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Abstract. In this paper we study mean field game systems under density constraints as opti-
mality conditions of two optimization problems in duality. A weak solution of the system contains an
extra term, an additional price imposed on the saturated zones. We show that this price corresponds
to the pressure field from the models of incompressible Euler equations a la Brenier. By this obser-
vation we manage to obtain a minimal regularity, which allows us to write optimality conditions at
the level of single-agent trajectories and to define a weak notion of Nash equilibrium for our model.
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1. Introduction.

1.1. The MFG system. Introduced by Lasry and Lions [22, 23, 24] (see also
Huang, Malhamé, and Caines [21]), the mean field game system (in short, MFG sys-
tem) describes a differential game with infinitely many identical players who interact
through their repartition density. The first order MFG system with a local coupling
takes the form

(1) —O0wu+ H(z,Du) = f(z,m) in (0,7 x T,
(1.1) (il) O¢m —div(mDpH (x, Du)) =0 in (0,7 x T,
(iii) uw(T,z) =g(x), m(0,z)=me(z) inT%

Here, to avoid the discussion of the boundary data, we work for simplicity with
periodic boundary conditions, i.e., in the torus T¢ := R?/Z?. Since the main focus
of this paper will be on the modeling of the density constraint, we keep this simpler
setting. Let us note that by using the same ideas it is possible, without much effort,
to treat the case of general domains with the corresponding boundary conditions.
The Hamiltonian H : T¢ x R? — R is typically convex with respect to (w.r.t.) the
last variable, and the coupling cost f : T¢ x [0, 4+-00) is nondecreasing w.r.t. the last
variable. The monotonicity of the coupling formalizes the idea that the players dislike
congested areas. It will be highly exploited later in the variational setting, which will
imply in particular a convexity property for the energy functional. Moreover, all of
these assumptions are typical in the general MFG theory.
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Let us briefly describe the interpretation of (1.1). In the above backward-forward
system, u = u(t,x) is the value function associated to any tiny player, while m =
m(t,x) is the density of the players at time ¢ and at position . The value function
u(t, x) is formally given by

T
u(t, z) = igf/t L(v(5),¥(s)) + f(v(s),m(s,7(s)) ds + g(+(T)),

where the player minimizes over the paths v : [t,7] — T9, with y(t) = z, f =
f(z,m(t,z)) is the running cost, L is obtained from the Fenchel conjugate of H w.r.t.
the last variable, and g : T — R is the terminal cost at the terminal time ¢t = 7. The
running cost f couples the two equations and acts as a penalization for those regions
where the density m is too high.

At the initial time ¢t = 0, the initial distribution is mg (a probability mea-
sure on T¢). Then the density evolves according to the motion of the players.
Since—Dby standard argument in optimal control—it is optimal for the players to
play 4(s) = —DpH(v(s), Du(s,~(s)), the evolution of the density is given by the
continuity equation (1.1)(ii).

Note that each tiny player acts as if he/she knew the evolution of the players’
density m = m(t,z) (he/she somehow “forecasts” it, as usual in a “rational expec-
tations” framework). Actually he/she needs this forecast in order to solve his/her
individual control problem. Solving this problem he/she obtains the value function u
and the optimal velocity field —D, H(-, Du). Then the “true” evolution of the players’
density is given as the transport of the initial density by this field (this corresponds
to the continuity equation in system (1.1)).

The MFG system corresponds to an equilibrium situation where the “forecast” of
the players is correct: the solution of the continuity equation is indeed m = m(¢, x),
which was the forecast made by the players. In terms of game theory, this corresponds
to a Nash equilibrium.

Existence and uniqueness of solutions for the above problem are discussed by
P.-L. Lions in [25] (through a reduction to an elliptic equation in time-space when
the coefficients are smooth, under the additional assumption lim,, o f(z,m) = —oo,
which is satisfied, for instance, for log-like couplings, which guarantees m > 0 and
hence ellipticity) and in Cardaliaguet [11], Graber [20], Cardaliaguet and Graber [13],
and Cardaliaguet, Porretta, and Tonon [15] (following an approach by variational
methods suggested in [24] and also inspired by Benamou and Brenier [4]). Recently,
in [5] Benamou and Carlier used similar variational techniques to study an augmented
Lagrangian scheme for MFG problems and obtain efficient numerical simulations.

1.2. The problem with a density constraint. In this paper we study the
behavior of the MFG system when there is a density constraint, i.e., when the density
m cannot exceed some given value m > 1/|T¢| = 1. Namely, 0 < m(t,z) < m at any
point (¢,z). In other words, the players pay an infinite price when the density goes
above m: f(x,m) = +oo if m > m. The question of how to model this situation was
first introduced by Santambrogio [28] and later investigated by Mészaros and Silva
in [27] in the framework of stationary second order models. We emphasize the fact
that imposing a density constraint will result in a so-called hard congestion effect in
the model. Models of MFGs where so-called soft congestion (meaning that agents
slow down when they reach zones with high density) effects occur have been studied
recently by Gomes and Mitake [18], Gomes and Voskanyan [19], and Burger et al. [10].

Coming back to our model, there are several issues in the interpretation of system
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(1.1) when there is a density constraint. Indeed, the above interpretation does not
make sense anymore for the following reason: If, on the one hand, the constraint
m < is fulfilled, then the minimization problem of the agents (due to the fact that
they are considered negligible against the others) does not see this constraint and
the pair (u, m) is the solution of a standard MFG system; but there is no reason this
solution would satisfy the constraint, and there is a contradiction. On the other hand,
if there are places where m(t, z) > T, then the players do not go through these places
because their cost is infinite there: but then the density at such places is zero, and
there is again a contradiction. So, in order to understand the MFG system with a
density constraint, one has to change the point of view. We shall see that there are
several ways to understand more deeply the phenomena behind this question. We
warn the reader that the model that we will obtain significantly differs from that in
[28].

Perhaps the simplest approach is to go through an approximation argument: Let
us consider the solution (u®, m*) corresponding to a running cost f¢ which is finite
everywhere, but tends to infinity as € tends to 0 when m > . In other words,
fe(x,m) — f(z,m) if m <m, and f(z,m) — +oo if m > m, as € — 0. In this case
the MFG system with a density constraint should simply be the limit configuration
(a limit which should be proven to be well-defined).

We indeed show that the pair (u®,m®) has (up to subsequences) a limit (u,m)
which satisfies (in a weak sense) the following system:

(1.2)
(i) —Owu(t,x) + H(z, Du(t,z)) = f(x,m(t,z)) + B(t,x) in (0,T) x T,
(ii) Oym(t, ) — div (mDyH(x, Du(t,z))) = 0 in (0,7 x T4,
(iii) uw(T,z) = g(x) + Br(xz), m(0,x) =mo(x) in T9,
(iv) 0<m(t,z)<m in [0, 7] x T.
Besides the expected density constraint (iv), two extra terms appear: S in (i) and
Br in (iii). These two quantities turn out to be nonnegative and concentrated on the
set {m = m}. They formally correspond to an extra price paid by the players to
go through zones where the concentration is saturated, i.e., where m = m (in traffic
language, this would be a toll). In other words, the new optimal control problem for
the players is now (formally)
(1.3)

T
u(t,r) = inf /tL(W(S)d(S)Hf(W(S),m(&7(8))+ﬁ(8,7(8))d8+9(7(T))+BT(7(T)),

V(t)==

and thus (still formally) satisfies the dynamic programming principle: for any 0 <
t1 <ty < T,
(1.4)

to

u(ti,z) = inf L(v(5),¥(s)) + f(v(s),m(s,7(5)) + B(s,7(s)) ds + u(tz, y(t2))-

The “extra prices” 8 and fBr discourage too many players to be attracted by the area
where the constraint is saturated, thus ensuring the density constraints (iv) to be
fulfilled. The reader familiar with theoretical economics can realize immediately that
this is exactly the typical role of prices: a price is a quantity determined by a global
configuration, which replaces, in the individual choices of the agents, the presence of
the constraint.
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1.3. The variational method. Another way to see the problem is the following:
It is known (see [24]) that the solution (u,m) to (1.1) can be obtained by variational
methods, at least when f is finite everywhere. More precisely, the value function u is
(formally) given as a minimizer of the functional

Afu) = /OT/T F*(a:,—&tu+H(x,Du))da:dt—/Td w(0, ) dmo ()

subject to the constraint that u(T,z) = g(z), where F = F(x,m) is an antiderivative
of f = f(x,m) wr.t. m, and F* is its Legendre-Fenchel conjugate w.r.t. the second
variable. In the same way m is (formally) given as a minimizer of the problem

T
B(m,w) = / glx)m(T, z) dx —l—/ m(t,z)H" (x, —E) + F(z,m(t,x)) dedt
Td 0 Jrd m
subject to the constraint
oym +div(w) =0 in (0,7) x T¢  m(0) = my,

where H* is the convex conjugate of H w.r.t. the last variable. With the language of
the theory of optimal control of PDEs, the additional variable w : [0,7] x T¢ — R?
plays the role of the control, while m can be seen as the state variable.

It turns out that both problems make perfect sense, even when f(z,m) = 400
if m > m. In fact, if f° is a finite approximation of f as before, one can expect the
minimizers of A% and B¢ (corresponding to f€) to converge to the minimizers of A
and B as ¢ — 0 (as a simple consequence of I'-convergence). This is precisely what
happens. Note that, as f(x, m) = +oo for m > T, F(x, m) has the same property, so
that F*(x,m) is linear on [m, +00). This linear behavior explains the appearance of
the terms  and (1 described above.

1.4. Connections between MFGs with density constraints and the in-
compressible Euler equations a la Brenier. It is not surprising, due to the
constraint m < mm, that some strong connections between our model and the varia-
tional models for the incompressible Euler equations studied by Brenier (see [7]) and
also by Ambrosio and Figalli (see [1]) arise. What was unexpected at the beginning
of our study is the role that this connection would play in regularity. In order to
understand the analogy, notice that the incompressibility constraint in the model of
Brenier to study perfect fluids is what introduces the pressure field. The same effect
happens when imposing a density constraint for MFG. Using the common variational
structure, similar also to the one introduced by Benamou and Brenier in [4], shared
by the incompressible Euler equation and by our model, we can easily interpret the
terms ( and Br, which we call “additional prices/costs” for the agents (appearing
only if they pass through saturated zones), in (1.2) as a sort of pressure field from
fluid mechanics. This observation motivates the title of our work as well.

Using techniques similar to those in [7] and [1, 2], we show that § is an

L3,e((0,T); BV(T") < Lig (0, 7) x T)
function (while a priori it was only supposed to be a measure) and Bz is L*(T4). With
the help of an example we show that this local integrability cannot be extended so
as to include the final time t = T, which shows that the result is somewhat sharp.
This regularity property will allow us to give a clearer (weak) meaning to the control
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problem (1.4), obtaining optimality conditions along single-agent trajectories. Our
techniques to proceed with the analysis rely on the properties of measures defined
on paths, which we shall call density-constrained flows in our context, and we are
exploiting some properties of a Hardy-Littlewood-type maximal functional as well
(this is very much inspired by [1]).

After this analysis we deduce the existence of a local weak Nash equilibrium for
our model.

The paper is organized as follows. We first introduce our main notation and
assumptions (section 2). Then we discuss the two optimization problems for A and B
described above (section 3). We introduce the definition of the MFG system with a
density constraint, and present our main existence result as well as the approximation
by standard MFG systems in section 4. In section 5, by means of an example, we
study some finer properties of a solution (m, u, 8, fr) of the MFG system with density
constraints. Section 6 is devoted to the proof of the Liio/c(d_l) integrability of the
additional price 8 under some additional assumptions on the Hamiltonian and the
coupling. Finally, having in hand this integrability property, we introduce in section 7
the optimal density-constrained flows and derive optimality conditions along single-
agent paths, which in particular allows us to study the existence of the local weak
Nash equilibrium.

2. Notation, assumptions, and preliminaries. We consider the MFG sys-
tem with a density constraint (1.2) under the assumption that all the maps are periodic
in space. The following are some typical conditions:

(H1) The density constraint 7 is larger than 1 = 1/|T¢|.

(H2) (Conditions on the initial and final conditions.) my is a probability measure
on T¢ which is absolutely continuous w.r.t. Lebesgue measure, and there
exists ¢ > 0 such that 0 < my < M —7¢ a.e. on T%. We assume that g: T¢ 5 R
is a C'! function on T¢.

(H3) (Conditions on the Hamiltonian.) H : T¢ x R? — R is continuous in both
variables, convex and differentiable in the second variable, with D, H contin-
uous in both variables. Moreover, H has superlinear growth in the gradient
variable: there exist r > 1 and C > 0 such that

1 C
2.1 —p"—-C<H < —Ip|" .
(2.1) glPl" = C < H(z,p) < —lpl" +C
We denote by H*(x,-) the Fenchel conjugate of H(x,-), which, due to the

above assumptions, satisfies

1

(2.2) e

7’ * c r’

where 7’ is the conjugate of r. We will also denote by L the Lagrangian given
by L(z,q) = H*(x, —q), which thus satisfies the same bounds as H*.

(H4) (Conditions on the coupling.) Let f be continuous on T¢ x [0, 7], nondecreas-
ing in the second variable with f(z,0) = 0.

Let us comment now on the previous assumptions. (H1) and (H2) are assumptions
on the initial and final conditions. From the fact that mg is a probability measure
on T, because of the mass conservation, m; will also be a probability measure on T¢
for all t € [0,T]. The density constraint should satisfy @ > 1; otherwise, imposing
that a probability measure m < m on T? would give either a trivial competitor or
no competitor at all. It is natural to impose 0 < mg < m; i.e., we start with an
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initial distribution that already satisfies the constraint. The modified upper bound

m < m — ¢ for some ¢ > 0 small real number is just a technical assumption that we

need in the analysis. Assumptions (H3) and (H4) are natural growth and structural

conditions that are typical while working with variational MF'G systems. In particular,

imposing that f is nondecreasing will imply that the energy functional B is convex.
We define F' so that F(z,-) is an antiderivative of f(z,-) on [0,], that is,

(2.3) F(z,m)= /Om f(z,s)ds Vm € [0,m],

and extend F' to +oo on (—00,0) x (M, +00). It follows that F' is continuous on
T? x [0,7] and is convex and differentiable in the second variable. We also define
F*(z,-) to be the Fenchel conjugate of F(x,-) for each x. Note that

(2.4) F*(z,a) > am — F(x,m)

and F*(-,a) = 0 for all a < 0. Following the approach of Cardaliaguet, Carlier, and
Nazaret [12] (see also Cardaliaguet [11], Graber [20], or Cardaliaguet and Graber [13]),
it seems that the solution to (1.2) can be obtained as the system of optimality condi-
tions for optimal control problems.

2.1. Optimal transport toolbox. In this subsection we collect some basic
notions and results from the theory of optimal transportation which we will need in
what follows. We refer the reader to [29, 30] for general references to this theory.
Let Q C R? be a compact subset (or any compact subset of a Polish space). Even
though in the whole paper we will restrict ourselves to the case of Q = T¢, we state
the following results in the general case. Given two probability measures u, v € P(Q),
for p > 1 we define the usual Wasserstein metric by means of the Monge-Kantorovich
optimal transportation problem

W, (u, v) := inf {/ |z — yl” dy(x,y) : v € H(u, V)} ,
QxQ

where II(p,v) :={y e P(QAx Q) : (7%)py =, (7¥)xy = v} and ¥ and 7¥ denote
the canonical projections from 2 x Q onto © (in a more general setting, with Q being
any compact subset of a Polish space, in the definition of W), one has to replace the
Euclidean distance |z — y| by the distance induced by the underlying metric d). This
quantity happens to be a distance on P(€2) which metrizes the weak-x convergence of
probability measures; we denote by W,(2) the space of probabilities on € endowed
with this distance.

Historically, the quadratic case p = 2 had been understood first. So, let us state
the most fundamental results in this case. Under the additional assumption that u is
absolutely continuous w.r.t. the d-dimensional Lebesgue measure, Brenier showed (see
[8, 9]) that the optimal  in the above problem is actually induced by a map, which
turns out to be the gradient of a convex function; i.e., there exist T : 2 — Q and
1 :  — R convex such that ' = Vi and 7 := (id, T') % . The function ¢ is obtained
as (z) = |z|*—p(x), where ¢ is the so-called Kantorovich potential for the transport
from p to v and is characterized as the solution of a dual problem. In this way, the
optimal transport map 7' can also be written as T'(x) = z — Vp(x). Later, McCann
(see [26]) introduced a useful notion of interpolation between probability measures:
the curve iy := ((1 —t)x +1ty), 7, for ¢ € [0,1], gives a constant speed geodesic in
the Wasserstein space connecting po := ¢ and pp == v.
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Based on this notion of interpolation, Benamou and Brenier, using also some
ideas from fluid mechanics, gave a dynamical formulation to the Monge-Kantorovich
problem (see [4]). They showed that

1 . .
;Wg(p‘ﬂ/) = inf {Bp(Etaut) : 8t/14t + le(Et) - 07 Ho = My, U1 = V}7

where B, : M([0,1] x Q)¢ x L>=([0,1]; W,(22)) — RU {+o0}! is given by

o=, Ll

It is well known that B, is jointly convex and lower semicontinuous w.r.t. the weak-x
convergence of measures (see section 5.3.1 in [29]) and that, if Oy + div(E;) =
0, then B,(E,p) < +oo implies that ¢ — ¢ is a continuous curve belonging to
WhP([0,1]; W,(Q2)). In particular p; is well-defined for all ¢ € [0, 1].

We shall use the notion of narrow convergence in P(£2), which is the weak-x
convergence in duality with continuous and bounded functions on 2. Since in our
case (2 is compact, then P(Q) is also compact for this convergence.

dpt(z)dt if E is absolutely continuous w.r.t. p,

otherwise.

2.2. Measures on curves and a superposition principle. Let us denote by
T the set of absolutely continuous curves 7 : [0,7] — T¢. We denote by P(I') the set
of Borel probability measures defined on I'. Let us set P.(T') (r > 1) to be the subset

of P(T') such that
// $)|"dsdn(y) < +oo.

Note that the space I', which is naturally endowed with the uniform convergence
topology, is not compact, and hence P(T") is not compact for the narrow convergence.
However, Prokhorov’s theorem guarantees that any family of probability measures
on a Polish space 2 is relatively sequentially compact w.r.t. the narrow convergence,
provided it is tight. Tight means that for any £ > 0 there exists a compact set K C 2
such that for any p from this family (2 \ K) < e. In the case of P(T'), it is easy
to see that a uniform bound on [, fOT |¥(s)|" dsdn(vy) is enough to provide tightness.
This will be useful later in the paper.

We also define the evaluation maps e; : I' — T%, given by e;(vy) := v(t) for all ¢ €
[0, T']. This allows us to state a well-known result, a connection between the solutions of
the continuity equation and the measures on paths, called the superposition principle,
which can be considered as a weaker version of the DiPerna—Lions—Ambrosio theory
(see, for instance, Theorem 8.2.1 from [3]).

THEOREM 2.1. Let p : [0,T] — P(T9) be a narrowly continuous solution of the
continuity equation Oy pu-+div(vy) = 0, o € Po(T9) for a velocity field v : (0,T)xT¢ —
R? satisfying fOT Jpa [ve|? dpe dt < +oo. Then there exists p € P(T') such that

(1) pe = (er)gn for all t € [0,T7;
(ii) we have the energy inequality

// (8)[2 dt-dn(y) / / (o2 dg di;

(ili) 4(t) = ve(y(t)) for n-a.e. v and a.e. t € [0,T].

I'We denote by 9t(X) the signed Radon measures on X. Observe that p € L ([0, 1]; W,(£2)) only
means that g = (u¢)¢ is a time-dependent family of probability measures.
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3. Optimal control problems. We look in this section at two PDE control
problems that will lead to our MFG model.

The first one is an optimal control problem of Hamilton—Jacobi equations: Denote
by Kp the set of functions u € C*([0, T] x T¢) such that u(T,z) = g(z) (the subscript
P stands for “primal”). Let us define on Kp the functional

T
(3.1) Alu) = /0 /Td F*(x,—0wu+ H(z, Du)) dx dt —/ (0, z) dmg(x).

U
Td
Then we have our first optimal control problem.

PROBLEM 3.1 (optimal control of Hamilton—Jacobi). Find inf,cx, A(u).

It is easy to check that one can restrict the optimization to the class of minimizers
such that —0:u + H(z, Du) > 0, because F*(x, ) = 0 for v < 0 (see Lemma 3.2 in
[11]).

The second problem is an optimal control problem for the continuity equation:
Define Kp to be the set of all pairs (m,w) € L*([0,7] x T¢) x L([0,T] x T¢;R%)
such that m > 0 a.e., [, m(t,z)dz =1 for a.e. t € [0, (the subscript D stands for
“dual”), and

oym +div(w) =0  in (0,7) x T,
{ m(0,-) =mg inT?

in the sense of distributions. Because of the integrability assumption on w, it follows
that ¢t — m(t) has a unique narrowly continuous representative (cf. [3]). It is to this
representative that we refer when we write m(t), and thus m(t) is well-defined as a
probability density for all ¢ € [0,T].
Define the functional
(3.2)
T
B(m,w) = / g(x)m(T, z) dz —l—/ m(t,z)L <x,
Td 0 Jrd

w(t, )
m(t,x)

on Kp. Recall that L is defined just after (2.2). We follow the convention that

) + F(z,m(t,x)) dedt

(3.3) mL(a: E)_ +oo if m=0andw#0,
. )=

0 if m=0and w=0.

Since m > 0, the second integral in (3.2) is well-defined in (—o0, 00| by the assumptions
on F' and L. The first integral is well-defined and necessarily finite by the continuity
of g and the fact that m(7T, z) dz is a probability measure.

We next state the following “dual problem.”

PROBLEM 3.2 (dual problem). Find inf,, .,)exc, B(m,w).
PROPOSITION 3.3. Problems 3.1 and 3.2 are in duality, i.e.,

(3.4) inf A(u) =— min B(m,w).

uekp (m,w)EKp

Moreover, the minimum on the right-hand side is achieved by a pair (m,w) € Kp
with m € L>®([0,T] x T4 and w € L" ([0, T] x T% R%).

Proof. The proof relies on the Fenchel-Rockafellar duality theorem (see, for ex-
ample, [17]) and basically follows the lines of the proof of Lemma 2.1 from [11], so
we omit it. The integrability of (m,w) is just coming from the density constraint and
from the growth condition of H*. d
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Remark 3.4. If f is strictly increasing w.r.t. the second variable in T x (0,7),
then the minimizer (m,w) is unique.
In general one cannot expect Problem 3.1 to have a solution. This motivates us

to relax it and search for solutions in a larger class. For this let us first state the
following observation.

LEMMA 3.5. Let (uy) be a minimizing sequence for Problem 3.1 and set ay =
—Opuy, + H(x, Duy,). Then (uy) is bounded in BV ([0,T] x T4) N L"([0,T] x T%),
the sequence (aw,) is bounded in L'([0,T] x T), with o, > 0 a.e., while (Duy,) is
bounded in L"([0,T] x T¢). Finally, there exists a Lipschitz continuous function v :
[0,T] x T — R such that ¥(T,-) = g and u, > for any n.

Proof. As F*(-,a) = 0 for @« < 0, we can assume without loss of generality
that «;,, > 0 (indeed, if we replace «,, with its positive part, the part with F* does
not increase, and the value of u, (0, z) does not decrease, by the maximum principle
applied to the Hamilton—Jacobi equation connecting u,, to ). By comparison, u, >
1, where 9 is the unique Lipschitz continuous viscosity solution to

—0 + H(z, DY) =0 in (0,T) x T¢,
(T, z) = g(x) in T

So (uy,) is uniformly bounded from below. Integrating the equation for (u,) on [0, T] x
T? and using the fact that H > —C and the fact that g is bounded, we get (up to
redefining the constant C' > 0)

T
/un(O,x)de/ / ap drdt + C.
Td o Jrd

So, by (2.4) and for n large enough,
T
infyex, Alu)+1 > / F*(z,ap) dedt — / Uun (0, 2)mo dz
0o Jra Td

T
> / maoy, de dt — / un (0, 2)modz — C
o Jrd Td
> / un (0, z) (M — myp) dx — C.
Td

By (H2), m — mg > ¢; since we know that u,(0,-) is bounded from below, we get
that (u,(0,-)) is bounded in L'(T?). Thus, as o, > 0, we also have that () is
bounded in L!([0, 7] x T?). Then integrating the equation o, = —dsu, + H(z, Du,,)
over [t,T] x T¢ and using the lower bound on H, we get on the one hand

T
/un(t,x)dxg/ /andxdt—l—C,
Td t Jrd

which, in view of the lower bound on u,, gives an L*([0,T]) bound on (u,(t,-))
Jpa un(t, z) dz. We integrate again the equation o, = —;u,+H (x, Duy,) over [0, T]
T¢ and use the coercivity of H and Poincaré’s inequality to get

X

T T T
Cz/ / andxdt—i—CZ/ H(x,Dun)dxdtZ(l/C)/ / |Duy|" dzdt — C
o Jrd o Jrd o Jrd

> (1/0)/5/@ i — (un(t, )" dzdt — C > (1/0)/0T/W lun|” dzdt — C.
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In particular (Du,) and (u,) are bounded in L"([0,T] x T¢). Thus dyu, = —a, +
H(z, Duy,) is bounded in L([0,T] x T%). The result follows. O

By the results of Lemma 3.5 we introduce a relaxation of Problem 3.1. Let us
denote by Kg (here the subscript R stands for “relaxed”) the set of pairs (u, ) such
that u € BV([0,T] x T¢) with Du € L"([0,7] x T% R%) and u(T~,-) > g ae., a is
a nonnegative measure on [0, 7] x T%, and, if we extend (u, ) by setting u = g and
a:= H(-,Dg)dxdt on (T, T + 1) x T?, then the pair (u, ) satisfies

-0+ H(x,Du) < «

in the sense of distribution in (0,7 + 1) x T?. Note that the extension of (u, ) to
[0, T+ 1] x T? just expresses the fact that u(7F) = g and that o compensates for the
possible jump from u(7'~) to g. We set

T
= (x, a®(t,x)) do mo’® 4y _ U x) dmo(x
Atwo) = [ [ P o) dedt +mat(0.7) < T = [ u0”.0) dima(a),

where a® and o are, respectively, the absolutely continuous part and the singular
part of the measure a.

PROBLEM 3.6 (relaxed problem). Find inf(, oyex, Alu, a).

Let us consider the following result as a counterpart of Lemma 2.7 from [13] in
our case.

LEMMA 3.7. Let (m,w) € Kp such that m € L=([0,T] x T¢) and (u,a) € Kg an
arbitrary competitor for Problem 3.6. Then, for every t € [0,T], we have

¢
/ —mH* (x, —ﬂ) dzdt < m(t,x)u(t™,z)dr — mo(z)u(0", z) dz
0 JTd m Td Td

¢
—l—/ / a®mdz dt +ma®([0,t] x T?)
o Jrd
and
T w
/ —mH* (x, ——) drdt < m(T,z)g(x)dx — m(t,z)u(t™, z) de
t Jre m Td Td
T
—l—/ / a®mdx dt + ma®([t, T] x TY).
¢ Jrd

Moreover we can take t = 0 in the above inequalities. If, finally, equality holds in the
second inequality when t =0, then w = —mD,H (-, Du) a.e. and

limsupm.(¢t,z) =m for a®-a.e. (t,x) € 0,T] x T¢,
e—0

where m. is any standard mollification of m.

Proof. We prove the result only for t = 0; the general case follows by a similar
(and simpler) argument. We first extend the pairs (u, @) and (m,w) to (0,7+1) x T¢
by setting u = g and a := H(-, Dg) dx dt, m(s,z) = m(T,x), w(s,z) =0 on (T,T +
1) x T¢. Note that

oym +div(w) =0 and — du+ H(z,Du) <o on (0,74 1) x T
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We smooth the pair (m,w) in a standard way into (me,we): me := m * p. and
we := w x pe, where the mollifier p has a support in the unit ball of R4*! and
pe := e~ % 1p(-/¢). Then, for any 1 > ¢, we have, since m. < 7,

(3.5)

T+n T+n
/ / udyme + meH(x, Du) da dt — [/ meU dx}
n Td Td nt

T+n T+n
S/ msdoaS/ / a®m, dz dt + ma® ([n, T +n] x TY),
7 Td U] Td

where, as Oym. + div(w:) = 0,

T+n T+n
/ / uwoym. da dt = / Du - w. dzx dt.
n Td n Td

In the following, we shall consider only such 7’s for which no jump of w occurs, in
particular [, u(n™,z)de = [rau(n™,z)de = [, u(n,x)dz. So, by convexity of H,
(3.5), and the above equality,

T+n w T+n
/ / —m.H* <x,——s) dedt < / / we + Du+ mH(x, Du) do dt
n Td me n Td

T+n T+n
< { msudx] +/ / a®m. dx dt +ma®([n, T + 1] x TY).
Td n n Td

We multiply the inequality —0yu+ H (2, Du) < « by me(n, -) and integrate on (0, 7) x
T to get the following, as m. is bounded by 7@ and H is bounded from below:

/ w(0F, 2)me(n, ) do < / u(n, )yme(n, z) dz + Cn + ma((0,1) x TY).
’]I‘d Td

Note that ma((0,7) x T¢) = ma*([0,n7) x T?) + o(1), where o(1) — 0 as n — 0. So

T+n w
/ —-m.H* <x, ——6> dodt
n Td me

< / [me(T + n, 2)u(T +n,z) —u(0, 2)me(n, z)] do
Td
T+n
+/ / a®“m, dz dt +ma® ([0, T + 1] x T%) 4 o(1).
n Td

We now let ¢ — 0. By convergence of (me,w.) to (m,w) in L9 x L™ for all ¢ > 1,
and by the fact that

T+n T+n
lim meH*(z, —we /me) dadt = / mH*(x,—w/m) dx dt
n T

e—0 n Td

(see the proof of Lemma 2.7 from [13]), we obtain for all n > 0, chosen above,

T+n
/ —mH* (x, —E) dodt
n Td m

< / [m(T +n, 2)u(T +n,z) —uw(0F, z)m(n, z)] dz
Td

T+n
—|—/ / a®mdz dt +ma® ([0, T +n] x T) + o(1).
n Td

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/28/20 to 129.234.39.43. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

MEAN FIELD GAMES WITH DENSITY CONSTRAINTS 2683

By definition of the extension of the maps u and m,
[ ) = 0" () o
Td

T+n
—|—/ / a®m dx dt +ma®([0,T + 1] x T9)
Td

T+n
= m(T, z)g(z) — uw(0T, 2)m(n, z)] dz a®“mdzx ma’ ),
= [T 299@) — w0 pmin e+ [ [ e dt-s o 0.7 1)

We finally let  — 0 and get

/OT » —mH* (x _E) da dt

T
ac — 5 d
< /Td[m(T,x)g(x) —u(07, z)mo(z)] dx+/0 /Tda mdz dt + ma®([0,T] x T%),

thanks to the L>°-weak-% continuity of ¢ — m(t) and the L' integrability of u(0*,").

The proof of the equality w = —mD,H (-, Du) when equality holds in the above
inequality follows exactly the proof of the corresponding statement in [13], so we omit
it. Note that if equality holds, then all the above inequalities must become equalities
as € and then 71 tend to 0. In particular, from inequality (3.5), we must have

T4y
Jim lim sup / me(t, 2) da® (¢, ) = 7a* ([0, T] x T4).
U] Td

n—=0  ¢-0

By Fatou’s lemma, this implies that

a*([0,T] x T¢) < / / lim sup m. (¢, ) da® (¢, ),
Td

e—=0
where the right-hand side is also bounded above by the left-hand side since m. <m.
So limsup,_,o m. = m a®-a.e. O
PRroOPOSITION 3.8. We have

(3.6) inf A(u)= min A(u,«).

uep (u,a)EKR
Moreover, if (u,) is a minimum of A, then a = a L [0,T) x T + (u(T~,") —
g)d (67 @ HILT9).
Proof. We follow here [20]. Inequality > is obvious, and we now prove the reverse

one. Let us fix (u,a) € Kpr, and let (m,w) be an optimal solution for the dual
problem. Then

Al(u, o) / F*(x,0%) dzdt + ma®([0,T] x T%) — [ mo(z)u(0F,z)dz
Td Td

/ (ma® x,m))dzdt + ma®([0,T] x T — [ me(z)u(0F,z) dx
T T4

& /0 /Jyd —mH* “ _%) B F(a:,m)) dzdt— m(T,z)g(x) dz = —B(m,w),

Td
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where the last inequality comes from Lemma 3.7. By optimality of (m,w) and (3.4)
we therefore obtain

A(u,a) > inf A(u),

ueEXp
which shows equality (3.6).

To prove that the problem on the right-hand side of (3.6) has a minimum, we
consider a minimizing sequence (u,) for Problem 3.1. We extend u,, = g on (7,7 +
1] x T and set oy, := —dyu,, + H(x, Duy,) on [0, + 1] x T¢ and note that, in view
of Lemma 3.5, there is a subsequence, again denoted by (un, ), such that (u,)
converges in L' to a BV map u, (Du,,) converges weakly in L", and (a.,) converges
in the sense of measures to « on [0,7 + 1] x T%. As u, > 9 on [0,7] x T%, we also
have u > 1 (0,T) x T¢, so that u(T~,-) > (T,-) = g. By convexity of H w.r.t. p,
the pair (u, ) belongs to Kg. One easily shows by standard relaxation that

Ay, a) < 1in_1>inf Aluy).

Hence (u, @) is a minimum.

Let us finally check that @ = oL (0,T) x T + (u(T~,-) — g)d (6r ® HIL T?).
Indeed, by definition of g, we can extend (u, ) by setting (u,«) := (g, H(-, Dg))
on (T,T + 1) x T? and the following inequality holds in the sense of measures in
(0,7 + 1) x T4

—0wu+ H(z,Du) < a.
Let ¢ € C(T?), with ¢ > 0, be a test function. We multiply the above inequality
by ¢ and integrate on (T —n, T +n) x T? to get

T+n
go dx—i—/ ¢da.

T+n
()u(T — )", ) du + / 6H(z, Du) dardt < /
T T—n JTd

T—n J1d Td

Letting  — 0 along a suitable sequence such that u((T'—n)*,) — w(T~,-) in L?,
we obtain

ou(T™,z)dex < / gopdx +/ pd(al{T} x T9).
Td Td Td
This means that u(T~,-) < g+ aL {T} x T%. Let us now replace a by
a=al (0,T)x T+ (w(T™,") —g)d (6r @ H'LTY).

We claim that the pair (u, &) still belongs to Kg. For this we just have to check that
if we extend (u, &) to (0,7 + 1) x T? as before, then

—Ou+ H(z,Du) <& on (0,7 +1) x T¢
holds in the sense of distributions. Let ¢ € C2°((0,T + 1) x T%) with ¢ > 0. Then

T+1
/ /U3t¢+¢H(a:,Du)dxdt
0 Td
T T+1
:/0 /T “8f¢+¢H(anU)dxdt+/T /T 904+ 6H (x, Dg) dw dt
T
S/ ¢d(al_(O,T)><’1rd)+/ (w(T~,z) — g)¢(T, ) dz
o Jrd ra

T+1
+ / ¢H(z,Dg)dxdt
T T4

T+1
< / ¢pda.
0 Td
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This proves that the pair (u, &) belongs to Kg. In particular, A(u,a) < A(u, @), so
that
ma®({T}y x T <m | w(T,z)— g(z)daz.
Td
Since we have proved that u(7~,-) < g+ al_{T} x T¢, we have therefore an equality
in the above inequality, which means that oL {T} x T¢ = (w(T~,-) — g) dz. 0

4. The MFG system with density constraints. In this section, we study
the existence of solutions for the MFG system with density constraints

(i
(ii Oym — div (mDyH (z, Du)) = 0 in (0,7) x T4,

) -0+ H(x,Du) = f(x,m)+ 8 in (0,7) x T4,
)

(4.1) ('}ii; u(T,z) = g(z) + Br, Br >0, PBr(M@—-—m)=0 inT9,
)

—

(iv 0<m,<m, >0, fB(m—-—m)=0 in (0,7") x T,
(v m(0,z) = mo(x) in T¢

under the assumptions on H, f, g, and mg stated in section 2. We also study the
approximation of the solution of this system by the solution of the classical MFG
system.

4.1. Solutions of the MFG system with density constraints.

DEFINITION 4.1. We say that (u, m, 3, Br) is a solution to the MFG system (4.1)
if the following hold:
1. Integrability conditions: 3 is a nonnegative Radon measure on (0,T) x T¢,
Br € LY(T?) is nonnegative, w € BV ([0,T] x T¢) N L"([0,T] x T¢), Du €
L7([0,T] x T4 RY), m € LY([0,T] x T?), and 0 < m <m a.e.
2. The inequality

(4.2) — Owu+ H(z, Du(t,x)) < f(z,m)+
holds in (0,T) x T¢ in the sense of measures, with the boundary condition on
T,

g<u(T™,)=g+PBr ae.

Moreover, 5% =0 a.e. in {m <m} and
(4.3)
limsupme(t,z) =m  B°-a.e. if t <T and a.e. in {Br >0} if t =T,

e—0

where m. is any standard mollification of m.
3. FEquality

Oym — div(mDpH (z, Du(t,x)) =0, m(0) = my,

holds in the sense of distributions.

4. FEquality
T
/ m(—H (z, Du) + Du - DpH (2, Du) + f(x,m) + ) dzdt
o Jra
A ((0,T) x T%) + 7 / Brde= [ mo(@)u(0", ) — m(T, x)g(x) de
Td Td
holds.
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Let us recall that, in the above definition, 3%¢ and 3° denote the absolutely continuous
part and the singular part of the measure S.

Some comments on the definition are now necessary. Equality (4.3) is a weak
way of stating that m = m in the support of 8 and fSr, respectively, while the last
requirement formally says that equality —0yu + H(z, Du(t,x)) = f(z,m) + / holds.

We can state the main result of this section.

THEOREM 4.2. Let (u,a) € Kpr be a solution of the relaxed Problem 3.6 and
(m,w) € Kp be a solution of the dual Problem 3.2. Then « > f(-,m) as measures,
and, if we set

B:=al[0,T)x T — f(-,m)dzdt

and Py := alL{T} x T, the quadruplet (v, m, 3, Br) is a solution of the MFG system
(4.1).
Conversely, let (u,m, B, Br) be a solution of the MFG system (4.1). Let us set

(4.4) o= f(,m)dedt+ B+ Brd(dr @ HILT?)

and w = —mDpH (x, Du). Then the pair (u,a) is a solution of the relaxed problem,
while the pair (m,w) is a solution of the dual problem.

The proof of this result follows along the same lines as that of [13, Theorem 3.5].
However, for the sake of completeness (and because of some differences) we sketch it
here.

Proof. Let (u,a) € Kr be a solution of Problem 3.6, and let (m,w) € Kp be the
solution of Problem 3.2. First, by the definition of the Legendre-Fenchel transform
we have for a.e. (t,z) € [0,T] x T¢

(4.5) F*(x,a%(t,x)) + F(x,m(t,z)) — a®(t,x)m(t,z) > 0.
On the other hand, by optimality we have that
0= A(u, o) + B(m,w)

//F*a:oc °(t,x)) da dt +ma’([0,T] x T¢) — /uO ,x) mo(x) de
Td Td

+/ g(x)m(T, ) dx—i—/ » m(t, z)H* <x, ((Z?)> + F(x,m(t,x)) dedt

/ / a®m dz dt +ma’ ([0, T] x T?) —l—/ g(z)m(T,z) — u(0", ) mo(x) dz
Td Td

Lo (o)

where we used Lemma 3.7 for the last inequality. This means that all the inequalities
in the previous lines are equalities. In particular, we have an equality in (4.5), which
implies

a®(t,z) € O F(z,m(t,x)) a.e.

As O F(xz,m(t,x)) = {f(z,m(t,z))} for 0 < m(t,x) < M a.e., we have a®(t,x) =
f(z,m(t,z)) ae. in {0 < m < m}. Moreover, as O, F(x,0) = (—o00,0] and o >
0, we also have a®© = 0 = f(-,0) a.e. in {m = 0}. Finally, since 9,,F(zx,m) =
[f(z,m), +00), a® > f(x,m(t,z)) a.e. on {m = m}. Therefore a® > f(-,m) a.e. Let
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us set B := al_[0,T)xT¢— f(-,m) dx dt and Br := al_{T} x T?. From Proposition 3.8
we know that Sr = u(T~,-) —g.

Since equality holds in the above inequalities, there is an equality in the inequality
of Lemma 3.7; thus point 4 holds in Definition 4.1. Moreover, by Lemma 3.7, we have
that w = —mD,H (-, Du) a.e. and (4.3) holds. In conclusion, since (u, ) € Kr and
(m,w) € Kp, the quadruplet (u, m, 3, Br) is a solution to the MFG system (4.1).

Now let us prove the converse statement. For this let us take a solution (m, u, 8, f1)
of the MFG system (4.1) in the sense of the Definition 4.1. Let us define « as in (4.4)
and w := —mDpH(-, Du). We shall prove that (u,®) is a solution for Problem 3.6
and (m,w) is a solution for Problem 3.2. For the first one, one easily checks, following
the argument of Proposition 3.8, that (u,«) € Kr. Let us now consider a competitor
(@,&) € Kg. Using the equality in Lemma 3.7 for (u,a, m, —mD,H (-, Du)) and the
inequality for (@, &, m, —mD,H (-, Du)), we have

T
i, &) = *(z,a*(x)) dx ma’ 4y — 1 x)mo(x) dz
A = [ [ Fra @) drat e ma 0.7 T = [ a0 amo(e)d

Td

T
* ac ~ac ac —~s d
2/0 /WF (x,a®(x)) + m(a* — a*)dz dt + ma’([0,T] x T%)
—/ (0", 2)mo(z) da
T

d
T
> / / F*(x,a%(x)) dz dt +ma® ([0, T] x T¢) — / w(0F, 2)mo(x) dz,
0o Jrd Td
and thus (u, @) is a minimizer for Problem 3.6.
In a similar manner we can show that (m, w) is a solution for Problem 3.2. Hence
the statement of the theorem follows. O

We now briefly discuss the issue of the approximation of any solution to the MFG
system with density constraints. If F' = F(z,m) is strictly convex on [0,77] w.r.t. the
m variable, then, as H* = H*(x,q) is strictly convex w.r.t. ¢ (because H = H(x,p)
is C! in p), we can conclude that the dual Problem 3.2 has a unique minimizer. In
particular, in this case, the m component of the MFG system (4.1) is unique. We
do not expect uniqueness of the u component: this is not the case in the “classical
setting,” i.e., without density constraint (see, however, the discussion in [11]). For
this reason, the fact that one can approximate any solution of the MFG system (4.1)
by regular maps with suitable property is not straightforward. This is the aim of the
next lemma, needed in what follows, where we explain that the 8 component of any
solution can be approached by a minimizing sequence of Lipschitz maps with some
optimality property.

LEMMA 4.3. Let (u,m, (3, Br) be a solution to the MFG system (4.1). Then there
exist Lipschitz continuous maps (un, ) such that
(i) uy, satisfies a.e. and in the viscosity sense

—Oyup, + H(x, Duy) = ay in (0,T) x T¢:
(ii) the pair (un,ay) is a minimizing sequence for Problems 3.1 and 3.6;
(iil) (uy) is bounded from below and is bounded in BV ([0, T] x TH)NL" ([0, T] x T9),
and (Duy,) is bounded in L"([0,T] x T%);
(iv) (un) converges to some @ > u in L*((0,T) x T¢) with & = u m-a.e.;
(v) () is bounded in L*((0,T) x T¢) and converges in measure on [0,T] x T¢
to « defined from (B, Br) by (4.4);
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(vi) (@, m,B,Br) is a solution to the MFG system (4.1).

Proof. Let us define o as in (4.4) and recall that, by Theorem 4.2, (u,«) is a
minimum in the relaxed Problem 3.6. In particular, (u,a) belongs to g, which
means that if we extend (u, a) by (g9, H(-, Dg(-))) in [T, T + 1] x T¢, then

—O0u+ H(z,Du) <a in (0,7 +1) x T

For n € (0,1) we set u"(t,z) := u(t+n,z) and o := 7,fa, where 7, : [0, 7+ 1) x T? —
[—n, T+1—n)xT% is the time shift 7,,(¢,2) = (t—n, z). We then smooth u” into u"*p,
where ¢ € (0,1/2), p is a standard even mollifier supported in the unit ball of R*! and
pe(+) =797 1p(-/e). We note that u" x p.(t, ) for t € [T —¢,T] is a mollified version
of g. We finally slightly modify u" % p. so that it satisfies the boundary condition: let
¢ : R — [0,1] be smooth, increasing, with {(s) =0 for s < —1 and ((s) =1 for s > 0.
Set (.(s) = C(e71s), ue(t,x) :== (1 — C(t — T))u" * pe(t,x) + (- (t — T)g(x). Then
u*(T, z) = g(x) and

—0u* + H(z, Du™%) < o™ in (0,7 +1) x T,
where
0 1= [(1=C.(t=T)) (" — H(-, Du")) % po-+ H(w, D) —CL(t—T)(gl(x)— g * pe(t, )],

(observe that the last convolution is done in (d + 1) variables, even if g is a function
only depending on x). As ¢ — 0, u”¢ is bounded in BV and converges to u” in L?,
while o€ is nonnegative, bounded in L', and converges to o as a measure. We have

T
A™s, o) = / F* (z,a"(t,2z)) dedt — / u* pe(n, x)mo(x) da.
0o Jra Td

As € — 0, the first integral on the right-hand side converges to

T
/0 /T F* (2, (a")%(¢t, 2)) dz dt + T(a”)* (0, T] x T¢)

T
= / F*(z,a%(t +n,z)) dzdt + ma® ([, T + ] x T9).
0o Jra

This convergence is technical, but not difficult: Without explicit dependence on x, this
is just the combination of the lower semicontinuous behavior of this integral functional
with the fact that convex functionals which are invariant by translation decrease by
convolution; in the x-dependent case, one just needs to estimate the error using the
regularity in x.

Pick now a sequence (7,) tending to 0, such that u x p.(7,, ) converges in L! to
w(ny,-) as € — 0 (this is the case for a.e. ) and (u(n,,-)) tends in L' to u(0F,-) as
n — +o00. Then

lim sup lim sup A(u"%) < limsup A(u™, a™) = A(u, «).

n e—0 n

As (u,«@) is a minimum in the relaxed Problem 3.6, we can find €, — 0 such that
(u™*=n ") is a minimizing sequence for Problem 3.6 thanks to Proposition 3.8.
Now let u,, be the viscosity solution to

—Owu + H(x, Du) = o™ in (0,T) x T9,
uw(T,z) = g(z) inT9.
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Standard results on viscosity solutions imply that 4, is Lipschitz continuous (because
so are o and g¢), satisfies the equation a.e., and, by comparison, is such that
Uy > w' . Therefore

A(ﬂn’ Of:n;nn) S A(u"]nﬂ‘:n’ O/ﬂnxan)7

so that (@, ") is also a minimizing sequence for Problem 3.6. By Lemma 3.5,
(1) is bounded from below and is bounded in BV ([0, T] x T¢) N L"([0, T] x T%), and
(Duy,) is bounded in L"([0,7] x T¢). Up to a subsequence, (7,) converges to a BV
map @ in L' such that @ > u. Note that, as in the proof of Proposition 3.8, (@, «)
is also a minimizer of Problem 3.6, so that, by Theorem 4.2, (@, m, 3, 8r) is also a
solution to the MFG system (4.1). In particular, by (4) in the definition of solution,
the inequalities of Lemma 3.7 must be equalities for (@, «) and (u, a), so that

m(t, z)u(t,z)de = [ m(t,z)u(t,z)dz for a.e. t € [0, 7.
Td Td
As @ > u, this implies that @ = u m-a.e. In conclusion the pair (@, o™ ") satisfies
our requirements. a

Remark 4.4 (about the uniqueness of 8 in the solution of (4.1)). Assuming that
f is increasing in its second variable, we already know the uniqueness of (m,w) (see
Remark 3.4). This also gives the uniqueness of the density of w w.r.t. m, i.e., of
D,H(xz,Du), on {m > 0}. Supposing H strictly convex, this also gives uniqueness
of Du a.e. on {m > 0}. But if we formally differentiate equation (i) in (4.1), we
obtain only terms depending on Du; hence also DS is unique in the same region
{m > 0}. Using the BV regularity result of section 6 and the fact that 8 vanishes on
the nonnegligible set {m < m}, we infer uniqueness of 3.

4.2. Approximation by classical MFG systems. We now study to what
extent the solution of the MFG system with density constraint introduced above can
be obtained as the limit of the solutions of classical MFG systems. For this, we
assume that £ : T x [0, +00) — R is a continuous function for each ¢ > 0, strictly
increasing w.r.t. m, with f¢(-,0) = 0, and which fulfills the growth condition: There
exist § > 14 d/r and C, C. > 0 such that

Cimf~t —C < ff(x,m) < Com?~ ! 4 C..

We consider (u®, m®) the solution to the classical MFG system

(i) —O0w® + H(xz, Du®) = f(x,m*) in (0,7) x T4,
(4.6) (ii) Oym* —div(m*DpH (z, Du)) =0 in (0,7) x T4,
(iii) us(T,z) = g(x), me(0,2) =mp(z) inT%

Following Cardaliaguet [11] and Cardaliaguet and Graber [13], we know that the MFG
system (4.6) has a unique (weak) solution (uf, m®); namely, (uf,m®) € C°([0,T] x
T4) x LY([0,T] x T%) and the following hold:

(i) The following integrability conditions hold:

Duf € L", m*H*(-,D,H(-,Duf)) € L* and m°D,H(-, Du)) € L.
11) Equation (4.6)(1) holds in the following sense: the inequality
(ii)) E ion (4.6)(i) holds in the followi he i li
(4.7) — 0wt + H(z, Duf) < f(z,m®) in (0,T) x T,

holds in the sense of distributions, with u®(T\,-) = g.
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(iii) Equation (4.6)(ii) holds:
(4.8) ym* — div(m®DyH(x, Du)) =0 in (0,T) x T4,  m=(0) = my

in the sense of distributions.
(iv) The following equality holds:
(4.9)

T
/0 » me(t,x) (f(x,m*(t,x)) + H*(x, DpH(x, Du®)(t,x))) dedt

+ - m®(T, z)g(x) — mo(x)u®(0,z)dz = 0.

In addition, u¢ is Holder continuous and in W' and equality —du® + H(z, Duf) =
f(z,m?) holds a.e. in (0,T) x T?¢ (see Cardaliaguet, Porretta, and Tonon [15]).

Let us now suppose that f¢(x,m) — f(x,m) uniformly w.r.t. z for any m < m
and f¢(x,m) — +o0 uniformly w.r.t. z for any m >m as e — 0.
PROPOSITION 4.5. Under the above assumptions, the following hold:

1. The family (uf) is bounded in BV ([0,T] x T¢) N L" ([0, T] x T%), while (Duf)
is bounded in L ([0, T] x T%), the family (af := —0yuf +H (-, Duf)) is bounded
in LY([0,T] x T), with af > 0 a.e., (m?) is bounded in LY([0,T] x T%), while
(w®) is bounded in L" ([0,T] x T%).

2. If (u,m, ) is any cluster point for the weak convergence of (u®, m¢,a*), then
a> f(-,m) and, if we set B:= (a — f)L (0,T) x T? and pr :=u(T~,-) — g,
then the quadruplet (u, m, B8, Br) is a solution of the MFG system with density
constraint (4.1).

Proof. The proof is a straightforward adaptation of our previous constructions.
According to [14], we know that (u®, @) is a minimizer over g of the functional

As(u,a):/OT/W(FE)*(Q:,a)dxdt—/Tdu(OJr,a:)dmo(a:),

where F(z,m) := [ f(,s)ds and (F*)* is the Fenchel conjugate of F* w.r.t. the
last variable. Then, by convexity,

(F*)*(x,a) > am — F*(x,m),

where, by our assumptions, F°(z,m) converges uniformly w.r.t.  to F'(z,m). Let v
be the Lipschitz continuous viscosity solution to

{—(%w + H(z, DY) =0,
(T x) = g().

It is also an a.e. solution, so that (1, 0) belongs to Kr. Then

A (uf,af) < A%(¢,0) < —/Td ¥(0,z) dmo(z) < C.

So (A°(u®,af)) is bounded from above, and one can then argue exactly as in the
proof of Lemma 3.5 to obtain the bounds on (uf) and (af) as well as a bound for

(A®(uf, af)).
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Following [14], we also know that the pair (m®, w®) := (m®, —m*DyH(-, Du®)) is
a minimizer over Kp of

w(t, )

B (m, w) = /T g(em(T ) ot /O ! [ i)t <x m(t’x)>+Fs(x,m(t,x)) dzdt.

Since, by [14], A®(u®,af) = —B(m&,w), (B*(m&,w)) is bounded. From our as-
sumption on f we have therefore that (m?) is bounded in L?([0, T] x T%) while (w*)
is bounded in L™ ([0, T] x T%).

Finally, let (u,a) be a cluster point of (u®,a) and (m,w) be a cluster point of
(mf,w®) for the weak convergence. Then standard arguments from the theory of T'-
convergence show that (u,«) minimizes A while (m,w) minimizes B, so that, if we
set B:= (a— f)L(0,T) x T? and Br := u(T~,-) — g, the quadruplet (u,m, 3, Br) is
a solution of the MFG system (4.1) according to Theorem 4.2. O

5. No coupling, space homogeneity, power-like Hamiltonians and mg <
m. In this section, we study through an example some finer properties of the solutions
of (4.1). Let us consider f(z,m) =0 for all (z,m) € T x [0,+00), H(z,p) = 1|p|*
(s > 1), and T = 1. The terminal cost g is a given smooth function. As usual, we
assume that the initial density of the population satisfies mg < m — ¢ a.e. in T¢ for a
given constant 0 < ¢ < T (here this assumption will be essential, while it is not clear
whether for the considerations of the previous sections it is purely technical or not).
For simplicity, let us set s = 2. In this case the functional B for Problem 3.2 has the
form

1 |w|?
B(m,w) / / ——+Fxm)dxdt+/ g(z)m(1, z) dz,
Td 2 T

where we use the convention (3.3). Let us also chose F(x,m) = 0 for m € [0,m]
and F' = +oo otherwise. This functional recalls the one introduced by Bemamou and
Brenier to give a dynamical formulation for the Monge-Kantorovich’s optimal trans-
portation problem (see [4]). Only a constraint on the density m and a penalization
on the final value have been added.

Indeed, forgetting for a moment the density constraint, Problem 3.2 can be refor-
mulated as

1
(5.1) min{EWQQ(mo,ml) +/ gmidz : my € P(TY), my < m}.
Td

We remark that the above formulation always gives a geodesic curve connecting myg
and my (thus m; is defined for all ¢ € [0,1]). Since the admissible set in the above
problem is geodesically convex (and T? is a convex set), the density constraint is
satisfied as soon as it is satisfied at the terminal time. Hence the problem in (5.1) is
completely equivalent to Problem 3.2. Actually we can prove something more: if the
initial density satisfies strictly the constraint, then saturation may happen only at
the final time. This result is not a straightforward consequence of geodesic convexity,
and we give a complete proof of it below.

LEMMA 5.1. Let mg < m — ¢ (for a given constant 0 < ¢ < m) a.e. in T%, and
let my be the solution of Problem 5.1. Let (my) be the geodesic connecting mg to my.
Then, for any t € (0,1), we have ||m¢]jpe < mm, where A := (Mm—c)/m <

1 (note that m <1 fOT’t < 1)
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Proof. As we mentioned before, since the admissible set in Problem 5.1 is geodesi-
cally convex, we get m; < m a.e. in T? for all ¢ € [0, 1]. On the other hand, since m;
is absolutely continuous for all ¢ € [0, 1] we know that there exist optimal transport
maps 7%, St : T¢ — T% such that (T*)xzmo = m; and (S?) gm; = mo with T*0S* = id.
The maps (S;) and (T;) are given by McCann’s interpolation in terms of S* and T,
respectively, which is T} := (1 — t)id + tT" and S; = tid + (1 — t)S*. Moreover T} and
S are countably Lipschitz (i.e., the domain can be decomposed, up to negligible sets,
into a countable union of sets where these maps are Lipschitz continuous); hence we
can write the Jacobian equation

mo
det(DT;) = .
et(DT) my o Ty
Therefore, the density m; is given by
mo
5.2 =———05;.
(5:2) "= qet(DTy) Tt

Using the concavity of dett/? (for positive definite matrices), we obtain that

det(DTy) = det (1 — )1, + tDT") > ((1 )+ tdet(DTl)l/d)d

_ <(1—t)+t<%>l/d>dz ((1—t)+t(%)l/d)d

Hence by (5.2) we have that
mg o St
7
(1= 1)+ (mezs) )
Let us set A := (M — ¢)/m < 1. Then, for any ¢ € (0, 1), we have

A
(1 —t) +tAt/d)d’

my <

me >~

<m
(

and the coefficient m is strictly less than 1 for every ¢, A < 1. d

5.1. Some properties of 3, 31, and u. Let us discuss now some further
properties of 3, 81, and w.

PROPOSITION 5.2. Let (u,m, 3, 1) be a solution of the MFG system with density
constraints, and let us assume that we are in the setting of this section. Then [ =0
and u and By are bounded.

Proof. From Theorem 4.2, we know that the pair (m,—mD,H(-, Du)) is a min-
imizer of B. In view of Lemma 5.1, we have therefore m(t,z) < m for a.e. (t,2) €
(0,T) x T. By Definition 4.1, this implies that 3¢ = 0. Recall on the other hand
that

limsupm.(t,z) =m BP-ae. if t < 1,
e—0
where m,. is any standard mollification of m. But, still by Lemma 5.1, for any ¢ €
(0,1), we get an upper bound on m. (¢, x) which is strictly less than m. Hence, 5 =0
on [0,1) x T<.
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Let us now check that u is bounded. We note that, as § = 0 and H satisfies
the growth condition (2.1), u satisfies a.e. the inequality —dyu + |Dul?/2 < 0 in
(0,1) x T¢. Thus, if we mollify u in the usual way, u. is a classical subsolution to
—Oue + |Duc|?/2 < 0 on (6,1 — ¢) x T?. By Hopf’s formula we therefore get

|z —y|?

< . B e
ue(t, z) < lnfd {Us(l 5ay)+0(1 —e—1t)

yeT +O(1_t)} Y (t,x) € (e,1 —¢) x T%

Hence
ue(t,x) < iengd {us(1 —e,y)+C} V (t,x) € (,1/2) x T
y

Recalling that [, u(t, z) dz is bounded for a.e. t (see the proof of Lemma 3.5), we also
have that [, uc(t,z)dz is bounded as well for all ¢, and therefore inf, cra uc(1,y) is
bounded from above. So we have proved that u. is bounded from above by a constant
Co on (g,1/2) x T4, where Cy is independent of £. This shows that u is bounded from
above by Cp on (0,1/2) x T¢.

Let us set z(t,z) := (Co + || H(-,0)||z==) V |l — | H(-,0)||ze=(1 — t). Then z
is a subsolution to —0:z + H(z, Dz) < 0, which satisfies z(1,-) > g and 2(0,-) >
Co > u(0,:). Therefore the map a(t,x) := u(t,z) A z(t,x) is still a subsolution
(because H = H(xz,p) is convex w.r.t. p), which satisfies %(0,-) = u(0,-) a.e. and
g(z) <a(17,z) <u(l™,z). Let us set & := (@(17,-) — g) d(d; ® H'L T?). Then the
pair (@, &) belongs to g and by optimality of (u,a) we have

Alu, o) = /ﬂ‘d (u(1™,2) — g(x)) do — mo(x)u(0, z) dx

'JI‘d
< A, &) = / (a1, z) — g(z)) dz — [ mo(z)a(0, ) dz.
Td Td
As @(0,-) =u(0,-) and @(1~,x) <w(l™,z), this proves that 4(1~,2) =u(17,z) a.e.,
which means that u(17,-) is bounded from above. Since we already know that w is
bounded from below (see the proof of Lemma 3.5), we have established that (17, ")
is bounded. By Hopf’s formula, this entails the boundedness of u on (0, 1) x T¢, from
which the boundedness of 81 follows as well. 0

Remark 5.3 (Nash-type equilibrium). For this example a notion of Nash equilib-
rium can be formulated by the means of (m, 31), i.e., by the means of the “additional
price” 1 to be paid by the agents at the final time. This price, whose value is pre-
cisely f1 = (u(17,-) — g), clearly has to be paid only if agents arrive at the saturated
zone at the final time. Let us postpone the precise definition and the details on the
question of the Nash equilibrium, which will be established for more general cases in
section 7 (see Definition 7.9).

6. Regularity of the “additional price” 3. In this section we show, under
some additional regularity assumption on the data, that the measure 3 is absolutely
continuous and belongs to L;io/c(d_l)((O,T) x T4). In this respect, our model recalls
those studied by Brenier (see [7]) and later by Ambrosio and Figalli (see [1, 2]), where
they analyzed the motion of incompressible perfect fluids driven by Euler’s equations.

We will see in the next section that this regularity is essential in order to define
Nash equilibria in our context. For this, we assume in addition to the previous
hypotheses the following conditions: There exists A > 0 such that the following hold:

(HP1) (Assumption for H.) H and H* are of class C? with

(6.1) My <D} H <X\ 'Iy and My < D} H* <X 'Iq,
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(6.2) |D2,H*(z,p)| < C(1+|p]*),  |D2,H*(z,p)| <C(1+pl).

(HP2) (Assumption on F.) f is of class C? on T? x [0,7] and, for any m € [0, 7]
and a > 0,

(6.3) F(z,m)+ F*(z,a) —am > %|al — f(z,m)|* + p(@ — m),

where p = (o — f(x,m))+ and a1 = a — p.
(HP3) (Assumption on g.) g is of class C2.

Remark 6.1. Observe that the assumption (HP2) is fulfilled if 92, F*(z,a) > A
on (0, f(z,m)) for some A > 0. This assumption of course holds if f(z,m) = 0. If
f(z,m) > 0, since 0o F*(z, f(z,m)) = m on (0,7m), the implicit function theorem
implies that 92, F*(z,a) = 1/0,, f (x,m), which means that the assumption is indeed
satisfied as soon as 9, f(x, m) is bounded from above on (0,7), which makes it a very
natural assumption. Among the examples that we have in mind, we underline the
case where H(z,p) = |p|?/2 — f(z) and F(z,m) = 0 if m € [0,/m] and +oo otherwise.
Notice that the same example could be written with F(z,m) = f(z)m if m € [0,m)
and +oo otherwise, and H(z,p) = |p|?/2 (these different expressions give rise to the
same global and individual problems), but in this case (HP2) would not be satisfied
(and also (H4) would be violated).

THEOREM 6.2. Let (u,m, 3, 8r) be a solution of the MFG system (4.1). Under
the above assumptions, f(-,m(-,-)) € HL.((0,T) x T?) and 3 is absolutely continuous
in (0,T) x T4 with

B € Liyo((0.7): BV(T?) = Ligd "V ((0.7) x T%).
As we said, the proof is largely inspired by the works of Brenier (see [7]) and
Ambrosio and Figalli (see [1]) on the incompressible Euler equations.

Proof of Theorem 6.2. By abuse of notion, we use B(m’,v’), meaning B(m’, m'v")
for any admissible pair (m', m’v’) in the dual problem (v’ denoting the velocity field).

Throughout the proof, (u,m, S, fr) is a fixed solution of the MFG system (4.1),
and we define o by (4.4) and set w = —mD,H(z, Du). Recall that (m,w) is a
minimizer for B. We also set v := w/m and construct competitors (m®7, m®mv%7)
in the following way: Let us fix 0 < t; < ta < T, and let ¢ € C°((0,7);[0,1]) be a
smooth cut-off such that ¢ =1 on [t,#5]; for > 0 small and § € R? small (such that
t+¢(t)n € (0,7) for all t € [0,T]), we denote

m®"(t, x) := m(t + ((t)n, = + ((t)9)
the time-space translation of the density and let
VP (t,x) = o(t+ ((E)n, x + ()8 (1 +n¢' (1)) — (1)

denote the velocity field associated to m?®". Indeed, by construction (m%7, momy%m)
solves the continuity equation and satisfies the other constraints.

Step 0. Let us collect some tools now.

First, we have

(6.4) B(m®",v>") < B(m,v) + C(n* + |6]%).
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Indeed, let us denote by &, the inverse map of t +— ¢ + ((¢)n. Then, after changing
variables,

B(m‘s’”, v[s’”)
T
= /O /w [m(s,y)H* (y — ((&(5))8, —v(s,y) (L +n¢ (&,(s))) + ¢'(&,(5))6)
+ Py = )5 ms. )] € () dyds + [ glym(T.p) .

Td

In view of our C? regularity assumptions on H*, F, and g, the map (1, §) + B(m?", v%7)
is C%2. We obtain (6.4) by optimality of (m,v).

Second, by stationarity of the problem for B (it is enough to consider perturbations
of the form (m%7 v%") for ¢ with compact support, not necessarily 1 on [t1,t2]), we
have

» {m(H"(z,—v(t,x)) + DyH" (x,—v(t,x)) - v(t,x)) + F(z,m(t,z))} dz = constant.

From our assumption on H*, we have
* * * A 2
H*(x,—v) + DyH" (z,—v) - v < H*(z,0) — §|U| .
Thus
(6.5) €ss SUPyc(o,7] / m(t, z)|v(t, z)|* dz < C.
Td
By (6.1), we have D2 H* < (1/))I4, and therefore (6.5) implies
(6.6) eS8 SUDye 07 / mit,2)| Dy H* (x, —v(t,2))2 dz < C.
Td

Third, for any smooth map (v/,a’), with o' > 0, and (m/,w’) € Kp (where
v' = w'/m’) competitor for the primal and the dual problems, respectively, we have

T
A, o) + B(m/,v") 2/ {m/(H(z,Du’") + H*(x,—0v") +v" - Du')} dzdt
0o Jra
T
+ / {F(z,m) + F*(z,a/) — a’m’} dzdt.
0o Jrd

In view of our assumptions on (HP1) and (HP2), we have the key inequality

A o) + B(m',v") / m(t,z)|Du’ — D H* (z, —v")|[* dz dt

Td
(6.7) / m'(t,z)[v + Dy H (z, Du')|* dz dt
Td

//T{ jon — wm’>l2+p’(m—m'>} dz dt,

where p' = (¢/ — f(x,m))+ and of =o' —p'.
With the help of these tools let us show now the statements of the theorem.
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Step 1. We first check that f(-,m) € HL_((0,T) x T?). Let us fix (m’,v’) to be a
smooth competitor for B, and let (uy, a;,) be the minimizing sequence for Problem 3.6
defined in Lemma 4.3: We know that (ay,) is bounded in L' and converges to the

(nonnegative) measure « defined from (8, fr) by (4.4). Then, passing to the limit in
the inequality

T
A(tip, o) + B(m/,v') > / {F(z,m) + F*(z,a,) — apm'} dzdt,
0 Jrd
we get
T T
inf A+B(m/,v") > / {F(x,m") + F*(x,a*) — a®m'} dz dt—|—/ / (m—m") da®.
Kr o Jra o Jra

In view of the proof of Theorem 4.2, we have a® > f(-,;m), with an equality in
{m < m}. So, if we set as above p = (a®® — f(x,M))+ and af° = a® — p, then
a8® = f(-,m). By (6.3), this implies that

T
A
inf A+ B(m',v) z/ / A F(em) — fla,m!) dzdt,
Kr 0o Jra 2
an inequality which remains true for any (m’,v") € Kp (not necessarily smooth ones).

Adding inf, A to inequality (6.4) and using the duality infx,, A + ming, B =0 we
have

(6.8) inf A+ B(m®",v™") < C(n® + |0]*),
R

which implies

/ ’ / Fam) — flem®)P dzdt < C@P + [6]%),
t1 Td

and the regularity of f in z allows us to conclude f(-,m) € H} _((0,T) x T9).
Step 2. Let (un, ) be the minimizing sequence defined by Lemma 4.3. Without
loss of generality, we can assume that

(6.9) A(tp, an) — i,Can <1/n.

We set py, := (o, — f(-,))+ and o1y, = @, — pn. For ¢ : [0,T] x T¢ — R and for
1 > 0 small, let us define the average of ¢ on the [t, ¢ + 1] by

1
©(t, x) ::/ o(t + 6n,z)do,
0

which is well-defined on [t1,?s] x T¢. With this procedure, we similarly define the
functions p?, o’ etc. Let us take, moreover, o € C([t1, t2]; [0, +00)).
The aim of this step consists in estimating the quantity

ta
1;:/ /a(t)m|p2(t,x+5)—pZ(t,ar)ldﬂfdt-
t Td
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Namely, we prove that
(6.10)

0

I < Cllo]|re <|5| + (1 + %) (1/n+ 8] + n2)1/2>

+ Cllo o (1/ntn? 18212 [ (1 /ntn?+152) 24 18] (141 /402410272 |

1/2
+ C{lloI3e+lo o [(1/n+ 107472+ (/4102 + ) 2| (1 nt |62 4+) /2
=: X(o,1/n,6,n).

We will show in the last two steps that this inequality easily entails the desired
estimates on p and (3.

The proof of (6.10) is quite long and relies on the combination of (6.7), (6.8), and
(6.9), which implies that

(6.11)
I/n+Cn*+ 6% / / m®(t, 2)| Duy, — DyH* (z, —v*>")|* dz dt
to
—/ mON(t, z)|v®" + DpH (z, Duy,)|? dz dt
t1 T4
to
/ /{ loan — f (xm N2 + p, (7 — m? )}dxdt
t1 Td
We have

/ / (m—m(t,x))|pl(t,z 4+ &) — p (¢, z)| de dt
t1 Td

to
/ / m(t, 2)|pl (4, + ) — p (£, 2)| da dt
Td

=:Io1 + o2,

where the the first term can be estimated as follows:

ta
o < ol [ [ = mit,) (e o+ 8)| + (e )]} do e
t1 T

1 to
= HUHLOO/ de (m—mt,z)) {pn(t +0n, 2+ 6) + pp(t +6n,2)} dedt
0 t, Jrd

1 T
< Haum/ dH/ (7 — m=5=0)p, dz dt
0 0 T4

1 T
+ [|o|| L / d9/ (@ — m®=9)p,, dz dt.
0 o Jre

Now by (6.11) we obtain that
Iy < Cllo|lL=(1/n+ 6% +n?).

For the second term we have

ta
Ips < // m(t, 2)|al (t, 2 + 8) — ol (£, 2)| da dt
t1 Td

+ / / o(tymlay ,(t,x +0) —af ,(t,z)|dzdt
t1 Td

= Il + IQ.
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To estimate the term I, let us compute
1
al(t,x+0) —al(t,x) = / —Opun(t +6n,x 4+ 0) + H(x + 3, Du,(t + 6n,x + 6)) do
0
1
- / —Optn (t + O, x) + H(x, Duy(t + 0n,z)) d0
0
1
=yt / [Dun(t 4+ n,x + 86) — Duy,(t,z + s6)] - 6 ds
0
11
+ / / D H(z + sd, Duy(t + 60n,x + s6)) - 6 dsdf
0
1
+ / d9/ D,H(x + $6,&s) - [Dun(t + 0n,x + ) — Duy(t + 0, x)] ds dé,
0
where & := (1 — s)Dup(t + 01, x) + sDuy, (t + 0n, z + 6). Thus,
1
lal (t, x4 6) — all (t,x)| < |6]n~" / | Dy (t 4+ 1,2 4+ $6) — Duy (¢, + s6)| ds
0
1 1
+ [0] / / |DyH(x + s, Duy(t + 0n,x + sd))| dsdf
o Jo
1
+ / / |DpH (x + $6,&5)| | Dun(t + 0, 2 4+ 0) — Duy(t + 0n, )| ds d6.
o Jo
In view of our assumption (6.2) on D, H and D,H,
to
. / / m(t, 2)|al (t, 2 + 8) — ol (t, 2)| da dt
< |8|n~ / / / m(t, )| Dun (t + 1,2 + s8) — Duy,(t,x + s6)|ds da dt
+ | / / / o(tym(t,2) {1+ |Dun(t + 0,z + 58)*} ds b dzdt
Td

+C/ / / m(t,z) {1+ |Dun(t + 0n,z)| + |Duy(t + On, 2 + )|}
tl Td

X | Dy (t + 0n,x 4+ ) — Duy(t + 0n, x)| df dx dt
= I + Lo+ 3.

For I;;, we have

I < |6]n~ ///{ 2)(|Dun(t + 1,2 + 56) — DyH* (x, —(t, 2))|

+ |DgH* (z, —v(t,z)) — Dun(t, x + s6))|) } dsdzdt

ta+n 1
< ol / / / O (E)ym (¢, 2)| Dun (1, 7)
ti+n JTd

— D H*(x — 56, —v*%7"(t,z))| ds da dt

to
+ 161~ //T/ M=t 2) | Dun (t, ) — Dy H* (756, —0~"0(t, 2))| ds da dt.
t1
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By Cauchy—Schwarz and (6.11) we obtain
I < O~ ol 2 (1/n +n* +6]*)1/2.

We now estimate I13, which we bound from above as follows:

Iy < CHUHL2|5|+C’|5|/ / / / m(t,2)| Dy H* (2, —v(t, )2 ds 6 da dt
Td

+ | /T// {|Dun(t+6‘n,x+sd)|

— |D H* (2, —v(t, x))|2} ds df dz dt.

The second term can be estimated by (6.6), while, for the third one, we use the
inequality |a|> — |b|? < |a — b|? + |a — b||b| to get

Iz < Cllo]|r2|d]
to 1 1
+ Cllo]| 5] ///m(t,x)‘Dun(t—i—Gn,x—i—sé)
t1 Td JO 0

2
— D H*(z, —t, x))‘ dsdf dz dt

+20||g||Loo|5|/ ///{ (t, )| Duy(t + 0n, x + s8) — DgH* (z, —v(t, z))|

x |DgH™ (x, —v(t, a:))|} dsdfdzdt

< Cllo]z219]

to+6n 1 1
Clol=ldl [~ [ [ [ w500t )| Du 2,
ti+0n J1d Jo Jo

2
— D H*(x — 58, —v= 5%~ 0(¢, x))‘ dsdfdzdt

t2+97] 1 1
200l 1~ 3] / / / {m_s‘s’_en(t,x)‘Dun(t,x)
ti+6n JT4Jo JoO

— D H*(x — 58, —v~5%=0(¢, x))‘
X | D H* (x — 86, —v~5%=0(¢, x))|} dsdf dz dt.

As before, using the energy estimates (6.6) and (6.11) together with a Cauchy—Schwarz
inequality in the last integral, we obtain

Tz < Cllol 28] + Cllollo= 13 { (1/n+n? +182) + C(1/n+ 0 + 5) /2.

It is easy to see that with the help of the estimations for I1; and I;2 we can estimate
I3 as well. Hence we obtain

Iy < Cllo|lL2(1/n + |6 + )"/
2 2\1/2 1/2
+C{Cllolz + Cliollz [(1/n + 182 + 1) + (1/n + 132 +n%) /2] }
x (1/n+|6)% +n*)Y/2.
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Let us now take care of Io. Setting f7(¢,x) := fo x,m(t+ 6n,x))dd, we have

12:/:2 /Tda(t)mm’fm(t,x—l—&)—a?)n(t,x)|dxdt
< /tt /Wa(t)ma;{n(t,xm)—fn(t,x+5)|dxdt
+/t2 / o (OIS (¢ 2 + 8) — f7(t, 2)| da dt

/m/ (Ol f7(t ) — o (£ )] d

= g1 + Iag + Ia3.

Since
121<C/ / / (O)|a1n(t+0n,2+06) — f(x+0,m(t+60n,x+0))df dz dt
t1 Td

to—0n
n ,m(t, 0
< C/o /t /Jl‘d t)]oan(t,z) — fz,m(t,z))| dedtd

1—0n
we obtain by Cauchy—Schwarz and (6.11)
I < Cllollg=(1/n+ 16> +n?)'/2.

The term I3 can be treated in the same way. For I, we have

1 to 1/2
122§C||cr||L2/ (/ / |f(a:+5,m(t+0n,x+5))—f(a:,m(t+077,a:))|2da:dt> a0
0 t1 T4
< Cllo]| 2|9

because f(-,m(-,-)) is in HL_((0,T) x T%).
Putting the above inequalities together gives (6.10).
Step 3. We now show that p,, := (o, — f(-,M))+ belongs to the space L2([t1, t2];
BV (T4)). Let us take a test function ¢ € C°((0,T) x T%), e € R™ with |¢| = 1,17 >0
small, and let us set d := ne. Let us estimate

-n _
/ / ") - ¢ 2 —9) pn(t,x)dz dt
Td

to— n —

/ / — V(b2 6)p2(t, x)dzdt
t Td n
ta—mn Ul

/ / pn (t,x) —p(t,x + 0) dedt
t T4 n

t2—n
<|w||m—/t / (O3t )~ Pt -+ 0)| do s

< Hw”L"o;X(Uv 1/n777€7 77)'
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First let us recall that p,, — p as n — +00 in IM([0,T] x T4), which allows us to pass
to the limit in the above inequality as n — 400 and obtain

to — _ - _
[ [ oot 62) Z0TNEL Z0) 4 0 < bl L X (0,0, me,m).
ty JTd n n

Now, sending 7 — 0 and recalling (6.10), we have

to
/t / o) V(t,2) - edp(t,2) < Clllo~ o2

Therefore we obtain that p € L2([ty,t2]; BV (T9)) — L2([t1,ts]; LY@~V (T9)) and,
in particular, by the arbitrariness of ¢; and t2 and by an injection, we have p €
L0 ((0,7) x T4).

Step 4. Conclusion: As 0 < ay, < pp, + f(,m) and (o) converges to « defined
by (4.4), we have 0 < 8 < p+ f(-,m) in (0,T) x T9. This proves that j3 is absolutely

continuous and belongs to Ld/(Ul_l)((O7 T) x T9). O

loc
Remark 6.3. Note that by the example provided in section 5 we have the sharp-
ness of the above integrability result in the following sense: We cannot expect a bound
for p, in Lflo/c(dfl)(((), T] x T4), i.e., up to the final time, because of the occurrence of

a possible jump at t = T.

7. Nash equilibria for MFG with density constraints. Let us suppose in
this section the additional assumptions (HP1), (HP2), and (HP3) as in section 6.
To define a proper notion of Nash equilibrium, we use the techniques for measures
on paths, corresponding the trajectories of single agents. This will also allow us to
clarify the meaning of the control problem (1.4). The machinery used is inspired by
[2] (section 6) and also by [11] (section 4.3) and [12] (section 4). We note also some
similarities of this approach with works modeling traffic congestion and Wardrop
equilibria (see [6, 16]).

7.1. Density-constrained flows and a first optimality condition. Let us
recall that T' denotes the set of absolutely continuous curves v : [0,7] — T¢ and
Po(T") denotes the set of Borel probability measures 1 defined on T' such that

I " (6)? dsdi() < +oo.

We call 77 an almost density-constrained flow if there exists C' = C(77) > 0 such that
0 < my < C(R) ae. in T for all t € [0,7T], where my = (e)n. If C(7) < ™ (the
density constraint, given by our model), then we call 7 a density-constrained flow.
Let us recall, moreover, that we use the definition of the Lagrangian as L(z,v) =
H*(z, —v).

In the whole section we consider a solution (u,m, S, 8r) of the MFG system
(4.1). By Theorems 4.2 and 6.2 this corresponds to (u,«) and (m,w) solutions of
Problems 3.6 and 3.2, respectively, where

a=f(,m)dzdt+ Bdrdt + frd(6r @ HILT?) and w = —mD,H(z, Du).

Let us state the following results (in the spirit of Lemma 4.6-4.8 from [11]) which
characterize the density-constrained flows.
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LEMMA 7.1. Let i € Po(T') be an almost density-constrained flow, and set my :=
(et)yM. Then the following hold:
(i) For all 0 <t <ty <T we have

/Tdu(t;r,x)m@l,x)dxS/Tdu(t;, z)m(te, v dxjt//t1 t)) dtdn(y)
/ /ﬂ‘d (t, z)m(t, z) dz dt.

(We recall o(t, x) = f(x,m(t,x)) + S(t, x).)
(ii) In particular, for all 0 <t; <T

/u(ti,mm(tl,x)dm/ (9(2) + Br(@))(T, z) de
Td

w [ [ e seaane
//Td (t, z)m(t,z) dz dt.

Proof. Let us recall that u satisfies, in the sense of measures,
—Owu+ H(z,Du) < a in (0,T) x T,

where « belongs to Ld/(d 1)((0, T) x T9), thanks to Theorem 6.2. If we regularize u
into u, and « into a, by convolution (with a compact support in By /,,(0)), we obtain

—Oup, + H(z, Duy) < o + 15 in(1/n,T—1/n) x T4,
where
Tﬂ(tvx) = H(x,Dun(t,a:)) - H(vDu) *pn(tam)'

Note that (r,) tends to 0 in L'((0,T) x T¢). By the way, if H is independent of z, one
also has 7, < 0. Let us fix 0 < #; < to < T and n large. Now for any v € H'([0,71])
we have

d T
= (un(ta“/(t)) —/t L(W(S),‘/(S))d8> 2 Opun(t,7(t)) — H(y(t), Dun(t, ¥(t)))
(7.1) 2 —an(t, (1) — ra(t, y(2)).
Integrating this inequality on [t1,t2], then over T w.r.t. 7, we obtain
/11‘d Up(t1, )m(t1, ) de < /11‘d Unp (ta, )M (te, x dx—i—//tl ) dtdn(y)

/W/ an(t,x) + ot )] (t, x) dt dz.

We recall the fact that m € L>([0,T] x T%). Since (u,,) strongly converges in L' to
u € BV([0,T] x T?), we have the existence of J C (0,T) of full measure such that for
every ty,ts € J,t1 < to, the first two integrals pass to the limit as n — 4oc0. By the
strong convergence in LY (=D ([t;, t5] x T?) of (a) to a and in L([t1,ts] x T) of
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(rn) to 0, we can pass to the limit as n — 400 is the last integral as well. So, for a.e.
0 <ty <ty <T,we have

to
/u(tl,a:)ﬁz(tl,x)da:g/ u(ta, 1) (ts, o da:+// 1)) dt di(7)
Td Td t1
ta
/ / a(t,z)m(t,z) dt dz.
Td Jtqy

In order to show that the inequality holds for any ¢; < ¢35, let us now check that

lim w((t) x)mt,z)de = / u(t®, z)m(t, z) dz,
t'—t+ Jpd Td

where u((t')*,-) is understood in the sense of trace and (¢, -) is the (bounded) den-
sity of the continuous representative of the map t — m(t,-) da (for the L>®-weak-x
convergence). The above limit basically follows from the trace properties of BV
functions, but for the sake of completeness let us sketch it below. Let u, be a
standard mollification in space of u. As u is in BV, u((t')*,-) converges in L! to
u(t®,-) as t' — t*, so that u,((t')T,-) uniformly converges to u,,(t*,-). Let us write
Jpau(() T, z)m(t', z) dz as

(7.2) /T un((E), &)t ) dz + /T W) 2) — un((#)F, &)t o)) da.

By uniform convergence of uy, ((¢')T, -), the first term in (7.2) converges to [1., un, (t*, )
x m(t, ) dz, which is arbitrarily close to [ra u(t®, z)m(t, z) da for n large. As for the
second term in (7.2), it is bounded by |Ju((¢')7, ) —un ()T, )|z ||m]| L, which, by
Lt-convergence of u((t')*,-) to u(t*, ), tends to 0 uniformly in ¢/. This proves (i).
For (ii), we just apply (i) for to =T, since w(T~,-) = g + Br. O

DEFINITION 7.2. We say that an n € P2(T") is an optimal density-constrained
flow associated with the solution (u,m, B, Br) if m(t,-) = (er)xn for allt € [0,T] and
the following energy equality holds

/Tdu(oﬂx)mo(x)dx—/ g(x)m(T,z)dz +m ﬁde—f—// t)) dt dn(v)
/ /w (@, m(t, ) + B(t,x)) m(t, x) dz dt.

Note that the above definition is the reformulation in terms of density-constrained
flows of the energy equality from Definition 4.1, point (4).

Remark 7.3. Let us observe that for an optimal density-constrained flow 7, the
energy equality in Definition 7.2 holds for any 0 < t; < t3 < T as well, i.e.,

w(t!, x)m(t, z)dz = u(ty ,x)m(t, xz)de h )9
/Td (¢ 2)mits, z)d / (t5 2)m(ts, ) d +// L((t), (1)) dt dn()
(7.3) +/t2/1rd (f(x,m(t,x)) + B(t,z)) m(t,z) de dt.

This can be easily deduced using the inequalities from Lemma 7.1 three times on the
intervals [0, t1], [t1, 2], and [t2, T'] together with the global equality from Definition 7.2
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and the fact that (0;u)® is a nonnegative measure (by the fact that —9yu+ H (-, Du) <
a and o does not have singular part in (0,7) x T%), i.e., one has always u(t~,-) <
u(tt,) a.e. for all t € (0,7).

Identity (7.3) implies also that (9;u)® = 0 on the support of m; more precisely,

(7.4) /Td u(tt, m)m(t,z)de = /Jl‘d u(t™,x)m(t, z)dzx
for all t € (0,T).

The following proposition gives the existence result for an optimal density-
constrained flow 7.

PROPOSITION 7.4. There exists at least one optimal density-constrained flow n €
Po(T) in the sense of Definition 7.2.

Proof. The proof uses the same construction and follows along the same lines as
those in [11]. Nevertheless, we discuss the main steps here.
We construct a family (1:)e>o of density-constrained flows by

[verane) = [ wezm) a
T T4

for any bounded and continuous map ¥ : I' — R, where X7 is the solution of the
Cauchy problem

o whalt)
z(t) = et o) a.e. in [0, T7,
z(0) = x,

(me, we) being a standard mollification of (m,w) such that 0 < m. < . One easily
checks that m.(t,-) = (e¢)#ne.

Using Lemma 4.7 from [11], we obtain that the family (n:)c>0 is tight. Denoting
by m the limit of a suitable subsequence of such a family, this is an optimal density-
constrained flow in the sense of Definition 7.2. The proof of this statement goes
exactly as for Lemma 4.8 in [11], using the equality (4) from Definition 4.1 and the
inequality (ii) from Lemma 7.1. O

7.2. Optimality conditions on the level of single-agent trajectories. In
this subsection our aim is to show that the optimal density-constrained flows are
actually concentrated on paths which are optimal (in some weak sense) for the control
problem (1.4) (see Definition 7.5). We will show that they satisfy a weak dynamic
programming principle.

Let us recall that 8 € L2 _((0,T); BV(T%)) and By € L'(T%). In order to handle
the evaluation of 8 along single-agent paths we shall work with a specific representative
of it (which is defined everywhere in T9).

For an L] _ function h : T* — R we define the specific representative of i by

(7.5) h(z) := limsup h.(z),
0
where
he(z) = y h(z +ey)p(y) dy

and p is the heat kernel

(7.6) ply) = (2m) 2L,
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We use this specific regularization via the heat kernel because of the semigroup prop-
erty (he)er = heyer, which we shall profit from later.

To treat passages to limit (in the regularization, as € | 0, similarly as in section 6
from [2]) we will need some uniform pointwise bounds on S.; hence we shall use the
properties of the Hardy—Littlewood-type maximal function defined with the help of
the heat kernel (7.6). Thus for any h € L*(T%) we set

(Mh)(z) :==sup [ |h(z+ey)|p(y)dy.
e>0 JR4

Let us state some basic properties of the maximal functional M that we will use in
our setting. First, because of the semigroup property, we have

Mhe = sup |he|o < sup|hls: = Mh.
€'>0 &0

Second, it is well known that M leaves invariant any LP space with 1 < p < 400, and
there exists C, > 0 such that

| MA||ecray < CpllhllLo(ra)-

/@D ((0,T) x T9) —

((0,T) x T9). The integrability property we need is only M3 € LL ((0,T) x T9),

loc

Let us recall that by Theorem 6.2 we have that Mg € L
LiLOC

but to guarantee this, 3 € L _((0,T) x T¢) is not enough.
As usual we set a(t,z) = f(z,m(t,x)) + B(t,z) and use its representative &

(obtained as in (7.5)).
DEFINITION 7.5. Given 0 < t; < to < T, we say that a path v € H'([0,T]; T%)

with Ma(-,v) € L, .((0,T)) is minimizing on the time interval [t1,t2] in the problem
(1.4) if we have

@7 b)) + / T LA (0) + a7 () A < At (t2) + w(ta)

t1

(7.8) +/2L(~y(t)—l—w(t),f'y(t)—kw(t))+d(t,7(t)+w(t))dt

ty
for allw € HY([t1,t2]; T¢) such that w(t1) =0 and Ma(-,y +w) € L([t1,ta]).
Remark 7.6. Let us notice that for any density-constrained flow 7 the integra-
bility property Mé(-,v) € L. ((0,T)) is natural, since it is satisfied f-a.e. if Ma €
L ((0,T) x T?%). Indeed, we have

loc

t2 t2
/ Ma(t,~(£)) dt dij(7) = / Ma(t, 2)i(t, z) de dt < +oo
I'Jty t1 Td

for all 0 < t; < tg < T, where m(t, ) dz = (et) 7.

THEOREM 7.7. For any 0 < t1 <ty <T, any optimal density-constrained flow n
is concentrated on minimizing paths on the time interval [t1,t2] for the problem (1.4)
in the sense of Definition 7.5.

Proof. We follow here Ambrosio and Figalli [2]. Let us take an optimal density-
constrained flow 1 given by Proposition 7.4, fix 0 < t; < ty < T and y € T%, and take
w € H([ty,t2); T¢) with w(t;) = 0 and x € CL((0,7);[0,1]) with x > 0 on (t1,%2]
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and x(t1) = 0 a smooth cut-off function. Let us take a Borel subset E C I such that
n(E) is positive. For ¢ > 0 and y € T¢ we introduce the map 7., : I' = T by

_ I if v ¢ E,
Tey() = { y+wtexy ifyeE.

Now let us define 0., := (I.,)%n, which in particular is an admissible density-
constrained flow satisfying the inequalities from Lemma 7.1. In addition let us remark

that (er,)#7ey = (er,)gm = m(ts,-) dz.
Using the inequality (i) from Lemma 7.1 for 7., (on the time interval [t1, t2]) and
the equality (7.3) for n (on the same interval [t1,t2]), we obtain

/ [a@;m(tz)) + [ 00,500 + a1 0) dt] an()
E

t1

< /E [a(tQ,7(t2)+w(f2)+ﬁx(b‘2)9)+ / "Ly

t1
+w(t)+ex(t)y, ¥(t)+w(t)+ex(t)y) dt] dn(y)
to
+ [ a0+t + extm dtan(),
t1
where we are allowed to use any representative of v and «; thus we use the specially

constructed ones 4 and &. Let us average this last inequality w.r.t. the variable y
using the kernel p introduced in (7.6). We obtain

/ [ﬂ(t;ﬁ(tz)) +/ 2 L(~(t),4(t)) + d(t,fy(t))dt} dn(v)

E t

< /E /R d [a(t;,wm+w<t2)+sx<t2>y>+ /t L)
+lt) + X0+ 600) + £X(00) ] o) dyan(r)

+Llﬂ¢wwm@+wmmmmw

Now choosing D C H([t,2]; T%) a dense subset with w(t;) = 0 for all w € D, by the
arbitrariness of F for n-a.e. curve v € I' we deduce that

a(td A(t) + / "Ly (). 4(8) + a(t, (1)) de

t1

< / / " LOY() + w(t) + ex(t)y () + (t) + ex(t)y)p(y) dt dy
Rd Jtq

ey (87 Y (82) + w(t2)) + / e (0. A(1) + w(t))

for all w € D and € = 1/n. By a density argument, the above inequality holds for any
w € HY([t1,t2]; T?) with w(t1) = 0. We finally let ¢ | 0. As Ma(t,y+w) € L([t1,t2]),
and using the domination |a.| < Md&, we can pass to the limit in the last term of
the above inequality. By the dominate convergence theorem we can also pass to the
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limit in the first term thanks to the growth property and the continuity of L. In
this way we obtain the inequality (7.7) with @(t3,v(t2)) instead of @(t2,y(t2)) and
(ty , y(t2)+w(t2)). To conclude, it is sufficient to use u(t; ,-) < u(t2,-) (a consequence
of 9fu > 0) and u(t],-) = u(ts,-) m,-a.e. (given by (7.4)). O

Remark 7.8. The global version of Theorem 7.7 (to arrive up to the initial time
0 and the final time T') remains an open question. This is mainly due to the local
integrability property for the additional price 8 € L2 _((0,T); BV (T%)) we are aware of

at the moment. Let us remark that an integrability property 8 € L'([0, T]; L**4(T%))
for some £ > 0 would be enough to conclude in the global version.

The notion of Nash equilibria now has a clearer formulation. Since we are able to
give a weak meaning for the optimization problem along single-agent trajectories, a
solution (u,m, 8, Br) of the MFG system with density constraints gives the following
notion of equilibrium.

DEFINITION 7.9 (local weak Nash equilibria). Let (u,m, 8, 8r) be a solution of
the MFG system with density constraints in the sense of Definition 4.1 on [0,T] x T¢.
We say that (m, [, Sr) is a local weak Nash equilibrium if there exists an optimal
density-constrained flow n € Pao(I') in the sense of Definition 7.2 (constructed with
the help of (m, B, Br)) which is concentrated on locally minimizing paths for problem
(1.4) in the sense of Definition 7.5. In particular one has that m; = (e;)gm and
0<my <m ae. inT? for all t € [0,T).

Remark 7.10. Let us remark that by Proposition 7.4 and Theorem 7.7 for any
solution (u,m, B, Br) for the MFG system with density constraints obtained with the
additional assumptions (HP1), (HP2), and (HP3) the triple (m, 3, Br) is always a
local weak Nash equilibrium in the sense of the above definition.

7.3. The case without density constraint. Let us have a few words on the
Nash equilibrium and on the optimality condition on the level of single-agent trajec-
tories in the case when we do not impose density constraints. More precisely, our aim
is to clarify Remark 4.9 from [11].

Let us recall that in section 4.3 from [11] it was considered a class of flows 1 €
P, (T9) such that m € L([0,T] x T?), where my; := (e) 17, where 7’ > 1 is the growth
of the Lagrangian L in the velocity variable, while ¢ — 1 (where ¢ > 1) is the growth of
the continuous coupling f in the second variable. Because of this growth condition and
since m € L4([0,T] x T%), we have first that a(t, z) := f(z, m(t,z)) € L ([0,T] x T4).
Moreover Lemma 7.1 and Proposition 7.4 hold with 5 = 0 and Sr = 0, since we did
not impose any density constraint (see the corresponding Lemmas 4.6-4.8 from [11]).

The difference, compared to our analysis in the previous section, is that we can
consider globally minimizing paths in Definition 7.5. More precisely, by the global
integrability property of &, and hence Ma € Lq/([O,T] x T4), we allow curves v €
WLr'([0,T]) (and their variations) such that Ma(-,v) € L7 ([0, T]). This is once again
a natural class, since for any flow 7, with the above-described properties, it holds that

t2 t2

/ Ma(t,~(£)) dt dij(7) = / Ma(t, 2)i(t, 2) de dt < +oo
I'Jty t1 Td

for all 0 < t; < ty < T, since Ma € L7 ([0,T] x T¢) and m € LI([0,T] x T%), where

e = (er) 47
By these observations in the statement of Theorem 7.7 one can now change the
word “locally” to “globally,” and the proof follows along the same lines.
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