

so
⋃

s∈[0,1)({s} × θ−1
tα Ã((s+t) mod 1)) =

⋃

s∈[0,1)({s} × Ãs) and hence θ−1
tα Ã((s+t) mod 1) = Ãs for all

t ∈ R, s ∈ [0, 1). In particular, θ−1
tα Ãt = Ã0 for all t ∈ [0, 1). Therefore

µs(Ã) = L(Ãs) = L(θ−1
sα Ãs) = L(Ã0) = µ0(Ã) for all s ∈ [0, 1). (2.19)
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It turns out that µ̄(Ã)=
∫ 1

0
µs(Ã)ds = µ0(Ã) = 0 or 1, which means the dynamical system

(Ω̃, F̃ , µ̄, (θ̃αt )t>0) is ergodic. �

Remark 2.15. It is easy to see that the dynamical system (Ω̃, F̃ , µ̄, ((θ̃α1 )
n)n>0) is not ergodic

considering the �rst coordinate of the mapping. This provides an example that the continuous

time dynamical system is ergodic, but its discretization may not be.

2.4. Ergodicity of skew product dynamical systems in the case of invariant measures

The following result is well-known:

Theorem 2.16 ([1]). If a random dynamical systemΦ :R+ × Ω× X→ X has a stationary
path Y : Ω→ X, it has an invariant measure on (Ω̄, F̄ ), µ ∈ PP(Ω× X) de�ned by

µ(A) =

∫

Ω

δY(ω)(Aω)P(dω), (2.20)

where Aω is the ω-section of A and µω = δY(ω).

Theorem 2.17. Assume that the random dynamical system Φ has a stationary path Y.
Then the metric dynamical system (Ω,F ,P, (θt)t>0) is ergodic if and only if the skew product
dynamical system (Ω̄, F̄ ,µ, (Θ̄t)t>0) is ergodic, where µ is de�ned by (2.20).

Proof. First prove the ‘⇒’ part. Assume (Ω,F ,P, (θt)t>0) is ergodic. Since µ is an invariant

measure on (Ω̄, F̄ ), so Θ̄t preserves the measure µ. To prove (Ω̄, F̄ ,µ, (Θ̄t)t>0) is ergodic, we

need to prove that for any A ∈ F̄ with Θ̄−1
t A = A for all t > 0, µ(A) = 0 or 1. Set A0 := {ω :

(ω, Y(ω)) ∈ A}, then for any t > 0, we have

θ−1
t A0 = {ω : θtω ∈ A0}

= {ω : (θtω, Y(θtω)) ∈ A}

= {ω : Θ̄t(ω, Y(ω)) ∈ A}

= {ω : (ω, Y(ω)) ∈ Θ̄
−1
t A}

= {ω : (ω, Y(ω)) ∈ A}

= A0.

This means that A0 is an invariant set with respect to (θt)t>0. Note that

µ(A) =

∫

Ω

δY(ω)(Aω)P(dω) = P({ω : (ω, Y(ω)) ∈ A}) = P(A0).

By the ergodicity of (Ω,F ,P, (θt)t>0), we have P(A0) = 0 or 1. Therefore µ(A) = 0 or 1.

Now we prove the ‘⇐’ part. Assume (Ω̄, F̄ ,µ, (Θ̄t)t>0) is ergodic. For any F ∈ F with

θ−1
t F = F for all t > 0, we consider F̄ = F × X ∈ F̄ , then for any t > 0

Θ̄
−1
t F̄ = {(ω, x) : Θ̄t(ω, x) ∈ F̄}

= {(ω, x) : (θtω,Φ(t,ω)x) ∈ F × X}

= {(ω, x) : θtω ∈ F}

= (θ−1
t F)× X = F × X = F̄.
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Since

µ(F̄) = P({ω : (ω, Y(ω)) ∈ F × X}) = P(F),

by the ergodicity of (Ω̄, F̄ ,µ, (Θ̄)t>0), we have

P(F) = µ(F̄) = 0 or 1.

�

3. Ergodicity of canonical Markovian systems from periodic measures:
necessary and sufficient conditions

3.1. Ergodicity of periodic measures in Markovian setting

Now we consider a Markovian cocycle random dynamical system Φ on a �ltered dynami-

cal system (Ω,F ,P, (θt)t∈R, (F t
s)s6t), i.e.F t

s ⊂ F , assuming for any s, t, u ∈ R, s 6 t, θ−1
u F t

s =

F t+u
s+u and for any t ∈ R

+,Φ(t, ·) is measurable with respect to F t
0. We also assume the random

periodic path Y(s) is adapted, that is to say that for each s ∈ R, Y(s, ·) is measurablewith respect

to F s
−∞ :=∨r6sF s

r .

Denote the transition probability of Markovian process Φ(t, ·)x on the polish space X with

Borel σ-�eld B(X) by (cf [1, 8]).

Pt(x,Γ) = P({ω : Φ(t,ω)x ∈ Γ}), t ∈ R
+, Γ ∈ B(X).

Denote by Lb(X) the set of all real-valued bounded Borel measurable functions de�ned on

X and P(X) be the set of all probability measures de�ned on (X,B(X)). For any t > 0 and

ρ ∈ P(X) we set

P∗
t ρ(Γ) =

∫

X

Pt(x,Γ)ρ(dx), Γ ∈ B(X),

and for any ϕ ∈ Lb(X), de�ne

(Ptϕ)(x) =

∫

X

Pt(x, dy)ϕ(y), x ∈ X, (3.1)

as a semigroup from Lb(X) to Lb(X).

Definition 3.1 ([18]). A measure function ρ. : R→P(X) is called a periodic measure of

period τ on (X,B(X)) for the Markovian semigroup Pt if it satis�es

P∗
t ρs = ρs+t and ρs+τ = ρs, for all s ∈ R, t ∈ R

+. (3.2)

It is called a periodic measure with minimal period τ if τ > 0 is the smallest number such that

(3.2) holds. It is called an invariant measure if it satis�es ρs = ρ0 for all s ∈ R, i.e. ρ0 is an
invariant measure for the Markovian semigroup Pt if

P∗
t ρ0 = ρ0, for all t ∈ R

+. (3.3)

With a given Markovian semigroup Pt, t > 0, and an invariant measure ρ ∈ P(X), we will

associate now, in the following unique way, a dynamical system (Ω∗,F∗, (θ∗t )t∈R,P
ρ) on the

space Ω∗
= X

R of all X-valued functions.

5337



Nonlinearity 33 (2020) 5324 C Feng et al

De�ne Ω
∗
= X

R, the space of all X-valued functions on R, F∗ is the smallest σ-algebra
containing all cylindrical sets of Ω∗. And the shift θ∗ :R× Ω

∗ → Ω
∗ de�ned by (θ∗t ω

∗)(s) =
ω∗(t + s), for all ω∗ ∈ Ω∗. For an arbitrary invariant measure ρ ∈ P(X) and an arbitrary �nite

set I = {t1, t2, . . . , tn}, t1 < t2 < · · · < tn, we can de�ne a probability P
ρ
I on (X

I ,B(XI)) by the

formula

P
ρ
I (Γ) =

∫

X

ρ(dx1)

∫

X

Pt2−t1(x1, dx2) · · ·

∫

X

Ptn−tn−1
(xn−1, dxn)IΓ(x1, x2, . . . , xn),Γ ∈ B(XI).

By the Kolmogorov extension theorem, there exists a unique probability measure P
ρ on

(Ω∗,F∗) such that for every �nite set I = {t1, t2, . . . , tn} and Γ ∈ B(XI)

P
ρ({ω∗ : (ω∗(t1),ω

∗(t2), . . . , ω
∗(tn)) ∈ Γ}) = P

ρ
I (Γ).

From [8], the transformations θ∗t , t ∈ R preserve the measure P
ρ, and the quadruplet Sρ =

(Ω∗,F∗, (θ∗t )t∈R,P
ρ) de�nes a dynamical system, called the canonical dynamical system

associated with Pt, t > 0, ρ and θ∗t .

Definition 3.2 ([8]) The invariant measure ρ is said to be ergodic with respect to

the Markovian semigroup Pt, t > 0, if its associated canonical dynamical system Sρ =
(Ω∗,F∗, (θ∗t )t>0,P

ρ) is ergodic.

Definition 3.3 ([18]). The τ -periodic measure {ρs}s∈R is said to be PS-ergodic if for each

s ∈ [0, τ), ρs as the invariant measure of the τ -mesh discrete Markovian semigroup {Pkτ}k∈N,
at integral multiples of the period on the Poincaré section, is ergodic.

We also recall the following theorem proved in [18].

Theorem 3.4. Assume the Markovian cocycle Φ :R+ × Ω× X→ X has an adapted ran-
dom periodic path Y : R× Ω→ X. Then the measure function ρ. : R→P(X) de�ned by

ρs :=EP(µs). = EPδY(s,θ−s ·) = EPδY(s,·), for all s ∈ R, (3.4)

which is the law of the random periodic path Y, is a periodic measure of the semigroup Pt on
(X,B(X)). Its time average ρ̄ over a time interval of exactly one period de�ned by

ρ̄ =
1

τ

∫ τ

0

ρs ds, (3.5)

is an invariant measure and satis�es that for any Γ ∈ B(X), t ∈ R,

ρ̄(Γ) = EP

[

1

τ
{s ∈ [0, τ ) : Y(s, ·) ∈ Γ}

]

= EP

[

1

τ
{s ∈ [t, t + τ ) : Y(s, ·) ∈ Γ}

]

.

3.2. Ergodic canonical dynamical systems generated from periodic measure

Given a random periodic path Y of the Markovian cocycle Φ, for any given s ∈ R, de�ne

Lωs := {Y(s+ kτ ,ω) : k ∈ Z},

and the ρs-invariant set Iτ
s associated with the discrete Markovian semigroup (Pkτ )k∈N,

Iτ
s := {Γ ∈ B(X) : Pτ IΓ = IΓ, ρs − a.s.}.
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For these two sets, we consider

Condition A. For any s ∈ R, Γ ∈ Iτ
s , one has for P-almost all ω ∈ Ω, either Lωs ∩ Γ = ∅

or Lωs ⊆ Γ.

Theorem 3.5. Assume that the random periodic path Y satis�es condition A and the
periodic measure ρ. :R→P(X) is given in theorem 3.4. Then if the dynamical system
(Ω,F ,P, (θnτ)n>0) is ergodic, the τ -periodic measure {ρs}s∈R de�ned in (3.4) is PS-ergodic,
and hence ρ̄ de�ned in (3.5) is ergodic.

Proof. Since (Ω,F ,P, (θnτ )n>0) is ergodic, by theorem 2.10we know that (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0)

is ergodic. By de�nition of PS-ergodic, we will show that ρs is ergodic associated with the

discrete Markovian semigroup {Pkτ}k∈N. Equivalently, we need to show that for any Γ ∈ B(X),
if Pτ IΓ = IΓ, ρs − a.s., then ρs(Γ) = 0 or 1.

For any A ∈ F̄ and Γ ∈ B(X), since µs(A) = P({ω : (ω, Y(s, θ−sω)) ∈ A}) and ρs(Γ) =
P({ω : Y(s, θ−sω) ∈ Γ}), then ρs(Γ) = µs(Ω× Γ). Next we consider the subset Ω× Γ in Ω̄.

Note

Θ̄
−1
τ (Ω× Γ) = {(ω, x) : Θ̄τ (ω, x) ∈ Ω× Γ}

= {(ω, x) : (θτω,Φ(τ ,ω)x) ∈ Ω× Γ}

= {(ω, x) :Φ(τ ,ω)x ∈ Γ}.

De�ne Ωx
τ ,Γ := {ω :Φ(τ ,ω)x ∈ Γ}, then we have

Θ̄
−1
τ (Ω× Γ) =

⋃

x∈X

(Ωx
τ ,Γ × {x}) =

(

⋃

x∈Γ

(Ωx
τ ,Γ × {x})

)

⋃

(

⋃

x/∈Γ

(Ωx
τ ,Γ × {x})

)

. (3.6)

It is easy to see that
⋃

x∈Γ(Ω
x
τ ,Γ × {x}) is a subset of Ω× Γ, and

µs

(

⋃

x∈Γ

(Ωx
τ ,Γ × {x})

)

=

∫

Ω×X

I∪x∈Γ(Ωx
τ ,Γ

×{x})(ω, x)δY(s,θ−sω)(dx)P(dω)

=

∫

Ω

I∪x∈Γ(Ωx
τ ,Γ

×{x})(ω, Y(s, θ−sω))P(dω)

= P

(

{ω : (ω, Y(s, θ−sω)) ∈
⋃

x∈Γ

(Ωx
τ ,Γ × {x})}

)

= P
(

{ω : Y(s, θ−sω) ∈ Γ,ω ∈ Ω
Y(s,θ−sω)
τ ,Γ }

)

= P
(

{ω : Y(s, θ−sω) ∈ Γ,Φ(τ ,ω)Y(s, θ−sω) ∈ Γ}
)

= P
(

{ω : Y(s, θ−sω) ∈ Γ, Y(s+ τ , θ−sω) ∈ Γ}
)

.

Suppose now that Γ ∈ Iτ
s , and condition A holds, we have

P
(

{ω : Y(s, θ−sω) ∈ Γ, Y(s+ τ , θ−sω) ∈ Γ}
)

= P
(

{ω : Y(s, θ−sω) ∈ Γ}
)

.

So

µs

(

⋃

x∈Γ

(Ωx
τ ,Γ × {x})

)

= P
(

{ω : Y(s, θ−sω) ∈ Γ}
)

= ρs(Γ) = µs(Ω× Γ).
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Hence

µs

(

(Ω× Γ)\
⋃

x∈Γ

(Ωx
τ ,Γ × {x})

)

= 0. (3.7)

Similarly, for the set
⋃

x/∈Γ(Ω
x
τ ,Γ × {x}),

µs

(

⋃

x/∈Γ

(Ωx
τ ,Γ × {x})

)

= P

(

{ω : (ω, Y(s, θ−sω)) ∈
⋃

x/∈Γ

(Ωx
τ ,Γ × {x})}

)

= P
(

{ω : Y(s, θ−sω) /∈ Γ,ω ∈ Ω
Y(s,θ−sω)
τ ,Γ }

)

= P
(

{ω : Y(s, θ−sω) /∈ Γ, Y(s+ τ , θ−sω) ∈ Γ}
)

= 0. (3.8)

The last equality is due to condition A. Since it follows from (3.6) that

(Ω× Γ)△ Θ̄
−1
τ (Ω× Γ) =

(

(Ω× Γ)\Θ̄−1
τ (Ω× Γ)

)

∪
(

Θ̄
−1
τ (Ω× Γ)\(Ω× Γ)

)

⊆

(

(Ω× Γ)\
⋃

x∈Γ

(Ωx
τ ,Γ × {x})

)

⋃

(

⋃

x/∈Γ

(Ωx
τ ,Γ × {x})

)

,

then from (3.7) and (3.8), we have

µs((Ω× Γ)△ Θ̄
−1
τ (Ω× Γ)) = 0.

Applying equivalent condition of the ergodicity of the dynamical system (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0)

(cf [32]), we have

ρs(Γ) = µs(Ω× Γ) = 0 or 1.

So ρs is ergodic associated with the discrete Markovian semigroup {Pkτ}k∈N for all s ∈ R

and therefore{ρs}s∈R is PS-ergodic. Finally by theorem1.3.6 in [18], we know that ρ̄ is ergodic.
�

Theorem 3.6. Assume condition P. If the τ -periodic measure {ρs}s∈R de�ned in (3.4) is
PS-ergodic, then for any given s ∈ R,Γ ∈ Iτ

s , we have either for P-almost all ω, L
ω
s ∩ Γ = ∅

or for P-almost all ω, Lωs ⊆ Γ.

Proof. Since {ρs}s∈R is PS-ergodic, then for any given s ∈ R andΓ ∈ Iτ
s , we have ρs(Γ) = 0

or 1. By theorem 3.4, we have ρs(Γ) = P({ω : Y(s,ω) ∈ Γ}).
LetΛ = {ω : Y(s,ω) ∈ Γ} and Λ̃ =

⋃

k∈Zθ
−1
kτ Λ. It is easy to see that for any ω ∈ Λ̃c, θkτω ∈

Λ̃c for all k ∈ Z. Thus for any ω ∈ Λ̃c

Lωs = {Y(s+ kτ ,ω) : k ∈ Z}

= {Y(s, θkτω) : k ∈ Z}

⊆
⋃

ω∈Λ̃c

{Y(s,ω)}.
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By the de�nition of Λ and Λ̃, we have

⋃

ω∈Λ̃c

{Y(s,ω)} ⊆
⋃

ω∈Λc

{Y(s,ω)} ⊆ Γ
c.

This means Lωs ∩ Γ = ∅ for all ω ∈ Λ̃c, i.e. Λ̃c ⊂ {ω : Lωs ∩ Γ = ∅}. However, if ρs(Γ) = 0,

then P(Λ) = ρs(Γ) = 0. It follows that P(Λ̃) = 0 and P(Λ̃c) = 1. Finally P({ω : Lωs ∩ Γ =

∅}) = 1.

Similarly, let Σ = {ω : Y(s,ω) /∈ Γ} and Σ̃ =
⋃

k∈Zθ
−1
kτ Σ. It is also easy to see that for all

ω ∈ Σ̃c, then θkτω ∈ Σ̃c for all k ∈ Z and

Lωs ⊆
⋃

ω∈Σ̃c

{Y(s,ω)} ⊆
⋃

ω∈Σc

{Y(s,ω)} ⊆ Γ.

This means Lωs ⊆ Γ for all ω ∈ Σ̃c, i.e. Σ̃c ⊂ {ω : Lωs ⊆ Γ}. However, when ρs(Γ) = 1,

P(Σ) = 1− P(Σc) = 1− ρs(Γ) = 0. Thus P(Σ̃) = 0 and P(Σ̃c) = 1. It then follows that

P({ω : Lωs ⊆ Γ}) = 1. �

Remark 3.7. The result of theorem 3.6 is stronger than condition A. This can be seen as

follows: the statement that either for P-almost all ω, Lωs ∩ Γ = ∅ or for P-almost all ω, Lωs ⊆ Γ

means either there existsΩ1 ⊂ Ω with P(Ω1) = 1 such that when ω ∈ Ω1, Lωs ∩ Γ = ∅ or there
exists Ω2 ⊂ Ω with P(Ω2) = 1 such that when ω ∈ Ω2, Lωs ⊆ Γ. In the �rst case, let Ω0 =

{ω : Lωs ∩ Γ = ∅}. Then Ω0 ⊃ Ω1, so P(Ω0) = 1. It is obvious that when ω ∈ Ω0, Lωs ∩ Γ = ∅.
In the second case, let Ω0 = {ω : Lωs ⊆ Γ}. Then Ω0 ⊃ Ω2, so P(Ω0) = 1. It is obvious that

when ω ∈ Ω0, Lωs ⊆ Γ. In both cases, there exists Ω0 with P(Ω0) = 1 such that when ω ∈ Ω0,

either Lωs ∩ Γ = ∅ or Lωs ⊆ Γ.

Corollary 3.8. If the dynamical system (Ω,F ,P, (θnτ )n>0) is ergodic, then condition A and
the τ -periodic measure {ρs}s∈R being PS-ergodic are equivalent. In this case, the statement
that P− a.s. either Lωs ∩ Γ = ∅ or Lωs ⊆ Γ and the statement that either P− a.s. Lωs ∩ Γ = ∅
or P− a.s. Lωs ⊆ Γ are equivalent.

Proof. This corollary can be easily obtained from theorems 3.5 and 3.6 and remark 3.7. �

3.3. Ergodicity of canonical dynamical system generated from invariant measure: sufficient

condition

Next we consider a stationary path Y : Ω→X of the Markovian cocycle Φ and the invariant

measure µ de�ned in (2.20). Then we recall that the measure ρ ∈ P(X) de�ned by

ρ :=EP(µ). = EPδY(·), (3.9)

which is the law of the stationary path Y, is an invariant measure and satis�es that

ρ(Γ) = P({ω : Y(ω) ∈ Γ}), for any Γ ∈ B(X).
Now we de�ne

L̃ω := {Y(θsω) : s ∈ R},

and the ρ invariant set associated with the Markovian semigroup (Pt)t>0

I := {Γ ∈ B(X) : PtIΓ = IΓ, ρ− a.s. for all t > 0}.

5341



Nonlinearity 33 (2020) 5324 C Feng et al

For these two sets, we consider

Condition A′. For any Γ ∈ I, one has for P-almost all ω ∈ Ω, L̃ω ∩ Γ = ∅ or L̃ω ⊆ Γ.

Theorem 3.9. Assume that the stationary path Y satis�es conditionA′ and let ρ ∈ P(X) be
the invariant measure given in (3.9). If the dynamical system (Ω,F ,P, (θt)t>0) is ergodic, then
ρ is ergodic.

To prove theorem 3.9 we need the following lemma, which is of interest in its own right.

We present it using the same notation as a metric dynamical system. But it does not have to

link with the metric dynamical systems of a random dynamical system. It is true for a setting

of continuous dynamical system of a probability space (measure space).

Lemma 3.10. Assume that (Ω,F ,P, (θt)t>0) is a dynamical system, then the following two
statements are equivalent:

(a) (Ω,F ,P, (θt)t>0) is ergodic.

(b) If A ∈ F ,
⋃

t>Tθ
−1
t A ∈ F and P

(

(
⋃

t>Tθ
−1
t A)△ A

)

= 0 for any T > 0, then P(A) = 0

or 1.

Proof. (a) ⇒ (b). Assume A ∈ F ,
⋃

t>Tθ
−1
t A ∈ F and P

(

(
⋃

t>Tθ
−1
t A)△ A

)

= 0 for any

T > 0. De�ne

A∞ :=
⋂

T>0

⋃

t>T

θ−1
t A,

we know that

A∞ = lim
T→∞

⋃

t>T

θ−1
t A = lim

n→∞

⋃

t>n

θ−1
t A ∈ F .

Then it is easy to see that for all s > 0,

θ−1
s A∞ =

⋂

T>0

⋃

t>T+s

θ−1
t A = A∞.

Thus A∞ is an invariant set. By the ergodicity assumption, we have

P(A∞) = 0 orP(A∞) = 1. (3.10)

For any T > 0, since we have

P



(
⋃

t>T

θ−1
t A)△ A



 = 0,

then

P



(
⋃

t>T

θ−1
t A)\A



 = 0 and P



A\
⋃

t>T

θ−1
t A



 = 0.

But note that as T→∞, we have

(
⋃

t>T

θ−1
t A)\A↓A∞\A and A\

⋃

t>T

θ−1
t A↑A\A∞.
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By continuity of measure, we have

P(A∞\A) = 0 and (A\A∞) = 0.

Now recall (3.10). Consider the case P(A∞) = 0, then

P(A) = P(A)− P(A∞) 6 P(A\A∞) = 0.

Now consider the case that P(A∞) = 1, then

1− P(A) = P(A∞)− P(A) 6 P(A∞\A) = 0.

Thus the assertion (b) is proved.

(b) ⇒ (a). Assume A ∈ F and θ−1
t A = A for all t > 0. Then we have for all T > 0

⋃

t>T

θ−1
t A = A ∈ F ,

and

P



(
⋃

t>T

θ−1
t A)△ A



 = P(∅) = 0.

By assertion (b), we have

P(A) = 0 or 1.

Thus the assertion (a) is proved. �

Next we will give the proof of theorem 3.9.

Proof of theorem 3.9. Since (Ω,F ,P, (θt)t>0) is ergodic, by theorem 2.17 we know that

(Ω̄, F̄ ,µ, (Θ̄t)t>0) is ergodic. Next we just need to show that for any Γ ∈ B(X), if PtIΓ =

IΓ, for all t > 0, ρ− a.s., then ρ(Γ) = 0 or 1.

Similar to the proof of theorem 3.5, for any A ∈ F̄ and Γ ∈ B(X), since µ(A) = P({ω :

(ω, Y(ω)) ∈ A}) and ρ(Γ) = P({ω : Y(ω) ∈ Γ}), then ρ(Γ) = µ(Ω× Γ). Next we consider the

subset Ω× Γ in Ω̄. Note that

Θ̄
−1
t (Ω× Γ) = {(ω, x) : Θ̄t(ω, x) ∈ Ω× Γ}

= {(ω, x) : (θtω,Φ(t,ω)x) ∈ Ω× Γ}

= {(ω, x) : ω ∈ Ω,Φ(t,ω)x ∈ Γ}.

De�ne Ωx
t,Γ := {ω : Φ(t,ω)x ∈ Γ}. Then we have

Θ̄
−1
t (Ω× Γ) =

⋃

x∈X

(Ωx
t,Γ × {x})

=

(

⋃

x∈Γ

(Ωx
t,Γ × {x})

)

⋃

(

⋃

x/∈Γ

(Ωx
t,Γ × {x})

)

.
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Now for any T > 0,

⋃

t>T

Θ̄
−1
t (Ω× Γ) =





⋃

t>T

⋃

x∈Γ

(Ωx
t,Γ × {x})





⋃





⋃

t>T

⋃

x/∈Γ

(Ωx
t,Γ × {x})



 .

Again, it is easy to see that
⋃

t>T

⋃

x∈Γ(Ω
x
t,Γ × {x}) is a subset of Ω× Γ, and

µ





⋃

t>T

⋃

x∈Γ

(Ωx
t,Γ × {x})



 =

∫

Ω×X

I∪t>T∪x∈Γ(Ω
x
t,Γ

×{x})(ω, x)δY(ω)(dx)P(dω)

=

∫

Ω

I∪t>T∪x∈Γ(Ω
x
t,Γ

×{x})(ω, Y(ω))P(dω)

= P



{ω : (ω, Y(ω)) ∈
⋃

t>T

⋃

x∈Γ

(Ωx
t,Γ × {x})}





= P
(

{ω : Y(ω) ∈ Γ andω ∈ Ω
Y(ω)
t0,Γ

for some t0 > T}
)

= P
(

{ω : Y(ω) ∈ Γ andΦ(t0,ω)Y(ω) ∈ Γfor some t0 > T}
)

= P
(

{ω : Y(ω) ∈ Γ andY(θt0ω) ∈ Γfor some t0 > T}
)

.

Suppose now that Γ ∈ I, and condition A′ holds, we have

P
(

{ω : Y(ω) ∈ Γ and Y(θt0ω) ∈ Γ for some t0 > T}
)

= P
(

{ω : Y(ω) ∈ Γ}
)

.

Then

µ





⋃

t>T

⋃

x∈Γ

(Ωx
t,Γ × {x})



 = P
(

{ω : Y(ω) ∈ Γ}
)

= ρ(Γ) = µ(Ω× Γ).

Hence

µ



(Ω× Γ)\
⋃

t>T

⋃

x∈Γ

(Ωx
t,Γ × {x})



 = 0. (3.11)

Similarly, for the set
⋃

t>T

⋃

x/∈Γ(Ω
x
t,Γ × {x}),

µ





⋃

t>T

⋃

x/∈Γ

(Ωx
t,Γ × {x})



 = P



{ω : (ω, Y(ω)) ∈
⋃

t>T

⋃

x/∈Γ

(Ωx
t,Γ × {x})}





= P
(

{ω : Y(ω) /∈ Γ andω ∈ Ω
Y(ω)
t0,Γ

for some t0 > T}
)

= P
(

{ω : Y(ω) /∈ Γ andY(θt0ω) ∈ Γ for some t0 > T}
)

,
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and from condition A′, we have

µ





⋃

t>T

⋃

x/∈Γ

(Ωx
t,Γ × {x})



 = P
(

{ω : Y(ω) /∈ Γ and Y(θtω) ∈ Γ for some t0 > T}
)

= 0.

(3.12)

Now note that




⋃

t>T

Θ̄
−1
t (Ω× Γ)



△ (Ω× Γ)

=









⋃

t>T

Θ̄
−1
t (Ω× Γ)



 \(Ω× Γ)





⋃



(Ω× Γ)\
⋃

t>T

Θ̄
−1
t (Ω× Γ)





⊆





⋃

t>T

⋃

x/∈Γ

(Ωx
t,Γ × {x})





⋃



(Ω× Γ)\
⋃

t>T

⋃

x∈Γ

(Ωx
t,Γ × {x})



 .

Then for all T > 0, from (3.11) and (3.12), we have

µ









⋃

t>T

Θ̄
−1
t (Ω× Γ)



△ (Ω× Γ)



 = 0.

Applying the ergodicity of the dynamical system (Ω̄, F̄ ,µ, (Θ̄t)t>0) and Lemma 3.10, we have

ρ(Γ) = µ(Ω× Γ) = 0 or 1.

Therefore, ρ is ergodic. �

4. Sublinear dynamical systems from periodic measures

In this section, we also assume condition P. We will give a construction of upper expectations

via the periodicmeasuresµ and ρ de�ned in (2.9) and (3.4) respectively. Then we can study the
ergodicity of the sublinear expectation dynamical system and sublinear canonical dynamical

system generated by the upper expectations and Markov semigroup Pt de�ned in (3.1).

First we recall the de�nition of sublinear expectation space (cf [29]). Let Ω be a given set

and letH be a linear space of real valued functions de�ned on Ω. We suppose thatH satis�es

the following two conditions:

(a) c ∈ H for each constant c;

(b) |X| ∈ H if X ∈ H.

Definition 4.1 ([29]). A sublinear expectation E is a functional E :H→ R satisfying

(a) Monotonicity:

E[X] 6 E[Y] ifX 6 Y.
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(b) Constant preserving:

E[c] = c for c ∈ R.

(c) Sub-additivity: for each X, Y ∈ H,

E[X + Y] 6 E[X]+ E[Y].

(d) Positive homogeneity:

E[λX] = λE[X] for λ > 0.

The triplet (Ω,H,E) is called a sublinear expectation space. If (a) and (b) are satis�ed, E is

called a nonlinear expectation and the triplet (Ω,H,E) is called a nonlinear expectation space.

4.1. Ergodic sublinear dynamical system on upper expectation space

Recall the product space (Ω̄, F̄ ) = (Ω× X,F ⊗ B(X)) in section 2 and de�ne

E[ϕ] = sup
s∈[0,τ )

Eµs[ϕ], for allϕ ∈ Lb(Ω̄), (4.1)

where Lb(Ω̄) := {ϕ : Ω̄→ R|ϕ ismeasurable and bounded}, µs is the periodicmeasure de�ned

in (2.9), and

Eµs[ϕ] :=

∫

Ω×X

ϕ(ω, x)(µs)ω(dx)P(dω)

=

∫

Ω×X

ϕ(ω, x)δY(s,θ−sω)(dx)P(dω)

=

∫

Ω

ϕ(ω, Y(s, θ−sω))P(dω).

It is easy to verify that E is a sublinear expectation on (Ω̄, Lb(Ω̄)). Recall the de�nition (cf [17])

Θ̄tE[ϕ(·)] :=E[ϕ(Θ̄t·)]. (4.2)

Proposition 4.2. Assume condition P. The skew product (Θ̄t)t>0 preserves the sublinear
expectation E.
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Proof. We just need to prove Θ̄tE[ϕ] = E[ϕ], for allϕ ∈ Lb(Ω̄). To see the proof, for any

s ∈ R, by de�nition of Eµs , we have

Θ̄tEµs[ϕ] = Eµs[ϕ ◦ Θ̄t]

=

∫

Ω×X

ϕ(Θ̄t(ω, x))δY(s,θ−sω)(dx)P(dω)

=

∫

Ω×X

ϕ(θtω,Φ(t,ω)x)δY(s,θ−sω)(dx)P(dω)

=

∫

Ω

ϕ(θtω,Φ(t,ω)Y(s, θ−sω))P(dω)

=

∫

Ω

ϕ(θtω, Y(t+ s, θ−sω))P(dω)

=

∫

Ω

ϕ(θtω, Y(t+ s, θ−(t+s)θtω))P(dω)

=

∫

Ω

ϕ(ω, Y(t+ s, θ−(t+s)ω))P(dω)

= Eµt+s[ϕ].

Then by de�nition of E, the periodic property of µ. and (4.2), we have

Θ̄tE[ϕ] = sup
s∈[0,τ )

Θ̄tEµs[ϕ] = sup
s∈[0,τ )

Eµt+s[ϕ] = sup
s∈[0,τ )

Eµs[ϕ] = E[ϕ].

�

Recall the de�nition of ergodicity of a sublinear expectation dynamical system.

Definition 4.3 ([17]). Let (Ω,H,E) be a sublinear expectation space and the measur-

able transformation θ : [0,∞)× Ω→ Ω preserve the expectation E. We say that the sub-

linear expectation dynamical system (Ω,H,E, (θt)t>0) is ergodic if for any B ∈ σ(H) with

θ−1
t B = B, for all t > 0, then E[IB] = 0 or E[IBc] = 0.

Consider the dynamical system (Ω̄, Lb(Ω̄),E, (Θ̄t)t>0) de�ned as above, we have

Theorem 4.4. Assume condition P. If (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0) is ergodic for some s ∈ R, then

(Ω̄, Lb(Ω̄),E, (Θ̄t)t>0) is an ergodic sublinear expectation dynamical system.

Proof. Firstly, we know that Θ̄t preserves the sublinear expectation E from proposition 4.2.

For any A ∈ F̄ with Θ̄−1
t A = A, for all t > 0, by de�nition 4.3, we need to prove V(A) = 0 or

V(Ac) = 0 where V(A) := sups∈[0,τ )µs(A). Since (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0) is ergodic for some s ∈ R,

by theorem 2.11 we know that (Ω,F ,P, (θnτ )n>0) is ergodic. Considering the proof of theorem

2.10 we have µs(A) = µ0(A) for all s ∈ R and µ0(A) = 0 or 1. Then

V(A) = sup
s∈[0,τ )

µs(A) = µ0(A) = 0,

or

V(Ac) = sup
s∈[0,τ )

µs(A
c) = µ0(A

c) = 1− µ0(A) = 0.

�
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We say a statement holds E quasi surely (E− q.s.) if the statement is true on set A with

E[IAc] = 0.

Proposition 4.5. Assume condition P and (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0) is ergodic for some s ∈ R,

Then for any ξ ∈ Lb(Ω̄), we have

lim
T→∞

1

T

∫ T

0

Utξ dt =
1

τ

∫ τ

0

Eµs[ξ]ds, E− q.s.,

where (Utξ)(ω, x) = ξ(Θ̄t(ω, x)).

Proof. By (i) of remark 2.12, we know that (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0) is ergodic for each s ∈ R.

For any ξ ∈ Lb(Ω̄), without any loss of generality, we can assume that ξ > 0,E− q.s.. Let
ξτ :=

1
τ

∫ τ

0
Utξ dt, then

1

n

n−1
∑

k=0

Uk
τ ξτ =

1

nτ

∫ nτ

0

Utξ dt.

Applying Birkhoff’s ergodic theorem (cf [8]) for ξτ on (Ω̄, F̄ ,µs, (Θ̄
n
τ )n>0), we have

lim
n→∞

1

n

n−1
∑

k=0

Uk
τ ξτ = Eµs [ξτ ], µs − a.s..

For any arbitrary T > 0, let nT = [ Tτ ] be the maximal nonnegative integer less than or equal to
T
τ
. Then nTτ 6 T < (nT + 1)τ and

nT
nT + 1

·
1

nTτ

∫ nTτ

0

Utξ dt 6
1

T

∫ T

0

Utξ dt 6
nT + 1

nT
·

1

(nT + 1)τ

∫ (nT+1)τ

0

Utξ dt.

Thus

lim
T→∞

1

T

∫ T

0

Utξ dt = Eµs[ξτ ] µs − a.s..

However,

Eµs[ξτ ] = Eµs[
1

τ

∫ τ

0

Utξ dt]

=
1

τ

∫ τ

0

Eµs[Utξ] dt

=
1

τ

∫ τ

0

Θ̄tEµs[ξ] dt

=
1

τ

∫ τ

0

Eµs+t[ξ] dt

=
1

τ

∫ τ

0

Eµt [ξ] dt,

thus

lim
T→∞

1

T

∫ T

0

Utξ dt =
1

τ

∫ τ

0

Eµt [ξ] dt µs − a.s..
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Let As be the µs-null set such that

lim
T→∞

1

T

∫ T

0

Utξ dt =
1

τ

∫ τ

0

Eµt [ξ] dt, on Acs.

Let A = ∩s∈[0,τ )As, then V(A) = sups∈[0,τ )µs(A) = 0 and

lim
T→∞

1

T

∫ T

0

Utξ dt =
1

τ

∫ τ

0

Eµt [ξ] dt, on Ac. �

From the condition P and the assumption that the periodic measure {µs}s∈R on the product

space is PS-ergodic, we obtained the Birkhoff’s law of large numbers with the convergence

in the sense of quasi-surely. This result is stronger than the Birkhoff ergodic type theorem in

the almost sure sense that we can obtain from the ergodic theory of periodic measure ([18]).

This justi�es the study of the construction of invariant sublinear expectations from periodic

measures.

Next we also give two examples of ergodic sublinear dynamical system.

Example 4.6 (An ergodic sublinear dynamical system with discrete time). We consider

Ω1 = [0, 1), θα :Ω1 → Ω1, θα(x) = (x + α) mod1. It is well known that the dynamical system

(Ω1,B(Ω1),P1, (θ
n
α)n>0) is ergodic when α is irrational. Here P1 is the Lebesgue measure on

Ω1.

Next, we consider Ω̂ = [0, 2) = [0, 1)∪ [1, 2) = Ω1 ∪ Ω2, where Ω2 = [1, 2). De�ne θ̂α :
Ω̂→ Ω̂ by

θ̂α(x) =

{

θα(x)+ 1, x ∈ Ω1,

x − 1, x ∈ Ω2.

Then we know that θ̂2α maps Ωi into Ωi for i = 1, 2. Let P2 be the Lebesgue measure on Ω2,

then (Ωi,B(Ωi),Pi, (θ̂2nα |Ωi )n>0), i = 1, 2 are ergodic dynamical systems.

De�ne

P̄i(A) :=Pi(A ∩ Ωi), for anyA ∈ B(Ω̂),

and

Ê[X] = EP̄1 [X] ∨ EP̄2[X], for allX ∈ L1(Ω̂).

Then for any ξ ∈ L1(Ω̂), we have

θ̂αEP̄1[ξ] = EP̄1[ξ ◦ θ̂α]

=

∫

Ω̂

ξ(θ̂α(x))P̄1(dx)

=

∫

Ω1

ξ(θ̂α(x))P1(dx)

=

∫

Ω2

ξ(y)P2(dy)

=

∫

Ω̂

ξ(y)P̄2(dy)

= EP̄2[ξ].
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Similarly,

θ̂αEP̄2[ξ] = EP̄1[ξ].

Thus θ̂αÊ[ξ] = EP̄1[ξ ◦ θ̂α] ∨ EP̄2[ξ ◦ θ̂α] = EP̄2[ξ] ∨ EP̄1 [ξ] = Ê[ξ], which means θ̂α pre-

serves the sublinear expectation Ê. Then (Ω̂,B(Ω̂), (θ̂nα)n>0, Ê) is a sublinear dynamical

system.

Let P̄ = 1
2
(P̄1 + P̄2). Then P̄ is an invariant measure with respect to θ̂α and ergodic as it is

PS-ergodic by theorem 2.20 in [18]. Moreover, θ̂α is also ergodic under the sublinear upper

expectation setting that we observe in this section. Here we give a straightforward proof of this

result in this special case.

Proposition 4.7. The sublinear dynamical system Ŝ = (Ω̂,B(Ω̂), (θ̂nα)n>0, Ê) is ergodic
while α is irrational.

Proof. For any A ∈ B(Ω̂) with θ̂−1
α A = A, we need to show that

Ê[IA] = P̄1(A) ∨ P̄2(A) = 0 or Ê[IAc] = P̄1(A
c) ∨ P̄2(A

c) = 0.

By θ̂−1
α A = A we have (θ̂2α)

−1A = A, which means

{(θ̂2α)
−1(A ∩ Ω1)} ∪ {(θ̂2α)

−1(A ∩Ω2)} = (A ∩ Ω1) ∪ (A ∩ Ω2).

Since θ̂2α maps Ωi into Ωi, i = 1, 2, then

(θ̂2α)
−1(A ∩ Ωi) = A ∩ Ωi.

As we already know, (Ωi,B(Ωi), ((θ̂
2
α)
n)n>0,Pi) are ergodic while α is irrational, Then

Pi(A ∩Ωi) = 0 or 1, i = 1, 2.

Since θ̂α(A ∩ Ω1) = A ∩ Ω2, then we have

P̄2(A) = P2(A ∩Ω2) = P2(θ̂α(A ∩ Ω1)) = P1(A ∩Ω1) = P̄1(A).

Thus

Ê[IA] = P̄1(A) ∨ P̄2(A) = 0 or Ê[IcA] = P̄1(A
c) ∨ P̄2(A

c) = 0.

This means the sublinear dynamical system Ŝ = (Ω̂,B(Ω̂), (θ̂nα)n>0, Ê) is ergodic. �

Example 4.8 (Ergodic sublinear dynamical system on torus).We consider the same dynam-

ical system (Ω̃, F̃ , (θ̃αt )t∈R) on torus and periodic probability measure µs, s ∈ R, as in example

2.13. Now we de�ne the upper expectation Ẽ on Lb(Ω̃) by

Ẽ[ϕ] := sup
s∈[0,1)

Eµs[ϕ], for allϕ ∈ Lb(Ω̃).

Proposition 4.9. The sublinear dynamical system (Ω̃, Lb(Ω̃), Ẽ, (θ̃αt )t>0) is ergodic.

Proof. The proof is similar to that of theorem 4.4. But in theorem 4.4, we assumed that

there is a random periodic path. But this proof does not depend on this assumption. The key

is µs(Ã) = µ0(Ã) for any invariant set Ã. This is proved by a different method, see proposition

2.14 and (2.19). �
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4.2. Ergodicity of sublinear canonical dynamical systems with respect to a Markovian

semigroup

Next we will give the de�nitions of sublinear Markovian systems and their ergodicity ([17,

28]).

Definition 4.10 ([28]). We say that T : R+ × Lb(X)→ Lb(X) is a sublinear Markovian

semigroup if:

(a) For each �xed (t, x) ∈ R
+ × X, Tt[ϕ](x) is a sublinear expectation de�ned on Lb(X).

(b) T0[ϕ](x) = ϕ(x), for each ϕ ∈ Lb(X).

(c) Tt[ϕ] satis�es the following Chapman semigroup formula:

Tt ◦ Ts[ϕ] = Tt+s[ϕ], for any t, s > 0.

Here Lb(X) is the set of B(X)-measurable real-valued function de�ned on X such that

supx∈X|φ(x)| < ∞.

Remark 4.11. The Markovian semigroup Pt, t > 0 given in (3.1) is also a sublinear Marko-

vian semigroup.

Definition 4.12 ([17]). A nonlinear expectation T̃ : Lb(X)→ R is said to be an invariant

nonlinear expectation under a sublinear Markovian semigroup Tt, t > 0 if it satis�es

TtT̃ = T̃ for all t > 0.

Here TtT̃[ϕ] := T̃[Ttϕ].

Similarly as in the invariant measure case, denote by Ω
∗
= X

R the space of all X-valued

functions on R, by F∗ the smallest σ-algebra containing all cylindrical sets of Ω∗, the shift

θ∗ : R× Ω
∗ → Ω

∗ is de�ned by (θ∗t ω
∗)(s) = ω∗(t + s), for all ω∗ ∈ Ω∗. Set

L0(Ω
∗) := {ξ| there exists n > 1, t1, . . . , tn ∈ R, ϕ ∈ Lb(X

n)

such that

ξ(ω∗) = ϕ(ω∗(t1), . . . , ω∗(tn))} .

It is clear that L0(Ω
∗) is a linear subspace of Lb(Ω

∗).

For any ϕ ∈ Lb(Xn) and t1 < t2 < · · · < tn, we de�ne ϕi ∈ Lb(Xn−i), i = 1, 2, . . . , n as
follows:

ϕ1(x1, x2, . . . , xn−1) :=Ttn−tn−1
[ϕ(x1, x2, . . . , xn−1, ·)](xn−1)

ϕ2(x1, x2, . . . , xn−2) :=Ttn−1−tn−2
[ϕ1(x1, x2, . . . , xn−2, ·)](xn−2)

...

ϕn−1(x1) :=Tt2−t1[ϕn−2(x1, ·)](x1).

For any Tt, t > 0 invariant sublinear expectation T̃, we de�ne the sublinear expectation ET̃

on L0(Ω
∗) by

E
T̃ [ξ] = T̃[ϕn−1(·)], where ξ(ω∗) = ϕ(ω∗(t1),ω

∗(t2), . . . , ω
∗(tn)).
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Then we can extend L0(Ω
∗) into Lp0(Ω

∗) under the norm (ET̃[| · |p])1/p, p> 1. De�ne the

space

Lipb,cyl(Ω
∗) := {ξ|there exists n > 1, t1, . . . , tn ∈ R,ϕ ∈ Cb,lip(X

n)

such that

ξ(ω∗) = ϕ(ω∗(t1), . . . , ω∗(tn))} .

and LpG(Ω
∗) the completion of Lipb,cyl(Ω

∗) under the norm (ET̃ [| · |p])1/p, p > 1. From

[17], θ∗t preserves the expectation E
T̃ , and ST̃ = (Ω∗, L2G(Ω

∗), (θ∗t )t∈R,E
T̃) de�nes a dynamical

system, called canonical dynamical system associated with Tt, t > 0, T̃, and θ∗t .

Definition 4.13 ([17]). The invariant expectation T̃ is said to be ergodic with respect to

the sublinear Markovian semigroup Tt, t > 0, if its associated canonical dynamical system

ST̃ = (Ω∗, L2G(Ω
∗), (θ∗t )t>0,E

T̃) on the sublinear expectation space is ergodic.

Next we will consider the ergodic property of a sublinear expectation T̃ on (X, Lb(X))
de�ned by

T̃[ϕ] = sup
s∈[0,τ )

Eρs[ϕ], for allϕ ∈ Lb(X), (4.3)

where Eρs [ϕ] :=
∫

X
ϕ(x)ρs(dx).

First we have the following property of T̃ .

Proposition 4.14. The sublinear expectation T̃ is an invariant expectation under the
Markovian semigroup Pt, t > 0.

Proof. We need to prove thatPtT̃[ϕ] = T̃[ϕ], for all t > 0, ϕ ∈ Lb(X). Since ρ. is a periodic
measure of the Markovian semigroup Pt, we have

PtEρs[ϕ] = Eρs [Ptϕ]

=

∫

X

Ptϕ(x)ρs(dx)

=

∫

X

∫

X

Pt(x, dy)ϕ(y)ρs(dx)

=

∫

X

∫

X

Pt(x, dy)ρs(dx)ϕ(y)

=

∫

X

ϕ(y)ρs+t(dy)

= Eρs+t[ϕ]. (4.4)

Therefore by (4.3) and (4.4) and the periodicity of ρ., we have that

PtT̃[ϕ] = T̃[Ptϕ] = sup
s∈[0,τ )

Eρs[Ptϕ] = sup
s∈[0,τ )

Eρs+t[ϕ] = sup
s∈[0,τ )

Eρs [ϕ] = T̃[ϕ].

�

Theorem 4.15. Under the assumption in theorem 3.5, if (Ω,F ,P, (θnτ )n>0) is ergodic, then
T̃ is ergodic with respect to the Markovian semigroup Pt, t > 0.
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Proof. We will show that for any ϕ ∈ Lb(X), if Ptϕ = ϕ (since Pt is a linear operator, then
Pt(−ϕ) = −ϕ) for all t > 0, thenϕ is constant, T̃ − q.s. By theorem 3.25 in [17], noting in this

part of the theorem in [17] that ϕ(X̂(0)) has no mean uncertainty is not needed, we conclude

that T̃ is ergodic.

Firstly by theorem3.5, we know that {ρs}s∈R is PS-ergodic. Then by classical ergodic theory

(cf [7]) we have that ifPτϕ = ϕ, thenϕ is constant, ρs− a.s. for all s ∈ R. Let ls be that constant,
i.e. ϕ = ls, ρs− a.s.. Since Ptϕ = ϕ for all t > 0 and by (4.4), we have

ls+t = Eρs+t[ϕ] = Eρs [Ptϕ] = Eρs[ϕ] = ls.

So ls ≡ l0 and ϕ = l0, ρs − a.s. for all s ∈ R. Let A := {x : ϕ(x) 6= l0}, then ρs(A) =
0, for all s ∈ R. Thus T̃[IA] = sups∈[0,τ )ρs(A) = 0, which means ϕ = l0, T̃ − q.s.. �
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[27] Mohammed S-E A, Zhang T S and Zhao H Z 2008 The stable manifold theorem for semi-linear

stochastic evolution equations and stochastic partial differential equations Memoir. Am. Math.
Soc. 196 1–105

[28] Peng S G 2005 Nonlinear expectations and nonlinear Markov chains Chin. Ann. Math. 26 159–84
[29] Peng S G 2019 Nonlinear Expectations and Stochastic Calculus under Uncertainty—with Robust

Central Limit Theorem and G-Brownian Motion (Berlin: Springer)
[30] von Neumann J 1932 Proof of the quasi-ergodic hypothesis Proc. Natl Acad. Sci. USA 18 70–82
[31] von Neumann J 1932 Physical Applications of the Ergodic Hypothesis Proc. Natl Acad. Sci. USA

18 263–6
[32] Walters P 1982 An Introduction to Ergodic Theory (Graduate Tests in Mathematics)vol 79 (New

York: Springer)
[33] Wang B X 2014 Existence, stability and bifurcation of random complete and periodic solutions of

stochastic parabolic equations Nonlinear Anal. 103 9–25
[34] Zhao H Z and Zheng Z H 2009 Random periodic solutions of random dynamical systems J. Differ.

Equ. 246 2020–38

5354

https://arxiv.org/abs/1705.03549
https://doi.org/10.1016/j.jde.2020.05.034
https://arxiv.org/abs/1904.08091
https://doi.org/10.1214/aop/1039639354
https://doi.org/10.1214/aop/1039639354
https://doi.org/10.1214/aop/1039639354
https://doi.org/10.1214/aop/1039639354
https://doi.org/10.1016/j.jde.2009.11.006
https://doi.org/10.1016/j.jde.2009.11.006
https://doi.org/10.1016/j.jde.2009.11.006
https://doi.org/10.1016/j.jde.2009.11.006
https://arxiv.org/abs/1612.08394
https://doi.org/10.1007/bfb0088361
https://doi.org/10.1007/bfb0088361
https://doi.org/10.1007/bfb0088361
https://doi.org/10.1007/bfb0088361
https://doi.org/10.1090/memo/0917
https://doi.org/10.1090/memo/0917
https://doi.org/10.1090/memo/0917
https://doi.org/10.1090/memo/0917
https://doi.org/10.1142/s0252959905000154
https://doi.org/10.1142/s0252959905000154
https://doi.org/10.1142/s0252959905000154
https://doi.org/10.1142/s0252959905000154
https://doi.org/10.1073/pnas.18.1.70
https://doi.org/10.1073/pnas.18.1.70
https://doi.org/10.1073/pnas.18.1.70
https://doi.org/10.1073/pnas.18.1.70
https://doi.org/10.1073/pnas.18.3.263
https://doi.org/10.1073/pnas.18.3.263
https://doi.org/10.1073/pnas.18.3.263
https://doi.org/10.1073/pnas.18.3.263
https://doi.org/10.1016/j.na.2014.02.013
https://doi.org/10.1016/j.na.2014.02.013
https://doi.org/10.1016/j.na.2014.02.013
https://doi.org/10.1016/j.na.2014.02.013
https://doi.org/10.1016/j.jde.2008.10.011
https://doi.org/10.1016/j.jde.2008.10.011
https://doi.org/10.1016/j.jde.2008.10.011
https://doi.org/10.1016/j.jde.2008.10.011

	A sufficient and necessary condition of PS-ergodicity of periodic measures and generated ergodic upper expectations
	1.  Introduction
	2.  Ergodicity of skew product dynamical systems: necessary and sufficient conditions
	2.1.  Random periodic paths and periodic measures on product spaces
	2.2.  The ergodicity of metric dynamical system on the Wiener space
	2.3.  Ergodicity of skew product dynamical systems in the case of periodic measures
	2.4.  Ergodicity of skew product dynamical systems in the case of invariant measures

	3.  Ergodicity of canonical Markovian systems from periodic measures: necessary and sufficient conditions
	3.1.  Ergodicity of periodic measures in Markovian setting
	3.2.  Ergodic canonical dynamical systems generated from periodic measure
	3.3.  Ergodicity of canonical dynamical system generated from invariant measure: sufficient condition

	4.  Sublinear dynamical systems from periodic measures
	4.1.  Ergodic sublinear dynamical system on upper expectation space
	4.2.  Ergodicity of sublinear canonical dynamical systems with respect to a Markovian semigroup

	Acknowledgments
	References


