
symmetryS S

Article

Quantile-Based Estimation of the Finite Cauchy
Mixture Model

Zakiah I. Kalantan 1,† and Jochen Einbeck 2,*,†

1 Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
zkalanten@kau.edu.sa

2 Department of Mathematical Sciences and Institute for Data Science, Durham University,
Durham DH1 3LE, UK

* Correspondence: jochen.einbeck@durham.ac.uk; Tel.: +44-191-3343125
† These authors contributed equally to this work.

Received: 22 August 2019; Accepted: 16 September 2019; Published: 19 September 2019
����������
�������

Abstract: Heterogeneity and outliers are two aspects which add considerable complexity to the
analysis of data. The Cauchy mixture model is an attractive device to deal with both issues
simultaneously. This paper develops an Expectation-Maximization-type algorithm to estimate
the Cauchy mixture parameters. The main ingredient of the algorithm are appropriately weighted
component-wise quantiles which can be efficiently computed. The effectiveness of the method is
demonstrated through a simulation study, and the techniques are illustrated by real data from the
fields of psychology, engineering and computer vision.
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1. Introduction

Recently, many works on finite mixture models have been produced which support researchers in
modelling and interpreting data stemming from unobserved (“latent”) sub-populations. Finite mixture
models can handle heterogeneous data by providing a flexible representation in the form of a
weighted sum of probability densities. Applications of such models include clustering, classification
and data visualization, but mixture models are also used for simulation steps within evolutionary
algorithms, or as a building block of advanced statistical models (for instance, multi-level models)
in order to adequately account for the error structure of the problem at hand. Mixture models have
furthermore been used as a tool to address over-dispersion, which in turn is related to the presence
of long-tailed distributions. Examples for data situations which possess a mixture structure include
industrial measurements of a certain quantity which, during the measurement process, underwent
a slight, possibly unnoted, change of conditions. An explicit example within an industrial context,
involving temperature measurements from a glass melter, is provided below.

A well-known problem with the typically employed Gaussian mixtures is that these are not
able to deal well with outlying observations. If the Gaussian mixture components are allowed to
have unequal variances, it has frequently been observed that specific outlying observations “capture”
a mixture component for their own, which will be centered at that outlier and will approach zero
variance as the expectation-maximization routine progresses [1]. Since “zero variance” corresponds to
“infinite likelihood” in the context of Gaussian distributions, one also talks here of likelihood spikes.
Several methods have been proposed to deal with this problem in the literature, including the use of
“smoothed” variances [1], the use of a mixtures with an “improper” component which mops up the
outliers [2], and the use of mixtures of distributions with thicker tails, such as t-distributions [3].
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However, these existing techniques come with some limitations. The first two approaches stabilize
the estimation numerically, but, in doing so, they dismiss the possibility of the outliers actually being
a genuine feature of some physically meaningful component, even if strongly outlying. In the third
approach, one considers, for some univariate and i.i.d. response data x1, . . . , xn a mixture of K ≥ 2
t-distributions, where each of the means, variances and degrees of freedom can be estimated from
the data.

Fitting mixtures of t-distributions is conceptually and computationally demanding, and it was left
open by Peel et al. [3] how stable this procedure behaves when the degrees of freedom, q, approach the
value 1. This limiting case, at q = 1, defines the t(1) distribution, also known as a Cauchy distribution.
The Cauchy and Gaussian models can be seen as opposite ends of the spectrum of possible t(q)
distributions, ranging from t(1) to t(∞), respectively. Hence, this manuscript aims to complete this
spectrum by proposing a mixture of Cauchy distributions.

The Cauchy distribution has several interesting properties. While being a symmetric distribution,
its mean does not exist. The Cauchy distribution is well known for its propensity to produce
massive outliers [4] and hence can deal with observations which might be considered unreasonable
or pathological. Interestingly, such outliers, which may (or may not) materialize on either side of the
distribution, with potentially wildly varying degree of outlyingness, can break the symmetry of the
observed data, despite the symmetry property of their generating distribution. Allowing additionally
for heterogeneity of location parameters through a mixture model, as motivated above, enables the
data analyst to deal with highly asymmetric data patterns.

Asymmetry is a fundamental problem in financial and economic data modeling. Many papers
have suggested approaches for capturing asymmetry in financial data. An ensemble system based on
neural networks to predict intraday volatility is presented in [5]. A comparison of centrality metrics’
performance on stock market datasets was made in [6]. The asymmetric impact of prices and volatilities
of gold and oil on emerging markets was considered in [7]. However, all of these approaches focus
on certain notions of skewness or (non-)centrality to describe asymmetry, rather than accounting for
outliers and heterogeneity explicitly through a mixture model as considered herein.

Mixture models are typically estimated through the Expectation-Maximization (EM) algorithm,
which alternates between an E-step, in which one calculates, for each observation, probabilities of
component membership, and an M-step, which maximizes an expected “complete” likelihood where
these membership probabilities are assumed as fixed. This amounts, effectively, to the problem of
maximizing a weighted version of the single-distribution likelihood. However, in the Cauchy case, this
is not a trivial task. Even for the plain Cauchy model, the maximum likelihood estimator of the location
parameter does usually not exist in analytical form, and, what is worse, the log likelihood itself suffers
from the existence of inconsistent local maxima [8]. However, it is well known that Cauchy parameters
can be easily estimated through empirical quantiles of the data. The main objective of this paper is to
investigate how this approach can be extended in order to fit Cauchy mixtures; using appropriately
weighted quantiles in the Maximization step. It should be stated already now that, by following this
line of thought, the resulting methodology will not constitute an EM-algorithm in the strict sense of its
definition, and will not inherit its theoretical properties. Therefore, we use the weaker terminology
EM-type to refer to this algorithm henceforth.

Of course, mixture models can also be used in conjunction with many other, discrete or continuous,
or even mixed, distributions. More than half a century ago, foundations for estimating an extensive
class of mixture models were laid by Boes [9]. McLachlan and Peel [10] presented a comprehensive
account of finite mixture models and their properties. Contributions for specific distributions include,
without claiming completeness, the work by Zhang et al. [11] who studied a finite mixture Weibull
distribution with two components to describe tree diameters for forest data, and Zaman et al. [12] who
studied chi-squared mixtures of the gamma distribution. Suksaengrakcharoen and Bodhisuwan [13]
proposed a mixture of generalized gamma and length biased generalized gamma distributions.
Karim et al. [14] studied mixtures of Rayleigh distributions by assuming that the weight functions
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follow chi-square, t and F sampling distributions. Sindhu and Feroze [15] discussed parameter
estimation of the Rayleigh mixture model using Bayesian methods. Applications of the mixture model
are found in the environmental and natural sciences, education, psychology, business, and other fields.

This paper is organized as follows. In Section 2, we discuss some preliminaries; specifically,
in Section 2.1, we explain the general concept of mixture models and the EM algorithm, and, in
Section 2.2, we recall the definition and properties of the Cauchy distribution. In Section 3, we estimate
the parameters of a Cauchy mixture model by applying an EM-type algorithm. The effectiveness of the
proposed model is then demonstrated through simulated (Section 4) and real data (Section 5). In the
last section, we contribute some remarks and present a conclusion.

2. Preliminaries

2.1. Mixture Models

Consider independent one-dimensional values xi, i = 1, . . . , n forming a dataset
D = {x1, x2, · · · , xn}. We are interested in situations in which it is plausible to assume that all elements
of D have been generated by the same univariate density function f (·|θ), albeit, due to hetereogeneity,
with different settings of θ ∈ Rm. More specifically, one assumes that only a set of K (unknown)
parameter settings θj, j = 1, . . . , K, each of which associated with some subpopulation proportion pj,
is responsible for the creation of the data. This situation is then described by a finite mixture model
with K components,

f (x|Θ) =
K

∑
j=1

pj f (x|θj), (1)

where the pj are the mixture weights, which represent the probability that x is generated by component
j, with ∑K

j=1 pj = 1. That is, the parameter space of the mixture model in Equation (1) can be
summarized by Θ = {p1, · · · , pK−1, θ1, · · · , θK} with cardinality Nθ = K(m + 1)− 1.

For later use, denote by zij an indicator which takes the value 1 if case i belongs to component j
(or, more precisely, is “generated” from the random variable which represents component j). Then,
one finds through a direct application of Bayes Rule

wij ≡ P(zij = 1|xi, Θ) =
pj f (xi|θj)

∑K
m=1 pm f (xi|θm)

, i = 1, · · · , n, j = 1, · · · , K. (2)

These membership weights, sometimes also called “responsibilities”, play an important role for
mixture models. Firstly, they constitute the E-step of the EM algorithm, in which the probabilities of class
membership are updated given the current parameter estimates; and, secondly, after convergence of that
algorithm, they deliver a weight matrix W = (wij)1≤i≤n,1≤j≤K, which can be seen as a “final verdict” to
which class each observations belongs, and can be used for clustering and classification purposes.

Mixture models are most commonly estimated through maximum likelihood estimation, which is,
conceptually, not straightforward since the likelihood

L(Θ) =
n

∏
i=1

f (xi|Θ) =
n

∏
i=1

(
K

∑
j=1

pj f (xi|θj)

)
(3)

does not allow for an analytical maximization. A widely used solution to this problem is given by the
Expectation-Maximization (EM) algorithm, which exploits the property that, given the wij, estimation
of model parameters can usually be carried out as a simple weighted version of the corresponding
one-component problem. This solution constitutes the M-step of the algorithm, and can be formally
described as the maximization of the expectation of the complete likelihood, that is the augmented
likelihood function assuming all wij as known. Hence, one can estimate Θ by iterating, starting from
some value Θ0, between the E-step and the M-step.
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We omit further detail on the general properties of this algorithm as this has been covered in
abundance elsewhere [1,10], but we provide the adapted steps in the context of the Cauchy model in
explicit form in Section 3.

2.2. Cauchy Distribution

A random variable X has a Cauchy distribution with location parameter α ∈ R and scale
parameter γ > 0, if its probability mass function takes the shape

f (x|α, γ) =
1

πγ

[
1 +

(
x−α

γ

)2
] , −∞ < x < ∞. (4)

This entails the cumulative distribution function,

F(x|α, γ) =
1
2
+

1
π

arctan
x− α

γ
, −∞ < x < ∞, (5)

and corresponding quantile function,

q(c|α, γ) = α + γ tan
[

π

(
c− 1

2

)]
, (6)

where c is a given percentile, which then clearly implies (q ◦ F)(x) = x.
The Cauchy distribution is a unimodal and symmetric distribution, with the maximum density

attained for x = α with f (α|α, γ) = 1
πγ . The mean and the variance of the Cauchy distribution

are undefined, and the distribution does not have finite moments [16,17]. Since both the mode
and the median of the Cauchy distribution coincide with α (the latter being immediately clear from
Equation (6) by setting c = 1/2), the sample mode and the sample median are the most natural
candidates for the task of location estimation. Since the sample mode is not necessarily easy to
estimate, the sample median

α̂ = Med(x1, . . . , xn) = min
x
{Fn(x) ≥ 0.5} (7)

where Fn(x) = 1
n ∑n

i=1 1{xi ≤ x}, appears favorable. Concerning the estimation of γ, note that again
from Equation (6) one has

q(3/4|α, γ)− q(1/4|α, γ) = 2γ

so that
γ̂ =

1
2

IQR(x1, . . . , xn), (8)

where IQR denotes the empirical interquartile range, is a suitable estimator of γ.
An appealing property of the estimators in Equations (7) and (8) is their simplicity, being based

only on three easily computable quantiles of the data. It has been argued in the literature already many
decades ago that more efficient estimators of the Cauchy location parameter should be used, such as a
weighted averages of several, symmetrically weighted, quantiles [18], a linear combination of order
statistics [19], or a suitably trimmed mean [20]. In addition, Tiku [21] proposed an estimator based
on “Modified Maximum Likelihood” (MML), which is conceptually simple, but practically difficult to
implement, especially with view to the mixture scenario that we have in mind.

In light of such considerations, we assessed the performance of Equations (7) and (8) in a short
simulation study. We are particularly interested in the closeness of these estimates to the respective
MLEs, as, if very close, this would send an encouraging signal for their applicability within an EM
algorithm for mixture estimation.
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We generated 100,000 datasets of size 100 from a Cauchy distribution with location parameter
α = 2 and scale parameter γ. We considered four scenarios for the scale parameter: (i) γ = 1 assumed
fixed and known (that is, in this case, only the location parameter needs to be estimated); (ii) γ = 1;
(iii) γ = 0.1; and (iv) γ = 10. In (ii)–(iv) γ needs to be estimated along with α. We considered two
approaches for the estimation of α (and, if required, γ): In Approach (I), we used Equations (7) and (8).
In Approach (II), we used the results from Approach (I) as starting points in a numerical optimization
of the log-likelihood

`(α, γ) =
n

∑
i=1

log f (xi|α, γ)

where, of course, in the case of (i), the optimization problem is one-dimensional. The relevant question
for this study is whether Approach (II) gives any gain in comparison to Approach (I). The results are
provided in Table 1. We conclude that the robust estimators in Equations (7) and (8) produce good
results, whose bias is only marginally larger than for the full ML estimates. We see that the latter do
achieve a reduction in standard deviations of a magnitude of 10%. Note, however, that, in an EM
context, efficiency is a rather marginal consideration; since minor efficiency gains (or losses) within
the M step will be overshadowed by other considerations (such as ease of computation and number
of iterations).

Table 1. Means of 100,000 Cauchy parameter estimates using robust quantile based-estimators (Approach (I))
or numerical ML (Approach (II)). Standard deviations are provided in brackets.

Simulation Scenario

Estimation (i) (ii)

scenario α̂ α̂ γ̂

(I) 1.9995 (0.1591) 1.9996 (0.1594) 1.0071 (0.1616)
(II) 2.0000 (0.1433) 1.9997 (0.1440) 1.0008 (0.1441)

(iii) (iv)

α̂ γ̂ α̂ γ̂

(I) 2.0001 (0.0158) 0.1005 (0.0161) 1.9968 (1.5892) 10.067 (1.606)
(II) 2.0001 (0.0143) 0.0999 (0.0143) 1.9975 (1.4373) 10.006 (1.434)

3. An EM-Type Algorithm for the Cauchy Mixture Model

A (univariate) Cauchy mixture model is parameterized by two types of parameters; the component
weights pj of the mixture model, as well the component locations αj and scale parameters γj of
the Cauchy distribution. For a Cauchy mixture model with K components, the jth component is
parameterized by parameter vectors θj = (αj, γj)

T . Together with the pj, these component-specific
vectors are bundled into the overall parameter vector Θ, as explained in Section 2.1.

We assume that the data points xi, i = 1, . . . , n, are conditionally independent given the Cauchy
mixture model with parameter vector Θ. In the notation of Equation (3), the components f (xi|θj) =

f (xi|αj, γj) are now Cauchy densities.
Starting from some initial values, Θ0, we carry out iterative updates of Θ̂. Each iteration consists

of two steps: the expectation step (E-step) calculates the expectation wij of the component assignments
zij for each data point according to current parameter estimates, while the maximization step (M-step)
calculates a weighted estimator for model parameters given the expectations calculated in the E-step.

The steps to implement this algorithm are described in detail below.

The initializing step. Find initial parameter values, Θ̂ = Θ0, as follows.

• Set all prior component weight parameter estimates to the uniform distribution, p̂1 = · · · = p̂K = 1
K ;

• For the location parameters α̂1, · · · , α̂K, do one of the following:
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i find the empirical j/(K + 1) percentiles of the data, j = 1, . . . , K;
ii draw a random sample of size K from the data;

iii place the values of α̂j, j = 1, . . . , K, symmetrically around the mean, in multiples of the
standard deviation of the data D;

• set all component scale parameter estimates γ̂j to the half-interquartile range of the dataset, that
is γ̂1 = · · · = γ̂K = 1

2 IQR(x1, . . . , xn).

E-step. Using the current estimates Θ̂, compute the membership weights wij of observations xi as

wij =
pj f j(xi|θj)

∑K
m=1 pm fm(xi|θm)

, i = 1, · · · , n, j = 1, · · · , K. (9)

M-step. Given the membership weights wij from the E-step, we can use the data points to compute an
updated parameter value. Let ∑n

i=1 wij = Nj, that is the sum of the membership weights for the jth
component. Then, the new estimate of the mixture weights is

pnew
j =

n

∑
i=1

wij

n
=

Nj

n
, 1 ≤ j ≤ K.

The new estimates of location parameters are

αnew
j = Medj(x1, . . . , xn) = min

x
{Fj(x) ≥ 1

2
Nj}, 1 ≤ j ≤ K,

where Fj(x) is the cumulative sum of membership weights for component j, that is the sum of all
weights corresponding to observations which are less or equal than x [22].

The updated estimates of the scale parameters are

γnew
j =

1
2

IQRj(x1, . . . , xn), 1 ≤ j ≤ K,

with
IQRj = min

x
{Fj(x) ≥ 3

4
Nj} −min

x
{Fj(x) ≥ 1

4
Nj}.

The current value of the log-likelihood, `(Θ̂) = log L(Θ̂), can be recorded by plugging Θ̂ into
Equation (3). The E-step and the M-step are iterated until some pre-specified criterion is met. We do
not advise to base this criterion on the difference between `(Θ̂) values of two consecutive iterations.
Firstly, this method has attracted some general criticism in the literature (being a measure of “lack
of progress” rather than actual convergence [23]). Secondly, since our estimates in the M-step are
only approximations of the MLEs, we lose the theoretical guarantee of monotonicity and convergence
that EM theory would otherwise have provided. Indeed, we have observed in some examples
(illustrated in Section 5) that, especially in the case K = 2 but sometimes also for K = 3, the likelihood
trajectories may be slightly decreasing for short sequences of iterations. Hence, for these reasons, the
recommendation is to work with a fixed number, S, of iterations (S = 50 has been sufficient in all
examples and simulations considered), and chose subsequently the best solution along this path (in
terms of likelihood), rather than the final (“converged”) one.

4. Simulation Study

To assess the performance of the estimation procedure, a simulation study was carried out with
different parameter settings. In what follows, we denote by α, γ, and p the given, known, parameter
vectors of size K of the respective simulation scenario, which we consider for ease of presentation as
row vectors.

We consider three scenarios as follows:
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(A) a two-component Cauchy mixture model with mixing parameters equal to p = (0.5, 0.5), location
parameters α = (−200, 200) and scale parameters γ = (1, 1);

(B) a two-component Cauchy mixture model with mixing parameters equal to p = (1/3, 2/3),
location parameters α = (−200, 200) and scale parameters γ = (1, 4); and

(C) a four-component Cauchy mixture with p = (0.1, 0.3, 0.3, 0.3), α = (−200, 200, 400, 600),
γ = (1, 1, 1, 5).

To illustrate the data scenarios, we initially sampled n = 2000 observations from each dataset.
Histograms of the generated data for Scenarios A and B are given in Figure 1, along with the fitted
Cauchy mixtures. The corresponding outcome for Scenario C is provided in Figure 2.
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Figure 1. Simulated data: Scenario A (left); and Scenario B (right). The plotted curves correspond to
the fitted component densities weighted by the estimated components probabilities at K = 2. Note that
the densities are truncated at the top.

We next carroed out the actual simulation study in order to study the consistency properties of the
proposed estimators. For each simulation scenario, we considered sample sizes of n = 200, 500, 1000
and 2000; moreover, we replicated the process 200 times for each simulated mixture model. For the
initialization of location parameters as described in Section 3, we used Setting (iii) throughout.

For each model parameter, we produced box plots from the 200 estimates and display the results
in Figures 3–6. We see that the estimates become more accurate and precise as the sample size increases.
There is no evidence to suggest that the estimation problem for unequal mixture probabilities and scale
parameters (Scenario B) is much harder than for equal probabilities and scale parameters (Scenario A).
Consistency also does not appear to be negatively affected when increasing K (Scenario C).
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Figure 2. Simulated data, Scenario C: The plotted curves correspond to the fitted component densities
weighted by the estimated components probabilities.
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Figure 3. Cont.
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Figure 3. Simulated data, Scenario A: Box plots of estimated Cauchy mixture parameters at different
sample sizes of n = 200, 500, 1000, and 2000 (when p1 = p2 = 0.5, α1 = −200, α2 = 200, γ1 = γ2 = 1).
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Figure 4. Simulated data, Scenario B: Box plots of estimated Cauchy mixture parameters at different
sample sizes of n = 200, 500, 1000, and 2000 (when p1 = 1/3, p2 = 2/3, α1 = −200, α2 = 200, γ1 = 1
and γ2 = 4).
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Figure 5. Simulated data, Scenario C: Box plots of estimated Cauchy mixture mixing parameters
at different sample sizes of n = 200, 500, 1000, and 2000 (when p = (0.1, 0.3, 0.3, 0.3), α =

(−200, 200, 400, 600) and γ = (1, 1, 1, 5)).
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Figure 6. Simulated data, Scenario C: Box plots of estimated Cauchy mixture location and scale
parameters at different sample sizes of n = 200, 500, 1000, and 2000 (when p = (0.1, 0.3, 0.3, 0.3),
α = (−200, 200, 400, 600) and γ = (1, 1, 1, 5)).
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5. Real Data Examples

In this section, the proposed estimation routine for the finite Cauchy mixture model is illustrated
and discussed using real data. In identifying the adequate model, we use the Bayesian information
criterion (BIC) [24], which is a penalized-likelihood criterion. This method identifies the sufficiently
complex model considering the model parameters and data sample size,

BIC = −2 log L(Θ̂) + Nθ log n, (10)

where Nθ is the number of estimated model parameters and n the number of data points used
in the fitted model. Then, the smallest value of BIC determines the adequate model in terms of
goodness-of-fit/sparsity trade-off. For initializing location parameters, we again use Setting (iii) in all
examples, which, to our experience, tends to deliver the best final BIC values.

5.1. Adler Data

This dataset contains 108 observations on a numerical variable, rating, and two categorical
variables, instruction and expectation. We are only interested in the rating variable, which are “average
ratings of apparent success of people in pictures who were pre-selected for their average appearance
of success” [25].

As visualized in Figure 7, the data possess two main clusters, where the right cluster appears
skewed to the right, with one extreme and some milder outliers in the right tail. Representing these
data by a mixture of Cauchy distributions is then a natural approach.

Histogram of Adler (rating)

Adler$rating
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Figure 7. Adler data: Histogram of average rating distribution.



Symmetry 2019, 11, 1186 13 of 19

We firstly fit these models for K = 2, 3, 4 and 5, using the methods outlined in the previous section,
with S = 50 iterations and consider graphs of log L versus iteration number (Figure 8). We see that,
except for K = 2, all trajectories are monotone. For K = 2, the maximum likelihood is achieved after
only three iterations, with corresponding disparity of −2 log L = 910.41, not improving substantially
on the value for K = 1 (see Table 2). It is clear from this figure that K = 5 yields the largest likelihood
overall. To determine the adequate number of components of the mixture, we compute the BIC values
for different K, with results summarized in Table 2. One can observe that the smallest value of BIC
appears with K = 3, with the disparity decreasing slightly when increasing K further. The weighted
component densities of the fitted 3- and 4-component models are displayed in Figure 9. As a result, we
can deduce that the Cauchy mixture model is capable of robustly fitting the data with K = 3, thereby
not requiring a separate component to represent the extreme outlier.

Figure 8. Log-likelihood trajectories for Adler data, with S = 50 iterations.
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Figure 9. Fitted Cauchy mixtures for average ratings from Adler data: (Left) K = 3; and (right) K = 4.
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Table 2. Adler data: Comparison of BIC of fitted Cauchy mixture model at different K.

Number of Components (K)

1 2 3 4 5

−2 log L 916.56 910.41 867.37 862.76 857.58
BIC 925.93 933.83 904.83 914.26 923.13

5.2. Melter Data

We consider a chemometric dataset recorded from an industrial glass melter [26]. The system is
part of a disposal procedure, where a powder (waste material) is clad in glass. A vessel is continuously
filled with powder, while raw glass is discretely introduced in the form of glass frit. Induction coils
are positioned around the melter vessel which heat the composition. Resulting from the heating
procedure, the mixture becomes molten homogeneously. The melter data consist of 21 variables for
which 17,279 samples are available. The recorded variables include fifteen temperature sensors, electric
power measurements of four induction coils, the viscosity of the molten glass and the measured electric
voltage. We removed the first 700 samples from this dataset, since they involve two plant shutdowns
and are therefore misleading for characterizing the operation of the melter process, leaving a reduced
set of 16,579 samples.

In this paper, we consider the combined data from five of the temperature sensors, yielding a data
vector of length n = 82,895 as an example for the application of the Cauchy mixture model. We initially
plot the distribution of the temperature measurements as displayed in Figure 10. The histogram of the
data displays bimodality, with many extreme values in the left tail. Obviously, in this case, the mean of
the data (1023.1) is less than the median (1086) due to the skewness. The interquartile range (IQR) of
these data is equal to 166.5.

Measurements from temperature sensors
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Figure 10. Melter data: Histogram of 82,895 temperature measurements.

We fit Cauchy mixture models to this data with K = 1, 2 and K = 3. The estimates of model
parameters are computed using the EM-type method introduced previously, and the results are
summarized in Table 3. They show that, for K = 2 and K = 3, the component with the largest p̂
is associated with α̂ values which are close to the median, but the values of the scale parameters of the
individual components decrease quickly to considerably smaller values than 0.5× IQR of the original data.
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Table 3. Melter temperature data: Estimated Cauchy mixture parameters for the temperature sensor data.

K p̂1 p̂2 p̂3 α̂1 α̂2 α̂3 γ̂1 γ̂2 γ̂3

1 1 1086.0 83.2
2 0.198 0.802 878.1 1105.0 27.5 33.0
3 0.225 0.203 0.572 877.5 1055.0 1119.0 31.2 14.1 18.2

Figure 11a,c,e displays the plots of the density curves p̂j f j(x|α̂j, γ̂j) of the corresponding mixture
model. The right hand side gives, for comparison, the corresponding Gaussian mixture fits. One can
see from this the fundamental difference in which Cauchy and Gaussian mixtures operate: The Cauchy
mixtures are always centered where relevant peaks of the data are, while some of the Gaussian
components try to accommodate the outliers through an extremely flat component. The Cauchy
mixtures do not need such a flat component, since their heavy tails can deal with the extreme values
already. As a consequence, Cauchy mixtures will generally need fewer components than Gaussian
mixtures. In addition, we see in Table 4 that, while Cauchy mixtures are superior to Gaussian mixture
models for K = 1 and K = 2, the Gaussian mixture model becomes superior for K = 3, in terms of both
log-likelihood and BIC. It is evident from the provided graphs that densities with K ≥ 4 certainly do not
need to be considered, and that the Cauchy mixture with K = 2 appears to give visually the best fit.
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Figure 11. Fitted Cauchy (left) ;and Gaussian (right) mixtures to melter temperature data. The displayed
curves correspond to the fitted component densities weighted by the estimated component probabilities.
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Table 4. Melter temperature data: Comparison of model disparity (−2 log L) and BIC between Cauchy
mixture and Gaussian mixture fits. For the Cauchy fits with K = 2 and 3, the minimum disparity was
achieved after four and seven iterations, respectively.

K Cauchy Mixture Model Gaussian Mixture Model

−2 log L BIC −2 log L BIC

1 1,044,617 1,044,640 1,095,249 1,095,272
2 988,145 988,202 994,756 994,812
3 970,329 970,419 961,530 961,620

5.3. Analysis of Image Greyscales

This example considers the analysis of a greyscale image of a symmetrically tiled mosaic. In Figure 12
(left), we illustrate an image which, at first glance, seems to consist mainly of three grey tones. After
reading the image into the programming language R and extracting the greyscale information with
appropriate tools [27,28], the distribution of greyscales over the 225× 225 = 50,625 pixels of the image can
be displayed in form of a histogram, as in Figure 12 (right). We see that, despite our original impression
that there are only three shades of grey present in the mosaic, it is in fact not so clear cut: while there
appear to be three major clusters, all of them come with some spread, which is very small for the first
two clusters (corresponding to the darker shades), but a bit larger for the third cluster, corresponding
to the whitish scales. In fact, one could argue that this last cluster consists of two or more sub-clusters.
Furthermore, it appears that there are pixels of outlying grey shade all along the scale; even in the center
region where the grey scale is about 0.6 they do not entirely disappear.

Histogram of tiles
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Figure 12. (Left) Image of tiled mosaic; and (right) histogram of grey scale distribution of image
(1 = white, 0 = black).

It is a relevant task in computer vision to identify the main underlying grey or color shades of
a given image [29]. Using the Cauchy mixtures, we are now in an ideal position to do so: there are
several sharp peaks but also a large number of outliers.

Motivated by the considerations above, we proceed with fitting the Cauchy mixture model with
K = 3 and K = 4 components. We see in Figure 13 that in all cases the peaks are clearly identified,
with in the latter case, the “white’ cluster being split into a sharper peak, which captures the actual
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shading of this class, plus a wider one, which captures contaminations or impurities of the original
white color. The robustness to outliers of these fitted components is evident from the fitted mixtures.
Summarizing, the Cauchy mixture model has done a useful job at identifying the original “true” grey
shades of the mosaic.
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Figure 13. Fitted Cauchy mixtures for grey scales from the tiled mosaic: (Left) K = 3; and (right) K = 4.

6. Discussion and Conclusions

The Cauchy mixture provides a suitable model to fit heterogeneous data with outliers.
The estimates of model parameters are successfully obtained using an EM-type algorithm, which cycles
between the computation of component membership weights using Bayes’ theorem, and the update of
component parameters using appropriately weighted quantiles.

Through experimental results, we have shown that the proposed methodology provides sensible
model fits, with the estimated location parameters always centered at the data peaks, and which are
robust to the presence of the extreme values. We also observed that Cauchy mixtures tend to need less
components than Gaussian mixtures in order to achieve a comparable goodness-of-fit.

The properties of the algorithm deserve further discussion. As mentioned above, our M-step does
not maximize the expected complete log-likelihood, and there is no mathematical guarantee that it
moves the estimated parameters into the direction of its gradient. Indeed, we did observe at some
occasions (especially for K = 2) that both the expected complete likelihood, as well as the incomplete
data likelihood slightly decrease for a few iterations (that is, the disparities increase), before returning
into the direction of the original trend, and eventually always settling into convergence. While the
temporary decrease of the expected complete log-likelihood is not a concern (this can happen in every
EM algorithm), the decrease of the likelihood itself is more of an issue, as it lays bare the fact that
our methodology is not strictly an EM algorithm [30]. EM algorithms with this rather undesired
property have sometimes been referred to as “pseudo-EM” in the literature; we prefer the simpler
term “EM-type”. Despite not being strictly an EM algorithm, the methodology has demonstrated to
behave convincingly in application and simulation, with excellent robustness properties. From this
perspective, one may speculate that a certain resistance of the methodology to “always following the
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gradient of the likelihood” may in fact be desirable, and it is in this spirit that our method behaves.
Further theoretical analysis of these issues appears desirable for future work.
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