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Abstract. In this paper we consider the relation between the spectrum and

the number of short cycles in large graphs. Suppose G1, G2, G3, . . . is a
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T and such that the proportion of eigenvalues of Gn that lie within the

support of the spectrum of T tends to 1 in the large n limit. This is a

weak notion of being Ramanujan. We prove such a sequence of graphs is

asymptotically locally tree-like. This is deduced by way of an analogous

theorem proved for certain infinite sofic graphs and unimodular networks,

which extends results for regular graphs and certain infinite Cayley graphs.
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2 ON THE LOCAL GEOMETRY OF GRAPHS IN TERMS OF THEIR SPECTRA

1. Introduction

This paper is about how the spectrum of a big, bounded degree graph determines its local

geometry around typical vertices. For a finite and connected graph G, let

λ1(G) > λ2(G) ≥ λ3(G) ≥ · · ·

be the eigenvalues of its adjacency matrix. Let T be the universal cover tree of G and

denote by ρ(T ) its spectral radius, which is the operator norm of the adjacency matrix of

T acting on `2(T ). If G is d-regular then λ1(G) = d and ρ(T ) = 2
√
d− 1, T being the

d-regular tree.

It is easy to see that λ1(G) ≥ ρ(T ). Various extensions of the Alon-Boppana Theorem

state that for every ε > 0, a positive proportion of the eigenvalues of G lie outside the

interval [−ρ(T )+ε, ρ(T )−ε] independently of the size of G; see e.g. [6, 8, 10, 19, 20]. What

happens when the eigenvalues actually concentrate within [−ρ(T ), ρ(T )]?

A graph G is Ramanujan if |λi(G)| ≤ ρ(T ) for every i ≥ 2. It is a fairly well-understood

theme that large, d-regular Ramanujan graphs locally resemble the d-regular tree in that

they contain few short cycles. For an illustration of such results see [1, 5, 12, 15, 16] and

references therein. This relation is not as well understood for sparse, irregular graphs. We

prove the following with regards to the spectrum and local geometry.

Suppose G1, G2, G3, . . . is a sequence of finite and connected graphs. They are weakly

Ramanujan if they have a common universal cover tree T and if, counting with multiplicity,

(1.1)
#{Eigenvalues of Gn s.t. |λi(Gn)| ≤ ρ(T )}

|Gn|
−→ 1 as n→∞.

Theorem 1. Consider a sequence of weakly Ramanujan graphs as in (1.1). Suppose that

|Gn| → ∞. Then the graphs are asymptotically locally tree-like in that for every r > 0,

#{Vertices v ∈ Gn s.t. its r-neighbourhood is a tree}
|Gn|

−→ 1 as n→∞.

Let us make a few remarks about Theorem 1. First, if the r-neighbourhood of a vertex

v ∈ G is a tree then it agrees with the r-neighbourhood of any vertex v̂ in the universal cover

of G that maps to v under the cover map. So roughly speaking, large weakly Ramanujan

graphs locally look like their universal covers around most vertices.

Second, it is natural in our context to assume a sequence of graphs share a common

universal cover. For one thing it is a generalization of a sequence of d-regular graphs, (a, b)-

biregular graphs, etc. But more so, it provides a way to compare the spectrum and geometry

of graphs with differing sizes on a common scale. For example, two finite graphs with the

same universal cover have the same degree distribution, hence, also the same average and

maximal degree. They also have the same maximal eigenvalue according to a theorem in
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[14]. The definition of Ramanujan graphs in terms of their universal covers was introduced

in [8] (stated also in [12]).

The version of Theorem 1 for d-regular weakly Ramanujan graphs has been proved in [1].

In this case many tools, such as the Green’s function and spectral measure of the d-regular

tree, are available in precise form. This is lacking for general universal covers where even

the computation of the spectral radius is difficult (although an algorithm is provided in [18]

and various bounds are given in [11, 19]).

Theorem 1 is also motivated by the classical work of Kesten which relates the geometry

of groups to their spectra [13]. Namely, the d-regular Cayley graph of a finitely generated

group is amenable if and only if its spectral radius is the degree d. In the other direction,

what happens to the geometry when the spectrum is “as small as possible”, which is to say

that the spectral radius is 2
√
d− 1? One can ask this question for finite graphs, bounded

degree sofic graphs, or more generally, for unimodular networks. Theorem 1 considers a

finitary case and Theorem 3 below certain sofic graphs. The proof of Theorem 3 also

applies to analogous unimodular networks.

The assumption in Theorem 1 that |Gn| → ∞ is necessary. For example, if all the graphs

are equal to a common cyclic graph then the sequence is weakly Ramanujan. (The universal

cover is Z with ρ(Z) = 2 and all the eigenvalues lie in the interval [−2, 2].) However, this is

the only obstruction as being weakly Ramanujan implies |Gn| → ∞ so long as the common

average degree of the graphs is larger than 2. This follows from the following theorem,

which asserts that λ1(Gn) > ρ(T ) when the common average degree is more than 2.

Theorem 2. Let G be a finite and connected graph with universal cover T . Then λ1(G) =

ρ(T ) if and only if G has at most one cycle or, equivalently, if and only if the average degree

of G is at most 2.

This theorem is somewhat of an analogue of Theorem 1 for a single finite graph. The

proof turns out to be a bit delicate. For instance, consider the bowtie graph G obtained

by gluing together two triangles at a common vertex. It has λ1(G) = (1 +
√

17)/2 and

ρ(T ) = (
√

3+
√

11)/2. The spectral gap is about 0.04 and the average degree is also smaller

than ρ(T ). In general, the spectral gap can be arbitrarily small for graphs formed by gluing

together two large cycles at a common vertex. The proof of Theorem 2 is based on orienting

and weighting the edges of a finite graph in a way that allow to compare the norm of its

adjacency matrix with the cover’s via the Rayleigh variational principle. We have learned

it is related to “Gabber lemma”, see [9].

Theorem 1 is proved in the following section. The idea behind the proof is to reduce

the theorem to an analogous theorem about certain infinite random rooted graphs (sofic

graphs and unimodular networks) by using the notion of local convergence of graphs. The

key result of the paper is a proof of the analogue of Theorem 1 for these infinite graphs,
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which is Theorem 3 below, proved in Section 3. The proof establishes a lower bound on the

spectral radius of such graphs in terms of a probabilistic notion of cycle density. Theorem

2 is then proved in Section 4. Section 5 concludes with some questions.

2. A reduction of Theorem 1

We begin with the notion of local convergence of graphs and some of its properties used for

the proof of Theorem 1. A complete account, including proofs, may be found in [2, 3, 4, 7].

Let Br(G, v) be the r-neighbourhood of a vertex v in a graph G. A sequence of finite and

connected graphs G1, G2, G3, . . . converges locally if the following holds. For every r and

every rooted, connected graph (H, o) having radius at most r from the root o, the ratio

#{Vertices v ∈ Gn s.t. Br(Gn, v) ∼= (H, o)}
|Gn|

converges as n→∞.

The isomorphism relation ∼= is for rooted graphs, i.e. the isomorphism must take the root

of one to the other. Local convergence is also known as Benjamini-Schramm convergence

as it was formulated by them in [3].

A locally convergent sequence of graphs may be represented as a random rooted graph

in the following way. Let G be the set of all rooted and connected graphs whose vertex

sets are subsets of the integers. Identify the graphs in G up to their rooted isomorphism

class. The set G is a complete and separable metric space with the distance between (H, o)

and (H ′, o′) being 2−r, where r is the maximal integer such that Br(H, o) ∼= Br(H
′, o′).

A random rooted graph is simply a Borel probability measure on G or, in other words,

a G-valued random variable (G, o) that is Borel-measurable. Given a locally convergent

sequence of graphs as above, there is a random rooted graph (G, o) such that for every r

and (H, o) as above,

#{Vertices v ∈ Gn s.t. Br(Gn, v) ∼= (H, o)}
|Gn|

−→ Pr [Br(G, o) ∼= (H, o)] .

A random rooted graph that is obtained from a locally convergent sequence of finite

graphs is called sofic. Examples include Cayley graphs of amenable groups such as Zd,
regular trees, as well as Cayley graphs of residually finite groups. More examples may

be found in [2, 3, 4, 7]. Sophic graphs satisfy an important property known as the mass

transport principle, as we explain.

Suppose (G, o) is sofic. Consider a bounded and measurable function F (G, u, v) defined

over doubly rooted graphs such that it depends only on the double-rooted isomorphism

class of (G, u, v). The mass transport principle states that

E
∑
v∈G

F (G, o, v) = E
∑
v∈G

F (G, v, o).
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The above is readily verified for a finite graph rooted at a uniformly random vertex, and it

continues to hold in the local limit, which is why it holds for a sofic graph. Random rooted

graphs that satisfy the mass transport principle are called unimodular networks. It is not

known whether every unimodular network is a sofic graph.

Let us describe the universal cover of a sofic graph. Recall the universal cover of a graph

G is the unique tree T for which there is a surjective graph homomorphism π : T → G,

called the cover map, such that π is locally bijective: for every v̂ ∈ T , π provides a bijection

B1(T, v̂)
π←→ B1(G, π(v̂)). If π(v̂) = π(û) then the rooted graphs (T, v̂) ∼= (T, û). Therefore,

the universal cover of a sofic graph (G, o) may be defined as its samplewise universal cover

(T, ô), where ô is any vertex that is mapped to o by the cover map.

The spectral radius of a sofic graph (G, o) is defined as follows. Let Wk(G, o) be the set

of closed walks of length k from o in a graph G and denote by |W |k(G, 0) its size. The

spectral radius of (G, o) is

ρ(G) = lim
k→∞

(E |W |2k(G, o))1/2k .

Recall that the spectral radius of a connected graph G is also the exponential growth rate

of |W |2k(G, v) for any vertex v. The relation of ρ(G) to the adjacency matrix of G is that it

equals the sup norm, ||ρ(G, o)||∞, of the samplewise spectral radius of (G, o). It is also the

largest element in the support of the “averaged” spectral measure of (G, o), which is a prob-

ability measure over the reals with moments E |W |0(G, o),E |W |1(G, o),E |W |2(G, o), . . ..

We prove the following regarding the spectrum and geometry of an infinite sofic graph.

Theorem 3. Let (G, o) be an almost surely infinite sofic graph that is the local limit of a

sequence of finite graphs sharing a common universal cover T . If ρ(G) = ρ(T ) then G is

isomorphic to T almost surely.

This theorem (and its proof) may be extended to unimodular networks whose universal

cover is deterministic and quasi-transitive.

2.1. Reducing Theorem 1 to sofic graphs. The theorem may be reformulated as assert-

ing that given a sequence of weakly Ramanujan graphs sharing a common universal cover

T , and with their sizes tending to infinity, the sequence converges locally to T . The root

of T will be a random vertex whose distribution is determined by the convergent sequence,

although it does not depend on the particular sequence.

More precisely, as T is the universal cover of a finite graph, it is quasi-transitive. Let

(2.1)
{
v̂1, v̂2, . . . , v̂m

}
be vertices that make a set of representatives for T/Aut(T ). There is a probability measure

(p1, . . . , pm) on them such that if vertex ô is chosen according to it then (T, ô) satisfies the
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mass transport principle; see [2]. Any sequence of graphs converging locally to T has limit

(T, ô). Moreover, if a finite graph G is covered by T then pj is the proportion of vertices

v ∈ G such that the vertices of π−1(v) can be sent to v̂j by automorphisms of T (all vertices

in π−1(v) belong to the same orbit); see [17].

Suppose G1, G2, G3, . . . is a sequence of weakly Ramanujan graphs as in the statement of

the theorem. Since they share a common universal cover, their vertex degrees are bounded

by some integer ∆. By a simple diagonalization argument (there are at most ∆r+1 rooted

graphs of radius ≤ r and maximal degree ≤ ∆), the sequence is pre-compact in the local

topology. We must prove that its only limit point is (T, ô).

Suppose (G, o) is a limit point of the sequence. Then its universal cover is isomorphic to

(T, ô) almost surely. This is because the sequence has a common universal cover and the

universal cover is a continuous mapping of its base graph in the local topology; see [17].

Theorem 1 is proved if G is isomorphic to T almost surely as unrooted graphs. The mass

transport principle specifies the distribution of the root as we have explained. By Lemma

2.1 below, ρ(G) = ρ(T ). The theorem now follows from Theorem 3.

Lemma 2.1. Let G1, G2, G3, . . . be a locally convergent sequence of weakly Ramanujan

graphs. Suppose (G, o) is its limit and T is the common universal cover. Then ρ(G) = ρ(T ).

Proof. Let ∆ be the maximal vertex degree of the graph sequence. Due to local convergence

and bounded convergence theorem, E |W |2k(G, o) is the limit of 1
|Gn|

∑
v∈Gn

|W |2k(Gn, v).

Let qn be the proportion of eigenvalues of Gn that are at most ρ(T ) in absolute value, so

then qn → 1. Note that all eigenvalues of Gn are bounded by ∆ in absolute value. The

aforementioned average is the trace of the (2k)-th power of the adjacency matrix of Gn,

normalized by |Gn|. Thus,

1

|Gn|
∑
v∈Gn

|W |2k(Gn, v) ≤ qn ρ(T )2k + (1− qn) ∆2k.

Upon taking limits we conclude that ρ(G) ≤ ρ(T ).

For the inequality in the other direction, recall the vertices v̂1, . . . , v̂m from (2.1) and the

associated probability measure (p1, . . . , pm) on them. Suppose a finite graph G has universal

cover T . Recall pj is the proportion of vertices in G that have a pre-image in T , under the

cover map, which can be sent to v̂j by a T -automorphism. If v̂ ∈ T is mapped to v ∈ G by

the cover map then |W |2k(G, v) ≥ |W |2k(T, v̂). Indeed, the cover map provides an injection

from W2k(T, v̂) into W2k(G, v) due to its path lifting property. Consequently,

1

|G|
∑
v∈G
|W |2k(G, v) ≥

m∑
j=1

pj |W |2k(T, v̂j).
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Applying the inequality above to every Gn and taking the large n limit gives

E |W |2k(G, o) ≥
m∑
j=1

pj |W |2k(T, v̂j).

Since ρ(T ) is the large k limit of |W |2k(T, v̂j)1/2k for every v̂j , the inequality above implies

that ρ(G) ≥ ρ(T ). �

3. A spectral rigidity theorem

Theorem 3 will be proved by showing that if there is an ` such that

Pr [o lies in an `− cycle of G] > 0,

then ρ(G)/ρ(T ) ≥ 1 + δ for some positive δ. This result is built up in the subsequent

sections by drawing a connection between the spectral radius of G and of T in terms of the

norms of certain Markov operators associated to random walks on the fundamental group

of G. This connection was established in [1].

3.1. Counting walks using the fundamental group. Consider a connected graph H

which may be countably infinite and may have multi-edges and loops around its vertices.

(A loop contributes degree 2 to its vertex.) Let π(H, v) be its fundamental group based

at vertex v, which consists of homotopy classes of closed walks from v under the operation

of concatenation. It is a free group. (See [17] for an account on the fundamental group of

graphs and its properties mentioned here.)

Let Wk(u, v) be the set of walks in H of length k from u to v. Note Wk(v, u) = W−1k (u, v),

where the inverse means walking in the opposite direction. The set

WW−1 = {PQ−1 : P,Q ∈Wk(u, v)}

consists of closed walks from u of length 2k and is closed under inversion. It naturally maps

into π(H,u), and the uniform measure on it pushes forward to a measure on the image

WW−1 ⊂ π(H,u). Note the push-forward may not be uniform measure on the image as

different closed walks in WW−1 may be homotopy equivalent.

Consider the random walk on π(H,u) whose step distribution is the aforementioned push-

forward measure ofWW−1. SinceWW−1 is closed under taking inverses, this is a symmetric

random walk on the Cayley graph of the subgroup of π(H,u) generated by WW−1. Denote

the norm of its associated Markov operator by

(3.1) ||Mk||(u, v).

Now fix a vertex o ∈ H, a path P from o to u and another path Q from o to v. The

set PWk(u, v)Q−1 consists of closed walks from o. Consider the random walk on π(H, o)
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whose step distribution is the push-forward of the uniform measure on this set by its the

natural mapping into π(H, o). Denote by
√
||Mk||(u, v) the norm of the Markov operator

of this random walk. This operator may not be symmetric since the set PWk(u, v)Q−1 is

not closed under taking inverses. However,√
||Mk||(u, v)2 = ||Mk||(u, v)

because the norm in question is the square root of the norm of the Markov operator for the

random walk on π(H, o) associated to the set

(PWk(u, v)Q−1)(PWk(u, v)Q−1)−1 = PWW−1P−1.

The Markov operator for PWW−1P−1 is isomorphic – as an operator on `2(π(H, o)) – to

the Markov operator for WW−1 on `2(π(H,u)). The isomorphism comes from the natural

isomorphism of groups π(H, o)↔ π(H,u). The norm of the Markov operator for WW−1 is

||Mk||(u, v).

3.2. The counting argument. Let H be a graph as above. A purely backtracking walk in

H is a closed walk that is homotopic to the empty walk, that is, it reduces to the identity

in the fundamental group of H. Purely backtracking walks in H from a base point o are in

one to one correspondence with closed walks in the universal cover of H from a base point

ô such that π(ô) = o (π being the cover map). This is due to the path lifting property of

the universal cover map.

Choose an arbitrary vertex o ∈ H. Let n and k be arbitrary integers with nk being even.

Denote by W all closed walks from o of length nk. Denote by N all purely backtracking

walks from o of length nk. The following inequality is from [1].

(3.2) log |W | − log |N | ≥ 1

|N |
∑
P∈N

n∑
j=1

−1

2
log ||Mk||(P(j−1)k, Pjk) .

The proof is based on partitioning the set W in the following way. Two walks in W are

equivalent if their locations coincide at the times 0, k, 2k, . . . , nk. Let WN denote the set of

walks in W that are equivalent to some purely backtracking walk. Observe that

|WN | =
∑
P∈N

|[P ]|
|[P ] ∩N |

.

The term |[P ]|/|[P ] ∩N | is the reciprocal of the probability that a uniform random walk

in [P ] is purely backtracking. The probability can be interpreted in the following way.

Consider the random walk on π(H, o) whose step distribution is the push forward of the

uniform measure on [P ] 7→ π(H, o). The probability under consideration is the one-step

return probability of this random walk. It may be expressed as 〈MP id, id〉, where MP is
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the Markov operator of this random walk. Therefore,

|W | ≥
∑
P∈N
〈MP id, id〉−1 .

Every Q ∈ [P ] agrees with P at the times 0, k, . . . , nk. This allows us to decompose Q

into petals as in Figure 1.

R1

R2
Rj

Rn-1

Q1

Q2

Qj

Qj+1

Qn

o

Figure 1. Decomposing a closed walk into petals.

Here, Qj is the segment of Q from Q(j−1)k = P(j−1)k to Qjk = Pjk. Rj is a fixed path

from o to Pjk chosen independently of Q. The decomposition is that

Q = (Q1R
−1
1 )︸ ︷︷ ︸

T1

· (R1Q2R
−1
2 )︸ ︷︷ ︸

T2

· · · (Rn−1Qn)︸ ︷︷ ︸
Tn

.

Under this decomposition, a uniformly random element Q ∈ [P ] becomes the product

T1 · · ·Tn, where Tj is a uniformly random element of Rj−1Wk

(
P(j−1)k, Pjk

)
R−1j . This uses

that the locations of Q are pinned at the times 0, k, . . . , nk.

Let Mj be the Markov operator for the random walk on π(H, o) with step distribution

Tj . Then MP = M1 · · ·Mn, and

〈MP id, id〉 ≤ ||MP || ≤
∏
j

||Mj || .

Each ||Mj || equals
√
||Mk||(P(j−1)k, Pjk). Therefore,

|W | ≥
∑
P∈N

n∏
j=1

||Mk||(P(j−1)k, Pjk)
−1/2 .
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Dividing the above by |N |, using the inequality of arithmetic-mean and geometric-mean,

and then taking the logarithm gives the inequality from (3.2).

Let (G, o) be an infinite sofic graph as in the statement of Theorem 3. The mass transport

principle simplifies the right hand side of (3.2) for (G, o) as follows.

Lemma 3.1. In this setting the following equation holds for j = 1, . . . , n.

E
1

|N |nk(G, o)

∑
P∈Nnk(G,o)

log ||Mk||(P(j−1)k, Pjk) = E
∑

P∈Nnk(G,o)

log ||Mk||(o, Pk)
|Nnk|(G, P(n−j+1)k)

.

Proof. Consider the function

F (H,u, v) =
1

|N |nk(H, v)

∑
P∈Nnk(H,v)

1{P(j−1)k=u} log ||Mk||(u, Pjk) .

It depends on the doubly-rooted isomorphism class of (H,u, v). Now,∑
u∈H

F (H,u, v) =
1

|N |nk(H, v)

∑
P∈Nnk(H,v)

log ||Mk||(P(j−1)k, Pjk) .

On the other hand,

F (H,u, v) =
1

|N |nk(H, v)

∑
P∈Nnk(H,u)

1{P(n−j+1)k=v} log ||Mk||(u, Pk)

because we can also sum over the walks by starting them at u instead of v. Therefore,∑
v∈H

F (H,u, v) =
∑

P∈Nnk(H,u)

log ||Mk||(u, Pk)
|N |nk(H,P(n−j+1)k)

.

The mass-transport principle for (G, o) states that

E
∑
u∈G

F (G, u, o) = E
∑
v∈G

F (G, o, v),

which is the equation in the statement of the lemma. �

3.3. Bounds. Applying the bound from (3.2) to (G, o), taking the expectation value, ap-

plying Lemma 3.1 and then dividing by nk gives

E log |W |nk(G, o)−E log |N |nk(G, o)

nk
≥

E
∑

P∈Nnk(G,o)

1

n

n∑
j=1

−(2k)−1 log ||Mk||(o, Pk)
|N |nk(G, P(n−j+1)k)

.

The term −(2k)−1 log ||Mk||(Po, Pk) is non-negative. We would thus like to replace each

of the terms |N |nk(G, P(n−j+1)k) by |N |nk(G, o), after which the average over the parameter

j would be replaced by unity. Recall the universal cover of G is the non-random tree T
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and Wnk(T, v̂) = Nnk(G, π(v̂)). Therefore, the cost of replacing |N |nk(G, P(n−j+1)k) by

|N |nk(G, o) while preserving the ≥ inequality is given by the multiplicative factor

rnk = min
i,j

|Wnk|(T, v̂i)
|Wnk|(T, v̂j)

,

where v̂1, . . . , v̂m are a set of orbit representatives for T as given by (2.1). Part 1 of the

following lemma shows that rnk ≥ ∆−2d, where d is the maximum distance between any

two of the v̂i’s and ∆ is the maximal degree of T .

Lemma 3.2. Let H be a connected graph having maximum degree at most ∆. Let x and y

be two of its vertices having distance d between them.

(1) |W |2k(H, y) ≤ ∆2d |W |2k(H,x).

(2) |W |2k+2j(H,x) ≤ ∆2j |W |2k(H,x).

Proof. Let A be the adjacency matrix of H acting on `2(H) (H may be countably infinite).

The inequality in (1) follows from the inequality in (2) upon observing that |W |2k(H, y) ≤
|W |2k+2d(H,x). For the proof of (2), we have |W |2k+2j(H,x) = 〈A2k+2jδx, δx〉 and the latter

equals 〈A2j(Akδx), (Akδx)〉. Thus,

|W |2k+2j(H,x) ≤ ||A2j || 〈Akδx, Akδx〉 ≤ ∆2j〈Akδx, Akδx〉 = ∆2j |W |2k(H,x) .

�

Lemma 3.3. Let ∆ be the maximal degree of T . The following inequality holds:

log ρ(G)− log ρ(T ) ≥ sup
k≥1

E − log ||M2k||(o, o)
4k∆2d+2k

.

Proof. Observe that G has maximal degree ∆ almost surely because it is covered by T . By

Lemma 3.2,

E log |W |nk(G, o)−E log |N |nk(G, o)

nk
≥(3.3)

∆−2d E
1

|N |nk(G, o)

∑
P∈Nnk(G,o)

− log ||Mk||(o, Pk)
2k

.

The expectation on the right hand side of (3.3) is an average over (G, o, Pn), where Pn

is a uniformly random purely backtracking walk in G starting at o and having length nk.

If k is even then Pr [Pnk = o] ≥ ∆−k. This is because a purely backtracking walk from o

of length nk will be at o at step k if it is a purely backtracking walk from o of length k

followed by one of length nk − k. Consequently,

Pr [Pnk = o] ≥ E
|N |k(G, o) · |N |nk−k(G, o)

|N |nk(G, o)
≥ ∆−k,
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where the last inequality is due to |N |k(G, o) ≥ 1 and, also, by part 2 of Lemma 3.2, due

to |N |nk−k(G, o) ≥ ∆−k|N |nk(G, o). Since − log ||Mk||(u, v) is non-negative, (3.3) implies

that for every even k,

E log |W |nk(G, o)−E log |N |nk(G, o)

nk
≥ E − log ||Mk||(o, o)

2k∆2d+k
.

We may take a large n limit supremum of the left hand side of the above for every even

value of k. In the limit as n → ∞, the left hand side is at most log ρ(G) − log ρ(T ).

This is because E log |W | ≤ log E |W | by concavity of log and, as argued in Lemma 2.1,

E log |N |nk(G, o) is the average over a finitely supported probability measure (on at most

m points) and each term in this average converges to log ρ(T ) after division by nk and

letting n tend to infinity. The inequality from the lemma now follows due to k being an

arbitrary even integer. �

3.4. Completion of the proof. Let (H, v) be a rooted and connected graph. Given

integers k and `, let us say H contains a bouquet if it has two disjoint `-cycles C1 and C2

such that if the distance from v to Cj is rj , then k ≥ ` + max{r1, r2}. The situation is

pictured below.

r1r2

v

l
l

Ball of radius k

C1C2

Figure 2. A bouquet around the root.

Suppose (H, v) contains a bouquet for the parameter values k and `. They provide two

closed walks in W2k(v, v), say P1 and P2, in the following way. The walk Pj is obtained

by walking from v to the closest vertex on Cj , traversing the cycle, then walking back to

v along the reverse of the initial segment and appending some purely backtracking walk at

the end to ensure 2k steps in total.

Recall the walks in W2k(v, v) map to a set W2k(v, v) ⊂ π(H, v) by homotopy equivalence.

The walks P1 and P2 then correspond to two mutually free elements in π(H, v). Let Γ

be the subgroup of π(H, v) generated by W2k(v, v). It is a finitely generated free group of

rank at least 2. Recall that the uniform measure on W2k(v, v) pushes forward to a measure

on W2k(v, v), which induces a symmetric random walk on Γ whose Markov operator is
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denoted M . The step distribution of the walk assigns positive probability to every element

of W2k(v, v). So by Kesten’s Theorem, specifically [13, Corollary 3], the operator norm

(3.4) ||M || < 1.

As a result of (3.4), the following lemma implies

sup
k≥1

E − log ||M2k||(o, o)
4k∆2d+2k

> 0,

from which the proof of Theorem 3 follows by Lemma 3.3.

Lemma 3.4. Let (G, o) be an infinite sofic graph such that for some `,

Pr [o lies in an `− cycle of G] > 0.

Then there is a deterministic integer k such that, with positive probability, (G, o) contains

a bouquet with respect to the parameters k and `.

Proof. Let NR(v) be the number of `-cycles in a graph H such that at least one of its

vertices is within distance R of vertex v. We will show below that for (G, o),

ENR(o) ≥ (R/`) Pr [o lies in an `− cycle of G] .

Assuming this, we may choose an R in terms of ` such that ENR(o) ≥ `∆`+2. In this case,

with positive probability, there are at least `∆` + 2 different `-cycles in G within distance

R of the root o. Whenever this happens there must be two disjoint `-cycles within distance

R of the root, as we explain below. We may take k to be R+ `.

The reason there are two disjoint `-cycles is that if H has maximal degree ∆, and v is any

vertex, then there can be at most ∆` different `-cycles that pass through v. This means any

specific `-cycle can meet at most `∆` other `-cycles. So when there are `∆` + 2 different

`-cycles, some two among them are disjoint.

In order to get the lower estimate on ENR(o) consider the function

F (H,u, v) = 1 {dist(u, v) ≤ R and u lies in an `− cycle of H} .

Then,∑
u∈H

F (H,u, v) = # {vertices in `− cycles of H within distance R of v} ≤ `NR(v),

and ∑
v∈H

F (H,u, v) = |BR(H,u)|1{u lies in an `− cycle of H}.

Since (G, o) is infinite almost surely, |BR(G, o)| ≥ R. The mass transport principle then

provides the lower bound on ENR(o) as displayed above. �
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4. A spectral gap theorem for finite graphs

In this section we prove Theorem 2. Let G be a finite and connected graph with universal

cover T and cover map π. Since λ1(G) is also the largest eigenvalue of G in absolute value,

we denote it ρ(G) henceforth.

For a graph H and x ∈ `2(H), let

(4.1) fH(x) = 2
∑

{u,v}∈H

xuxv ,

where the summation is over the edges of H counted with multiplicity as there may be

multi-edges and loops (recall a loop contributes degree 2 to its vertex). Thus,

ρ(T ) = sup
x∈`2(T )
||x||=1

|fT (x)| and ρ(G) = sup
x∈`2(G)
||x||=1

|fG(x)|.

Theorem 2 follows from the Propositions 4.1 and 4.2 given below.

4.1. Spectral radius of an unicyclic graph.

Proposition 4.1. Let G be a finite and connected graph with at most one cycle. Then

ρ(G) = ρ(T ).

Proof. There is nothing to prove if G is a tree, so assume that G has exactly one cycle

(possibly a loop, or a 2-cycle made by a pair of multi-edges). We give an explicit description

of T in terms of G.

Let the unique cycle in G consist of vertices v1, . . . , vn, in that order. Let H be the

graph obtained by deleting edge (vn, v1) from G. We construct countably infinite copies

. . . , H−1, H0, H1, . . . of H, indexed by Z. For each k ∈ Z, we draw an edge between vn in

Hk and v1 in Hk+1. The resulting graph is T .

Let y ∈ `2(G) be the maximal eigenvector of G, normalized to ||y|| = 1 and with positive

entries. Thus, fG(y) = ρ(G). We will construct an x ∈ `2(T ), with ||x|| = 1, such that

fT (x) approximates ρ(G) arbitrarily closely.

Fix an arbitrary N ∈ N. For v′ ∈ H1, . . . ,HN , set xv′ = 1√
N
yπ(v′). For all other v′ ∈ T ,

set xv′ = 0.

It is evident that ||x|| = ||y|| = 1. Moreover,

fT (x) = 2
∑

(u′,v′)∈T
u′,v′∈H1∪···∪HN

1

N
yπ(u′)yπ(v′).
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For each edge (u, v) ∈ G the term 1
N yuyv appears N times in the above sum, except for

1
N yv1yvn , which appears N − 1 times. Therefore,

fT (x) = 2
∑

(u,v)∈G

yuyv −
2

N
yv1yvn = ρ(G)− 2

N
yv1yvn .

As N was arbitrary, the error term 2
N yv1yvn can be made arbitrarily small. �

4.2. Spectral gap for a multi-cyclic graph.

Proposition 4.2. Let G be a finite and connected graph with at least two cycles. Then

ρ(T ) < ρ(G).

For the remainder of this section we assume G is a finite and connected graph with at

least two cycles (which may intersect, may be loops, or cycles made by multi-edges).

The 2-core of G is defined by the following procedure. If G has at least one leaf, pick

an arbitrary leaf and delete it. This operation may produce more leaves. Repeat the leaf

removal operation until there are no leaves. The resulting subgraph of G is its 2-core.

The 2-core of a graph is non-empty if and only if it contains a cycle. Moreover, all cycles

are preserved in its 2-core. Consequently, since G has two distinct cycles, so does its 2-core.

Let Gint denote the 2-core of G. Let V G
int denote the vertices of Gint. Let EGint be the edges

of Gint directed both ways, so that every edge {u, v} ∈ Gint becomes two directed edges

(u, v) and (v, u) in EGint.

Denote by V G
ext the vertices of G \Gint. Let EGext be the edges of G \Gint such that they

are directed away from the 2-core. This is possible because for every edge {u, v} in G\Gint,

there is a unique shortest path from Gint that terminates at {u, v}. The orientation of {u, v}
is then in the direction this path enters the edge. The figure below gives an illustration of

these definitions.

Figure 3. An example illustrating the definitions of V G
int, V

G
ext, E

G
int, and

EGext. V
G
int and EGint are coloured blue. V G

ext and EGext are coloured red.
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Lemma 4.1. There exists a function Γ : EGint → [1, 2) such that for each directed edge

(u, v) ∈ EGint, ∑
w: (v,w)∈EG

int
w 6=u

Γ(v, w) > Γ(u, v).

Note Γ is not symmetric, i.e. Γ(u, v) need not equal Γ(v, u).

Proof. Every vertex of Gint has degree at least 2 within this subgraph. The following

property of Gint is crucial: since Gint has at least two cycles and is connected, every cycle

of Gint contains a vertex of degree more than 2.

For each directed edge (u, v) ∈ EGint with deg u > 2, set Γ(u, v) = 1. The remaining values

of Γ(u, v) will correspond to directed edges (u, v) with deg u = 2. We assign these values

by the following iterative procedure.

Fix an ε > 0 to be determined. If deg u = 2, u is adjacent to v1 and v2, and Γ(v1, u) has

been assigned, assign Γ(u, v2) = Γ(v1, u) + ε. Due to the aforementioned crucial property,

this procedure assigns a value of the form 1+mε to every Γ(u, v) with (u, v) ∈ EGint. Finally,

since G is finite we may choose ε small enough such that Γ is strictly less than 2 everywhere.

Now if (u, v) ∈ EGint and deg v > 2,∑
w: (v,w)∈EG

int
w 6=u

Γ(v, w) ≥ 2 > Γ(u, v).

If (u, v) ∈ EGint and deg v = 2,∑
w: (v,w)∈EG

int
w 6=u

Γ(v, w) = Γ(u, v) + ε > Γ(u, v).

�

Lemma 4.2. There exists a function ∆ : EGext → (0, 1] such that for each directed edge

(u, v) ∈ EGext, ∑
w: (v,w)∈EG

ext

∆(v, w) < ∆(u, v).

Proof. The edges in EGext form trees, rooted at vertices in V G
int and directed toward the leaves.

For each edge (u, v) ∈ EGext, where u ∈ V G
int, set ∆(u, v) = 1. Assign the remaining

variables by recursing down the trees in the following way. If ∆(u, v) has been assigned and

v has d out-edges (v, w) ∈ EGext, set ∆(v, w) = 1
d+1∆(u, v) for each out-edge (v, w). Then,∑

w: (v,w)∈EG
ext

∆(v, w) =
d

d+ 1
∆(u, v) < ∆(u, v),
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so the desired inequality holds. �

Proof of Proposition 4.2. Let y be the eigenvector of the maximal eigenvalue of G chosen

such that all its entries are positive and ||y|| = 1. Note this identity for every vertex u ∈ G:

(4.2)
∑

v: {u,v}∈G

yv
yu

= ρ(G).

Root T at any vertex r such that π(r) ∈ V G
int. For the rest of this proof, when we refer to

an edge (u, v) ∈ T the first vertex u is the parent, that is, closer to the root than v.

Let V T
int be the vertices in T with infinitely many descendants, and V T

ext be the vertices in

T with finitely many descendants. Let ETint denote the edges (u, v) ∈ T with v ∈ V T
int, and

EText the edges (u, v) ∈ T with v ∈ V T
ext.

Observe that u ∈ V T
int (resp. V T

ext) if and only if π(u) ∈ V G
int (resp. V G

ext). Similarly, (u, v) ∈
ETint if and only if (π(u), π(v)) ∈ EGint, and (u, v) ∈ EText if and only if (π(u), π(v)) ∈ EGext. In

the latter case it is crucial that u is the parent of v; this requires v to be farther than u from

V T
int, so π(v) is farther than π(u) from V G

int. Thus (π(u), π(v)) has the necessary orientation

of an edge in EGext.

Consider the functions Γ and ∆ from Lemmas 4.1 and 4.2. Let γ, δ > 0 be (small)

constants to be determined later. Throughout the following argument we will use that

2|ab| ≤ ηa2 + η−1b2 for η > 0.

For each edge (u, v) ∈ ETint, we have

(4.3) 2|xuxv| ≤
yπ(v)

yπ(u)

(
1 +

Γ(π(u), π(v))γ

yπ(u)yπ(v)

)−1
x2u +

yπ(u)

yπ(v)

(
1 +

Γ(π(u), π(v))γ

yπ(u)yπ(v)

)
x2v.

Analogously, for each edge (u, v) ∈ EText,

(4.4) 2|xuxv| ≤
yπ(v)

yπ(u)

(
1 +

∆(π(u), π(v))δ

yπ(u)yπ(v)

)
x2u +

yπ(u)

yπ(v)

(
1 +

∆(π(u), π(v))δ

yπ(u)yπ(v)

)−1
x2v.

The quantity ∆(π(u), π(v)) is defined because (π(u), π(v)) has the correct orientation of an

edge in EGext, as noted above.

Recall fT from (4.1). The estimates (4.3) and (4.4) imply that

(4.5) |fT (x)| ≤ 2
∑
{u,v}∈T

|xuxv| ≤
∑
u∈T

g(u)x2u,
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where g(u) is as follows. Let pa(u) denote the parent of vertex u ∈ T and ch(u) denote the

set of all children of u. If u ∈ V T
int then

g(u) =
yπ(pa(u))

yπ(u)

(
1 +

Γ(π(pa(u)), π(u))γ

yπ(pa(u))yπ(u)

)
+

∑
c∈ch(u)∩V T

int

yπ(c)

yπ(u)

(
1 +

Γ(π(u), π(c))γ

yπ(u)yπ(c)

)−1

+
∑

d∈ch(u)∩V T
ext

yπ(d)

yπ(u)

(
1 +

∆(π(u), π(d))δ

yπ(u)yπ(d)

)
.

If u ∈ V T
ext then

g(u) =
yπ(pa(u))

yπ(u)

(
1 +

∆(π(pa(u)), π(u))δ

yπ(pa(u))yπ(u)

)−1
+

∑
d∈ch(u)

yπ(d)

yπ(u)

(
1 +

∆(π(u), π(d))δ

yπ(u)yπ(d)

)
.

Due to (4.5), the proposition will be proved by showing that g(u) is uniformly bounded

away from ρ(G) over all vertices u. We separately consider the two cases u ∈ V T
int and

u ∈ V T
ext.

Suppose u ∈ V T
int. Then for all sufficiently small γ > 0 we have the bound

(4.6)∑
c∈ch(u)∩V T

int

yπ(c)

yπ(u)

(
1 +

Γ(π(u), π(c))γ

yπ(u)yπ(c)

)−1
≤

∑
c∈ch(u)∩V T

int

yπ(c)

yπ(u)

(
1− Γ(π(u), π(c))γ

yπ(u)yπ(c)

)
+Cuγ

2,

for some constant Cu ≥ 0 depending on u.

The terms in (4.6) depend only on the vertices π(u) and π(c) for c ∈ ch(u). These are

vertices of G and, since G is finite, there are only finitely many distinct values of Cu. Let

C be the maximum of the Cus. In the inequality (4.6) we may replace every Cu by C, as

we do henceforth.

Inequality (4.6) implies the following bound for every u ∈ V T
int and all sufficiently small

γ > 0.

g(u) ≤ ρ(G) +
γ

y2π(u)

Γ(π(pa(u)), π(u))−
∑

c∈ch(u)∩V T
int

Γ(π(u), π(c))


+

δ

y2π(u)

∑
d∈ch(u)∩V T

ext

∆(π(u), π(d)) + Cγ2.

(4.7)

This is obtained by substituting (4.6) into the definition of g(u), then multiplying out the

terms and simplifying the sums by using the eigenvector equation (4.2).

By Lemma 4.1,

Γ(π(pa(u)), π(u))−
∑

c∈ch(u)∩V T
int

Γ(π(u), π(c)) < 0
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for every u ∈ V T
int. Moreover, as u ranges over V T

int the quantities

u 7→ 1

y2π(u)

Γ(π(pa(u)), π(u))−
∑

c∈ch(u)∩V T
int

Γ(π(u), π(c))


are determined by the graph G. So they attain finitely many values and have a maximum

value Cint < 0. Analogously, the quantities

(4.8) u 7→ 1

y2π(u)

∑
d∈ch(u)∩V T

ext

∆(π(u), π(d))

have a maximum value Dint ≥ 0 as u ranges over V T
int. So we infer that for every u ∈ V T

int

and all sufficiently small γ > 0,

(4.9) g(u) ≤ ρ(G) + Cintγ + Cγ2 +Dintδ.

Now suppose that u ∈ V T
ext. By an analogous argument as above, there exists a constant

D ≥ 0 independently of u such that for all sufficiently small δ > 0,

g(u) ≤ ρ(G) +
δ

y2π(u)

−∆(π(pa(u)), π(u)) +
∑

d∈ch(u)

∆(π(u), π(d))

+Dδ2.

By Lemma 4.2,

−∆(π(pa(u)), π(u)) +
∑

d∈ch(u)

∆(π(u), π(d)) < 0

for all u ∈ V T
ext. Therefore, as before, there is a Dext < 0 such that for every u ∈ V T

ext and

all sufficiently small δ > 0,

(4.10) g(u) ≤ ρ(G) +Dextδ +Dδ2.

Finally, we select γ > 0 small enough that (4.9) holds and Cintγ + Cγ2 < 0. This is

possible because Cint < 0. Then we select δ > 0 small enough such that (4.10) holds while

both Cintγ +Cγ2 +Dintδ < 0 and Dextδ +Dδ2 < 0. This is possible due to the choice of γ

and because Dext < 0.

In light of (4.9) and (4.10), our choice of γ and δ above imply that there is an ε > 0 such

that for every vertex u ∈ T , g(u) ≤ ρ(G)− ε. This implies ρ(T ) < ρ(G). �

5. Future directions

It would be interesting to find an effective version of Theorem 1 in the following sense. Let

G1, G2, G3, . . . be finite, connected graphs with |Gn| → ∞. Suppose they have a common

universal cover T , and are Ramanujan in that all but their largest eigenvalue are at most

ρ(T ) in absolute value. What is the “essential girth” of Gn in terms of its size, which is

to say, the asymptotic girth after possibly having removed at order of o(|Gn|) edges? For
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d-regular Ramanujan graphs it is known, see [1], that the essential girth is at least of order

log log |G|. All known constructions provide graphs with girth of order log |G|. It seems

that a lower bound of order log |G| for the girth is unknown even when G is a Cayley graph.

It would also be interesting to find an effective form of Theorem 2 in terms of the size

and the maximal degree of G. The theorem is in some ways an analogue of Theorem 3 for

finite graphs, although, its word-for-word reformulation is false for infinite graphs. In this

regard it would be interesting to prove a spectral gap between ρ(G) and ρ(T ) under natural

hypotheses on an infinite graph G. For instance, to prove an effective spectral gap when

there is an R such that the R-neighbourhood of every vertex in G contains a cycle.

Acknowledgements

The authors gratefully acknowledge the MIT Undergraduate Research Opportunities Pro-

gram in which some of this work was completed. The first author thanks Ryan Alweiss for

many helpful conversations over the course of this work. Thanks also to an anonymous

referee for suggestions leading to various simplifications.

References
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