O©oo~NOOPRWN-=-

Statistical Methods in Medical Research

A robust imputation method for missing responses and

covariates in sample selection models

Emmanuel O. Ogundimu

Department of Mathematics, Northumbria University, UK

Gary S. Collins
Centre for Statistics in Medicine, University of Oxford, UK

Abstract

Sample selection arises when the outcome of interest is partially observed in a study. Al-
though sophisticated statistical methods in the parametric and non-parametric framework
have been proposed to solve this problem, it is yet unclear how to deal with selectively
missing covariate data using simple multiple imputation techniques, especially in the ab-
sence of exclusion restrictions and deviation from normality. Motivated by the 2003-2004
NHANES data, where previous authors have studied the effect of socio-economic status
on blood pressure with missing data on income variable, we proposed the use of a robust
imputation technique based on the selection-t sample selection model. The imputation
method, which is developed within the frequentist framework, is compared with compet-
ing alternatives in a simulation study. The results indicate that the robust alternative is
not susceptible to the absence of exclusion restriction- a property inherited from the par-
ent selection-t model- and performs better than models based on the normal assumption
even when the data is generated from the normal distribution. Applications to missing
outcome and covariate data further corroborate the robustness properties of the pro-
posed method. We implemented the proposed approach within the MICE environment

in R Statistical Software.

Key Words: Student-t distribution; Heckman model; Missing data; Multiple imputation; Robust
method; MICE package.
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1 Introduction

Missing data are ubiquitous throughout the social, behavioral and medical sciences. The
incompleteness of a data set may lead to results that are different from those that would
have been obtained had the data set been completely observed.! distinguished four different
approaches to the analysis of missing data: analysis of only those subjects who complete the
study; analysis of available data; use of a single or multiple imputation techniques to replace
the missing observations with plausible values, then analyse the complete data set; and joint
modelling of observed data and the missingness process. The choice of the method of analysis
depends on the missing data mechanism as characterized by2. Data are missing completely at
random (MCAR) when the probability of missing data on a variable is not related to other
measured variables and is unrelated to the variable itself. In this case, a complete case analysis
could be used. A less restrictive assumption than the MCAR is the missing at random (MAR)
missing data assumption. This occurs when the probability of missing data for a variable
is related to other measured variables in the model but not on the values of the variable
itself. This assumption and the distinctiveness of the parameters in the observed data and
missingness process allows the missingness process to be ignorable. Likelihood inference can
be used under ignorability. Data are missing not at random (MNAR) when the probability of
missing data on a variable is related to the values of the variable, even after adjusting for other
variables. Indeed, the validity of inferences made under different statistical methods depends

on the assumption made about the missingness process.

In settings where covariates or covariates and outcomes are subject to selective missing, the
use of joint modelling of the observed and the non-response process may not be straightforward.
Multiple imputation (MI) is commonly used in such settings, where missing values are filled-in
(singly or multiply) to produce complete data. It has been suggested that the outcome variable
be included in the imputation of missing covariates in order to preserve the relationships among
variables®. This may be challenging for non-monotone missing data patterns. Incidentally,
the use of FCS (fully conditional specification) algorithm can simplify the imputation process.
This algorithm has been implemented in MICE (Multivariate imputation by chained equations)
package in R and STATA. Details of Multiple imputation using MICE can be found in*.

A common misunderstanding about MI is that it is restricted to MAR. While it is certainly
true that imputation techniques commonly assume MAR, the theory of MI is completely

5  TFor example, a pattern-mixture approach

general and also applies to MNAR missingness
to sensitivity analysis, where missing values are imputed under a plausible MNAR scenario,
has been proposed®. A tipping point approach or the so-called delta method adds a constant
0 to the imputation to creates a difference in the means of respondents and nonrespondents

that is equal to § (7 p88-89). This requires sensitivity analyses to obtain an appropriate
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mean difference which may not be tenable for observational studies with MNAR missingness,

especially the Heckman-type sample selection problem.

Sample selection arises when the outcome of interest can only be observed in a subset of the
population under study. The data are MNAR because the observed data do not represent a
random sample from the population, even after controlling for covariates. A model for selected
sample was introduced by® and several extensions in the parametric framework®1?, semi-
parametric framework® and non-parametric framework!'* have been proposed. Earlier review

5

of sample selection models can be found in'®. A unified approach to parametric multilevel

sample selection model was proposed in'6.

The use of a sample selection modelling framework as an imputation model for MI has been

12,17 " This approach was implemented for missing covariates data

suggested in the literature
by!® and compared against competing methods. The author implemented the method using
the moment based two-step method because of the perceived computational complexities of
the corresponding full information maximum likelihood method (FIML). However, the two-
step estimator and its corresponding FIML estimator have often been shown to be susceptible
to collinearity in the absence of an exclusion restriction®. An exclusion restriction implies
that there are variables in the selection equation that are absent in the outcome model or vice
versa. This is to avoid multicollinearity as the inverse Mills ratio, which links the outcome and
selection equations, in the two-step method can be linear over a wide range of its support. In
the absence of an exclusion restriction, model identifiability relies on the non-linearity of the

inverse Mills ratio.

In addition, the methods are not robust to outliers and deviations from the assumption
of normality. The former led to the proposal of a model that is robust to outliers even in
the design space?” and the latter led to robust alternatives such as the selection-t model!!.
Variants of these proposals exist in the literature (see'®). In this paper, we focus on the
use of selection-t model as the imputation model for missing outcome and covariate data in
a Heckman-type missing data problem. We examine its performance in the absence of an
exclusion restriction and other forms of model misspecifications. The method is compared
against competing alternatives. We also apply our approach to the imputation of missing
outcome data (Ambulatory Expenditure) and covariates in the NHANES (National Health
and Nutrition Examination Survey) data sets. The method is implemented within the MICE

environment in R statistical software.
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2 Sample selection model and multiple imputation

18,9

In this section, we review the classical Heckman selection model®” and describe the implemen-

tation of multiple imputation (frequentist) approach for these models.

2.1 Heckman section model

Let Y* be the outcome variable of interest, assumed to be linearly related to covariates z;

through the standard multiple regression model
Y*=px;+oey, i=1,...,N. (1)
Suppose the main model is supplemented by a selection (missingness) equation
Sr=~w;+ey, i=1,...,N, (2)

where 3,7 and ¢ are unknown parameters; z; and w;, which can overlap, are fixed observed
characteristics that may be subject to missingness; and (£1;, £2;) are random errors with means
zero, variances one and correlation p. If we observe S; = I(SF > 0) and Y; = Y;*S; for
n= Zf\il S; of N individuals, the sample Y;,7 = 1,...,n is a selection from the N individuals.
The variance of S} is fixed at 1, because we only observe the sign of S*, which is insufficient
information to estimate its variance. Suppose further that the errors are correlated and follow

a bivariate normal distribution, that is

() ~4)-C 1)}

where p € (-1,1) determines the correlation of Y* and S}, and hence the nature and severity

of the selection process. The selection framework factorizes the joint density of Y* and S* as
FOV, S, w, B,7) = F(V* |2, ) F(S*Y " w0,7).
Thus,

fylz)P(S* > 0]y, w)

flofr, 8" > 0) = RIS )

The observed data, therefore has a density given by
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_ By " y=B'z
0.5 = 1:0) = o= 0a (T AE) / ®(w). o

where © = (f,0,7,p). This density describes the distribution of the observed data. If the
non-intercept terms in v as well as p are 0 in (4), the data is MCAR, p = 0 implies the data
is MAR while p # 0 means the missing data is MNAR. The complete density of the sample
selection model is used to avoid bias in the estimator when p # 0. This density comprises
of a conditional density defined in (4), and a discrete component given by P(S = 1|w). The

likelihood based inference for sample selection model is based on

n

1©)=%_5, (lnf(yz-kc,», S, =1 @)) + 3 S dw) + 3 (1= S) In(@(—w,).  (5)

i=1 =1 i=1

The conditional expectation of the observed data, often referred to as the two-step estimator,

is given by
E(Yl|z,5* > 0) = 'z + opA(y'w), (6)

where A() = ¢(-)/P(-) is the inverse Mills ratio. To use (6) in practice, a standard probit
model for S provides an estimate of 4. The quantity A(4w) is then taken as an additional

covariate in equation (6), and the least squares coefficient of A(4'w) gives an estimate of op.

2.2 Multiple imputation for Heckman-type MNAR missing data
2.2.1 1% proposal

Recall that the density, f(y|z,S* > 0) describes the observed data. Imputation of the
missing component under MAR missing data mechanism is based on the assumption that
the distribution of the observed data and the non-response process are the same. That is,
flylz,S* > 0) = f(y|z,S* < 0). This relationship does not hold under the MNAR missing-
ness assumption. The effect of a negative correlation between the outcome and the selection
errors is equivalent to a positive correlation, but selection if S* < 0. The imputation model

for the missing values in Y™ is then written as

E(Y|r,5" <0) = 'z — opA(—y'w). (7)
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Equation (7) is equivalent to equation 6 in'®. The authors filled-in the missing data using

the Heckman two-step approach with the equation of the form

Y = 5" = (op)"M—"w) + 7", (8)

where n* ~ N(0,07*) and o2%, 8%, (0p)* are drawn using approximate proper imputation.

Estimated values of these parameters are obtained from the two-step estimator.

18 acknowledged that the two-step method is less efficient than the ML/FIML estimator.
With the advent of powerful computational tools, efficiency and accuracy cannot be traded for
computational complexities. We therefore present two approaches based on the ML estimator,

which will be used in subsequent analyses.

2.2.2 Maximum likelihood estimator approach

If Y obs and Y; s Tepresent the observed and the missing parts of Y* respectively, then the
process of imputing values requires that missing values are drawn multiple (M) times from
Vi~ D Yipmis|Yiowso @), with k€ {1,..., M}, (9)
where p(-) denotes the posterior predictive distribution. It can be difficult sometimes to draw
from this distribution, therefore, iterative imputation approaches such as data augmentation?!
can be used. Whilst this approach is theoretically preferable, it can be computationally bur-
densome. We therefore propose two methods based on the approximation of the predictive
distribution in a frequentist framework. In order to motivate these methods, we first note that
sampling from (9) requires the true value of the parameter ©, which is unknown in practice.
As an alternative value, we consider (:), the maximum likelihood estimator of © and, in order
to formally account for the uncertainty on the true value of ©, we consider sampling from the

following conditional distribution:

~

p (Yi,mis|Y;',obsa xz) - /p (Y;,mis|yi,obsa X, @) W(é)d(—)a (10)
where w((:)) represents the distribution of the MLE. This approach clearly takes into consid-
eration the uncertainty about the parameters in the light of the data, which is summarised
in W(@), and integrated out using the law of total probability. Given that the distribution
W(é) is not available in closed form in (10), we consider two approaches for approximating

this function and sequentially sampling from it. The first approach is based on the asymptotic
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normality of the maximum likelihood estimators © obtained from (5). We approximate the

draws in (9) using

Y;,(frb)zs ~p (n,mis|y;,obsa Ty, é(k)> )

where %) = (f®) 5*) 3 50 are drawn from the asymptotic normal distribution of the
maximum likelihood estimator, Ouz. If we denote the consistent estimator of the correspond-

ing large-sample covariance matrix by C (é ML), then

C’(é Mm1) is obtained from the inversion of the observed information matrix of the FIML esti-
maftor.
The second approach is based on non-parametric bootstrap and the draws in (9) is approx-

imated by

Y(k) ~p (}/;,mis|y;,obsa Zi, é(k)) 9

where OF) = (%) 5#) 5F) 5k are the maximum likelihood estimates based on a boot-
strapped sample Béﬁgt of the original data set.

Now, for a given draw ©®*) based on the asymptotic or bootstrap approach, the imputation

of V) is predicted from equation (7).

1,M1S

3 Robust alternatives using t-distribution

Suppose the error terms in equation (1) and (2) follow a bivariate t-distribution. That is

(2)={6)-( 1))

where t5 is the PDF of a bivariate t-distribution, p is the correlation parameter and v is the
degrees-of-freedom. ! proposed this approach as a robust alternatives to the selection normal

model of®. The conditional distribution, using (3), is given by
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1 — fB'r 'w + p(=E= 41 1/2
ol =159 = 2oL r{ (TS () ;V+1}/T(v’w; ),
(11)
where = = (5,0,7, p,v), t(-;v) and T(-;v) are the PDF and CDF of a univariate Student’s
t-distribution with v degrees-of-freedom. The likelihood function corresponding to (11) is

written as

n n n

(2)=)_5 (lnf(y,»|xz-, S; = 1; E)) +) S T(Ywiv)+ Y (1= S) In(T(—y'w;; ). (12)

i=1 i=1 i=1
The conditional moment is given by
E(Y|z,5* >0) =2+ opA,(yw), v>1 (13)

where A, (k) = %% Equation (13) can be used in a similar way as (6). A robit (binary
regression with t-distribution) for S provides estimate of 4 and v. The quantity A, (k) is taken
as an additional covariate in (13) and the least squares estimate gives the value of op. The

conditional variance is

1 — p? 1 2 _ 9,2
var(Y]z, §* > 0) = o {u Aoy {2

(v—1) v—1
‘w(l = p?)

- AV(’}/UO{V zzjy )

(14)
+Ywp® + p* Ay (y'w) }] :

where A, (k) = V—Z2T1(k°:(r':(_k2;)y/)y;y_2), v > 2 and A (k) is as defined in (13). Unlike in
(6), where the estimates of both p and o are obtained by equating the average value of the
conditional variance to the observed residual variance of the OLS regression in the second
stage, equation (13) does not allow for such simplification. Theoretically, the variance of

t-distribution is related to its tailweight () as can been seen in (14).

To minimize the burden of the estimation of v in equation (12), we used a discretized version
of the t-distribution (see??) to estimate v. Since it is hard to distinguish models in-between
two integer degrees-of-freedom, and models with v > 50 are indistinguishable from the normal
model (see figure 1), we consider the set v = {2.5,3,3.5,...,100}. This approach is expected
to produce accurate estimate of v. Initial values for other parameters are obtained from their

corresponding two-step estimator. These estimates are then used as the initial value in the
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likelihood function (12) to minimize the possibility of model convergence to a local maximum.

We imputed the missing data using E(Y |z, S* < 0) = 'z — opA,(—~'w).
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Figure 1: PDF of t distribution- DOF stands for degrees-of-freedom : (a) with varying v showing
difference between integers are indistinguishable. only v = 7 differs from others; (b) with varying v
showing v = 50 can approximate the normal distribution.

4 Simulation study

We compare the performance of the proposed robust alternative method of imputation based

on asymptotic (ST) and bootstrap (STB) with the!® two-step imputation method (Tstep). We

also included the Heckman full information maximum likelihood method with the asymptotic

(SNM) and bootstrap (SNMB) imputation for control purposes. We first consider simulation

settings where the outcome and selection models have bivariate-t error distribution. The
iid

outcome equation is Y;* = 0.5 + 1.5zy; + x9; + €15, where zy; and x9; ~ N(0,1) and ¢ =

1,..., N =1000. The impact of exclusion restriction on the proposed method is evaluated with
selection equations S} = 1+ xy; + 0.2x9; + 1.5w; + €95, w; N (0,1) for exclusion restriction,
and S} = 1+ z1; + 0.229; + £9; without an exclusion restriction. Hence, 5’ = (0.5,1.5,1.0),
and v = (1,1,0.2,1.5) and (1, 1, 0.2) for selection with and without the exclusion restriction,
respectively. The covariates xy;, x9; and w; are independent and are also independent of the

error terms ¢, = (€1;,€5;). The error terms are generated from bivariate t distribution with
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2

degree-of-freedom = 5 and p = 0.5. The covariance matrix is ¥ = 7 pa)j where o = 1.
po

We only observe values of Y;* when S > 0. About 33% of values are not observed with this

exclusion restriction, and about 28% without it.

Although it is, perhaps, more instructive to focus on the use of the robust imputation method
on covariates that are subject to sample selection, we first examined the performance of the

methods on the imputation of missing outcome data. The following scenarios are considered.

First Scenario- Missingness in outcome

(i) Impact of an exclusion restriction- We used SF = 1+ xy; + 0.229; + 1.5w; + £9; as the
selection component of the model so that there is an additional variable w not present

in the outcome model

(ii) Impact of the no exclusion restriction- We used S = 1 + xy; + 0.2x9; + £9; as the
selection component of the model. That is, the covariates in the outcome and the selection

equations overlaps

(iii) Impact of noise variables as exclusion restriction- We used the model in (ii) with addi-
tional three noise variables. Noise variables are variables whose true regression coefficients

arc zero. These variables are common in prespecified models

(iv) Impact of outliers- We generated the data from a selection model with Gaussian mixture

1
errors of the form (1 — p)N>(0,X) + pNy(0, kX)), where & > 0, p=0.1 and ¥ = < f)

p
The selection equation with the exclusion restriction in (i) is used.

Second Scenario- Missingness in covariates

Simulated data were generated using the regression equation Y; = 0.5+ 1.5x;+x3,+0¢cs;, where
e3; ~ N(0,1), z1; ~ N(0,1) and ¢ = 1. The underlying regression equation for 23, = 14+x1;+¢1;
with missingness process S = 0.4 + x1; + €2;. We generated the errors from a bivariate-t
distribution with v = 5 as above. The observed version of z%, has about 40% missing data.
We consider p =0 (MAR) and p = 0.3 and 0.5 (MNAR).

10
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Figure 2: Boxplots for the imputed outcome data : (a) Exclusion restriction; (b) Absence of exclusion
restriction.

Simulation results

Figure 2 shows the boxplot of the parameter estimates from the imputed outcome data with
or without the exclusion restriction from 1000 simulated data sets. None of the methods is
biased under the exclusion restriction (Figure 2a). ST and STB methods are, however, closer
to the true parameter and less variable than the methods based on the normal distribution
(Tstep, SNM & SNMB). Interestingly, the performance of ST and STB methods in the absence
of the exclusion restriction (Figure 2b) are superior to their counterparts under the exclusion
restriction. This supported the argument of alleviation of the problem of collinearity adduced
for the use of ¢ distribution in sample selection framework by!!. The methods based on the
normal distribution are not only biased but highly variable (i.e., imprecise). In particular,
the parameter estimates of the outcome under the Tstep method ranges between -0.15 & 1.27
whereas the ST and STB estimates range between 0.22 & 0.87, and 0.23 & 0.86 respectively.
Thus, Figure 2 implies the distributional misspecification does not bias the parameter estimates
significantly when extra variable predictive of missingness is included in the selection equation
of the normal imputation models. The parameter estimates are biased in the absence of an

exclusion restriction.

The quest for variables to use for the exclusion restriction criteria to be fulfilled is a daunt-

ing exercise in practice. Sometimes, the use of noise variables in the selection equation can

11



O©oo~NOOPRWN-=-

Statistical Methods in Medical Research

1.0

08

-———————@ooo

05
I
05
|

, ; : | < | : i : | ;
I i ! i L2 ! i : | i
i ’ ’ = 5 | ’ : ! !
h ) - | H ! ! A B 1
i Rl = i i | 8 o

o 1 1 !
s1 — sl Ty :
o s 2 o o

g

o s [+] o

T T T T T o T T T T T
Tstep SNM SNMB ST STB Tstep SNM SNMB ST STB

Figure 3: Boxplots for the imputed outcome data : (a) Noise variables as an exclusion restriction;
(b) Mixture distribution.

constitute a nuisance in the model estimation. Figure 3a shows that the inclusion of irrele-
vant (noise) variables in order to satisfy the exclusion restriction criteria does not make the
associated problem go away under the normal models. The Tstep method, although unbiased
is highly variable (similar variability as the absence of an exclusion criteria in Figure 2b) pro-
viding the most extreme parameter estimates of the response means. ST and STB methods

yielded unbiased and low variability results.

The robustness of the proposed imputation method is examined against outliers induced as
a result of mixture of normal distributions (Figure 3b). Clearly, both the normal and robust
imputation are misspecified. This however, does not appear to bias the parameter estimates
(although ST and STB methods are more concentrated near the true parameter). Again, both
the ST and STB methods are robust to this misspecification as the estimates are unbiased and

show lower variability than the normal models.

Table 1 shows the coverage of the 95% confidence interval for the parameter estimates using
the five imputation methods. The nominal coverage level of 95% is satisfied by the methods for
data generated under the exclusion restriction criteria and the mixture distribution. However,
the Tstep method shows poor coverage in the absence of the exclusion restriction (91.8%) and
noise variables (92.9%). Only the ST and STB methods exhibit satisfactory coverage under

these conditions.

12
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Table 1: 95% confidence interval coverage

Exclusion No Exclusion Noise variable Mixture

Tstep 94.1 91.8 92.9 95.3
SNM 94.9 96.5 90.1 94.1
SNMB 94.9 93.6 92.2 94.5
ST 95.1 95.5 94.8 94.7
STB 95.3 95.8 96.0 96.2

Table 2 shows the results of fitting a normal error regression model using the fully observed
variable z; and partially observed z5. The performance of the models improved as p increases.

The results also supported the robustness of the ST model.

Table 2: Simulation results for missing covariate data with coefficient of xo =
1. p = 0 represents MAR

p=0 p=0.3 p=0.5
Mean Variance Mean Variance Mean Variance
Tstep  0.956 0.003 0.966 0.003 0.972 0.004
SNM 0.972 0.002 0.982 0.002 0.986 0.003
SNMB 0.974 0.002 0.983 0.002 0.984 0.003
ST 0.981 0.002 0.991 0.002 0.992 0.002
STB 0.980 0.002 0.989 0.002 0.989 0.002

5 Empirical studies

We consider two data examples to illustrate the performance of the robust imputation method.
The first data is the ambulatory expenditure from the 2001 Medical Expenditure Panel Survey
analyzed by??. The data was also analysed using selection-t model in''. The second application
involves the imputation of the income variable in the 2003-2004 NHANES data. This data was
analysed in?*, where missing income data was assumed to be missing not at random. We
focus on the Tstep, SNM and ST methods since the performance of the bootstrap imputation

methods are not too different from the corresponding asymptotic imputation methods.

5.1 Ambulatory expenditure data

The data on ambulatory expenditure contains 3,328 observations of which 526 (15.8%) of the

outcome of interest (expenditure) is missing. Apart from expenditure, which is highly skewed,

13
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other explanatory variables such as age, gender, education status (educ), ethnicity (blhisp),
number of chronic conditions (totchr), insurance status (ins) and income are available in the
data. We use log expenditure (lambexp) as the outcome variable due to skewness in line with

ecarlier proposals!!?

. The outcome equation, which is usually the model of interest, contains
x = (1,age, female, educ, blhisp, totchr,ins) while the selection equation, w = (x,income).
Income is included for the exclusion restriction criteria although its use for this purpose is
debatable (see''??). We emphasize that an exclusion restriction is not a necessary condition

for the consistency of the proposed imputation method.

Table 3 shows the results of the robust imputation method and the two alternatives based
on the normal distribution. The result is consistent with equivalent results in'!, supporting
the adequacy of the proposed method. Figure 4 shows the distribution of the residuals of the
missing data model. Since the imputation model is correctly specified as an MNAR missingness

process, the spread of the residuals of the observed and the imputed data are very similar.

Table 3: Estimates from the Outcome model of the Ambulatory expenditure
data after multiple imputation. CI- confidence interval

Selection-t Selection-normal Two-step
Estimate 95% CI Estimate 95% CI Estimate 95% CI

Outcome model

(Intercept) 5203  (4.711,5.695) 5122  (4.727,5517) 5117  (4.329,5.905)
age 0207  (0.161,0.252) 0207  (0.165,0.250)  0.206  (0.152,0.261)
female 0.309  (0.182,0436)  0.341  (0.236,0.445)  0.339  (0.182,0.496)
educ 0.018  (-0.003,0.039)  0.016  (-0.004,0.037)  0.018  (-0.010,0.045)
blhisp 0193 (-0.317-0.069)  -0.218  (-0.344-0.092)  -0.212  (-0.333,-0.091)
totchr 0.509  (0.422,0.596)  0.533  (0.464,0.601)  0.526  (0.405,0.647)
ins 0.054  (-0.152,0.044)  -0.030  (-0.125,0.065)  -0.030  (-0.137,0.078)
o 1211 (1.144,1.278)  1.283  (1.246,1.319)  1.201  (1.187,1.394)
v 13.508  (6.214,20.801)

We also imputed the data under the MAR assumption.

using the model specification for the outcome equation.

That is, we imputed the data

The results are shown in Table 4

Previous analyses of the data posited that all the factors other than the insurance status (ins)
are strong predictors of expenditure!'. This was supported by the MNAR results in Table 3.
The parameter estimates under the MAR assumption are generally larger in magnitude than
their MNAR counterparts. Further, two variables (education and insurance status) are not
predictors of expenditure under the MAR model. Figure 5 shows kernel density estimates of
the imputed and observed expenditure data. There are discrepancies between the densities of
the observed and imputed data under the MAR model whereas the densities under the MNAR

14
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Density

Residuals (Selection-t) Residuals (Selection-normal) Residuals (Two-step)

(a) (b) (¢)

Figure 4: Distribution of residuals of the missing data model for the outcome data : (a) Selection-t
(ST); (b) Selection normal (SNM); (c¢) Two-step.

Table 4: Imputation of missing outcome in the Ambulatory expenditure data
under the MAR assumption. CI- confidence interval

Estimate 95% CI

(Intercept)  4.872  (44.536,5.208)

age 0.219  (0.174,0.265)
female 0.389 (0.291,0.487)
educ 0.025  (0.006,0.044)
blhisp 20.244  (-0.350,-0.138)
totchr 0.569  (0.510,0.627)
ins 0.013  (-0.113,0.087)
o 1181 (1.132,1.231)
v 15709 (8.054,23.364)

model are similar.

5.2 NHANES data

The US National Health and Nutrition Examination Study (NHANES) is a survey data col-
lected by the US National Center for Health Statistics. The survey data dates back to 1999,
where individuals of all ages are interviewed in their home annually and complete the health
examination component of the survey. The study variables include demographic variables
(e.g age and annual household income), physical measurements (e.g. BMI- body mass index),

health variables (e.g. diabetes status), and lifestyle variables (e.g. smoking status).

We used NHANES 2003-2004 data to illustrate the methodology of using the robust im-

15
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Density
Density

expenditure (MNAR) expenditure (MAR)

(a) (b)

Figure 5: Kernel density estimates for the marginal distributions of the observed data (blue) and the
10 densities for each imputation for expenditure: (a) MNAR (selection-t); (b) MAR (regression with
t-distributed errors).

putation strategy proposed for the imputation of missing covariates (household income) in a
model developed to study the effect of socio-economic status on systolic blood pressure (SBP).
The data has been used in?* to illustrate the method of subsample ignorable likelihood for
MNAR missing covariates (Income) to study the same effect.?* considered three covariates:
age (in years), gender and BMI, and two socio-economic status variables: income and years of
education. We used the same set of variables but added race as additional variable that can

predict missingness in household income.

Table 5 shows the percentage of missing data in the variables selected for analysis. Age,
gender and race are fully observed, whereas SBP, BMI and household income are subject to
missing data. The data analysed is reconstructed such that only income variable has missing
data. That is, complete data on SBP and BMI are selected with corresponding measurements
on the other variables. This resulted in income having 25.43% misssing data and no missing
data on other variables. In principle, there is no need for this as the MICE algorithm allows
imputation of multiple missing variables with MAR and MNAR missingness. We focus on

income variable in order to evaluate the unalloyed effect of the proposed imputation strategy.

Household income ($1000 per year), was reported as a range of values in dollar (e.g. 0-4999,
5000-9999, etc.) and had 10 interval categories. Figure 6 shows that the ordinal categories
of income can be approximated by a continuous distribution. This allows straightforward
adaptation of the proposed method without the need for adjustments for ordinal data imputed
as continuous data. Education is dichotomized into high school and above versus less than

high school and race is treated as categorical variable with 5 levels.

Age, gender, education and race are potential factors that can predict income. These factors

16
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are also known to lead to selective reporting of income. Therefore, the same set of variables are

used in the selection and outcome equations (without exclusion restriction) of the imputation

model. Income was imputed using 10 imputations.

Table 5: Percentages of missing data in the NHANES, 2003-2004

Variable % missing (n=9643) SBP and BMI
without missing (n = 6193)

SBP (mm Hg) 34.94 0

Age (years) 0 0

Gender 0 0

BMI (kg/m?) 9.91 0

Education (years) 17.23 0

Race 0 0

Income ($1000 per year) 24.41 25.43

Figure 7 shows kernel density estimates of the imputed and observed income data. The plot

based on the selection-t model produces densities of observed and imputed data that match

up well. The densities based on the selection normal model are approximately match up (two

of the imputed data appears to be shifted away from the observed data). However, there are

discrepancies between the densities of the observed and imputed data for the two-step method.

A possible explanation for this is the anomalous behavior of the method in the absence of an

exclusion restriction, which was also evident from the simulation studies in section 4.

Table 6: Estimates of the effect of socio-economic status on Systolic blood pressure (NHANES,

2003-2004). CI- confidence interval

Selection-t Selection-normal Two-step
Estimate 95% CI Estimate 95% CI Estimate 95% CI
Outcome model

(Intercept)  93.173  (91.483,94.863) 92.676  (90.665,94.688)  92.498  (90.694,94.301)
age 0.489 (0.470,0.508) 0.558 (0.539,0.577) 0.558 (0.540,0.577)
sex (male) -4.362 (-5.022,-3.702) -2.957 (-3.730,-2.184) -2.953 (-3.725,-2.181)
education ~ -2.981  (-3.728,-2.234)  -3273  (-4.131-2.416)  -3.283  (-4.127,-2.439)
bmi 0.432 (0.376,0.488) 0.382 (0.318,0.447) 0.382 (0.318,0.447)
income 0.005 (-0.147,0.156) 0.007 (-0.179,0.192) 0.045 (-0.102,0.193)
o 11.047  (10.689,11.405)  15.462  (15.190,15.735)  15.462  (15.190,15.734)
v 3.782 (3.394,4.171)

Table 6 shows the results of fitting regression models (Selection-t:

17
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Figure 6: Histogram of ordinal income variable.

student-t errors; Selection-normal and Two-step: OLS regression) to the imputed data sets.
The models showed that income is not significantly related to SBP. This observation is anal-
ogous to the effect of income in the ignorable likelihood method proposed for the same data
in?*. The degrees of freedom (v) in the selection-t model is significant (Estimate = 3.782, CI
= [3.394,4.171)).
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Figure 7: Kernel density estimates for the marginal distributions of the observed data (blue) and the
10 densities for each imputation for income (red): (a) Selection-t (ST); (b) Selection normal (SNM);

(c¢) Two-step.

income (Selection-normal) income (Two-step)

(b) (c)
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6 Concluding remarks

This paper proposes the use of selection-t model developed by!! as a robust imputation al-
ternative for missing outcome and covariates data in Heckman-type missing data problem.
We have denoted the proposed method as ST and compared it with competing alternatives
based on the Heckman’s full information maximum likelihood (SNM) and the two-step ( T'step)
method. Contrary to the common notion that MI is valid only under MAR, we have shown
that correct specification of the imputation model under MNAR can result in unbiased pa-
rameter estimates and valid statistical inference. We have imputed partially observed data by
drawing from their conditional distributions using the FCS algorithm. Our proposed imputa-
tion method is based on frequentist philosophy (approximate proper imputation) as opposed
to the Bayesian (proper) imputation method. The former is easier to use, less computationally

intensive and works well in large samples.

Apart from the use of ST method to impute missing covariates data, we have shown its
performance for missing outcome data. This was done for two reasons. First, we are able to
show that the method performs equally well as its parent sample selection model. Second,
the method lends itself naturally to various extensions of the traditional MI techniques (e.g.
double robustness concepts can be easily integrated into the imputation model). Specifically,
the method can be easily extended to other MNAR imputation models. For instance, instead of
the use of imputation model E(Y |z, S* < 0) = 'z —opA,(—~'w), which is similar to the jump

25:26) " the imputation approach can also incorporate some form of

to reference approach (see
pattern mixture-model. That is, the imputation model can be multiplied by a factor or offsets

added based on subject matter knowledge.

Two simulation studies were conducted to assess the performance of the ST imputation
method in missing outcome and covariates data. The method uniformly outperformed the
SNM and Tstep methods in terms of bias and low variance. It attains the nominal coverage
level when the missing outcome is imputed under four possible model misspecifications (ab-
sence of an exclusion restriction, noise variables, distributional misspecification and outliers).
In particular, the ST method performs very well especially in the absence of an exclusion
restriction, a problem which has bedeviled the sample selection modelling framework for some
time. This attribute is inherited from the parent selection-t model. Basically, for the selection-
t model, the inverse Mills ratio is mostly non-linear over a wide range of its support. This
may also explain the shrinkage effect of the function on the noise variables in the selection
process. We emphasize that the good performance of the ST method is not attributable to
the data generation process. Figure 8 (Appendix) shows that the ST method still outperforms
its competitors even when the data is generated from the normal distribution. The simulation

based on covariates data also supported the superiority of the ST method over the SNM and
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Tstep methods.

We analysed two sets of data - Ambulatory expenditure and the 2003-2004 NHANES data
sets. The results from the former is comparable with previous analyses in!!. The method
showed similar fit to the SNM and the Tstep methods. This is, perhaps, due to the exclusion
restriction as a result of the omission of income from the outcome equation. However, the
advantage of the robust method became pronounced in the imputation of missing covariate
(income) in the NHANES data set. We have judged the adequacy of the robust MI method
by comparing the distributions of the observed and imputed data. This approach is only valid
for the imputation of data that are MAR. Theoretically, the purpose of a reasonably complex
imputation model, such as the one proposed here, is to supply sufficient auxiliary variables
in appropriate form to make MAR missingness more plausible. As can be seen from Figure
7, the densities of the observed and imputed data are satisfactorily close for the ST method
than competing alternatives. This may be due to the absence of an exclusion restriction. It is
noteworthy that the use of complete data on systolic blood pressure (SBP) in the NHANES
data is for illustrative purposes only. Clearly, missing outcome and covariate data can be

accommodated within the MICE imputation algorithm simultaneously.

Another strength of the proposed methodology is that we do not need to fix any value for
v (the degrees-of-freedom). This can be estimated from data, even when the data is approxi-
mately normally distributed. To prevent the likelihood function from possibly converging to a
local maximum, we first searched for the values of v between 2 and 100 that yielded the best fit
for the data. This was set as the initial value for v in the second stage of the maximization of
the full log-likelihood function. This may be superfluous in many practical applications. Initial

values for other model parameters were obtained from the corresponding two-step method.

Various extensions of the model proposed in section 3 can be formulated. One such extension
involves the development of a more flexible imputation model than the method introduced in
section 3 using copulas. The use of copulas as alternative modelling framework in selectively
reported samples was suggested in! and further expounded in?’. The fact that different
copulas exhibit different dependence patterns offer additional flexibility in its use as imputation
model in this setting. The method can readily be extended to impute missing covariates
in multilevel sample selection settings!®. We are currently investigating methodologies for

obtaining unbiased imputation and variance estimates in this framework.

Finally, although the method we proposed is robust against certain misspecification, it has
its limitations, some of which are inherited from the parent selection-t model. For example,
the proposed method produced bias estimates when the missingness in a covariate depends on
the value of the covariate but conditionally independent of the outcome. Apart from the use of

parametric models to achieve robustness, semiparametric and nonparametric sample selection
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models can be adapted. Ultimately, the guiding principle of any imputation method should be
based on the research questions and the use of appropriate sensitivity analysis. The code for

the proposed method is available in the Supporting Information.
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restriction; (b) Noise variables as exclusion restriction.
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#sSupplemental online material for_"A robust imputation method for missing
#responses and covariates in sample selection models"

# Authors: Emmanuel 0. Ogundimu and Gary S. Collins

rm(list=1sQ))

HHHHBRBRAARRH BB RRRARHH R AR BB RARH R

#R-codes for selection-t model and imputation

# The code fits a selection-t model

HARHHHHR AR HHR AR HHR AR RRR AR AHR AR AH B AR AHBHBHHHHB AR AR H BB R
tselectEst<-function (selection,outcome,data = sys.frame(sys.parent()),YsS,
XS, YO, X0, start=NULL,print.level=0,

maxMethod = "BFGS",...)

if (match("sampleSelection",.packages(),0)==0) require(sampleSelection)
if (match("mnormt", .packages(),0)==0) require(mnormt)
if (match("mvtnorm",.packages(),0)==0) require(mvtnorm)
if (Imissing(data)) {
if (linherits(data, "environment") & !inherits(data,
"data.frame") & !inherits(data, "1list")) {
stop("'data' must be either environment, data.frame, or list

(currently a ",
class(data), ")")

}

mf <- match.call(expand.dots = FALSE)
m <- match(c("selection", "data", "subset"), names(mf), 0)
mfsS <- mflc(1l, m)]
mfs$drop.unused. levels <- TRUE
mfs$na.action <- na.pass
mfsS[[1]] <- as.name('"model.frame")
names(mfs)[2] <- "formula"
mfs <- eval(mfs, parent.frame())
mtS <- attr(mfs, "terms")
XS <- model.matrix(mts, mfs)
YS <- model.response(mfs)
YSLevels <- Tevels(as.factor(Ys))
YS <- as.integer(YS == tail(YSLevels, 1))
badrRow <- 1is.na(YsS)
badRow <- badRow | apply(XS, 1, function(v) any(is.na(v)))
0Arg <- match("outcome", names(mf), 0)
m <- match(c("outcome", "data", "subset", "offset"),
names(mf), 0)
mfo <- mflc(l, m)]
mfo$drop.unused. Tevels <- TRUE
mfo$na.action <- na.pass
mfo[[1]] <- as.name('model.frame")
names (mfo) [2] <- "formula"
mfo <- eval(mfo, parent.frame())
mto <- attr(mfo, "terms")
X0 <- model.matrix(mto, mfo)
YO <- model.response(mfo)
badRow <- badRow | (is.na(yo) & (!is.na(Ys) & YS == 1))
badRow <- badRow | (apply(xo, 1, function(v) any(is.na(v))) &
('is.na(ys) & Ys == 1))

if (length(ysLevels) != 2) {
stop("the Teft hand side of the 'selection' formula\n",
"has to contain", " exactly two Tlevels (e.g. FALSE and

TRUE) ")
XS <- XS[!badRow, , drop = FALSE]
YS <- YS[!badRow]
X0 <- XO[!badRow, , drop = FALSE]

YO <- YO[!badRow]
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YO[YS == 0] <- NA
X0[YS == 0, ] <- NA

loglik <- function(bstart) {

p <- ncol(XsS); k=ncol(Xx0)
bl =bstart[1:p];b2 =bstart[(p+1):(k+p)]
sigma <- bstart[(k+p+1)]
if (sigma < 0)
return(NA)
rho <- bstart[k+p+2]
if ((rho < -1) || (rho > 1))
return(NA)
nu <- bstart[k+p+3]
11 <- vector(Q)
if(C nu >2 ){
XS.g <- XS %*% bl
X0.b <- X0 %*% b2
u2 <- YO - X0.b
r <- sqrt(l - rhoA2)
Z <- u2/sigma
B<- (XS.g + rho/sigma * u2)/r
K <= ((nu+l)/(nu+(zA2)))A0.5
K1 <- K*B
11 <- Tog(dt(z,nu))-log(sigma)+log(pt(K1l,nu+l))
11<- ifelse(Ys==0, log(pt(-XS.g,nu)),11)
return(-sum(11))

else return(Inf)

}

if (is.null(start))

tobit2 <- selection(selection,outcome, data=data)
coefs <- coef(tobit2, part = "full")
bstartl <- coefs[tobit2$param$index$betas]
bstart2 <- coefs[tobit2$param$index$betao]
bstart3 <- coefs['sigma']
bstart4 <- coefs['rho']

start <- c(bstartl,bstart2,bstart3,bstart4)

startt <- c(start,nu=5)

fit <- optim(startt,loglik,control=11ist(maxit=1000),method="BFGS",

hessian=TRUE)

loglike <- fit$value

nn <- length(ys)

nParam <- length(startt)

aic <- 2*fit$value + 2*nParam
bic <- 2*fit$value + npParam*log(nn)

df <- nn-nParam

NO <-sum(YS == 0); N1 <- sum(YS == 1);n0Obs = length(YS)
coef <- fit$par

vcov <- solve(fit$hessian)

hessian <- fit$hessian

return(list(coefficients=coef,hessian=hessian,vcov=vcov, level=YSLevels,aic

=aic,bic=bic,df=df,
;og1ike=—1og1ike,N0=NO,N1=N1,Nobs=nobs,initia1.va1ues=startt))

tselect <- function(selection, outcome, data,...) UseMethod("tselect")

tselect.default <- function(selection, outcome,data, start = NULL, verbose

= FALSE, ...)

mfs <- model.frame(selection, data)
mts <- attr(mfs, "terms")
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YS <- model.response(mfs, "numeric™)
XS <- model.matrix(selection, data = data)

mfo <- model.frame(outcome, data)

mto <- attr(mfo, "terms")

YO <- model.response(mfo, "numeric'")

X0 <- model.matrix(outcome, data = data)
est <- tselectEst(selection, outcome, data,start = NULL, verbose
co <- est$coefficients
NXS <- ncol(XS)

NXO <- ncol(X0)

jGamma <- 1:NXS

iBeta <- max(iGamma) + seq(length = NXO0)
iSigma <- max(iBeta) + 1

iRho <- max(iSigma) + 1

iNu <- max(iSigma) + 2

betas <- co[iGamma]
beta0 <- co[iBetal]
sigma <- co[iSigmal]
rho <- co[iRho]

nu <- col[iNu]

aic <- est$aic

bic <- est$bic

initial.values <- est$initial.values
Toglik <- est$loglik

est$call <- match.call()
class(est) <- "tselect"

est

ks

?rint.tse1ect <- function(formula, ...)
cat("call:\n")

print(formula$call)

cat("\ncoefficients:\n")
print(formula$coefficients)

zummary.tse1ect <- function(object, ...)

se <- sqrt(diag(object$vcov))

tval <- coef(object) / se

TAB <- cbind(Estimate = coef(object),
StdErr = se,

t.value = tval,

p.value = 2*pt(-abs(tval), df=object$df))
res <- list(call=object$call,
coefficients=TAB)

class(res) <- "summary.tselect"

res

}

print.summary.tselect <- function(formula, ...)

{

cat("call:\n")

print(formula$call)

cat("\n")

grintCoefmat(formu]a$coefficients, P.value=TRUE, has.Pvalue=TRUE)

FALSE)
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HARHHHHB AR HHB AR AR AR HH B AR AHBHB A RH B AR BB HHBHR AR AR AR SRR
#Imputation code
HHHHRRRRAAR R R R RH BB ARH R R

Tibrary(mice)

require(sampleSelection)

mice.impute.heckST <- function(y, ry, x,...)
ryl <- ry

data <- data frame(ryl,x,y)

selection <- ryl~ age + female+educ +bThisp+totchr+ins+income
outcome <- y~age + female+educ +blhisp+totchr+ins

mle2 <- tselect(selection, outcome, data=data)
meane <- coef(mle2)

sig <- solve(mle2$hessian)

rv <- t(chol(sig))

b.star <- meane+rv%*%rnorm(ncol(rv))

xo <- model.matrix(outcome, data = data)

Xxs <- model.matrix(selection, data = data)

ng <- ncol(xs)

nb <- ncol(xo)

igamma <- 1l:ng

ibeta <- max(igamma) + seq(length = nb)

isigma <- max(ibeta) + 1

irho <- max(isigma) + 1

inu <- max(isigma) + 2

ggamma <- b.star[igamma]

beta <- b.star[ibetal

sigma <- b.star[isigma]

rho <- b.star[irho]

nu <- b.star[inu]

nu <- ifelse(nu<=2,3,nu)

xb <- x0%*%beta

Xg <- Xs%*%ggamma

ivmT <- (C(hu+(-xg[!ry,1)A2)/(nu-1))*dt(-xg[!ry,],nu)/pt(-xgllry,],nu)
return(xb[!'ry,]-sigma*rho*ivmT+ sigma* rt(sum('ry) nu))

S e e e e e
# R-codes for fitting the analysis model and combining results
S e e e e g

ttEst <- function(formula, data,start = NULL, verbose = FALSE){
if (match("gamlss",.packages(),0)==0) require(gamlss)

mf <- model.frame(formula, data)

mt <- attr(mf, "terms")

y <- model.response(mf, "numeric'")

X <- model.matrix(formula, data = data)

n <- Tength(y)

k<-ncoT(X)

tlog <- function(B){
beta <- B[1:k]
sigma <- B[k+1]
if (sigma < 0)
return(NA)
nu <- B[k+2]
mu <- X%*%beta
tempval <- vector()
if(C nu >2 ){
z <- (y-mu)/sigma
tempval <- log(dt(z,nu))-Tlog(sigma)
return( -sum(tempval) )
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else return(Inf)

}

if (is.null(start))

mll <- gamlss(formula, data = data,family=TF)

akl <- coef(mll)

start<- c(akl,exp(mll$sigma.coefficients),exp(mll$nu.coefficients))
options(warn=2)

fit <- try(optim(start,fn=tlog,control=11ist(maxit=1000),method="BFGS",
hessian=T))

loglike <- fit$value

nn <- nrow(X); nParam <- length(start)

aic <- 2*fit$value + 2*nParam

bic <- 2*fit$value + npParam*log(nn)

df <- nn-nParam

coef <- fit$par

vcov <- solve(fit$hessian)

h <- colnames(X); hh <- c(h,"sigma","nu")
colnames(vcov) <- rownames(vcov) <- hh

names (coef) <- hh

Tist(coefficients = coef,vcov = vcov,df=df,aic=aic,nu=tail(coef,1),
bic=bic,initial.value=start,loglik = -fit$value)

tt <- function(formula, ...) UseMethod("tt")

tt.default <- function(formula,data,start = NULL, verbose = FALSE,

mf <- model.frame(formula, data)

mt <- attr(mf, "terms")

y <- model.response(mf, "numeric")

X <- model.matrix(formula, data = data)
est <- ttEst(formula, data,start = NULL, verbose = FALSE)
co <- estf$coefficients

NB <- ncol(X)

iBeta <- 1:NB

coe <- co[iBeta]

est$fitted.values <- as.vector(X %*%coe)
est$residuals <- y - est$fitted.values
est$Tinear.predictors <- est$fitted.values
aic <- estfaic

bic <- est$bic

nu <- est$nu

initial.values <- est$initial.values
Toglik <- est$loglik

est$call <- match.call()

class(est) <- "tt"

est

}

?rint.tt <- function(formula, ...)
cat("call:\n")
print(formula$call)

cat("\ncoefficients:\n")
print(formula$coefficients)

summary.tt <- function(object, ...)

se <- sqrt(diag(object$vcov))
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tval <- coef(object) / se

TAB <- cbind(Estimate = coef(object),
StdErr = se,

t.value = tval,

p.value = 2*pt(-abs(tval), df=object$df))
res <- list(call=object$call,
coefficients=TAB)

class(res) <- "summary.tt"

res

vcov.tt <- function(object){
return(object$vcov)

coef.tt <- function(object){
return(object$coef)

tt.mids <- function (formula, data, ...) {

call <- match.call(Q
if (lis.mids(data)) stop('"The data must have class mids")

analyses <- as.list(l:data$m)
for (1 1n 1l:data$m) {

at <- complete(data, i)
ana1yses[[1]] <- tt(formula, data = data. i, ...)

call, calll = data$call,
data$nmis, analyses = analyses)

object <- Tlist(call
nmis

return(object)

pool.impute <- function (object) {

if ((m <- Tength(object$analyses)) < 2)
stop("At least two imputations are needed for pooling.\n")

analyses <- object$analyses

k <- length(coef(analyses[[1]]))
names <- names(coef(analyses[[1]]))
ghat <- matrix(NA, nrow = m, ncol = k, dimnames = 1list(1l:m,names))
u <- array(NA, dim = c(m, k, k),
dimnames = 1ist(l:m, names, names))

for (i in 1:m) {
fit <- analyses[[i]]
qhat[1 ] <- coef(fit)
uli, , 1 <- vcov(fit)

gbar <- apply(ghat, 2, mean)
ubar <- apply(u, c(2, 3), mean)
e <- ghat - matrix(gbar, nrow = m, ncol = k, byrow = TRUE)
b <- (t(e) %*% e)/(m - 1)
t <-ubar + (1 + 1/m) * b
r <- (L + 1/m) * diag(b/ubar)
f<- 1+ 1/m) * diag(b/t)
df <- (m - 1) * (1 + 1/r)A2

names(r) <- names(df) <- names(f) <- names
fit <- Tist(call = call, calll = object$call, call2 = object$calll,
nmis = object$nmis, m = m, ghat = ghat, u = u,
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1
2
3 gbarfi gbar, ubar = ubar, b =b, t=1t, r = r, df = df,
4 return(fit) -
o 3
6
7 summary.impute <- function(object){
8 est <- object$gbar
9 se <- sqrt(diag(object$t))
10 tval <- est/se
11 df <- object$df
12 pval <- 2 * pt(abs(tval), df, Tower.tail = FALSE)
13 coefmat <- cbind(est, se, tval, pval)
14 colnames (coefmat) <- c("Estimate", "std. Error",
15 "t value", "PrG1t]D"™)
1? ans <- list( coefficients=coefmat, df=df,
call=object$calll, fracinfo.miss=object$f )

18 #invisible( ans )
19 class(ans) <- "summary.impute"
20 ans
21
22 }
23 ?rint.summary.impute <- function(object)
gg if (!is.null(object$calll)){

cat("call: ™)
g? ) dput(object$calll)
28 cat("\nCoefficients:\n")
29 printCoefmat(object$coefficients, P.values=T, has.Pvalue=T,

signif.legend=T )
30 cat("\nFraction of information about the coefficients
31 missing due to nonresponse:","\n")
32 print(object$f)
33 ¥
34
35
36
37 HARHHHHR AR HHB AR HHR AR RHR AR AHBHRHRH B A HH B AR BHR AR R R AR R AR R AR
38 # Ambulatory expenditure example
39 RU#HBHBHBHHBHBHBHRH R R AR HRHH AR AR H AR HBABHBH R AR HRH AR H RS A R AR H RS
40 Tibrary(ssmrob)
41 data(MEPS2001)#3328
42 dat <- MEPS2001
43 Tambexp <- dat$lambexp
44 dambexp <- dat$dambexp
45 age <- dat$age
46 female <- dat$female
educ <- dat$educ

47 blhisp <- dat$bThisp
48 totchr <- dat$totchr
49 ins <- dat$ins
50 income <- dat$income
51 dd <- data.frame(lambexp,dambexp,age,female,educ,blhisp,totchr,ins,income)
52
53 .
54 #ImpUtat'10n n " mnn mn
55 ab <- mice(dd, w"=)10, seed = 1234,method=c("hecksT", , ,
56 ’ ’ ’ bl ’
57 . . .
58 # Results combination across imputed data sets
59
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fit <- tt.mids(lambexp ~ age + female+educ +blhisp+totchr+ins, data=ab)
ak <- pool.impute(fit)
nam <- summary.impute(ak)



