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Abstract. We consider the variational approach to prove the existence of solutions of second-
order stationary Mean Field Games systems on a bounded domain Ω ⊆ Rd with Neumann boundary

conditions and with and without density constraints. We consider Hamiltonians which grow as | · |q′ ,
where q′ = q/(q−1) and q > d. Despite this restriction, our approach allows us to prove the existence
of solutions in the case of rather general coupling terms. When density constraints are taken into
account, our results improve those in [A. R. Mészáros and F. J. Silva, J. Math. Pures Appl., 104
(2015), pp. 1135–1159]. Furthermore, our approach can be used to obtain solutions of systems with
multiple populations.
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1. Introduction. In this article we consider the stationary Mean Field Game
(MFG) system

(MFG1)



−∆u+H(·,∇u) + λ = f(x,m) in Ω,

∇u · n = 0 on ∂Ω,

−∆m− div (m∇ξH(·,∇u)) = 0 in Ω,

(∇m+m∇ξH(·,∇u)) · n = 0 on ∂Ω,∫
Ω

mdx = 1, m(x) > 0, in Ω,

introduced by Lasry and Lions in [LL06, LL07], which models the equilibrium configu-
ration of an ergodic stochastic symmetric differential game with a continuum of small,
indistinguishable players (see, e.g., [Fel13]). In the above system, Ω ⊆ Rd is a bounded
domain with a smooth boundary, n is the outward normal to ∂Ω, f : Ω× [0,+∞[→ R
is the so-called local coupling function, Ω × Rd 3 (x, ξ) 7→ H(x, ξ) ∈ R is the Hamil-
tonian, and the variables m : Ω → [0,+∞), u : Ω → R, and λ ∈ R represent the
stationary equilibrium configuration of the players, the equilibrium cost of a typical
player, and the ergodic constant, respectively. We have taken Neumann boundary
conditions, but our results admit natural versions for the more standard case of peri-
odic boundary conditions.
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1256 ALPÁR RICHÁRD MÉSZÁROS AND FRANCISCO J. SILVA

An interesting feature of the solutions of (MFG1) is their connection with the
long time behavior of the solutions of time-dependent MFGs. We refer the reader to
[CLLP12, CLLP13] for some results justifying rigorously this relation in some special
cases. The numerical resolution of stationary second-order MFGs has been studied in
[AD10, CC16, AFG17, BAKS16].

Existence and uniqueness results for system (MFG1) have been investigated by
several researchers using PDE techniques, starting with the first papers [LL06, LL07]
in the framework of weak solutions. The reader is referred to [Cir15, FG16, BF16,
Cir16, BOP16, CC17] for other subsequent results on the existence of weak solu-
tions. In addition, under different assumptions on the coupling function f and the
growth of H, the existence and uniqueness of smooth solutions have been analyzed
in [GPV14, GM15, PV17]. See also [GPSM12], where several a priori estimates for
smooth solutions of stationary second-order MFGs are established.

In this article we focus our attention on the proof of the existence of weak solutions
of (MFG1) by variational techniques. Indeed, as pointed out already in [LL07], system
(MFG1) can be seen, formally, as the first-order optimality condition of an associated
variational problem, involving a PDE constraint for the variable m. It turns out that
u and λ in (MFG1) correspond to the Lagrange multipliers associated to the PDE
constraint for m and the condition

∫
Ω
m(x) dx = 1, respectively. Let us mention

that variational tools for the study of stationary MFGs were also applied in [GSM14,
section 9] for quadratic Hamiltonians and f(x,m) = − logm, in [CG15, section 4], in
the context of first-order MFGs, and also in the recent paper [GNP17] focused in the
one-dimensional case d = 1.

Given q > d ≥ 2, where d is the space dimension, and setting q′ := q/(q − 1),
we prove the existence of solutions of (MFG1) for Hamiltonians H growing as | · |q′ .
More precisely, we suppose that H : Ω × Rd → R is a continuous function, which is
assumed to be strictly convex and differentiable in its second variable and satisfies a
polynomial growth condition in terms of q′: There exist C1, C2 > 0 such that

(1.1)
1

q′C1
|ξ|q

′
− C2 ≤ H(x, ξ) ≤ C1

q′
|ξ|q

′
+ C2 ∀x ∈ Ω, ξ ∈ Rd.

Even if this growth condition is restrictive but crucial for our arguments, the
main interest of this variational technique is that it allows proving the existence of
weak solutions of (MFG1) for a rather general class of coupling functions f in a
straightforward manner. Indeed, as we will show in section 3, f does not need to be
monotone (see also [Cir16, CC17, CGPSM16] for some recent results in this direction),
and, moreover, we can prove the existence of solutions of variations of system (MFG1)
involving couplings which can also depend on the distributional derivatives of m. As
a matter of fact, our results are valid for terms in the right-hand side of the first
equation in (MFG1), which can be identified with the Gâteaux derivative DF(m)
of a functional F : W 1,q(Ω) → R, which is Gâteaux differentiable and weakly lower
semicontinuous. As an example of a class of functionals we can deal with, we can take

F(m) :=

∫
Ω

F (x,m(x),∇m(x)) dx,

where F : Ω × R × Rd → R is a Carathéodory function, differentiable with respect
to its second and third variables and convex with respect to its third variable, and
satisfies suitable growth conditions. See section 3.2 for the details.

Our approach follows closely the one in [MS15], which considers in addition a
density constraint in order to model strong congestion effects (see [San12, CMS16]).
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In that article, the existence of solutions (m,u, p, µ, λ) ∈W 1,q(Ω)×W 1,q′(Ω)×M (Ω)×
M (Ω)× R, where M (Ω) is the set of Radon measures on Ω, to the system

(1.2)



−∆u+ 1
q′ |∇u|

q′ + µ− p+ λ = f(x,m) in Ω,

∇u · n = 0 on ∂Ω,

−∆m− div
(
|∇u|q′−2∇um

)
= 0 in Ω,

∇m · n = 0 on ∂Ω,∫
Ω

mdx = 1, 0 ≤ m(x) ≤ 1, in Ω,

spt(p) ⊆ {x ∈ Ω ; m(x) = 1}, p ≥ 0, in Ω,

spt(µ) ⊆ {x ∈ Ω ; m(x) = 0}, µ ≥ 0, in Ω,

is established if f(x, ·) is nondecreasing. If q > d, the result is proved with a variational
approach. On the other hand, when 1 < q ≤ d, a penalization argument allows proving
the existence also in this case. In the present article, when q > d, we improve the
results in [MS15], and we show the existence of solutions of

(MFG2)



−∆u+H(·,∇u)− p+ λ = f(x,m) in Ω,

∇u · n = 0 on ∂Ω,

−∆m− div (m∇ξH(·,∇u)) = 0 in Ω,

(∇m+m∇ξH(·,∇u)) · n = 0 on ∂Ω,∫
Ω

m dx = 1, 0 < m(x) ≤ κ(x), in Ω,

spt(p) ⊆ {x ∈ Ω ; m(x) = κ(x)}, p ≥ 0, in Ω.

Note that in (MFG2) a more general Hamiltonian is considered and the density con-
straint m ≤ 1 is replaced by m ≤ κ, where κ ∈W 1,q(Ω). Most importantly, f does not
need to be monotone, and using the Harnack’s inequality proved in [Tru73] (see also
[BKRS15]), we show that the density m is strictly positive, which implies, by the last
relation in (1.2), that µ in (1.2) is identically zero. Using the existence of solutions of
the variational problem associated to (MFG2), which can be proved easily, we prove
that the variational problem associated to (MFG1) admits at least one solution. This
crucial fact is the key to show the existence of solutions of (MFG1).

The paper is organized as follows. In section 2, we begin with some preliminaries
which allow us to characterize the subdifferential of the cost functionals appearing
in the optimization problems associated to (MFG1)–(MFG2). This analysis extends
the one in [MS15, section 2]. Section 3 is the core of the article. We prove the
existence of solutions of the variational problems associated to (MFG1)–(MFG2), and
we establish the corresponding optimality conditions, which provide the existence
of solutions of (MFG1)–(MFG2). We present a detailed discussion concerning the
generality of the coupling term, which, as we have explained before, is the main
feature of this approach. We also prove, by a bootstrapping argument, additional
regularity for the weak solutions. In section 4, we present some simple applications of
our results to the study of multipopulation MFG systems (see, e.g., [Cir15, BF16]).
Finally, in the appendix, we prove the strict positivity of the densities m appearing in
(MFG1)–(MFG2) as a consequence of Harnack’s inequality in [Tru73] and the assumed
regularity of the boundary ∂Ω.
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2. Preliminary results. In the entire article, we will assume that Ω ⊆ Rd
(d ≥ 2) is a nonempty, bounded open set with a C1,1 boundary ∂Ω. This regular-
ity assumption is equivalent to a uniform interior and exterior ball condition (see,
for instance, [Dal14, Theorems 1.8–1.9]) and allows us to use the classical Sobolev
inequalities.

The vector n will denote the outward normal to ∂Ω. Given r ∈ [1,+∞] and ` ∈ N
we will denote by ‖ · ‖r and ‖ · ‖`,r the standard norms in Lr(Ω) (or in Lr(Ω)d) and
W `,r(Ω), respectively.

Let q > d ≥ 2. Our aim in this section is to provide a characterization of the
subdifferential of the convex functional Bq : W 1,q(Ω) × Lq(Ω)d → R := R ∪ {+∞},
defined as

(2.1) Bq(m,w) :=

∫
Ω

bq(x,m(x), w(x)) dx,

where bq : Ω× R× Rd → R is given by

(2.2) bq(x,m,w) :=


mH∗(x,−w/m) if m > 0,

0 if (m,w) = (0, 0),

+∞ otherwise.

In view of the assumptions below, the function Bq is well defined and convex (see
Remark 2.1 and Theorem 2.4). It will appear in the cost functional of an optimization
problem whose first-order optimality condition has the form of an MFG system. In
(2.2), for every x ∈ Ω the function H∗(x, ·) : Rd → R is the Legendre–Fenchel
transform of H(x, ·), where H : Ω × Rd → R satisfies the assumptions described in
the introduction and in particular the growth condition (1.1).

Using the definition of H∗(x, ·), an easy computation shows that (1.1) implies

(2.3)
C1−q

1

q
|η|q − C2 ≤ H∗(x, η) ≤ Cq−1

1

q
|η|q + C2 ∀x ∈ Ω, η ∈ Rd.

Note that since H(x, ·) is strictly convex and differentiable, we have that H∗(x, ·) is
also strictly convex and differentiable (see, e.g., [Roc70, Theorem 26.3]). We denote
their gradients by ∇ξH(x, ·) and ∇ηH∗(x, ·), respectively. Moreover, classical results
in convex analysis show that for any x ∈ Ω

(2.4) ∇ξH(x, ·)−1(η) = ∇ηH∗(x, η) ∀ η ∈ Rd.

We now prove an elementary result which will be useful later. In the remainder of
this article we will denote by C > 0 a generic constant which can change from line to
line.

Lemma 2.1. Under (1.1) we have that H∗(·, ·), ∇ξH(·, ·) and ∇ηH∗(·, ·) are con-

tinuous. Moreover, if β ∈ Lq′(Ω)d, then we have that ∇ξH(·, β(·)) ∈ Lq(Ω)d. Analo-

gously, if v ∈ Lq(Ω)d, then ∇ηH∗(·, v(·)) ∈ Lq′(Ω)d.

Proof. Let (xn, ηn) and (x, η) in Ω×Rd be such that (xn, ηn)→ (x, η) as n→∞.
Set ξn := ∇ηH∗(xn, ηn). By definition of H∗,

H∗(xn, ηn) = ηn · ξn −H(xn, ξn) ≥ ηn · ξ −H(xn, ξ) ∀ ξ ∈ Rd.
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Since ηn is convergent, hence bounded, the first inequality in (1.1) shows that ξn is
bounded. Let ξ̄ be a limit point of ξn. Then, using the continuity of H and passing
to the limit, up to some subsequence, we get that

η · ξ̄ −H(x, ξ̄) ≥ η · ξ −H(x, ξ) ∀ ξ ∈ Rd,

which shows that ξ̄ = ∇H∗(x, η) and any limit point ofH∗(xn, ηn) is equal toH∗(x, η).
The continuity of∇H(·, ·) follows by the symmetric argument. Finally, if β ∈ Lq′(Ω)d,
setting x ∈ Ω 7→ η(x) := ∇H(x, β(x)), which is a measurable function since ∇H(·, ·)
is continuous, then we get by convexity that

H∗(x, η(x)) ≤ β(x) · η(x) +H∗(x, 0),

and so, by (2.3), we obtain the existence of C > 0 such that |η(x)|q ≤ C(β(x) · η(x) +
1). Using Young’s inequality, we get the existence of C > 0 such that |η(x)|q ≤
C(|β(x)|q′ + 1), and thus, integrating in Ω, we obtain that η ∈ Lq(Ω). The last
assertion follows from an analogous argument.

Regarding the dependence of H on the space variable x, we will assume that there
exists a modulus of continuity which is uniform w.r.t. the second variable, i.e., ∃ ω :
[0,+∞)→ [0,+∞), such that ω(0) = 0, ω is continuous, nondecreasing and

(2.5) |H(x, ξ)−H(y, ξ)| ≤ ω(|x− y|)(|ξ|q
′
+ 1) ∀ x, y ∈ Ω, ξ ∈ Rd.

Using that Ω is a compact set, a natural example of a Hamiltonian H satisfying (1.1)
and (2.5) is given by H(x, ξ) := b(x)|ξ|q′ + c(x), where b, c ∈ C(Ω) and b > 0.

Following the analysis in [MS15, Lemma 2.1 and Theorem 2.2], presented in a
more particular setting, we shall characterize the subdifferential of Bq, defined in
(2.1). Recall that given a normed space (X, ‖ · ‖) and a l.s.c. convex proper function
g : X → R, the subdifferential ∂g(x) of f at the point x consists in the set of all
x∗ ∈ X∗ such that

g(x) + 〈x∗, y − x〉X∗,X ≤ g(y) ∀ y ∈ X.

For the sake of completeness, in order to identify ∂Bq, we first state some simple
properties of the function bq(x, ·, ·). Given x ∈ Ω consider the set

(2.6) Aq′(x) := {(α, β) ∈ R× Rd : α+H(x,−β) ≤ 0}.

Since H is continuous and convex w.r.t. its second variable, we have that Aq′(x) is
closed and convex for any x ∈ Ω. Given a subset D of an euclidean space, we denote
by χD its characteristic function (in the sense of convex analysis), i.e., χD(y) = 0 if
y ∈ D and χD(y) = +∞ otherwise.

Lemma 2.2. For all x ∈ Ω, the function bq(x, ·, ·) is convex, proper and l.s.c. Its
Legendre–Fenchel conjugate and its subdifferential are given by

(2.7)

b∗q(x, ·, ·) = χAq′ (x)(·, ·), ∂(m,w)bq(x,m,w) =


(−H(x,−βx), βx) if m > 0,

(α, β) ∈ Aq′(x) if (m,w) = (0, 0),

∅ otherwise,

where, if m > 0, then βx := −∇H∗(x,−w/m).
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Proof. Using (2.2), it is straightforward to check that for all x ∈ Ω we have

(2.8) bq(x,m,w) = sup
β∈Rd

{β · w −mH(x,−β)} ,

and so bq(x, ·, ·) is convex, proper and l.s.c. Using that bq(x, ·, ·) is proper, we have
that ∂(m,w)bq(x,m,w) = ∅ if m < 0 or m = 0 and w 6= 0. On the other hand, from

(2.8), if m ≥ 0 for any x ∈ Ω we have the identity

(2.9) bq(x,m,w) = sup {αm+ β · w : (α, β) ∈ Aq′(x)} ,

which is checked to hold also when m < 0. Thus, since Aq′(x) is closed and convex,
b∗q(x, ·, ·) = χAq′ (x)(·, ·). This expression directly yields that ∂(m,w)bq(x, 0, 0) = Aq′(x).

If m > 0, then bq(x, ·, ·) is differentiable, and, by a simple computation, we get the
expression of its gradient with respect to (m,w).

Remark 2.1. Notice that the equality in (2.9) shows that (x,m,w) 7→ bq(x,m,w)
is lower semicontinuous and so, by [RW98, Example 14.31, Proposition 14.28], we have
that Ω 3 x 7→ bq(x,m(x), w(x)) is a measurable function if m and w are measurable.
In particular, the functional Bq is well defined.

Let us define

(2.10) Aq′ :=
{

(a, b) ∈ L∞(Ω)× L∞(Ω)d : (a(x), b(x)) ∈ Aq′(x) for a.e. x ∈ Ω
}

and denote by M+(Ω) and M−(Ω) the subsets of nonnegative and nonpositive finite
Radon measures of M (Ω), respectively. For a set D, we denote by 1D its indicator
function, i.e., 1D(y) = 1 if y ∈ D and 1D(y) = 0 otherwise.

Lemma 2.3. The closure of Aq′ in (W 1,q(Ω))∗ × Lq′(Ω)d is given by

(2.11) Aq′ :=
{

(α, β) ∈M (Ω)× Lq
′
(Ω)d : α+H(·,−β) ∈M−(Ω)

}
or, equivalently,

Aq′ :=
{
(α, β) ∈M (Ω)× Lq

′
(Ω)d : αac+H(·,−β) ≤ 0, a.e. in Ω and αs ∈M−(Ω)

}
,

(2.12)

where dα = αac dx + dαs is the Lebesgue decomposition of the measure α w.r.t. the
Lebesgue measure restricted to Ω.

Proof. Let us take (αn, βn) ∈ Aq′ converging to (α, β) in (W 1,q(Ω))∗ × Lq′(Ω).
By definition of Aq′ one has∫

Ω

αn(x)φ(x) dx ≤ −
∫

Ω

H(x,−βn(x))φ(x) dx, ∀φ ∈W 1,q(Ω), φ ≥ 0.

Since βn → β in Lq
′
(Ω)d, up to some subsequence βn(x) → β(x) a.e. in Ω. By (1.1)

we can use Fatou’s lemma to obtain that

〈α, φ〉(W 1,q)∗,W 1,q ≤ −
∫

Ω

H(x,−β(x))φ(x) dx, ∀φ ∈W 1,q(Ω), φ ≥ 0.

Using (1.1) again, we obtain that α−C2 defines a nonpositive distribution; hence, by
[Sch66, Theorem V] α can be identified with an element of M (Ω).
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Conversely let us take (α, β) belonging to the right-hand side of (2.11) or, equiv-
alently to the right-hand side of (2.12).

Analogously to [MS15], we construct different approximations for αac and β on
the one hand and for αs on the other. For R > 0 and x ∈ Rd we set BR(x) = {y ∈
Rd : |y − x| < R}. Consider a mollifier η : Rd → R satisfying that η ∈ C∞c (Rd),
η ≥ 0,

∫
Rd η(x) dx = 1, spt(η) ⊆ B1(0), and η(x) = η(−x) for all x ∈ Rd. Now, for

ε > 0 set

Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}, ηε(x) :=
1

εd
η(x/ε),

and for all x ∈ Ω and i = 1, . . . , d, let us define

α̃ε(x) :=

∫
Ω

ηε(x− y)αac(y) dy1Ωε(x), β̃iε(x) :=

∫
Ω

ηε(x− y)βi(y) dy1Ωε(x).

As ε ↓ 0, we have that α̃ε → αac in L1(Ω), β̃ε → β in Lq
′
(Ω)d, and (α̃ε, β̃ε) ∈

L∞(Ω)× L∞(Ω)d. Multiplying the inequality in (2.12) by ηε, integrating, and using
Jensen’s inequality yields

(2.13) α̃ε(x) +H(x,−β̃ε(x)) ≤ δ̃ε(x), ∀x ∈ Ω,

where

δ̃ε(x) :=

∫
Bε(x)

[H(x,−β(y))−H(y,−β(y))] ηε(x− y) dy1Ωε(x).

Note that (2.5) implies that

(2.14)

|δ̃ε(x)| ≤ ω(ε)

∫
Bε(x)

(
1 + |β(y)|q

′
)
ηε(x− y) dy1Ωε(x) ≤ ω(ε)

εd
‖η‖∞‖1 + |β|q

′
‖1,

and so δ̃ε ∈ L∞(Ω). Using that gε(·) :=
∫

Ω
(1+ |β(y)|q′)ηε(·−y) dy1Ωε(·) converges in

L1(Ω) to 1 + |β(·)|q′ ∈ L1(Ω), extracting a subsequence, the first inequality in (2.14)
implies that δ̃ε(·) → 0 a.e. in Ω. Since for ε ∈ (0, 1) we have that |δ̃ε| ≤ ω(1)gε, we
get from [EG92, Chapter 1.3, Theorem 4] that δ̃ε → 0 in L1(Ω).

This implies that (α̂ε, β̂ε) := (α̃ε − δ̃ε, β̃ε) ∈ Aq′ and (α̂ε, β̂ε) → (αac, β) in

L1(Ω)× Lq′(Ω)d.
Now, in order to approximate the singular part αs for x ∈ Ω and ε > 0 let us

define ρxε := (1Bε(x)∩Ω)/|Bε(x) ∩ Ω| and

α̂s
ε(y) :=

∫
Ω

ρxε (y) dαs(x) ∀ y ∈ Ω,

which is a nonpositive function. Arguing exactly as in the proof of [MS15, Lemma
2.1] we get that the uniform interior ball assumption on the boundary ∂Ω implies
that α̂s

ε ∈ L∞(Ω). Using that ρxε → δx in M (Ω), as ε ↓ 0, it is straightforward to

show that α̂s
ε → αs in M (Ω). Therefore, the sequence (α̂s

ε + α̂ε, β̂ε) → (α, β) in

M (Ω) × Lq′(Ω)d and (α̂s
ε + α̂ε, β̂ε) ∈ Aq′ for all ε > 0. Using that q > d, and so

W 1,q(Ω) ↪→ C(Ω) by the Sobolev embedding, we have that (α̂s
ε + α̂ε, β̂ε) → (α, β)

weakly in (W 1,q(Ω))∗ × Lq′(Ω)d. Since Aq is convex, its closure w.r.t. the weak and
strong topologies coincides. The result follows.
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For a given representative of m ∈ W 1,q(Ω) in C(Ω), we denote {m = 0} :={
x ∈ Ω : m(x) = 0

}
and {m > 0} :=

{
x ∈ Ω : m(x) > 0

}
.

Theorem 2.4. The following assertions hold true:
(i) The functional Bq, defined in (2.1), is convex, l.s.c. and B∗r (α, β) = χAr′ (α, β)

for all (α, β) ∈ (W 1,q(Ω))∗ × Lq′(Ω)d.
(ii) Let (m,w) ∈ W 1,q(Ω) × Lq(Ω)d, and suppose that Bq(m,w) < ∞. Then if

v := (w/m)1{m>0} /∈ Lq(Ω)d we have that ∂Bq(m,w) = ∅. Otherwise, Bq is
subdifferentiable at (m,w) and

∂Bq(m,w) =
{

(α, β) ∈ Aq′ : α {m > 0} = −H(·,∇H∗(·,−v))(2.15)

and β {m > 0} = −∇H∗(·,−v)} .

In particular, the singular part of α in (2.15), w.r.t. to the Lebesgue measure,
is concentrated in {m = 0}.

Proof. Since the arguments are similar to those in the proof of [MS15, Theorem
2.2], we only sketch the main ideas. First, truncating the sets Aq′(x) defined in (2.6),
by setting for k ∈ N

Aq′,k(x) := {(a, b) ∈ Aq′(x) ; a ≥ −k, maxi=1,...,d|bi| ≤ k}

and using Lemma 2.2 and the monotone convergence theorem, we have that

Bq(m,w) =

∫
Ω

sup
(a,b)∈Aq′ (x)

{am(x) + b · w(x)} dx

= lim
k→∞

∫
Ω

sup
(a,b)∈Aq′,k(x)

{am(x) + b · w(x)} dx.

Characterizing the pointwise optimizers (α(x), β(x)) ∈ Aq′,k(x) in the last expression,
it easy to see that Ω 3 x 7→ (α(x), β(x)) is a measurable function, which by definition
belongs to L∞(Ω)×L∞(Ω)d. Using this fact and the monotone convergence theorem
once again, we find that

Bq(m,w) = sup
(α,β)∈Aq′

∫
Ω

{α(x)m(x) + β(x) · w(x)} dx

= sup
(α,β)∈Aq′

∫
Ω

m(x) dα(x) +

∫
Ω

β(x) · w(x) dx.

Since Aq′ is closed and convex in (W 1,q′(Ω))∗× (Lq
′
(Ω))d, assertion (i) follows. Using

that Bq(m,w) < +∞ implies that w(x) = 0 a.e., where m(x) = 0, the definition of
Aq′ implies that

(2.16)

sup
(α,β)∈Aq′

∫
Ω

m(x) dα(x) +

∫
Ω

β(x) · w(x) dx

= sup
β∈Lq′ (Ω)d

∫
Ω

[−H(x,−β(x))m(x) + β(x) · w(x)] dx

= sup
β∈Lq′ (Ω)d

∫
Ω

[−H(x,−β(x)) + β(x) · v(x)]m(x) dx.
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An element β ∈ Lq′(Ω)d maximizes the above expression iff for a.e. x ∈ {m > 0} we
have that v(x) = −∇H(x,−β(x)). Since β ∈ Lq′(Ω)d, if v /∈ Lq(Ω)d, then Lemma
2.1 implies that the previous relation cannot be satisfied, and so ∂Bq(m,w) = ∅. On

the other hand, if v ∈ Lq(Ω)d, then β ∈ Lq′(Ω)d, satisfying β(x) = −∇H∗(x,−v(x))
a.e. in the set {m > 0}, optimizes the last expression in (2.16). Therefore, using the
definition of Aq′ we readily get that if (α, β) ∈ ∂Bq(m,w), then

β(x) = −∇H∗(x,−v(x)) and α {m > 0} = −H(∇H∗(x.− v)) a.e. in {m > 0}.

The result follows.

Remark 2.2. A generalization of the previous result to the case when 1 < q ≤ d
could be interesting by extending the techniques in [Bré72]. However, since our results
in the next section are intrinsically related to the assumption q > d, we have preferred
to provide a direct and self-contained proof in this case.

3. Variational problems. Let us fix q > d. In order to define the variational
problems we are interested in, we introduce first the data and our assumptions. Let

W 1,q
+ (Ω) := {m ∈W 1,q(Ω) ; m(x) ≥ 0 ∀ x ∈ Ω},

and F : W 1,q(Ω)→ R be such that

(3.1)

F is weakly lower semicontinuous, Gâteaux differentiable in W 1,q
+ (Ω)

and satisfies that ∀R > 0 ;∃ CR ∈ R such that if m ∈W 1,q(Ω)

and 0 ≤ m(x) ≤ R ∀ x ∈ Ω, then F(m) ≥ CR.

We will denote by DF(m) the Gâteaux derivative of F at m ∈W 1,q
+ (Ω).

Given w ∈ Lq(Ω)d let us consider the following elliptic PDE with Neumann
boundary conditions:

(3.2)

{
−∆m+ div(w) = 0 in Ω,

(∇m− w) · n = 0 on ∂Ω.

We say that m ∈W 1,q(Ω) is a weak solution of (3.2) if

(3.3)

∫
Ω

∇m(x) · ∇ϕ(x) dx =

∫
Ω

w(x) · ∇ϕ(x) dx ∀ φ ∈ C1(Ω).

Let us use the notation Y := {` ∈W 1,q′(Ω) ;
∫

Ω
`(x) dx = 0}. Since, div(w) ∈ Y ∗, the

results in [GM12, section 7.1] and [MS15, appendix] imply the existence of a unique
m ∈W 1,q(Ω) such that m is a weak solution of (3.3) and

∫
Ω
m(x) dx = 1. Moreover,

there exists C > 0 such that

(3.4) ‖∇m‖q ≤ C‖w‖q,

and so, by the Poincaré–Wirtinger inequality, there exists C > 0 such that

(3.5) ‖m‖1,q ≤ C (‖w‖q + 1) .

Note that (3.3) can be written as Am + Bw = 0 with A : W 1,q(Ω) → Y ∗ and
B : Lq(Ω)d → Y ∗ being linear bounded operators defined as

〈Am,φ〉Y ∗,Y :=

∫
Ω

∇m · ∇φ dx, 〈Bw, φ〉Y ∗,Y := −
∫

Ω

w · ∇φ dx ∀ φ ∈ Y,
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where 〈·, ·〉Y ∗,Y denotes the duality product between Y ∗ and Y . Now, let us define
J : W 1,q(Ω)× Lq(Ω)d → R and G : W 1,q(Ω)× Lq(Ω)d → Y ∗ × R as

J (m,w) := Bq(m,w) + F(m), G := (G1, G2) :=

(
Am+Bw,

∫
Ω

m(x) dx− 1

)
.

The first variational problem we consider is

(P1) inf
m∈W 1,q(Ω), w∈Lq(Ω)d

J (m,w) such that G(m,w) = 0.

In the second variational problem we impose a density constraint: Let κ ∈ W 1,q(Ω)
be such that

(3.6) κ := minx∈Ωκ(x) > 0 and

∫
Ω

κ(x) dx > 1.

Given a representative of κ, still denoted by κ, we define the set

C := {m ∈ C(Ω) ; m(x) ≤ κ(x) ∀ x ∈ Ω}.

We consider the problem

(P2) inf
m∈W 1,q(Ω), w∈Lq(Ω)d

J (m,w) such that G(m,w) = 0, m ∈ C.

Note that q > d and the Sobolev embeddings imply that W 1,q(Ω) ↪→ C(Ω), and so
the constraint m ∈ C in (P2) is well defined.

Remark 3.1. Theorem 2.4(i) and (3.1) imply that the cost functional J in (P1)
and (P2) is weakly lower semicontinuous. On the other hand, it is not necessarily
convex.

3.1. Existence of solutions of the variational problems. In this subsection
we prove that both problems (P1) and (P2) admit at least one solution. The proof of
existence of solutions of problem (P2) follows the same lines as the proof of [MS15,
Theorem 3.1]. The proof of existence of solutions for problem (P1) introduces an
artificial density constraint and uses the existence of solutions of (P2). Given a
Lebesgue measurable set A ⊆ Rd we denote by |A| its Lebesgue measure.

Theorem 3.1. Assume that (3.1) holds. Then problem (P2) has at least one
solution (m,w). If in addition F is bounded from below in W 1,q

+ (Ω) by a constant
CF ∈ R, then problem (P1) also admits at least one solution (m,w). Moreover, in
the latter case,

(3.7)
‖m‖∞ ≤ max

{
2c0c1, (2c0c1)qqCq−1

1 (F(1/|Ω|) + 2C2 − CF )
}

and ‖w‖qq ≤ qC
q−1
1 (F(1/|Ω|) + 2C2 − CF ) ‖m‖q−1

∞ ,

where C1 and C2 satisfy (1.1) and c0 and c1 depend only on the geometry of Ω.

Proof. We first prove the assertion for problem (P2), where the density constraint
allows obtaining directly some bounds on any minimizing sequence. Define

(3.8) κ̂ :=
κ

‖κ‖1
, and so 0 < κ̂(x) < κ(x) ∀ x ∈ Ω and

∫
Ω

κ̂(x) dx = 1.
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By the surjectivity result in [MS15, Lemma A.1], there exists ŵ ∈ Lq(Ω)d such that
Aκ̂+Bŵ = 0. By (2.3), we have that

Bq(κ̂, ŵ) ≤ Cq−1
1

q

∫
Ω

|ŵ(x)|q

κq−1
dx+ C2 + F(κ̂) < +∞,

which implies that the infimum in (P2) is not +∞. Now, let (mn, wn) be a minimizing
sequence, and set κ := maxx∈Ω κ(x). The previous discussion implies the existence of
C > 0 such that J (mn, wn) ≤ C for all n ∈ N. In particular, by (2.2), wn = 0 a.e. on
the set {mn = 0}. Since (mn, wn) is feasible, we get that (1/mq−1

n )1{mn>0} ≥ κ1−q,
and so (2.3) and (3.1), with R = κ, imply that

(3.9)

∫
Ω

|wn|q dx =

∫
{mn>0}

|wn|q dx ≤ q(C1κ)q−1 (C + C2 − Cκ) .

Therefore, the sequence wn is bounded in Lq(Ω)d, and so, by (3.5), the sequence
mn is bounded in W 1,q(Ω). Therefore, extracting a subsequence, we obtain the ex-
istence of (m,w) such that mn converges weakly to m in W 1,q(Ω) and wn converges
weakly to w in Lq(Ω)d. By passing to the weak limit, we get that G(m,w) = 0 and
m ∈ C. Finally, using that J is weakly lower semicontinuous we get that (m,w) solves
(P2).

Now, let us prove existence for (P1) under the additional assumption on the
boundedness from below of F in W 1,q

+ (Ω). Let γ > 1/|Ω|. Since (m̂, ŵ) := (1/|Ω|, 0)
is feasible for problem (P2) with κ(x) ≡ γ, we have that (P2) admits at least one
solution. We will show that any such solution (mγ , wγ) satisfies that ‖mγ‖∞ ≤ κ̄ for
some constant κ̄ > 0 which is independent of γ. This will prove the result since any
solution (mκ̄, wκ̄) of (P2) with κ(x) ≡ κ̄ solves (P1). Indeed, if there is a feasible (m,w)
for problem (P1) such that J (m,w) < J (mκ̄, wκ̄), then since there exists κ′ > 0 such
that ‖m‖∞ ≤ κ′ (because m ∈W 1,q(Ω)) we have that J (mκ′ , wκ′) ≤ J (m,w), where
(mκ′ , wκ′) is a solution of (P2) with κ ≡ κ′, and mκ′ ≤ κ̄, which contradicts the
optimality of (mκ̄, wκ̄) in (P2) with κ = κ.

Let us denote by c0 > 0 a constant such that ‖m‖∞ ≤ c0‖m‖1,q for all m ∈
W 1,q(Ω) and by c1 > 0 the constant in (3.5). Thus, any solution of G(m,w) = 0
satisfies that

‖m‖∞ ≤ c0c1(‖w‖q + 1) ≤ 2c0c1 max{‖w‖q, 1}.

Now, let us fix a solution (mγ , wγ) of (P2) with κ ≡ γ. If ‖wγ‖q ≤ 1, then
‖mγ‖∞ ≤ 2c0c1, so let us assume that ‖wγ‖q > 1 and so ‖mγ‖∞ ≤ 2c0c1‖wγ‖q. Since
wγ vanishes a.e. in {mγ = 0}, arguing as in (3.9) we get that

(3.10) ‖wγ‖qq ≤ qC
q−1
1 (Bq(1/|Ω|, 0) + F(1/|Ω|) + C2 − CF ) (2c0c1‖wγ‖q)q−1.

Since (2.3) implies that Bq(1/|Ω|, 0) ≤ C2, we find that

‖wγ‖q ≤ qCq−1
1 (F(1/|Ω|) + 2C2 − CF ) (2c0c1)q−1,

and so

‖mγ‖∞ ≤ (2c0c1)qqCq−1
1 (F(1/|Ω|) + 2C2 − CF ) .

The result follows.
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3.2. Existence of solutions of the MFG systems. We recall that for a
nonempty closed and convex set K, the normal cone NK(x) to K at x is defined as
NK(x) := ∂χK(x).

We have the following existence result.

Theorem 3.2. Assume that (3.1) holds and that F is bounded from below in
W 1,q

+ (Ω). Then there exists (m,u, λ) ∈W 1,q(Ω)× Y × R such that

(3.11)



A∗u+H(·,∇u) + λ = DF(m),

−∆m− div (m∇ξH(·,∇u)) = 0 in Ω,

(∇m+m∇ξH(·,∇u)) · n = 0 on ∂Ω,∫
Ω

m dx = 1, m(x) > 0, in Ω,

where the second equation, with its boundary condition, is satisfied in the weak sense
(see (3.3)).

Proof. Theorem 3.1 yields the existence of a solution (m,w) ∈W 1,q(Ω)×Lq(Ω)d

of problem (P1). By definition,

B̂q(m,w) + F(m) ≤ B̂q(m̃, w̃) + F(m̃) ∀ (m̃, w̃) ∈W 1,q(Ω)× Lq(Ω)d,

where B̂q(m,w) := Bq(m,w) + χG−1(0)(m,w). Since B̂q(m,w) is finite, the Gâteaux

differentiability of F and the convexity of B̂q imply that

−〈DF(m), m̃〉 ≤ lim inf
τ↓0

B̂q(m+ τm̃, w + τw̃)− B̂q(m,w)

τ

= inf
τ>0

B̂q(m+ τm̃, w + τw̃)− B̂q(m,w)

τ
,

where we have denoted by 〈·, ·〉 the duality product between (W 1,q(Ω))∗ and W 1,q(Ω).
Taking τ = 1 in the last term of the previous inequality, we get that

B̂q(m,w)− 〈DF(m), m̃〉 ≤ B̂q(m+ m̃, w + w̃) ∀ (m̃, w̃) ∈W 1,q(Ω)× Lq(Ω)d,

from which (−DF(m), 0) ∈ ∂B̂q(m,w). Set (m̂, ŵ) := (1/|Ω|, 0). Since χG−1(0)(m̂, ŵ)
= 0 and Bq is finite and continuous at (m̂, ŵ) (since q > d), we have (see, e.g.,
[ABM06, Theorem 9.5.4(b)])

(−DF(m), 0) ∈ ∂B̂q(m,w) = ∂Bq(m,w) + ∂χG−1(0)(m,w)(3.12)

= ∂Bq(m,w) +NG−1(0)(m,w).

In particular ∂Bq(m,w) 6= ∅, and so, by Theorem 2.4(ii), v = (w/m)1{m>0} ∈ Lq(Ω)d.

Lemma A.1, in the appendix, implies that m > 0 in Ω; hence, Theorem 2.4(ii) implies
that

∂Bq(m,w) = {(−H(·,∇H∗(·,−v)),−∇H∗(·,−v))} .
On the other hand, by [MS15, Lemma A.1] we have that G is surjective, and so (see,
e.g., [BS00])

NG−1(0)(m,w) = {DG(m,w)∗(û, λ̂) ; (û, λ) ∈ Y × R},

= {(A∗û+ λ̂, B∗û) ; (û, λ̂) ∈ Y × R}.

D
ow

nl
oa

de
d 

02
/2

8/
20

 to
 1

29
.2

34
.3

9.
43

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIATIONAL FORMULATION OF SOME STATIONARY MFGs 1267

Therefore, since B∗û = −∇û, we get the existence of (û, λ̂) ∈ Y × R such that

(3.13) −A∗û+H(·,∇H∗(·,−v))− λ̂ = DF(m), ∇H∗(·,−v) = −∇û.

Thus, defining u = −û and λ = −λ̂ we get the first equation in (3.11). On the other
hand, since w = mv and v = −∇ξH(·,∇u), the remaining equations in (3.11) also
hold true.

The proof of the following result, concerning problem (P2), is analogous to the
previous one (see also Theorem 4.1 and Corollary 4.2 in [MS15]); hence, we omit it.
Notice, however, that the extra assumption on the global lower bound for F is not
needed since existence also holds true when we only assume (3.1) (see Theorem 3.1).

Theorem 3.3. Assume that (3.1) holds. Then there exists (m,u, p, λ) ∈W 1,q(Ω)×
Y ×M (Ω)× R such that

(3.14)



A∗u+H(·,∇u)− p+ λ = DF(m),

−∆m− div (m∇ξH(·,∇u)) = 0 in Ω,

(∇m+m∇ξH(·,∇u)) · n = 0 on ∂Ω,∫
Ω

m dx = 1, 0 < m(x) ≤ κ(x), in Ω,

spt(p) ⊆ {m = κ}, p ≥ 0, in Ω,

where the second equation, with its boundary condition, is satisfied in the weak sense
(see (3.3)).

Remark 3.2. In the above theorem, the variable p plays the role of the Lagrange
multiplier associated to the density constraint m ≤ κ.

We discuss now the uniqueness of solutions of systems (3.11) and (3.14) under a
convexity assumption on F .

Proposition 3.4. If F is strictly convex in W 1,q
+ (Ω), then the solutions of (3.11)–

(3.14) are unique.

Proof. Let us consider first (3.11). Since F is convex, (P1) is a convex problem,
and so if (m,u, λ) solves (3.11), then (m,−m∇ξH(·,∇u)) solves (P1). Thus, the
uniqueness of m is a straightforward consequence of the strict convexity of F . Since
m > 0 and for all x ∈ Ω the map Rd 3 ξ 7→ ∇ξH(x, ξ) is injective and Rd 3 w 7→
H∗(x, w

m(x) )m(x) is strictly convex, we have that ∇u is unique. Thus, uniqueness of u

in Y follows, and, as a consequence, the first equation in (3.11) yields the uniqueness
of λ. The proof of uniqueness of (m,u) for system (3.14) is the same as the previous
one. By considering test functions supported in {0 < m < κ} we get the uniqueness
of λ, from which the uniqueness of p follows.

Remark 3.3. The previous uniqueness result for solutions of (3.14) improves the
one stated in [MS15, Remark 4.2].

Let us detail the novelty of our results. Compared to [MS15], when q > d, we
consider more general Hamiltonians, and we prove that m is strictly positive in Ω,
which allows us to eliminate the Lagrange multiplier µ ∈ M (Ω) from the system
(MFG)q in [MS15]. As we have seen, we can also get rid of the density constraint
and prove, using variational methods, the existence of solutions of (3.11). Most
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importantly, we can consider, for both systems (3.11) and (3.14), rather general right-
hand sides for the HJB equation since we allow F to be nonconvex. A typical class of
functionals that one can consider has the form already presented in the introduction:

(3.15) F(m) :=

∫
Ω

F (x,m(x),∇m(x)) dx,

where F : Ω×R×Rd → R is a Carathéodory function; i.e., for all (z, ξ) ∈ R×Rd we
have F (·, z, ξ) is measurable and for a.e. x ∈ Ω the function F (x, ·, ·) is continuous.

In addition, suppose the following:
(i) For a.e. x ∈ Ω and all z ∈ R the function F (x, z, ·) is convex.
(ii) For all R > 0 there exists γ ∈ L1(Ω) such that for a.e. x ∈ Ω

(3.16) F (x, z, ξ) ≥ γ(x) ∀ 0 ≤ z ≤ R, ξ ∈ Rd.

(iii) For a.e. x ∈ Ω the function F (x, ·, ·) is differentiable. Moreover, for all R > 0
there exists a0 ∈ L1(Ω) and b0 = b0(R) ≥ 0 such that for a.e. x ∈ Ω

|F (x, z, ξ)| ≤ a0(x) + b0|ξ|q ∀ |z| ≤ R, ξ ∈ Rd.

(iv) For all R > 0 there exists a1 ∈ L1(Ω), a2 ∈ Lq
′
(Ω), and b1 = b1(R) ≥ 0 such

that for a.e. x ∈ Ω, |z| ≤ R and ξ ∈ Rd we have that

|∂zF (x, z, ξ)| ≤ a1(x) + b1|ξ|q, |∇ξF (x, z, ξ)| ≤ a2(x) + b1|ξ|q−1.

Since q > d, assumptions (i)–(ii) imply the weak lower semicontinuity of F (see,
e.g., [Dac08, Corollary 3.24]), conditions (ii)–(iii) imply that F(m) ∈ R for all m ∈
W 1,q(Ω), and the last condition (iv) implies that F is Gâteaux differentiable at every
m ∈W 1,q(Ω) (see, e.g., the proof of [Dac08, Theorem 3.37]). Thus, assumption (3.1)
for F is satisfied in this case. The Gâteaux derivative of F at m ∈ W 1,q(Ω) is given
by linear continuous functional

〈DF(m), z〉 =

∫
Ω

[∂zF (x,m(x),∇m(x)) z(x) +∇ξF (x,m(x),∇m(x)) · ∇z(x)] dx

for all z ∈W 1,q(Ω). We obtain the following corollary of Theorem 3.2 and of Theorem
3.3 when F is independent of ∇m.

Corollary 3.5. Let f : Ω × R → R be a Carathéodory function. Assume that
for all R > 0 there exist a, γ1 ∈ L1(Ω) such that for a.e. x ∈ Ω

(3.17)

∫ z

0

f(x, z′) dz′ ≥ γ1(x) and |f(x, z)| ≤ a(x) ∀ |z| ≤ R.

Then (MFG2) admits at least one solution (m,u, p, λ) ∈W 1,q(Ω)×Y ×M (Ω)×R.
If, in addition, there exists γ2 ∈ L1(Ω) such that

∫ z
0
f(x, z′) dz′ ≥ γ2(x) for a.a.

x ∈ Ω and z ≥ 0, then system (MFG1) admits at least one solution (m,u, λ) ∈
W 1,q(Ω) × Y × R. In both cases, we have the additional regularity u ∈ W 1,s(Ω) for
all s ∈ (1, d/(d− 1)).

Proof. Consider F (x, z) :=
∫ z

0
f(x, z′) dz′ in (3.15). Since (3.17) implies (3.1),

existence of a solution (m,u, p, λ) ∈ W 1,q(Ω) × Y ×M (Ω) × R of (MFG2) follows
directly from Theorem 3.3. Analogously,

∫ z
0
f(x, z′) dz′ ≥ γ2(x) for all m ≥ 0 implies
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that F has a global lower bound on W 1,q
+ (Ω). Hence, existence of a solution (m,u, λ) ∈

W 1,q(Ω)×Y ×R of (MFG1) follows directly from Theorem 3.2. Since in both systems
m ∈ C(Ω), assumption (3.17) also implies that f(x,m(x)) ∈ L1(Ω) and the W 1,s

regularity for u (s ∈ (1, d/(d − 1))), in both systems, follow from [Sta65, Theorem
9.1].

Now, we comment on some other possible choices of F .

Remark 3.4.
(i) A simple and interesting example is given by f(x, z) = |z|r, where r > 0.

In this case, F (x, z) = 1
r+1 |z|

r+1 if z > 0 and F (x, z) = − 1
r+1 |z|

r+1 other-
wise. Thus, the assumptions of Theorem 3.5 and Proposition 3.4 are satisfied,
and so systems (MFG1) and (MFG2) admit unique solutions. Note that the
growth of f is arbitrary, showing one of the advantages of the variational
approach (compare with [GPV14, Cir15, PV17], where the growth of f is
restricted). On the other hand, if we consider f(x, z) = −|z|r, its primitive
is not bounded from below in [0,∞) and the assumptions of Theorem 3.5 are
not satisfied for problem (MFG1). However, they are satisfied for (MFG2),
and the existence of at least one solution to (MFG2) is ensured also in this
case.

(ii) In order to exemplify the possible dependence of F on ∇m, let us take
F(m) := 1

2

∫
Ω
|∇m|2 dx. In this case Theorem 3.2 yields the existence of

weak solution of

−∆u+H(·,∇u) + λ = −∆m in Ω,

∇(u−m) · n = 0 on ∂Ω,

−∆m− div (m∇ξH(·,∇u)) = 0 in Ω,

(∇m+m∇ξH(·,∇u)) · n = 0 on ∂Ω,∫
Ω

m dx = 1, m(x) > 0, in Ω.

Moreover, by Proposition 3.4, the solution is unique. As pointed out by an
anonymous referee, it is interesting to notice that the term −∆m in the first
equation is similar to the monotone regularization used recently in [FG16].

(iii) We can also consider a nonlocal dependence on m. For instance, setting
Ωε := {x ∈ Ω ; d(x, ∂Ω) > ε}, where d(·, ∂Ω) is the distance function to ∂Ω,
we can take F as before and

F(m) :=

∫
Ωε

F (x, ρ0 ∗m, ρ1 ∗ ∂x1
m(x), . . . , ρd ∗ ∂xdm(x)) dx

for some given regular kernels ρ0, . . . , ρd supported on Bε(0). In this case, it
is easy to check that (3.1) holds without requiring the convexity of F (x, z, ·).

Now let f : Ω × R → R be a Carathéodory function satisfying that there exists
γ2 ∈ L1(Ω) such that

∫ z
0
f(x, z′) dz′ ≥ γ2(x) for a.e. x ∈ Ω and z ≥ 0. Moreover,

assume that for all R > 0 there exists a ∈ L1(Ω) such that for a.e. x ∈ Ω and |z| ≤ R
we have that |f(x, z)| ≤ a(x). Under these assumptions, Corollary 3.5 ensures the
existence of at least one solution (m,u, λ) ∈ W 1,q(Ω) × Y × R of (MFG1). Using a
bootstrapping argument, we show in the next result some additional local regularity
properties for (m,u).
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Proposition 3.6. Consider the above setting, and suppose that Ω 3 x 7→
f(x,m(x)) ∈ R belongs to Lr(Ω) for some r > d and that ∇ξH(x, ·) is Hölder contin-
uous, uniformly on x ∈ Ω. Then there exist α0, α1 ∈ (0, 1) such that

(3.18) u ∈ C1,α0

loc (Ω) and m ∈ C1,α1

loc (Ω).

Proof.
Step 1. We show that there exists k > d such that u ∈W 2,k

loc (Ω). By the classical

Sobolev embeddings, this implies that u ∈ C1,α0

loc (Ω) (for some α0 ∈ (0, 1)). Let

r1 ∈ (q′, d/(d − 1)). By Corollary 3.5, we have that |∇u|q′ ∈ Lr1/q′(Ω), and so, by
(1.1), we have that H(·,∇u) ∈ Lr1/q′(Ω). Furthermore, since f(·,m(·)) ∈ Lr(Ω) and
r > δ1 := r1/q

′, the classical regularity theory for elliptic equations (see [GT83])

implies that u ∈ W 2,δ1
loc (Ω). In particular, the Sobolev inequality (see, e.g., [Ada75])

yields u ∈ W
1,

dδ1
d−δ1

loc (Ω), and so |∇u|q′ ∈ Lδ2loc(Ω) with δ2 := dδ1
q′(d−δ1) . We easily check

that δ2 > δ1, and so we improve the regularity of u to obtain that u ∈W 2,min{r,δ2}
loc (Ω).

Thus, if δ2 > d, then we obtain the first relation in (3.18). Otherwise, for i ≥ 2,
inductively we define the sequence δi+1 := dδi

(d−δi)q′ . Since δi+1 − δi ≥ (q′ + d −
dq′)/(d − δi)q

′ and q′ + d − dq′ > 0, we get that δi+1 − δi ≥ (q′ + d − dq′)/dq′ if
d > δi. Therefore, after a finite number of steps we get the existence of i∗ ≥ 2 such
that δi∗ > d and u ∈W 2,k

loc (Ω) with k := min{r, δi∗} > d.

Step 2. Let us prove that m ∈ C1,α1

loc (Ω) for some α1 ∈ (0, 1). Since m ∈W 1,q(Ω)

and q > d, we already have that m is Hölder continuous. Having u ∈ C1,α0

loc (Ω), this

implies that ∇u ∈ C0,α0

loc (Ω)d; hence, m∇ξH(·,∇u) ∈ C0,α̂
loc (Ω)d for some α̂ ∈ (0, 1).

Using a Schauder-type estimate (see [GM12, Theorem 5.19]) we get that m ∈ C1,α1

loc (Ω)
for some α1 ∈ (0, 1).

Remark 3.5.
(i) If f satisfies (3.17) with a ∈ Lr(Ω) for some r > d and (m,u, p, λ) solves

(MFG2), we have that (u,m) admits the regularity (3.18) locally in the open
set {0 < m < κ} (see [MS15, Proposition 4.3] for a similar result in a simpler
case).

(ii) We also underline the fact that it seems that (3.18) can also be established
using the so-called integral Bernstein method, successfully applied in a similar
context in [Cir15, Appendix A] and [PV17, section 4]. However, in our models
we have obtained (3.18) in a rather straightforward manner, using classical
elliptic regularity theory.

4. An application to multipopulation systems. In this section we show a
simple application of our results to the study of systems of the form

(MFGN )



−∆ui +Hi(·,∇ui) + λi = f i(x, (mi)
N
i=1) in Ω,

∇ui · n = 0 on ∂Ω,

−∆mi − div
(
mi∇ξHi(·,∇ui)

)
= 0 in Ω,

(∇mi +mi∇ξHi(·,∇ui)) · n = 0 on ∂Ω,∫
Ω

mi dx = 1, mi(x) > 0, in Ω,

i = 1, . . . , N,
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where N ≥ 2 (see [Cir15, BF16]). Here (mi)
N
i=1 describes the densities of N pop-

ulations. The Hamiltonians Hi : Ω × Rd → R (i = 1, . . . , N) are supposed to
satisfy the assumptions in section 2 (see in particular (1.1)). The given functions
f i : Ω × [0,+∞)N → R (i = 1, . . . , N) are such that for all ζ ∈ RN the function
f i(·, ζ) is measurable and for a.e. x ∈ Ω the function f i(x, ·) is continuous. Suppose
that

(4.1)
∃ γi ∈ L1(Ω) such that

∫ z

0

f i(x, zi, (ζj)j 6=i) dzi ≥ γi(x)

for a.e. x ∈ Ω, ∀ z ≥ 0, ∀ (ζ1, . . . , ζi−i, ζi+1, . . . , ζN ) ∈ [0,+∞)N−1,

where we have denoted

f i(x, zi, (ζj)j 6=i) := f i(x, ζ1, . . . , ζi−i, zi, ζi+1, . . . , ζN ).

Moreover, we assume that for all i = 1, . . . , N

(4.2)
∀ R > 0, ∃ ai ∈ L1(Ω) such that |f i(x, z, (ζj)j 6=i)| ≤ ai(x)

for a.e. x ∈ Ω, ∀ |z| ≤ R, ∀ (ζ1, . . . , ζi−i, ζi+1, . . . , ζN ) ∈ [0,+∞)N−1,

and that

(4.3)
∀ (ζ1, . . . , ζi−i, ζi+1, . . . , ζN ) ∈ [0,+∞)N−1

the map z ∈ [0,+∞)→ f i(x, z, (ζj)j 6=i) ∈ R is nondecreasing.

We have the following result.

Proposition 4.1. Suppose that for all i = 1, . . . , N the function f i satisfies
(4.1), (4.2), and (4.3). Then system (MFGN ) admits at least one solution m =
(m1, . . . ,mN ), u = (u1, . . . , uN ), and λ = (λ1, . . . , λN ), where for all i = 1, . . . , N ,
mi ∈W 1,q(Ω) and ui ∈W 1,s(Ω) (for all s ∈ (1, d/(d− 1)).

Proof. Let us define F i : W 1,q(Ω)N → R as

F i(mi, (mj)j 6=i) :=

∫
Ω

F i(x,mi(x), (mj(x))j 6=i) dx,

where F i(x, z, (ζj)j 6=i) :=

∫ z

0

f i(x, zi, (ζj)j 6=i) dzi.

Consider the space X := (W 1,q(Ω)×Lq(Ω)d)N , endowed with the weak topology, and
the set-valued map T : X → 2X defined as

T (x) :=

N∏
i=1

argmin(m′,w′)∈W 1,q(Ω)×Lq(Ω)d

×
{
Bq(m′, w′) + χG−1(0)(m

′, w′) + F i(m′, (mj)j 6=i)
}
,

where x = ((m1, w1), . . . , (mN , wN )). By Theorem 3.1, the embedding W 1,q(Ω) ↪→
C(Ω), and our assumptions, we have that T (x) is a nonempty compact set for all
x ∈ X. Assumption (4.3) implies that T (x) is also convex. Moreover, by (3.7)
and (4.2), for x ∈ X we have the existence of c > 0, independent of x, such that
‖m̄i‖1,q ≤ c and ‖w̄i‖q ≤ c for all m̄ = (m̄1, . . . , m̄N ) and w̄ = (w̄1, . . . , w̄N ) such that
(m̄, w̄) ∈ T (x). Therefore, defining

Kc := {(m,w) ∈ X ; ‖mi‖1,q ≤ c, ‖wi‖q ≤ c ∀ i = 1, . . . , N},
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we have that T (Kc) ⊆ Kc. Now, let us prove that T is upper semicontinuous;
i.e., T−1(M) := {x′ ∈ X ; T (x′) ∩ M 6= ∅} is closed for all closed sets M ⊆
X. Indeed, let xn = ((mn

1 , w
n
1 ), . . . , (mn

N , w
n
N )) ∈ T−1(M) such that xn → x =

((m1, w1), . . . , (mN , wN )). By definition, we have the existence of x̄n = ((m̄n
1 , w̄

n
1 ), . . . ,

(m̄n
N , w̄

n
N )) ∈M such that

Bq(m̄n
i , w̄

n
i ) + χG−1(0)(m̄

n
i , w̄

n
i ) + F i(m̄n

i , (m
n
j )j 6=i)

≤ Bq(m′, w′) + χG−1(0)(m
′, w′) + F i(m′, (mn

j )j 6=i) ∀ (m′, w′) ∈W 1,q(Ω)× Lq(Ω)d.

By (3.7) we have that x̄n is bounded in (W 1,q(Ω) × Lq(Ω)d)N , and so, up to some
subsequence, there exists x̄ = ((m̄1, w̄1), . . . , (m̄N , w̄N )) such that x̄n → x̄ in X, and
so, since M is closed, x̄ ∈ M . Under our assumptions, the Lebesgue dominated
convergence theorem implies the weak continuity of F i in W 1,q(Ω)N , and so we can
pass to the limit to obtain that x ∈ T−1(M). By the Kakutani fixed-point theorem,
there exists x = ((m1, w1), . . . , (mN , wN )) such that x ∈ T (x). The result follows
from Corollary 3.5.

Remark 4.1.
(i) As we pointed out, the result in Proposition 4.1 is a simple consequence of

the variational method we presented in the previous sections. We refer the
reader to [Cir15, CV16, BF16, ABC17] for a more detailed study and sharper
results based on PDE arguments tackling directly system (MFGN ).

(ii) The local regularity results presented in Proposition 3.6 for the one-population
case directly extend to the solutions of system (MFGN ).

We can also consider the instance of (MFGN ) where the functions f i (i =
1, . . . , N) satisfy that there exists a Carathéodory function F : Ω×RN → R such that
for a.e. x ∈ Ω the function F (x, ·) is differentiable and for all i = 1, . . . , N we have
that

(4.4) f i(x, ζi, (ζj)j 6=i) = ∂ζiF (x, ζ) for a.e. x ∈ Ω ∀ ζ = (ζ1, . . . , ζN ) ∈ RN .

As suggested in [Cir15, Remark 15], in this case system (MFGN ) can be found as the
optimality condition of the optimization problem

inf
mi∈W1,q(Ω), wi∈Lq(Ω)d

i=1,...,N

N∑
i=1

[
Bq(mi, wi) + χG−1(0)(mi, wi)

]
(PN )

+

∫
Ω

F (x,m1(x), . . . ,mN (x)) dx.

Indeed, suppose that F satisfies that there exists γ ∈ L1(Ω) such that

(4.5) F (x, ζ) ≥ γ(x) for a.a. x ∈ Ω and for all ζ ∈ RN .

Moreover, suppose that for all R > 0 there exists a ∈ L1(Ω) such that

(4.6)
|F (x, ζ)| ≤ a(x) for a.a. x ∈ Ω and ζ ∈ RN such that |ζi| ≤ R for all i = 1, . . . , N.

Then, arguing as in the proof of Theorem 3.1, we get the existence of a solution
m = (m1, . . . ,mN ), w = (w1, . . . , wN ) of (PN ), and so, mimicking the proof of
Theorem 3.2, we get the following result.
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Proposition 4.2. Suppose that f i, i = 1, . . . , N , satisfy (4.4), with F satisfying
(4.5)–(4.6). Then system (MFGN ) admits at least one solution m = (m1, . . . ,mN ),
u = (u1, . . . , uN ), and λ = (λ1, . . . , λN ), where for all i = 1, . . . , N , mi ∈ W 1,q(Ω)
and ui ∈W 1,s(Ω) (for all s ∈ (1, d/(d− 1)).

Note that (4.4) is restrictive. On the other hand, the previous result does not
require the strong boundedness condition (4.2) and the monotonicity assumption (4.3).
Moreover, this framework allows us to introduce density constraints of the form m ∈
K, where

K :=

{
m ∈W 1,q(Ω)N ;

N∑
i=1

αimi(x) ≤ κ(x)

}
.

We suppose that κ ∈W 1,q(Ω) satisfies κ(x) > 0 for all x ∈ Ω and the weights (αi)
N
i=1

satisfy

(4.7)

αi ≥ 0, ∀ i = 1, . . . , N, ∃ ī ∈ {1, . . . , N} such that αī > 0 and
N∑
i=1

αi < ‖κ‖1.

Condition (4.7) implies that if for all i = 1, . . . , N we define m̂i := κ/‖κ‖1 and
ŵi := ŵ, where ŵ is such that Bŵ = −Aκ/‖κ‖1 (we know that such ŵ exists by
[MS15, Lemma A.1]), then m̂ := (m̂1, . . . , m̂N ), ŵ := (ŵ1, . . . , ŵN ) are feasible for
problem

(P ′N )

inf mi∈W1,q(Ω), wi∈Lq(Ω)d

i=1,...,N

N∑
i=1

[
Bq(mi, wi) + χG−1(0)(mi, wi)

]
+

∫
Ω

F (x,m1(x), . . . ,mN (x)) dx,

s.t. m ∈ K

and m̂ is an interior point to the constraint m ∈ K, i.e.,
∑N
i=1 αim̂i(x) < κ(x) for all

x ∈ Ω. Therefore, we can argue as in the proof of Theorem 3.1 to show the existence
of at least one solution of (P ′N ), and then, following the proof of Theorem 3.1 (see also
the proofs of Theorem 4.1 and Corollary 4.2 in [MS15]), we get the following result.

Proposition 4.3. Suppose that for all i = 1, . . . , N the function f i satisfies the
assumptions of Proposition 4.2. Moreover, assume that (4.7) holds. Then system

(MFG′N )



−∆ui +Hi(·,∇ui)− αip+ λi = f i(x, (mi)
N
i=1) in Ω,

∇ui · n = 0, on ∂Ω,

−∆mi − div
(
mi∇ξHi(·,∇ui)

)
= 0 in Ω,

(∇mi +mi∇ξHi(·,∇ui)) · n = 0 on ∂Ω,∫
Ω

mi dx = 1, mi(x) > 0 in Ω,

i = 1, . . . , N,

with
N∑
i=1

αimi(x) ≤ κ(x) for all x ∈ Ω,

p ≥ 0 and spt(p) ⊆

{
x ∈ Ω ;

N∑
i=1

αimi(x) = κ(x)

}
,
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admits at least one solution m = (m1, . . . ,mN ), u = (u1, . . . , uN ), λ = (λ1, . . . , λN ),
and p, where for all i = 1, . . . , N , mi ∈W 1,q(Ω), ui ∈W 1,s(Ω) (for all s ∈ (1, d/(d−
1)), and p ∈M (Ω).

Appendix. We prove in this appendix a lemma which is crucial to show the
strict positivity of the densities in (MFG1) and (MFG2).

Lemma A.1. Assume that Ω ⊂ Rd satisfies the assumptions at the beginning of
section 2, q > d, and let v ∈ Lq(Ω)d. Suppose that m ∈W 1,q(Ω) is a weak solution of{

−∆m+ div(vm) = 0 in Ω,

(∇m− bm) · n = 0 on Ω.

Then m(x) > 0 for all x ∈ Ω

Proof. Since v ∈ Lq(Ω)d (q > d), by Harnack’s inequality proved in [Tru73] (see
also [BKRS15, Corollary 1.7.2]) we have that m(x) > 0 for all x ∈ Ω. It remains to
study the positivity of m on the boundary ∂Ω. To achieve this, we use a standard
reflection argument following [Nit11]. Let x ∈ ∂Ω. Since Ω is supposed to be a
Lipschitz domain, in a neighborhood of x the boundary ∂Ω can be represented as the
graph of a Lipschitz function ψ : Rd−1 → R. Without loss of generality for these local
considerations we may suppose that x = 0 and that

Bdr (x) ∩ ∂Ω = {(y, ψ(y)) : y ∈ Bd−1
r (0)}

for some r > 0 small (otherwise one can perform some isometric transformations on
Ω under which all the hypotheses that we assumed on the data remain invariant).
We have denoted by Bdr (z) and Bd−1

r (z) the balls of radius r centered at z in Rd and
Rd−1, respectively.

Consider a strip-like domain

G :=
{

(y, ψ(y) + s) : y ∈ Bd−1
r (0), s ∈ (−r, r)

}
such that

Ω ∩G =
{

(y, ψ(y) + s) : y ∈ Bd−1
r (0), s ∈ (0, r)

}
.

Defining T : Bd−1
r (0)× (−r, r)→ G as T (y, s) := (y, ψ(y) + s), we have that T is a bi-

Lipschitz map (an injective Lipschitz continuous map whose inverse is also Lipschitz
continuous) and

DT (y, s) =

[
Id−1 0
∇ψ(y)> 1

]
and DT (y, s)−1 =

[
Id−1 0

−∇ψ(y)> 1

]
for a.e. (y, s) ∈ Bd−1

r (0)× (−r, r) (Id−1 ∈ R(d−1)×(d−1) denotes the identity matrix).
Define the reflection map S : G→ G as

(A.1) S(T (y, s)) = T (y,−s),

which clearly leaves the points on ∂Ω∩G invariant and satisfies that S(S(x)) = x for
all x ∈ G. Differentiating both sides of (A.1) yields for a.e. (y, s) ∈ Bd−1

r (0)× (−r, r)

DS(T (y, s))DT (y, s) = DT (y,−s)
[
Id−1 0
0>Rd−1 −1

]
,
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from where we get

DS(T (y, s)) = DT (y,−s)
[
Id−1 0
0>Rd−1 −1

]
DT (y, s)−1 =

[
Id−1 0

2∇ψ(y)> −1

]
.

Thus, det(DS(x)) = −1, DS(x)−1 = DS(x) for every x ∈ G and DS(·) is bounded on
G. Note that since DS(T (y, s)) does not depend on s we have that DS(Sx) = DS(x).

Let us introduce some notation. We set U := G ∩ Ω, V := G \ Ω = S(U) and for
b : U → R, we define b : V → U as b(x) := b(S(x)) and

b̃(x) =

{
b(x), x ∈ U,
b(x), x ∈ V,

the a.e. extension of b to G (the definition on ∂Ω ∩ G is irrelevant since this set
is L d-negligible). Arguing as in [Nit11, Lemma 3.3], if b ∈ W 1,q(U), we have that
b̃ ∈W 1,q(G), ∇b̃ = ∇b1U +∇b1V , and ∇b(x) = DS(x)∇b(S(x)) for a.e. x ∈ G.

Now, since (m, v) satisfies (3.3) (with w = vm) for tests functions ϕ ∈ C1(Ω),
defining v̂ ∈ Lq(G)d as

v̂(x) =

{
v(x), x ∈ U,
DS(x)v(x), x ∈ V,

where v is understood componentwise, the pair (m̃, v̂) solves a similar equation on G
with test functions ϕ ∈ C1

c (G). Indeed, let us take ϕ ∈ C1
c (G) and compute

(A.2)∫
G

(∇m̃ · ∇ϕ− m̃v̂ · ∇ϕ) dx =

∫
U

(∇m̃ · ∇ϕ− m̃v̂ · ∇ϕ) dx

+

∫
V

(∇m̃ · ∇ϕ− m̃v̂ · ∇ϕ) dx

=

∫
U

(∇m · ∇ϕ−mv · ∇ϕ) dx

+

∫
V

(
∇m(x) ·∇ϕ(x)−m(x)∇ϕ(x)>DS(x)v(x)

)
dx

=

∫
V

∇ϕ(x)>DS(x)∇m(S(x)) dx

−
∫
V

m(S(x))∇ϕ(x)>DS(x)v(S(x)) dx

=

∫
U

∇ϕ(S(y))>DS(S(y))∇m(y) dy

−
∫
U

m(y)∇ϕ(S(y))>DS(S(y))v(y) dy

=

∫
U

(∇m(y)−m(y)v(y)) · ∇ϕ(y) dy

= 0,

where we have used the fact that both ϕ and ϕ (restricted to U) are admissible test
functions in (3.3), a change of variable in the integrals, and the properties that we
have shown for S.

The regularity of v̂ and [BKRS15, Corollary 1.7.2] imply that m(x) > 0. The
result follows.
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1276 ALPÁR RICHÁRD MÉSZÁROS AND FRANCISCO J. SILVA

Acknowledgments. The authors thank M. Cirant for suggesting that they look
carefully at whether some Harnack inequality holds in their framework. This observa-
tion led the authors to find the useful references in [BKRS15] and improve the results
in the present paper.

REFERENCES

[ABC17] Y. Achdou, M. Bardi, and M. Cirant, Mean field games models of segregation,
Math. Models Methods Appl. Sci., 27 (2017), pp. 75–113.

[ABM06] H. Attouch, G. Buttazzo, and G. Michaille, Variational Analysis in Sobolev
and BV Spaces. Applications to PDEs and Optimization, MPS/SIAM Series on
Optimization, SIAM, Philadelphia, PA, 2006.

[AD10] Y. Achdou and I. Capuzzo Dolcetta, Mean field games: Numerical methods,
SIAM J. Numer. Anal., 48 (2010), pp. 1136–1162.

[Ada75] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic
Press, New York, 1975.

[AFG17] N. Almulla, R. Ferreira, and D. Gomes, Two numerical approaches to stationary
mean-field games, Dyn. Games Appl., 7 (2017), pp. 657–682.

[BAKS16] L. Briceño-Arias, D. Kalise, and F.-J. Silva, Proximal methods for stationary
mean field games with local couplings, SIAM J. Control Optim., to appear.

[BF16] M. Bardi and E. Feleqi, Nonlinear elliptic systems and mean-field games, Nonlinear
Differential Equations Appl., 23 (2016): Art. 44, 32.

[BKRS15] V.-I. Bogachev, N.-V. Krylov, M. Röckner, and S.-V. Shaposhnikov, Fokker-
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