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Abstract. We study a nonlinear, degenerate cross-diffusion model which involves two densities with

two different drift velocities. A general framework is introduced based on its gradient flow structure in

Wasserstein space to derive a notion of discrete-time solutions. Its continuum limit, due to the possible
mixing of the densities, only solves a weaker version of the original system. In one space dimension, we

find a stable initial configuration which allows the densities to be segregated. This leads to the evolution

of a stable interface between the two densities, and to a stronger convergence result to the continuum
limit. In particular derivation of a standard weak solution to the system is available. We also study

the incompressible limit of the system, which addresses transport under a height constraint on the total

density. In one space dimension we show that the problem leads to a two-phase Hele-Shaw type flow.

1. Introduction

Let Ω be a bounded domain in Rd with C1 boundary, and let T > 0 and m > 1 be given constants.
In this paper we study a gradient flow formulation of the following system in [0, T ]× Ω:

(PMEm)

 ∂tρ
1 −∇ ·

(
(∇p+∇Φ1)ρ1

)
= 0;

∂tρ
2 −∇ ·

(
(∇p+∇Φ2)ρ2

)
= 0,

where Φ1,Φ2 : Ω→ R are given and the common diffusion term is generated by the pressure variable

(1.1) p :=
m

m− 1
(ρ1 + ρ2)m−1.

In this article the system is subject to no flux condition on [0, T ] × ∂Ω and is equipped with initial
nonnegative densities ρ1

0, ρ
2
0 ∈ L1(Ω).

Formally (PMEm) can be seen as the gradient flow in Wasserstein (product) space of the free energy

(1.2) (ρ1, ρ2) 7→
ˆ

Ω

1

m− 1
(ρ1 + ρ2)mdx+

ˆ
Ω

Φ1ρ
1dx+

ˆ
Ω

Φ2ρ
2dx.

Staying at the formal level, in the incompressible limit as m→ +∞ where the first term in free energy
turns into the constraint ρ1 + ρ2 ≤ 1, the corresponding system for the limiting density pair (ρ1,∞, ρ2,∞)
is

(PME∞)

{
∂tρ

1,∞ −∇ ·
(
(∇p∞ +∇Φ1)ρ1,∞) = 0;

∂tρ
2,∞ −∇ ·

(
(∇p∞ +∇Φ2)ρ2,∞) = 0,

where the pressure p∞ is supported in the region {ρ1,∞ + ρ2,∞ = 1}. When the densities ρi,∞’s are
characteristic functions with separate supports, the problem corresponds to a two-phase Hele-Shaw type
flow with drifts.

Our goal in this paper is to study the problems (PMEm) and (PME∞) in the context of the aforemen-
tioned gradient flow, and verify the above heuristics. More precisely we will formulate the problem in
terms of the discrete-time gradient flow (i.e. JKO or minimizing movement scheme) of the aforementioned
free energy (1.2), posed in the product space equipped with the 2-Wasserstein metric. Then we will study
the solutions of this discrete scheme as the time step goes to zero. We will show that the limiting pair
of densities (ρ1, ρ2) satisfies a set of transport equation that will reduce to (PMEm) under a stronger
convergence assumption (for the precise statement we refer to Theorem 3.8). To strengthen this result, it
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2 I. KIM AND A.R. MÉSZÁROS

seems necessary to consider “stable” initial configurations which avoids mixing: see the discussion below.
It turns out that in one dimension, in the setting of stable initial configurations which avoids mixing, a
stronger convergence result holds and as a consequence the continuum limit densities satisfy (PMEm) in
the standard weak sense. Below is a summary of our main results: precise statements are contained in
the quoted theorems.

The main results of the paper are obtained in one space dimension. Here we assume that the density
with stronger drift in x direction sits on the right side on the x-axis, i.e.,

(1.3) − ∂xΦ1 ≥ −∂xΦ2 and x1 ≥ x2 for xi ∈ {ρi0 > 0}, i = 1, 2.

Under the assumption (1.3) the following theorems hold:

Theorem 1.1 (Segregation of solutions: Proposition 4.1, Theorem 4.2). For given m ∈ (1,∞] and τ > 0,
let (ρ1,τ , ρ2,τ ) be the time-discrete solutions given by the minimizing movement scheme with time step

size τ > 0, as given in (MMm). Then, the pair stays ordered for all times t > 0, i.e. ρ1,τ
t is supported

to the right of the support of ρ2,τ
t for all t > 0. Moreover, as τ ↓ 0 each density ρi,τ converges weakly

in L2m−1([0, T ]× Ω), along a subsequence, to ρi,m for i = 1, 2. Also, along a subsequence ρi,τ converges
pointwise a.e. to ρi,m for i = 1, 2. The pair of limiting densities (ρ1,m, ρ2,m) solves (PMEm) in the weak
sense and it stays ordered for all times.

Theorem 1.2 (Convergence of weak solutions as m → ∞: Theorem 4.7). Let (ρ1,m, ρ2,m) be as given
above for given m > 1. Then as m → ∞ and along a subsequence, the density pairs converge weakly in
Lp([0, T ]× Ω) for any 1 < p <∞ to (ρ1,∞, ρ2,∞), which is a weak solution of (PME∞).

Theorem 1.3 (Patch solutions for (PME∞): Proposition 4.9). Let m = ∞ and suppose, in addition

to (1.3), that ∂2
xxΦi ≥ 0 and ρi0 = χ(ai(0),bi(0)). Then ρi,∞ remains a patch for all t > 0, i.e. ρi,∞t =

χ(ai(t),bi(t)), i = 1, 2. The density pair in this case is a solution to a two-phase Hele-Shaw type flow with
drifts.

Remark 1.1. For the linear diffusion m = 1 the logarithmic entropy
´
ρ ln ρdx replaces 1

m−1

´
ρmdx in

the free energy, resulting in slightly different, however mostly parallel, analysis. Let us point out that in
this case the sum of the densities is always positive, and thus they will always form an interface between
each other in the event of segregation.

Let us discuss now the existing results from the literature that are relevant to our work. The single
density version of the system (PME∞) has been introduced in [30] in the gradient flow setting, the free
boundary characterization and its links to (PMEm) has been studied in [1]. These and similar systems
received a lot of attention in the past a few years (see for instance [31, 32, 33] and the references therein).
These models are strongly related to the so-called Hele-Shaw models, as we can see in [1] (for other
references we direct the reader to [23, 24, 35, 39] and to the references therein).

Cross diffusion systems arise naturally from mathematical biology. These appear either as systems
of reaction-diffusion equations (as in [28, 22] for instance) or systems of advection-diffusion equations
(as in [7, 6, 16, 45] for instance). These systems appear also in fluid mechanics, such as the thin film
approximation of the Muskat problem studied in [20, 27]. Beside the PDE approach for degenerate
parabolic systems (used in most of the above references), more recently the optimal transport and gradient
flow theories have been adopted to study these systems. For a non-exhaustive list of the fast-growing
references in this direction we refer to [5, 8, 9, 10, 12, 13, 14, 15, 16, 18, 25, 26, 27].

Most of the aforementioned papers concern systems including separate diffusion terms for the evolution
of each densities. Such feature enables tracking of separate densities in the evolution. This is in contrast
to our case where recovering separate densities out of the dynamic system appears to be out of reach
unless the densities are guaranteed to be segregated. There are very few results available for systems
without separate diffusions, we mention here a few particular papers in this direction. In [6] the authors
study the well-posedness of the system (PMEm) in one space dimension when m = 2, Φ1 = Φ2 ≡ 0 within
the class of segregated solutions. This is a particular case of our model where the total density satisfies a
degenerate parabolic equation, from which one can construct a segregated solution. In [38] Otto studies
in one dimension the case m =∞ with gravity potentials Φi(x) = Cix and with full saturation, i.e. with
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the condition ρ1 + ρ2 = 1. There the mixing profile of one density correponds to an entropy solution of a
Burger’s type equation. This interesting description of mixing phenomena remains open to be extended
beyond the specific setting given in the paper. Lastly in the recent paper [9] the authors study existence
and segregation properties of one dimensional stationary solutions for systems of similar form to ours,
when m = 2 and the drift is generated by interaction energies.

Main difficulties and ingredients

As mentioned above, our main challenge lies in the fact that the densities may mix into each other
during the evolution, which indeed happens with the “unstable” initial configurations where the densities
are initially positioned in the opposite order to the equilibrium solution (see the discussion in Section 2.5).
Such situation indicates low regularity of each densities, hindering the system from being well-posed.
Indeed, in general we are only able to obtain strong convergence on the sum of the two density variables
in the continuum limit, as we will see in Theorem 3.8. Naturally this reasoning leads to the question
of whether one can formulate a “stable” initial configuration to obtain a stronger result. This question,
while under investigation by the authors, stands open beyond the one dimensional result for segregated
solutions, Theorems 1.1, 1.2, 1.3.

In terms of gradient flows, the challenge lies in the lack of available estimates or convexity properties.
Though not surprising in the context of the above discussion, this is an interesting contrast to the single
species case, where for instance stability of the discrete gradient flow solutions based on λ-convexity
properties played an important role in the analysis. For us the higher order space regularity estimates
in the JKO scheme are available only for functions of the sum of the two densities. For similar models
considered in [25] and [27] this difficulty was overruled by presence of separate diffusions, or “separate
entropies” of the form ε(

´
f(ρ1) + g(ρ2)dx) in the free energy (1.2), however estimates obtained here do

not carry through as ε ↓ 0. Let us also mention that the flow interchange technique introduced in [29],
which has been quite successful to analyze some non-convex gradient flow systems such as in [19] or [27],
does not appear to be applicable to our system. Thus here we derive all our estimates relying only on
the first order optimality conditions satisfied by the discrete in time minimizers in the JKO scheme (see
for instance the proof of Theorem 2.4). This procedure is rather natural yet appears to be unexploited
in the literature for similar models.

Structure of the paper

In Section 2 the discrete-time scheme for the gradient flow is introduced, set in the W2-product space.
In Section 2.4 the properties of discrete-time minimizers are studied. Here we observe that while the
total density ρ1 + ρ2 is relatively regular (Lipschitz continuous), separate densities may be segregated
and discontinuous. The segregation of densities with respect to the ordering properties of their potentials
are more obvious in Section 2.5, where one discusses the equilibrium solutions. Such segregation and
ordering property suggests that fingering and mixing is inevitable for densities starting from “unstable”
initial configurations, to position themselves into the stationary profile.

In Section 3 we analyze the continuum limit of discrete-time solutions by studying their convergence
modes as the time step size is sent to zero. We show that the limit solution satisfies a system of transport
equations which can be interpreted as a generalized solutions for the system (PMEm). We also introduce
the standard notion of weak solution for our systems and show that the continuum limit satisfies this
notion when pointwise convergence holds for separate densities. It remains an open question whether the
densities indeed converge pointwise, i.e. whether we can track down the position of each density in the
evolution of the problem in general framework or in general dimension.

Section 4 is devoted to the analysis in one space dimension, where we consider stable initial configura-
tions that line up with the strength order of the drift potentials. In this setting we are able to guarantee
that solutions stay segregated with an evolving interface between them. As a consequence it follows that
pointwise convergence holds for each densities, which in turn yields the existence of weak solutions for
the system (PMEm). The continuum solutions of (PMEm) are then shown to converge as m tends to
infinity to a weak solution of (PME∞) along a subsequence. Furthermore when the drift is compressive
(or incompressible), we show that patch solutions appear, yielding a solution to the two-phase Hele-Shaw
flow.



4 I. KIM AND A.R. MÉSZÁROS

Finally, in the Appendices A and B we recall some results from the theory of optimal transport and a
refined version of Aubin-Lions lemma respectively.
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2. Minimizing movement schemes and properties of the minimizers

2.1. Setting and notations. Let us introduce the setting of the problem and some notations. Let
Ω ⊆ Rd be a bounded domain with smooth boundary. We denote by P(Ω) the space of probability
measures on Ω. For M > 0 we denote by PM (Ω) the space of finite nonnegative Radon measures on Ω
(M+(Ω)) with mass M .

For a Borel measurable map T : Ω → Ω and µ, ν ∈ PM (Ω), we say that T pushes forward µ onto ν,
and write ν = T#µ if ν(B) = µ(T−1(B)) for every B ⊆ Ω Borel measurable set. Using test functions,
the definition of pushforward translates toˆ

Ω

φ(y)dν(y) =

ˆ
Ω

φ(T (x))dµ(x), ∀φ : Ω→ R, bounded and measurable.

We equip the space PM (Ω) with the well-known 2-Wasserstein distance W2,M , i.e. For µ, ν ∈PM (Ω),

W 2
2,M (µ, ν) := min

{ˆ
Ω×Ω

|x− y|2 dγ : γ ∈ ΠM (µ, ν)

}
,

where ΠM (µ, ν) is the set of the so-called transport plans, i.e. ΠM (µ, ν) := {γ ∈PM2

(Ω×Ω) : (πx)#γ =
µ, (πy)#γ = ν}. In particular if µ� L d Ω then the previous problem has a unique solution, which is
of the form γT := (id, T )#µ. Here, in particular we adjusted the usual distance defined on probability
measures to measures having mass M > 0. Since it shall be clear from the context, from now on we write
W2 instead of W2,M . On the forthcoming pages we shall use classical results from the optimal transport
theory. All of these can be found for instance in [43, 3, 44].

We denote by M d(Ω) the space of finite vector-valued Radon measures on Ω. If E ∈ M d(Ω), we
denote by |E| its variation. We denote the subspaces of absolutely continuous measures (w.r.t. L d Ω)
by Pac(Ω),Pac,M (Ω), etc.; we always identify these absolutely continuous measures with their densities
and write ρ instead of ρ · L d or ρdx. If ρ ∈ M ac

+ (Ω) and c ≥ 0 by {ρ > c} we mean the set (up to

L d-negligible sets) where ρ(x) > c a.e. In particular a property holds a.e. in {ρ > 0} if and only if it
holds ρ−a.e. Notice also that {ρ > 0} ⊆a.e. spt(ρ). For a measurable set B ⊂ Rd, we denote the set of its
Lebesgue point by Leb(B).

2.2. Minimizing movements. The heart of our analysis is the well-known minimizing movement or
JKO scheme (see for instance [2, 3, 42, 21]) on a product Wasserstein space.

Let us introduce the functionals. We consider Fm,F∞ : PM1(Ω) × PM2(Ω) → R ∪ {+∞} and
G : PM1(Ω)×PM2(Ω)→ R to be defined as

(2.1) Fm(ρ) =


ˆ

Ω

1

m− 1
(ρ1(x) + ρ2(x))mdx, if (ρ1 + ρ2)m ∈ L1(Ω),

+∞, otherwise,

(2.2) F∞(ρ) =

 0, if ‖ρ1 + ρ2‖L∞ ≤ 1,

+∞, otherwise,

and G : PM1(Ω)×PM2(Ω)→ R

(2.3) G(ρ) =

ˆ
Ω

Φ1(x)dρ1(x) +

ˆ
Ω

Φ2(x)dρ2(x),
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where ρ := (ρ1, ρ2), m > 1 is fixed and Φ1,Φ2 : Ω→ R are given continuous potentials. Notice that F∞
is the indicator function (in the sense of convex analysis) of the set

K1 :=
{

(ρ1, ρ2) ∈PM1,ac(Ω)×PM2,ac(Ω) : ρ1 + ρ2 ≤ 1 a.e.
}
.

It is classical that Fm,F∞ and G are l.s.c. w.r.t. the weak convergence of measures on PM1(Ω) ×
PM2(Ω). It is immediate to see that they are convex, moreover Fm is also strictly convex (in the usual
sense) on PM1(Ω) ×PM2(Ω). We remark also that in general Fm is not displacement convex (in the
sense of [34]) on the product space. To see this, let us consider for simplicity m = 2. In this case,
for ρ1, ρ2 ∈ L2(Ω) we can write F2(ρ1, ρ2) =

´
Ω

(ρ1)2dx +
´

Ω
(ρ2)2dx + 2

´
Ω
ρ1ρ2dx. If F2 would be λ-

displacement convex (for some λ ∈ R), then the map ρ1 7→ F2(ρ1, ρ2) would share at least the same
modulus of convexity for any ρ2 ∈ PM2(Ω) ∩ L2(Ω) fixed. While the first term in the development
of F2 is 0-displacement convex and the second term is a constant for fixed ρ2, the last term would be
λ-displacement convex if and only if ρ2 would be λ-convex, i.e. D2ρ2 ≥ λId in the sense of distributions.
However, ρ2 can be chosen in a way that the lower bound on its Hessian is arbitrarily negative. Therefore,
this term fails to be λ-displacement convex for any λ ∈ R and so does the functional F2.

We proceed as in the classical setting (see for instance [3, 21]): we define a recursive sequence of densities
associated to a fixed time step τ , then we introduce suitable interpolations between these densities and
take the limit as τ ↓ 0.

Let us introduce now the scheme. For this, we consider τ > 0 a fixed time step and N ∈ N such that
Nτ = T. Let (ρ1

0, ρ
2
0) be two given initial densities. For all k ∈ {0, . . . , N} we define ρτk := (ρ1,τ

k , ρ2,τ
k ) as

ρτ0 = (ρ1,τ
0 , ρ2,τ

0 ) := (ρ1
0, ρ

2
0)

and for k ≥ 0

(MMm) ρτk+1 = (ρ1,τ
k+1, ρ

2,τ
k+1) = argminρ∈PM1 (Ω)×PM2 (Ω)

{
Fm(ρ) + G(ρ) +

1

2τ
W2

2(ρ,ρτk)

}
.

In this scheme either m > 1 but finite, or m = ∞. Here W2 denotes the Wasserstein distance on the
product space PM1(Ω)×PM2(Ω), i.e. W2

2(µ,ν) := W 2
2 (µ1, ν1) +W 2

2 (µ2, ν2), where µ := (µ1, µ2), and
ν := (ν1, ν2).

We state the following well-known lemma.

Lemma 2.1. The objective functional in the minimization problem (MMm) is l.s.c. and bounded from
below and PM1(Ω) ×PM2(Ω) is compact, thus the optimizer exists. Moreover, Fm (m ∈ [1,+∞]) and
G are convex functionals and the functional ρ 7→W2

2(ρ,µ) is strictly convex whenever µ = (µ1, µ2) has
absolutely continuous density coordinates (see for instance [43]). Therefore, if the densities (ρ1

0, ρ
2
0) are

absolutely continuous w.r.t. L d Ω, the optimizer ρτk is also unique at each step.

2.3. Different diffusion coefficients for the two densities. In many cross-diffusion models (coming
mainly from mathematical biology or fluid mechanics, see for instance in [6, 28]) considered in the
literature, it is important to have different diffusion coefficients for the two densities. In our setting, this
could be formulated as follows. Given κ1, κ2 positive constants, consider a system similar to (PMEm) or
(PME∞), i.e.

(2.4)

{
∂tρ

1 −∇ ·
(
κ1∇pρ1 +∇Φ1ρ

1
)

= 0

∂tρ
2 −∇ ·

(
κ2∇pρ2 +∇Φ2ρ

2
)

= 0

on [0, T ] × Ω, where p :=
m

m− 1
(ρ1 + ρ2)m−1, with m > 1 and where Φ1,Φ2 : Ω → R are given

potentials. Observe that (PMEm) corresponds to κ1 = κ2 = 1. Actually, even for κ1 6= κ2, this system
enters naturally into the framework of gradient flows considered in this paper. Indeed, we can define the
minimizing movement scheme as

(ρ1,τ
k+1, ρ

2,τ
k+1) = argmin(ρ1,ρ2)

{
F(ρ1, ρ2) +

ˆ
Ω

Φ1

κ1
ρ1dx+

ˆ
Ω

Φ2

κ2
ρ2dx+

1

2τκ1
W 2

2 (ρ1, ρ1,τ
k ) +

1

2τκ2
W 2

2 (ρ2, ρ2,τ
k )

}
.

Actually a part of the analysis that we perform in the forthcoming sections will be valid in this case as
well. In particular the results from Section 3 can be easily adapted to the system (2.4).
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2.4. Properties of the minimizers. We discuss now some properties of the minimizers in (MMm).
For this, let us consider the following hypotheses

(Hm
ρ )

{
ρ1

0, ρ
2
0 ∈ Lm(Ω), if m ∈ (1,+∞),

‖ρ1
0 + ρ2

0‖L∞(Ω) ≤ 1 and L d(Ω) > M1 +M2, if m = +∞;

Notice that the structural condition L d(Ω) > M1 + M2 in the case of m = +∞ is needed in order to
have nontrivial competitors that satisfy the upper bound constraint.

(HΦ) Φ1,Φ2 ∈W 1,∞(Ω).

First, let us derive the first order necessary optimality conditions for the minimizers in (MMm).

Lemma 2.2 (Optimality conditions: m finite). Let m ∈ (1,+∞) and let Φ1 and Φ2 satisfy (HΦ) and
(ρ1

0, ρ
2
0) satisfy (Hm

ρ ). Let (ρ1, ρ2) be the unique minimizer in (MMm) with k = 0. Then

(1) there exist Kantorovich potentials ϕi, i = 1, 2, in the transport of ρi onto ρi0 and Ci ∈ R (i = 1, 2)
such that

(2.5)
m

m− 1
(ρ1 + ρ2)m−1 = max

(
C1 − Φ1 − ϕ1/τ ;C2 − Φ2 − ϕ2/τ ; 0

)
,

In particular (ρ1 +ρ2)m−1 is Lipschitz continuous, ρ1 +ρ2 ∈ C0,1/(m−1)(Ω), and these regularities
degenerate as τ ↓ 0.

(2) One can differentiate the above equality a.e. and the optimal transport maps T i (i = 1, 2) in the
transport of ρi onto ρi0 have the form

T i = id + τ

(
m

m− 1
∇(ρ1 + ρ2)m−1 +∇Φi

)
Proof. The proof of these results are just easy adaptations of the ones from Lemma A.1, thus we omit
it. �

Lemma 2.3 (Optimality conditions: m =∞). Let m =∞ and let Φ1 and Φ2 satisfy (HΦ) and (ρ1
0, ρ

2
0)

satisfy (Hm
ρ ). Let (ρ1, ρ2) be the unique minimizer in (MMm) with k = 0. Then

(1) there exist Kantorovich potentials ϕi in the transport of ρi onto ρi0 (i = 1, 2) such that

(2.6)

ˆ
Ω

(Φ1 + ϕ1/τ)(µ1 − ρ1)dx+

ˆ
Ω

(Φ2 + ϕ2/τ)(µ2 − ρ2)dx ≥ 0,

for any (µ1, µ2) ∈PM1(Ω)×PM2(Ω) such that µ1 + µ2 ≤ 1 a.e. in Ω.
(2) There exists a Lipschitz continuous pressure function p that can be defined via the Kantorovich

potentials ϕ1, ϕ2 from (1) as

(2.7) ∇p = −∇ϕi/τ −∇Φi, ρ
i − a.e., i = 1, 2,

and p ≥ 0 and p(1− (ρ1 + ρ2)) = 0 a.e. in Ω. In particular, the optimal transport map T i in the
transportation of ρi onto ρi0 (i = 1, 2) has the form

T i = id + τ (∇p+∇Φi) .

Proof. The proof of the above results are adaptations of the ones from [30, Lemma 3.1-3.2] and [25,
Lemma 6.11-Proposition 6.12], so we omit it.

�

2.5. Equilibrium solutions when m < +∞. Let us study the equilibrium solutions (ρ1, ρ2) of the
scheme (MMm), meaning that (ρ1, ρ2) is a minimizer of the free energy F + G. This exists by the l.s.c.
and boundedness from below of the functional and the compactness of PM1(Ω)×PM2(Ω). Then writing
down the first order optimality conditions as in Lemma 2.2, one obtains that

(2.8)

{
m
m−1 (ρ1 + ρ2)m−1 = Ci − Φi in {ρi > 0},
m
m−1 (ρ1 + ρ2)m−1 ≥ Ci − Φi, in {ρi = 0},

or in short
m

m− 1
(ρ1 + ρ2)m−1 = max[C1 − Φ1;C2 − Φ2; 0],
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for i = 1, 2 and for some constants C1, C2 ∈ R. For simplicity in this informal discussion one may suppose
that both Φ1 and Φ2 are strictly convex with a unique minimizer in Ω. Otherwise the constants Ci may
vary on each connected component of {ρi > 0}. Observe that the above conditions imply in particular
that whenever the potentials Φ1 and Φ2 are different and their difference is not only a constant, then the
phases ρ1 and ρ2 are separated, i.e. L d

(
{ρ1 > 0} ∩ {ρ2 > 0}

)
= 0. Moreover, in general the interface

{ρ1 > 0}∩{ρ2 > 0} is present and on the interface the densities ρi (i = 1, 2) are positive. For instance this
is the case when we take potentials Φ1(x) = |x|2 and Φ2 = 2|x|2 and C1, C2 are such that 0 < C1 < C2

and both densities are present.

In fact, with the above choice of potentials Φi, i = 1, 2, suppose that we start our minimizing move-
ments with initial configuration of densities ρ1

0 = χ{|x|≤1} and ρ2
0 = χ{1<|x|<2}. In the equilibrium limit

we have {ρ2 > 0} = {|x| ≤ r1} and {ρ2 > 0} = {r1 ≤ |x| ≤ r2} for some 0 < r1 < r2. Thus, if
solutions (ρ1, ρ2) of the system (PMEm) exist with these initial data and potentials, heuristically it is
inevitable that the supports of ρ1

t and ρ2
t get mixed for some finite time t > 0, while ρ1 “filtrates” through

ρ2 to change the ordering of their supports from the initial configuration. Such situation indicates low
regularity for each density, and illustrates the difficulty in obtaining a strong notion of limit solutions
for (PMEm) in the continuum limit. Indeed in general we are only able to obtain a very weak notion of
solutions in the continuum limit, as we will see in Theorem 3.8. Deriving this weak notion of solutions
in general settings is our first main result in the paper. To the best of the authors’ knowledge, there
does not seem to be a PDE approach to yield well-posedness on the continuum PDE (PMEm), especially
when ∇Φ1 6= ∇Φ2.

On the other hand, if the initial configuration of above example is in line with the potentials, i.e. if we
switch the roles of ρ1

0 and ρ2
0, we expect the solutions to be well-behaved and to stay separated throughout

the evolution, with stable interface in between them. It turns out that we can indeed show such separation
in one spacial dimension. In this case stronger results are available, and one can derive stronger notion of
solutions as well as the properties of the solutions and their interfaces in the incompressible limit m→∞,
which in some cases leads to a type of two-phase Hele-Shaw flow with drifts (see Section 4.4).

2.6. Regularity of the minimizers in the (MMm) scheme.

Theorem 2.4. Let m ∈ (1,+∞). Let (ρ1
0, ρ

2
0) ∈ PM1(Ω) ×PM2(Ω) satisfying (Hm

ρ ) and let (HΦ) be

fulfilled. Let (ρ1, ρ2) be the minimizer in (MMm) constructed with the help of (ρ1
0, ρ

2
0). Then

(2.9) ρ1, ρ2 ∈ Lm(Ω)

and

(2.10) (ρ1 + ρ2)m−1/2 ∈ H1(Ω).

If m = +∞, ρ1 + ρ2 ≤ 1 a.e. in Ω.

Proof. First, setting ρ = (ρ1, ρ2) and ρ0 = (ρ1
0, ρ

2
0), by the optimality of ρ in (MMm) w.r.t. ρ0, one

obtains

Fm(ρ) =
1

m− 1

ˆ
Ω

(ρ1 + ρ2)mdx ≤ 1

2τ
W2

2(ρ,ρ0) + Fm(ρ0) + G(ρ0)− G(ρ)

≤ 1

2τ
W2

2(ρ,ρ0) + Fm(ρ0) + 2(M1‖Φ1‖L∞ +M2‖Φ2‖L∞),

which by the assumptions (Hm
ρ ) and (HΦ) implies (2.9) for m finite. If m =∞, then clearly ρ1 + ρ2 ≤ 1

a.e. in Ω.
Second, writing down the first order optimality conditions (see Lemma 2.2) for the above problem,

one obtains

m

m− 1
(ρ1 + ρ2)m−1 + Φi +

ϕi

τ
= Ci, in {ρi > 0}, i = 1, 2,

where ϕi is a Kantorovich potential in the optimal transport of ρi onto ρi0. This potential is linked to
the optimal transport map between these densities as T i(x) = x−∇ϕi(x). So, by Lemma 2.2(2) one can
write

(2.11) − m

m− 1
∇(ρ1 + ρ2)m−1 −∇Φi =

∇ϕi

τ
, ρi − a.e., i = 1, 2.
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Since the r.h.s. of (2.11) is in L2
ρi(Ω) with

´
Ω

1
τ2 |∇ϕi|2ρidx = 1

τ2W
2
2 (ρi, ρi0) and ∇Φi ∈ L2

ρi(Ω;Rd) we

have the estimationˆ
Ω

∣∣∇(ρ1 + ρ2)m−1
∣∣2 ρidx ≤ 2(m− 1)2

m2

(
1

τ2
W 2

2 (ρi, ρi0) +Mi‖∇Φi‖2L∞
)
.

Adding up the two inequalities for i = 1, 2, one obtains after rearranging

(2.12)

ˆ
Ω

∣∣∣∇(ρ1 + ρ2)m−1/2
∣∣∣2 dx ≤ 2(m− 1/2)2

m2

(
1

τ2
W2

2(ρ,ρ0) +M1‖∇Φ1‖2L∞ +M2‖∇Φ2‖2L∞
)
.

By the estimation (2.9) ρ1+ρ2 is bounded in Lm(Ω), so by the fact that Ω is compact, ρ1+ρ2 is summable
in Lq(Ω) for any 1 ≤ q ≤ m. This means in particular that the average can be bounded as

 
Ω

(ρ1 + ρ2)m−1/2dx ≤ ‖ρ1 + ρ2‖m−1/2
Lm L d(Ω)1/(2m)−1

hence Poincaré’s inequality yields that ‖(ρ1 + ρ2)m−1/2‖L2(Ω) is bounded, more precisely

‖(ρ1 + ρ2)m−1/2‖L2(Ω) ≤ CΩ‖∇(ρ1 + ρ2)m−1/2‖L2(Ω) + L d(Ω)
1
2

 
Ω

(ρ1 + ρ2)m−1/2dx

= CΩ‖∇(ρ1 + ρ2)m−1/2‖L2(Ω) + ‖ρ1 + ρ2‖m−1/2
Lm L d(Ω)1/(2m)−1/2

where CΩ > 0 is the Poincaré constant associated to Ω. Thus, (2.10) follows. �

3. The continuum limit solutions in general dimension

In this section we study the convergence of the time-discrete solutions in the continuum limit. The
limit solutions can be interpreted as a very weak solution for both systems (PMEm) and (PME∞) in the
following sense:

Definition 3.1 (Notion of weak solution). By a weak solution of system (PMEm) we mean a pair
(ρ1, ρ2) such that ρi ∈ AC2([0, T ]; PMi(Ω)) ∩ L2m−1([0, T ] × Ω), and setting p := m

m−1 (ρ1 + ρ2)m−1,

∇pρi ∈ Lr([0, T ]×Ω;Rd), for some 1 < r < 2 (i = 1, 2). Moreover ρi|t=0 = ρi0 (i = 1, 2) and the equation

(Weak) −
ˆ t

s

ˆ
Ω

ρi∂tφdxdτ +

ˆ t

s

ˆ
Ω

vi · ∇φρidxdτ =

ˆ
Ω

ρis(x)φ(s, x)dx−
ˆ

Ω

ρit(x)φ(t, x)dx,

holds true for all φ ∈ C1([0, T ]× Ω) and for all 0 ≤ s < t ≤ T, where

vi := ∇p+∇Φi.

Similarly, by a weak solution of (PME∞) we mean a triple (ρ1,∞, ρ2,∞, p∞) such that ρi,∞ ∈ AC2([0, T ];
PMi(Ω)) ∩ L∞([0, T ] × Ω), i = 1, 2 with ‖ρ1,∞ + ρ2,∞‖L∞ ≤ 1, p∞ ∈ L2([0, T ];H1(Ω)), p∞ ≥ 0 and
p∞(1 − ρ1,∞ − ρ2,∞) = 0 a.e. in [0, T ] × Ω. Moreover ρi|t=0 = ρi0 (i = 1, 2) and the equation (Weak)
holds true with p replaced by p∞ for all φ ∈ C1([0, T ]× Ω) and for all 0 ≤ s < t ≤ T.

We underline that the above weak formulations encode in particular no-flux boundary conditions on
[0, T ]× ∂Ω.

Remark 3.2. (a) Notice that by density arguments, in the definition of the weak solution of (PMEm)
one can consider φ ∈W 1,1([0, T ];Lq(Ω))∩Lq([0, T ];W 1,q(Ω)) where q = max{r′, (2m− 1)′} and
in the case of (PME∞) one can consider test functions in W 1,1([0, T ];L1(Ω))∩L2([0, T ];H1(Ω)).

(b) Also, by the fact that we impose that the densities are absolutely continuous curves in the Wasser-
stein space1, imposing the initial conditions is meaningful.

(c) The uniqueness question of weak solutions seems to be very delicate and challenging.

1See the Appendix on optimal transportation
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3.1. Interpolations between the densities. Let m ∈ (1,+∞] and let us consider (ρ1
0, ρ

2
0) and Φ1 and

Φ2 satisfying the hypotheses (Hm
ρ ) and (HΦ) respectively. We consider also T > 0 a fixed time horizon, a

time step τ > 0 and N ∈ N such that Nτ = T and the densities (ρ1,τ
k , ρ2,τ

k )Nk=0 obtained via the (MMm)
scheme starting from (ρ1

0, ρ
2
0). We denote the optimal transport maps and the corresponding Kantorovich

potentials between two consecutive densities ρi,τk+1 and ρi,τk by T ik and ϕik respectively (k ∈ {0, . . . , N −1},
i = 1, 2). If m =∞, we consider also the pressure variables pτk (k ∈ {1, . . . , N}) constructed as in Lemma
2.3.

Since
∇ϕik
τ =

id−T ik
τ can be seen as a discrete velocity (displacement divided by time), it is reasonable

to define the discrete velocity of the particles of the ith fluid located at x ∈ Ω (for a.e. x ∈ Ω) as

(3.1) vi,τk (x) :=

{
− m
m−1∇(ρ1,τ

k+1(x) + ρ2,τ
k+1(x))m−1 −∇Φi(x), if m ∈ (1,+∞),

−∇pτk+1(x)−∇Φi(x), if m =∞.
As technical tools, we shall consider continuous and piecewise constant interpolations between the

discrete densities. We will also work with the associated velocities and momenta. These constructions
and the estimates on them are standard for experts and are very similar to the ones from [43, Chapter
8.3] and from [30]. We refer to [42] as well, as an overview of these techniques.

Continuous interpolations. Using McCann’s interpolation – as it is done for instance in [43, Chapter

8.3] – we can consider families of continuous interpolations [0, T ] 3 t 7→ (ρ1,τ
t , ρ2,τ

t ) ∈PM1(Ω)×PM2(Ω)
between the discrete in time densities parametrized with τ > 0. We denote the corresponding time
dependent families of velocities and momenta by vi,τ ,Ei,τ .

It is worth to notice that the above construction implies in particular that (ρi,τ ,Ei,τ ) (i = 1, 2) solves
the continuity equation

(3.2) ∂tρ
i,τ +∇ ·Ei,τ = 0.

on [0, T ]× Ω in the weak sense, i.e.

(3.3)

ˆ t

s

ˆ
Ω

ρi∂tφdxdτ +

ˆ t

s

ˆ
Ω

Ei · ∇φdxdτ = −
ˆ

Ω

ρis(x)φ(s, x)dx+

ˆ
Ω

ρit(x)φ(t, x)dx

for all φ ∈ C1([0, T ]× Ω) and 0 ≤ s < t ≤ T .
Piecewise constant interpolations. We consider a second family of interpolations, simply taking

(3.4) ρ̃i,τt := ρi,τk+1, ṽi,τt := vi,τk , and Ẽ
i,τ

t := ρ̃i,τt ṽi,τt for t ∈ [kτ, (k + 1)τ).

We consider the piecewise constant interpolation for the pressure variable (see Lemma 2.3) as well, i.e.
(3.5)

p̃τt :=


(C1 − Φ1 − ϕ1

k/τ)+, in {ρ1,τ
k+1 > 0},

(C2 − Φ2 − ϕ2
k/τ)+, in {ρ2,τ

k+1 > 0},

0, in Ω \
(
{ρ1,τ
k+1 > 0} ∪ {ρ2,τ

k+1 > 0}
)
,

for t ∈ [kτ, (k+1)τ), k ∈ {0, . . . , N−1}.

In addition we set ρ̃τt := (ρ̃1,τ
t , ρ̃2,τ

t ) for all t ∈ [0, T ]. We remark that by construction one has ρ̃i,τt = ρi,τt
for t = kτ, k ∈ {1, . . . N}.

3.2. A priori estimates for the interpolations. We discuss now some estimates on the interpolations
that will be useful to pass to the limit as τ ↓ 0. In general, all the constants in the estimates depend on the
data ρ1

0, ρ
2
0,Φ1,Φ2, T and m, however it will be especially important to keep track the precise dependence

of them on m (in particular we use these estimates also in the limiting procedure when m → +∞). To
highlight this dependence, we denote the constants as C(m).

Lemma 3.1. For any m ∈ (1,+∞], τ > 0 and any k ∈ {0, . . . , N − 1} one has

(3.6)
1

2τ

N−1∑
k=0

W2
2(ρτk+1,ρ

τ
k) ≤ Fm(ρτ0) + G(ρτ0)−Fm(ρτN )− G(ρτN ),

and

(3.7) ‖ρ1,τ
k+1 + ρ2,τ

k+1‖Lm(Ω) ≤ C1(m),
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where

(3.8) C1(m) :=

{ (
(2m− 2)

(
M1‖Φ1‖L∞(Ω) +M2‖Φ2‖L∞(Ω)

)
+ ‖ρ1

0 + ρ2
0‖mLm(Ω)

)1/m

, if m <∞,
1, if m =∞.

Proof. The proofs of both inequalities are immediate by the optimality of ρτk+1 w.r.t. ρτk in (MMm). So
we omit them. �

Corollary 3.2. Hypotheses (HΦ) and (Hm
ρ ) imply that

1

τ

N−1∑
k=0

(
W 2

2 (ρ1,τ
k , ρ1,τ

k−1) +W 2
2 (ρ2,τ

k , ρ2,τ
k−1)

)
≤ C2(m),

where

(3.9) C2(m) :=

{
2

m−1‖ρ
1
0 + ρ2

0‖mLm + 4M1‖Φ1‖L∞ + 4M2‖Φ2‖L∞ , if m ∈ (1,+∞),

4M1‖Φ1‖L∞ + 4M2‖Φ2‖L∞ , if m = +∞.

is independent of τ.

Lemma 3.3 (Bounds for ρi,τ , vi,τ and Ei,τ ). Assume that we constructed the discrete densities ρi,τk for

τ > 0, k ∈ {0, . . . , N} and i = 1, 2. Let ρi,τ be the continuous interpolations and let vi,τ and Ei,τ be the
associated velocity field and momentum variables respectively. Then

(1) ρi,τ is bounded in AC2([0, T ]; (PMi(Ω),W2)) uniformly in τ > 0;
(2) vi,τ is bounded in L2([0, T ];L2

ρi,τ (Ω;Rd)) uniformly in τ > 0;

(3) Ei,τ and Ẽ
i,τ

are bounded in M d([0, T ]× Ω) uniformly in τ > 0.

Proof. For τ > 0, by construction ρi,τ is a constant speed geodesic interpolation with the corresponding
velocity field vi,τ . This implies that

ˆ T

0

‖vi,τt ‖2L2

ρ
i,τ
t

dt =

ˆ T

0

|(ρi,τ )′|2W2
(t)dt =

N−1∑
k=1

1

τ
W 2

2 (ρi,τk−1, ρ
i,τ
k ) ≤ C2(m).

Now, by Corollary 3.2 we obtain that (1)-(2) hold true.

To estimate the total variation of Ei,τ we write

|Ei,τ |([0, T ]× Ω) =

ˆ T

0

ˆ
Ω

|vi,τt |ρ
i,τ
t dxdt ≤

ˆ T

0

(ˆ
Ω

|vi,τt |2ρ
i,τ
t dx

) 1
2
(ˆ

Ω

ρi,τt dx

) 1
2

dt

≤
√
Mi

√
T

(ˆ T

0

ˆ
Ω

|vi,τt |2ρ
i,τ
t dxdt

) 1
2

≤
√
MiTC2(m).

In the last inequality we used the previously obtained bound on vi,τ . The bound on Ẽ
i,τ

rely on the same
argument. �

Lemma 3.4 (Bounds on p̃τ ). Let us consider the piecewise constant interpolation [0, T ] 3 t 7→ p̃τt of the
pressure variables defined in (3.5). Then p̃τ is bounded L2([0, T ];H1(Ω)) independently of τ > 0.

Proof. The proof is similar to the ones in [25, Proposition 6.13] and [36, Lemma 3.6]. We sketch it below.

Let us use the fact that ∇pτk = −∇ϕik/τ − ∇Φi, ρ
i,τ
k+1 − a.e., for all k ∈ {0, . . . , N − 1} where ϕik is an

optimal Kantorovich potential in the transport of ρi,τk+1 onto ρi,τk . First, let us computeˆ
Ω

|∇pτk|2ρik+1dx ≤ 2

τ2

ˆ
Ω

|∇ϕik|2ρik+1dx+ 2

ˆ
Ω

|∇Φi|2ρidx =
2

τ2
W 2

2 (ρi,τk+1, ρ
i,τ
k ) + 2‖∇Φi‖2L∞(Ω),

then adding up the two inequalities for i = 1, 2 (using the fact that pτk is supported on {ρ1
k+1 +ρ2

k+1 = 1}),
one findsˆ

Ω

|∇pτk|2dx =

ˆ
Ω

|∇pτk|2(ρ1
k+1 + ρ2

k+1)dx ≤
2∑
i=1

(
2

τ2
W 2

2 (ρi,τk+1, ρ
i,τ
k ) + 2‖∇Φi‖2L∞(Ω)

)
.
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Integrating in time ‖∇p̃τt ‖L2(Ω) using Corollary 3.2 one has that ∇p̃τ ∈ L2([0, T ]×Ω). Using the fact that

L d({p̃τt = 0}) ≥ L d({ρ̃1,τ
t + ρ̃1,τ

t < 1}) ≥ L d(Ω)−M1 −M2 > 0 for a.e. t ∈ [0, T ], one concludes by a
suitable version of Poincaré’s inequality that p̃τ uniformly bounded in L2([0, T ];H1(Ω)) as desired. �

We show now gradient estimates, derived from the optimality conditions (2.11).

Theorem 3.5. Let m ∈ (1,+∞). Then for the piecewise constant interpolation ρ̃i,τ (i = 1, 2) introduced
in (3.4) one has

(3.10) ‖∇(ρ̃1,τ + ρ̃2,τ )m−1/2‖L2([0,T ]×Ω) ≤ C3(m), ‖(ρ̃1,τ + ρ̃2,τ )m−1/2‖L2([0,T ]×Ω) ≤ C4(m),

and

(3.11) ‖ρ̃1,τ + ρ̃2,τ‖Lq([0,T ];Lm(Ω)) ≤ C5(q,m), ∀q ≥ 1,

where C3(m), C4(m), C5(q,m) > 0 are constants independent of τ > 0. The first two bounds imply in
particular that

(3.12) ‖(ρ̃1,τ + ρ̃2,τ )m−1/2‖L2([0,T ];H1(Ω)) ≤
(
C3(m)2 + C4(m)2

)1/2
.

Proof. We use the inequality (2.12), writing for (ρ1,τ
k+1, ρ

2,τ
k+1), i.e.

ˆ
Ω

∣∣∣∇(ρ1,τ
k+1 + ρ2,τ

k+1)m−1/2
∣∣∣2 dx ≤ 2(m− 1/2)2

m2

(
2∑
i=1

1

τ2
W 2

2 (ρi,τk+1, ρ
i,τ
k ) +

2∑
i=1

Mi‖∇Φi‖2L∞

)
.

Since the curves ρ̃i,τ (i = 1, 2) are piecewise constant interpolations, i.e. ρ̃i,τt = ρi,τk+1 for t ∈ (kτ, (k+1)τ ],
one hasˆ T

0

ˆ
Ω

∣∣∣∇(ρ̃1,τ
t + ρ̃2,τ

t )m−1/2
∣∣∣2 dxdt = τ

N−1∑
k=0

ˆ
Ω

∣∣∣∇(ρ1,τ
k+1 + ρ2,τ

k+1)m−1/2
∣∣∣2 dx

≤ 2(m− 1/2)2

m2

2∑
i=1

N−1∑
k=0

1

τ
W 2

2 (ρi,τk+1, ρ
i,τ
k )

+
2(m− 1/2)2

m2
τ

2∑
i=1

N−1∑
k=0

Mi‖∇Φi‖2L∞

≤ 2(m− 1/2)2

m2

(
C2(m) + T

2∑
i=1

Mi‖∇Φi‖2L∞

)
=: C3(m)2,

which implies (3.10), with

(3.13) C3(m) :=

√
2(m− 1/2)

m

(
C2(m) + T

2∑
i=1

Mi‖∇Φi‖2L∞

)1/2

.

Similarly, using the estimations from Theorem 2.4 and (3.7), we can write

ˆ T

0

‖(ρ̃1,τ
t + ρ̃2,τ

t )m−1/2‖2L2(Ω)dt = τ

N−1∑
k=0

‖(ρ1,τ
k+1 + ρ2,τ

k+1)m−1/2‖2L2(Ω)

≤ τ
N−1∑
k=0

(
CΩ‖∇(ρ1,τ

k+1 + ρ2,τ
k+1)m−1/2‖L2(Ω) + ‖ρ1,τ

k+1 + ρ2,τ
k+1‖

m−1/2
Lm(Ω) L d(Ω)1/(2m)−1/2

)2

≤ 2τ

N−1∑
k=0

(
C2

Ω‖∇(ρ1,τ
k+1 + ρ2,τ

k+1)m−1/2‖2L2(Ω) + ‖ρ1,τ
k+1 + ρ2,τ

k+1‖
2m−1
Lm(Ω)L

d(Ω)1/m−1
)

≤ 2
(
C2

ΩC3(m)2 + TC1(m)2m−1L d(Ω)1/m−1
)

Thus, the second estimation in (3.10) holds true with

(3.14) C4(m) :=
√

2
(
C2

ΩC3(m)2 + TC1(m)2m−1L d(Ω)1/m−1
)1/2

.
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Using (3.7), for any q ≥ 1 we can write similarly as before

ˆ T

0

‖ρ̃1,τ
t + ρ̃2,τ

t ‖
q
Lm(Ω)dt = τ

N−1∑
k=0

‖ρ1,τ
k+1 + ρ2,τ

k+1‖
q
Lm(Ω) ≤ TC1(m)q.

So defining C5(q,m) := T 1/qC1(m), one obtains the last estimation (3.11) �

In what follows – using a refined version of the Aubin-Lions lemma – we prove a strong compactness
result for ρ̃1,τ + ρ̃2,τ where ρ̃1,τ and ρ̃2,τ are the piecewise constant interpolations.

Proposition 3.6. Let m ∈ (1,+∞). Then the sequence of curves defined as ρ̃1,τn+ρ̃2,τn (for any sequence
(τn)n≥0 of positive reals that converges to 0) is strongly pre-compact in L2m−1([0, T ]× Ω).

Proof. We will use a refined version of the classical Aubin-Lions lemma to prove this result (see [40] and
Theorem B.1). Then we will argue as in in [19].

Let us set B := L2m−1(Ω), F : L2m−1(Ω)→ [0,+∞] defined as

F(ρ) :=

{
‖ρm−1/2‖H1(Ω), if ρ ∈ H1(Ω) ∩PM1+M2(Ω),

+∞, otherwise

and g : L2m−1(Ω)× L2m−1(Ω)→ [0,+∞] defined as

g(µ, ν) :=

{
W2(µ, ν), if µ, ν ∈PM1+M2(Ω),

+∞, otherwise.

In this setting,
(
ρ̃1,τn + ρ̃2,τn

)
n≥0

and F satisfy the assumptions of Theorem B.1. Indeed, from Theorem

3.5 one has in particular that

ˆ T

0

‖(ρ̃1,τ
t +ρ̃2,τ

t )m−1/2‖2H1(Ω)dt ≤ C3(m)2+C4(m)2. The injectionH1(Ω) ↪→

L2(Ω) is compact, the injection i : η 7→ η
2

2m−1 is continuous from L2(Ω) to L2m−1(Ω) and the sub-level
sets of ρ 7→ ‖ρm−1/2‖H1(Ω) are compact in L2m−1(Ω).

Moreover, by Corollary 3.2, Lemma A.3 and by the fact that g defines a distance on D(F), one has that
g also satisfies the assumptions from Theorem B.1, hence the implication of the theorem holds and one
has that

(
ρ̃1,τn + ρ̃2,τn

)
n≥0

is pre-compact in M (0, T ;L2m−1). Finally, the uniform bound (3.7) implies

the strong pre-compactness of
(
ρ̃1,τn + ρ̃2,τn

)
n≥0

in L2m−1([0, T ]× Ω). �

3.3. The limit systems as τ ↓ 0. We proceed with the final step of our scheme, i.e. as the time step
size goes to zero, we show that along a subsequence the discrete solutions converge to yield a very weak
solution of the PDE systems, in the sense of Definition 3.1. We use the convention of L2m−1([0, T ]×Ω) =
L∞([0, T ]× Ω) whenever m = +∞.

Proposition 3.7. Let m ∈ (1,+∞] and let us consider any sequence (τn)n≥0 which converges to zero.
Then, along a subsequence the following holds:

(1) There exists ρi ∈ AC2([0, T ]; (PMi(Ω),W2)) ∩ L2m−1([0, T ] × Ω) (i = 1, 2) s.t. ρi,τn → ρi and
ρ̃i,τn → ρi as n→ +∞ uniformly on [0, T ] w.r.t. W2, in particular weakly−? in PMi(Ω) for all
t ∈ [0, T ].

(2) There exists Ei ∈M d([0, T ]× Ω) (i = 1, 2) s.t. Ei,τn
?
⇀ Ei and Ẽ

i,τn ?
⇀ Ei as n→ +∞.

Proof. In Lemma 3.3 we obtained uniform bounds on the metric derivative of the continuous interpolations
ρi,τn (i = 1, 2), which is enough to get compactness. More precisely there exist [0, T ] 3 t 7→ ρit ∈PMi(Ω),

i = 1, 2 continuous curves such that (up to taking subsequences for τn) ρi,τnt → ρit uniformly on [0, T ]
w.r.t. W2 as n→ +∞, in particular weakly-? in PMi(Ω) for all t ∈ [0, T ].

The other interpolation ρ̃i,τn coincides with ρi,τn at every node point kτ, hence it is straightforward
that (up to a subsequence taken for τn) it converges to the same curve ρi uniformly on [0, T ] w.r.t. W2.

Lemma 3.3 states also that Ei,τn and Ẽ
i,τn

are uniformly bounded sequences in M d([0, T ]×Ω), hence

there exist Ei ∈M d([0, T ]×Ω) such that (up to a subsequence taken for τn) Ei,τn ?
⇀ Ei and Ẽ

i,τn ?
⇀ Ei

(i = 1, 2) in M d([0, T ]×Ω) as n→ +∞. The convergence of Ei,τn and Ẽ
i,τn

to the same limit Ei follows
from the same argument as in the proof of [36, Theorem 3.1]. �
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These convergences imply that one can pass to the limit in the weak formulation (3.3) as τ ↓ 0 and

obtain that (ρi,Ei) solves as well the continuity equation

(3.15) ∂tρ
i +∇ ·Ei = 0

on [0, T ]× Ω (with initial condition ρi(0, ·) = ρi0) in the same weak sense.

In particular, by Lemma 3.3 one has that the sequence
(
B2(ρi,τn ,Ei,τn)

)
n∈N is uniformly bounded

for any positive vanishing sequence (τn)n∈N, where B2 denotes the Benamou-Brenier action functional
(see its precise definition and properties in Appendix A). In particular, by the lower semicontinuity of
this functional, there exists vi such that vit ∈ L2

ρi(Ω;Rd) for a.e. t ∈ [0, T ] and at the limit (as τ ↓ 0)

Ei = vi · ρi. This implies further that the equation (3.15) has the form

(3.16) ∂tρ
i +∇ · (viρi) = 0.

3.3.1. Precise form of the limit systems. Now we shall work with the piecewise constant interpolations

ρ̃i,τ , i = 1, 2 and with the corresponding momenta Ẽ
i,τ
, i = 1, 2 to determine more properties of the limit

systems. The more precise convergence results are summarized in Theorem 3.8 and 3.9 below.

Theorem 3.8. Let m ∈ (1,+∞) and let ρ̃i,τ , i = 1, 2 be the piecewise constant interpolations between

the densities (ρi,τk )Nk=0 and Ẽ
i,τ
, i = 1, 2 the corresponding momentum variables. Taking any sequence

(τn)n≥1 that goes to zero, the following holds along a subsequence:

(1)
(
ρ̃1,τn + ρ̃2,τn

)
n≥0

converges strongly in L2m−1([0, T ]× Ω) to ρ1 + ρ2;

(2)
(
Ẽ

1,τn
+ Ẽ

2,τn
)
n≥0

, i = 1, 2 converges in the sense of distributions to −∇(ρ1 + ρ2)m −∇Φ1ρ
1 −

∇Φ2ρ
2, i.e.,

(3.17) v1ρ1 + v2ρ2 = −∇(ρ1 + ρ2)m −∇Φ1ρ
1 −∇Φ2ρ

2

in the sense of distributions on [0, T ]× Ω.

Proof. Let us show (1). Proposition 3.6 implies already that ρ̃1,τn + ρ̃2,τn (up to some subsequence
that we do not relabel) converges strongly in L2m−1([0, T ] × Ω). Also, by Proposition 3.7 we have that

ρ̃i,τnt
?
⇀ ρit as n → ∞ for all t ∈ [0, T ]. Hence the limit of (ρ̃1,τn + ρ̃2,τn)n≥0 is precisely ρ1 + ρ2 and

ρi ∈ L2m−1([0, T ]× Ω) ∩AC2([0, T ]; (PMi(Ω),W2)), i = 1, 2.

We show now (2). By definition of Ẽ
i,τ

on has that

Ẽ
1,τ

+ Ẽ
2,τ

= −∇(ρ̃1,τ + ρ̃2,τ )m −∇Φ1ρ̃
1,τ −∇Φ2ρ̃

2,τ .

Since by (1) ρ̃1,τn + ρ̃2,τn → ρ1 + ρ2 strongly in L2m−1([0, T ] × Ω) as n → +∞, one has that (ρ̃1,τn +

ρ̃2,τn)m → (ρ1 + ρ2)m strongly in L2− 1
m ([0, T ] × Ω) as n → +∞. This, together with the weak−?

convergence of (ρ̃i,τn)n≥0 to ρi implies the first part of the statement. On the other hand one has

obtained already that Ẽ
i,τn

⇀ Ei = viρi as n→ +∞, thus (3.17) follows as well. �

Remark 3.3. (1) Let us underline the fact that it is unclear whether we could show a stronger

version of Theorem 3.8(2), i.e. the convergence (up to passing to a subsequence) of
(
Ẽ
i,τn
)
n≥0

to − m
m−1ρ

i∇(ρ1 + ρ2)m−1 − ∇Φiρ
i i = 1, 2, which is necessary in order to obtain the weak

formulation of the PDE system at the limit .
(2) In Theorem 3.8 if in addition

(
ρ̃i,τn

)
n≥0

either for i = 1 or i = 2 converges a.e. in [0, T ] × Ω

then both sequences (i = 1, 2) converge strongly in L2m−1([0, T ]×Ω) to ρi and the corresponding

momentum
(
Ẽ
i,τn
)
n≥0

(i = 1, 2) converge in the sense of distributions to − m
m−1ρ

i∇(ρ1+ρ2)m−1−

∇Φiρ
i. The study of a stable scenario when this holds true is the subject of Section 4.

Proof of Remark 3.3(2). First, clearly the pointwise convergence of
(
ρ̃i,τn

)
n≥0

and the strong convergence

of
(
ρ̃1,τn + ρ̃2,τn

)
n≥0

in L2m−1([0, T ]×Ω) by a suitable version of Vitali’s convergence theorem imply the

strong convergence of
(
ρ̃i,τn

)
n≥0

in L2m−1([0, T ] × Ω) to ρi. Since one of the terms in the sum of these

sequences and the sum itself converges strongly, so does the other term as well. Let us recall the formula

Ẽ
i,τn

= − m

m− 1
ρ̃i,τn∇(ρ̃1,τn + ρ̃2,τn)m−1 −∇Φ1ρ̃

1,τn .
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The strong convergence of
(
ρ̃i,τn

)
n≥0

implies that the second term of Ẽ
i,τn

, i.e. −∇Φiρ̃
i,τn (since ∇Φi

is in L∞(Ω;Rd)) converges strongly in L2m−1([0, T ]× Ω;Rd) to −∇Φiρ
i. Thus in particular weakly-? in

M d([0, T ]× Ω). The first term of Ẽ
i,τn

can be written as

− m

m− 1
ρ̃i,τn∇(ρ̃1,τn + ρ̃2,τn)m−1 = − m

m− 1

[
∇(ρ̃1,τn + ρ̃2,τn)m−1

]
(ρ̃1,τn + ρ̃2,τn)1/2 ρ̃i,τn

(ρ̃1,τn + ρ̃2,τn)1/2
,

and notice furthermore that

− m

m− 1

[
∇(ρ̃1,τn + ρ̃2,τn)m−1

]
(ρ̃1,τn + ρ̃2,τn)1/2 = − m

m− 1/2
∇(ρ̃1,τn + ρ̃2,τn)m−1/2.

Theorem 3.5 implies that the sequence
(
− m
m−1/2 (ρ̃1,τn + ρ̃2,τn)m−1/2

)
n≥0

is uniformly bounded in the

space L2([0, T ];H1(Ω)), hence there exists a subsequence (not relabeled) and some ξ ∈ L2([0, T ];H1(Ω))

such that
(
− m
m−1/2 (ρ̃1,τn + ρ̃2,τn)m−1/2

)
n≥0

is converging weakly to ξ as n → +∞. In particular,

− m
m−1/2 (ρ̃1,τn + ρ̃2,τn)m−1/2 ⇀ ξ weakly in L2([0, T ] × Ω) and − m

m−1/2∇(ρ̃1,τn + ρ̃2,τn)m−1/2 ⇀ ∇ξ
weakly in L2([0, T ]× Ω;Rd) as n→ +∞.

By Proposition 3.6 one has that
(
ρ̃1,τn + ρ̃2,τn

)
n≥0

converges strongly to ρ1 + ρ2 in L2m−1([0, T ]×Ω),

which implies in particular that
(
(ρ̃1,τn + ρ̃2,τn)m−1/2

)
n≥0

converges strongly in L2([0, T ] × Ω) to (ρ1 +

ρ2)m−1/2. This together with the above weak convergences implies that ∇ξ = − m
m−1/2∇(ρ1 +ρ2)m−1/2 ∈

L2([0, T ]× Ω;Rd).
Now, by the strong convergence of ρ̃i,τn to ρi in L2m−1([0, T ]× Ω) one has that

ρ̃i,τn

(ρ̃1,τn + ρ̃2,τn)1/2
→ ρi

(ρ1 + ρ2)1/2
as n→ +∞

pointwisely a.e. in [0, T ] × Ω. Moreover, since the densities are non-negative one has ρ̃i,τn

(ρ̃1,τn+ρ̃2,τn )1/2
≤

(ρ̃i,τn)
1
2 and (ρ̃i,τn)

1
2 converges to (ρi)

1
2 strongly in L2(2m−1)([0, T ] × Ω). Hence Lebesgue’s dominated

convergence theorem implies that

ρ̃i,τn

(ρ̃1,τn + ρ̃2,τn)1/2
→ ρi

(ρ1 + ρ2)1/2
as n→ +∞,

strongly in L2(2m−1)([0, T ]× Ω).

Gluing together the two previous results, one obtains that − m

m− 1
∇(ρ̃1,τn + ρ̃2,τn)m−1ρ̃i,τn converges

weakly to − m

m− 1
∇(ρ1 + ρ2)m−1ρi in Lr([0, T ] × Ω;Rd) as n → +∞, where 1

2 + 1
2(2m−1) + 1

r = 1, i.e.

r = 2(2m−1)
2m−2 > 1. So in particular the convergence is weakly-? in M d([0, T ] × Ω), which together with

the strong convergence of the term ∇Φiρ̃
i,τn implies the thesis.

�

Theorem 3.9. Let m = +∞ and let and let us consider ρ̃i,τ , i = 1, 2 the piecewise constant interpolations

between the densities (ρi,τk )Nk=0 and Ẽ
i,τ
, i = 1, 2 the corresponding momentum variables. Let us consider

moreover pτ the piecewise constant interpolations between the pressure variables (pτk)N−1
k=0 . Let us take

any positive sequence (τn)n≥0 such that τn ↓ 0 as n → +∞, and let us consider the weak limit p of
(pτn)n≥0 in L2([0, T ];H1(Ω)) and ρi the limit of (ρi,τn)n≥0 in L∞([0, T ]; (PMi(Ω),W2)) (up to passing
to a subsequence that we do not relabel). Then we have the following:

p(1− (ρ1 + ρ2)) = 0 a.e. in [0, T ]× Ω.

Proof. First notice that by Lemma 3.4 and Proposition 3.7 the weak limits p and ρi (i = 1, 2) exist.
Furthermore, (1) follows from the previously mentioned results, Lemma A.3 and [36, Lemma 3.5]. �

Remark 3.4. In Theorem 3.9 if ρ̃1,τn and ρ̃2,τn are such that L d({ρ̃1,τn
t > 0} ∩ {ρ̃2,τn

t > 0}) = 0 for all
t ∈ [0, T ] and for all n ∈ N, then

Ẽ
i,τn ?

⇀ −∇p−∇Φiρ
i, as n→ +∞, in M d([0, T ]× Ω), i = 1, 2.
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If moreover L d({ρ1
t > 0} ∩ {ρ2

t > 0}) = 0 for a.e. t ∈ [0, T ], then

∇p = ρi∇p, a.e. in [0, T ]× Ω, i = 1, 2.

Proof. To show the remark let us recall the form of the momentum variables, i.e.

Ẽ
i,τn

= ṽi,τn ρ̃i,τn = −∇pτn ρ̃i,τn −∇Φiρ̃
i,τn = −∇pτn −∇Φiρ̃

i,τn ,

where the last equality holds true since pτn(1 − (ρ̃1,τn + ρ̃2,τn)) = 0 for all t ∈ [0, T ] and a.e. in Ω and

by the assumption L d({ρ̃1,τn
t > 0} ∩ {ρ̃2,τn

t > 0}) = 0 for all t ∈ [0, T ], one has {ρ̃1,τn
t + ρ̃2,τn

t = 1} =a.e.

{ρ̃1,τn
t = 1}∪{ρ̃2,τn

t = 1} for all t ∈ [0, T ] and the two sets are disjoint a.e. in Ω. By the weak convergences
of (pτn)n≥0 to p and (ρ̃i,τn)n≥0 to ρi (i = 1, 2) one can easily conclude that

Ẽ
i,τn ?

⇀ −∇p−∇Φiρ
i, as n→ +∞, in M d([0, T ]× Ω), i = 1, 2.

Also, ∇p = ρi∇p, i = 1, 2 a.e. in [0, T ] × Ω follows easily from (1) and the assumption L d({ρ̃1
t >

0} ∩ {ρ̃2
t > 0}) = 0 for all t ∈ [0, T ], as desired. �

3.4. Segregation of the densities. As mentioned in the introduction, it seems natural to look for
initial configurations of the system (PMEm) where there is no mixing of the densities, to strengthen our
convergence results in the continuum limit. We shall describe such initial configurations in one space
dimension in the next section. Here we describe some properties of the time-discrete solutions (obtained
by the JKO scheme) which hold for all dimensions. In particular, we show that when Φ2 = Φ1 + C (for
some C ∈ R), then the densities stay segregated if initially they were so. We derive also some properties
of the mixed region, when the two initial densities are mixed in a special way. Still, these statements are
only true for time-discrete solutions, and we cannot rule out the possibility that the limiting densities end
up mixed, for instance, due to “fingering” phenomena (see also the numerical observations in [28] which
displays fingering phenomena when a system, similar to (2.4), has unstable combination of diffusion
constants and source terms). It seems that additional geometric property is required to preserve the
segregation property in the continuum limit.

Proposition 3.10. Let m ∈ (1,+∞]. Let us assume moreover that Φ1 and Φ2 are such that Φ2 = Φ1 +C
on Ω for some C ∈ R, with the hypothesis (HΦ) fulfilled. Let (ρ1

0, ρ
2
0) ∈PM1(Ω)×PM2(Ω) satisfy (Hm

ρ )

and let (ρ1, ρ2) be the minimizers in (MMm) constructed with the help of (ρ1
0, ρ

2
0). Then the following

statements hold true.

(1) If L d
(
{ρ1

0 > 0} ∩ {ρ2
0 > 0}

)
= 0, then L d

(
{ρ1 > 0} ∩ {ρ2 > 0}

)
= 0.

(2) Let us define the Borel measurable sets A := {ρ1
0 > 0} ∩ {ρ2

0 > 0} and B := {ρ1 > 0} ∩ {ρ2 > 0}.
Let us suppose that L d(A) > 0 and L d(B) > 0. If there exists r > 0 such that rρ1

0 ≤ ρ2
0 a.e. in

A, then rρ1 ≤ ρ2 a.e. in B.

Proof. Let us use the notation ∇Φ := ∇Φ1 = ∇Φ2. Using (2.11), the optimal transport maps T i (i = 1, 2)
in the transport of ρi onto ρi0 (see Lemma 2.2-2.3) can be written (ρi − a.e.) as

T i =

{
id + τ

(
m
m−1∇(ρ1 + ρ2)m−1 +∇Φ

)
, if m ∈ (1,+∞),

id + τ(∇p+∇Φ), if m =∞.

In particular, observe that T 1 = T 2 a.e. in {ρ1 > 0} ∩ {ρ2 > 0}.
We show (1). Suppose that the Borel measurable set B := {ρ1 > 0} ∩ {ρ2 > 0} has positive Lebesgue

measure. For any x0 ∈ B such that x0 is a Lebesgue point of ρ1, ρ2 and T 1, T 2 and T 1(x0) = T 2(x0) is a
Lebesgue point for both ρ1

0 and ρ2
0, one has (since T 1(x0) = T 2(x0)) that T 1(x0) = T 2(x0) ∈ {ρ1

0 > 0} ∩
{ρ2

0 > 0}. In particular the positive mass of each ρi (i = 1, 2) on B is transported onto {ρ1
0 > 0}∩{ρ2

0 > 0}.
On the other hand, since both ρ1

0 and ρ2
0 are absolutely continuous w.r.t. L d, this mass cannot be

supported on an L d-null set, which is a contradiction to the assumption L d
(
{ρ1

0 > 0} ∩ {ρ2
0 > 0}

)
= 0.

We show (2). First observe that one can write two Jacobian equation in a weak sense, i.e.

(3.18) det(DT i) =
ρi

ρi0 ◦ T i
, ρi − a.e..

Since the measures ρi, i = 1, 2 are absolutely continuous w.r.t. the Lebesgue measure, the maps T i

are differentiable ρi − a.e. and the previous equation holds true pointwisely ρi − a.e. (see for instance
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[17, Theorem 3.1]). Let us choose x0 ∈ B such that it is a Lebesgue point of both ρ1 and ρ2 and it
is a point of differentiability of both T 1 and T 2 (in particular ρ1(x0) > 0 and ρ2(x0) > 0). Since the
optimal transport maps coincide on the common support of ρ1 and ρ2, one may assume that T (x0) :=
T 1(x0) = T 2(x0) is a Lebesgue point of both ρ1

0 and ρ2
0. The Jacobian equation (3.18) yields that

ρ2(x0)/ρ1(x0) = ρ2
0(T (x0))/ρ1

0(T (x0)) ≥ r, which concludes the proof. �

4. Segregated weak solutions in 1D

In this section we study the local segregation property of the supports for the time-discrete solutions.
As a consequence we show the existence of segregated weak solutions of the systems (PMEm) and (PME∞)
in one spacial dimension.

4.1. Separation of the supports and ordering property in one space dimension.

Framework Hyp-1D. We set the following geometric framework (see also Figure 1 below for illustra-
tion).

(1) d = 1, Ω a bounded open interval, the potentials Φi, i = 1, 2 are semi-convex and C1(Ω);
(2) The drifts are ‘ordered’, in the sense that ∂xΦ2(x) ≥ ∂xΦ1(x) for all x ∈ Ω. This means in

particular that Φ2 − Φ1 is increasing;
(3) ρ1

0 and ρ2
0 are two densities such that for a.e. x ∈ {ρ1

0 > 0} and y ∈ {ρ2
0 > 0} one has that y < x.

We refer to this last property as “ordering of the supports” of the initial densities. This implies
in particular that L 1({ρ1

0 > 0} ∩ {ρ2
0 > 0}) = 0.

Let us point out that the assumptions from Hyp-1D immediately imply with reasoning parallel to
Proposition 3.10 that L 1({ρ1 > 0} ∩ {ρ2 > 0}) = 0 for one-step minimizers (ρ1, ρ2) given by (MMm).
To see this, suppose {ρ1 > 0} ∩ {ρ2 > 0} =a.e B for some Borel measurable set B such that L 1(B) > 0.
As in the proof of Proposition 3.10, The optimal transport map T i (i = 1, 2) in the transport of ρi onto
ρi0 is given by

T i =

{
id + τ

(
m
m−1∂x(ρ1 + ρ2)m−1 + ∂xΦi

)
, if m ∈ (1,+∞),

id + τ(∂xp+ ∂xΦi), if m =∞.
The above formula and the assumption ∂xΦ2− ∂xΦ1 ≥ 0 in Ω yield that T 2(x) ≥ T 1(x) a.e. in B, which
contradicts the ordering property of the initial data.

Still, this separation property is not enough to iterate over time steps unless the ordering property of
the initial configuration is preserved for (ρ1, ρ2). This is what we prove next.

Proposition 4.1. Let m ∈ (1,+∞] and suppose the assumptions in (Hyp-1D) and the hypotheses (HΦ)-
(Hm

ρ ) are in place. Let us denote by (ρ1, ρ2) the one-step time discrete solutions given by (MMm) for

k = 0. Then the ordering property from (Hyp-1D) holds true for {ρ1 > 0} and {ρ2 > 0}.

ρ2
0

−∂xΦ2

ρ1
0

−∂xΦ1

Figure 1. Ordering of the supports of the initial data

Proof. Suppose the contrary, i.e. there exist B1 ⊆ {ρ1 > 0} and B2 ⊆ {ρ2 > 0} with L 1(B1) > 0 and
L 1(B2) > 0 such that for a.e. x ∈ B1 and y ∈ B2 x < y (see Figure 2 for illustration).

Claim: there exist Ei ⊆ Bi, i = 1, 2 Borel measurable sets, θ > 0 and δ > 0 such that L 1(E1) =
L 1(E2) > 0, E2 = E1 + θ and ρi ≥ δ a.e. on Ei, i = 1, 2 (see Figure 2 for illustration).
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Proof of the claim. Let us take x0 ∈ B1, y0 ∈ B2 Lebesgue points. This means in particular that
ρ1(x0) > 0, ρ2(y0) > 0 and

(4.1) lim
r↓0

 
Br(x0)

∣∣ρ1(x)− ρ1(x0)
∣∣ dx = 0, lim

r↓0

 
Br(y0)

∣∣ρ2(x)− ρ2(y0)
∣∣ dx = 0.

Now let us take r > 0 small (we fix it later) and let δ := min
{
ρ1(x0)/2, ρ2(y0)/2

}
. Let us consider

moreover the measurable sets Ẽ1 ⊆ B1 ∩ Br(x0) and Ẽ2 ⊆ B2 ∩ Br(y0) defined as Ẽi :=
{
ρi ≥ δ

}
, i =

1, 2. By construction, for r > 0 small enough one has that L 1(Br(x0) \ Ẽ1)/L 1(Br(x0)) ≤ 1/3 and

L 1(Br(y0) \ Ẽ2)/L 1(Br(y0)) ≤ 1/3. Indeed, one has

 
Br(x0)

∣∣ρ1(x)− ρ1(x0)
∣∣ dx ≥ 1

L 1(Br(x0))

ˆ
Br(x0)\Ẽ1

∣∣ρ1(x)− ρ1(x0)
∣∣ dx

≥ ρ1(x0)

2

L 1(Br(x0) \ Ẽ1)

L 1(Br(x0))
,

and by (4.1) the l.h.s. tends to 0 as r ↓ 0, so for r > 0 small enough L 1(Br(x0)\ Ẽ1)/L 1(Br(x0)) ≤ 1/3.

Similarly for ρ2 and Ẽ2. Fix such an r > 0.
Furthermore, set θ := y0 − x0 and define E1 := Ẽ1 ∩ (Ẽ2 − θ) and E2 := E1 + θ. Thus,

L 1(E2)

L 1(Br(y0))
=

L 1(E1)

L 1(Br(x0))
≥ 1− L 1(Br(x0) \ Ẽ1)

L 1(Br(x0))
− L 1(Br(y0) \ Ẽ2)

L 1(Br(y0))
=

1

3
.

This finishes the proof of the claim, since r > 0 is a fixed small number.
Now we construct a new competitor (ρ̃1, ρ̃2) in (MMm) which has less energy (we refer to Figure 2 for

the illustration) than (ρ1, ρ2), yielding the contradiction. Define ρ̃1 and ρ̃2 as

ρ̃1 =

 ρ1, in Ω \ (E1 ∪ E2),
ρ1 − δ, in E1,
δ, in E2,

and ρ̃2 =

 ρ2, in Ω \ (E1 ∪ E2),
δ, in E1,
ρ2 − δ, in E2.

We construct corresponding transport maps (not necessarily optimal ones), T̃ 1 between ρ̃1 and ρ1
0 and

T̃ 2 between ρ̃2 and ρ2
0 as

T̃ 1 =

{
T 1, in Ω \ E2,
T 1(· − θ), in E2,

and T̃ 2 =

{
T 2, in Ω \ E1,
T 2(·+ θ), in E1.

By construction T̃ i#ρ̃
i = ρi0, i = 1, 2. Let us use the notation E1

0 := T 1(E1) and E2
0 := T 2(E2), these are

Borel measurable sets and subsets of {ρ1
0 > 0} and {ρ2

0 > 0} respectively.

ρ2 ρ1

x0

E1

ρ2

y0

E2
θ

δ

ρ2
0

E2
0

ρ1
0

E1
0

Figure 2. Ordering property for {ρ1
0 > 0} and {ρ2

0 > 0} (on the right). This is is
violated by {ρ1 > 0} and {ρ2 > 0} (on the left)

Notice that by construction ρ̃1 + ρ̃2 = ρ1 + ρ2 in Ω, hence

(4.2) Fm(ρ̃1, ρ̃2) = Fm(ρ1, ρ2).
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Now let us see how the other two energy terms in (MMm) change by considering (ρ̃1, ρ̃2) as competitors.
Let us use the notation h(x) := ∂xΦ2(x)− ∂xΦ1(x). First,

EG := G(ρ̃1, ρ̃2)− G(ρ1, ρ2) =

ˆ
Ω

Φ1ρ̃
1dx+

ˆ
Ω

Φ2ρ̃
2dx−

ˆ
Ω

Φ1ρ
1dx−

ˆ
Ω

Φ2ρ
2dx

= δ

(ˆ
E2

Φ1(x)dx−
ˆ
E1

Φ1(x)dx

)
+ δ

(ˆ
E1

Φ2(x)dx−
ˆ
E2

Φ2(x)dx

)
=

ˆ
E1

δ [(Φ1(x+ θ)− Φ2(x+ θ))− (Φ1(x)− Φ2(x))] dx

=

ˆ
E1

δθ [∂xΦ1(ξx,θ)− ∂xΦ2(ξx,θ)] dx

where in the last equality we used the mean value theorem and ξx,θ is some point in (x, x + θ). We

compute now the change in the W2 terms. Recall the structure of the transport maps T̃ i, i = 1, 2 and
mind that they might be not optimal. Thus one has

EW2
:=

1

2τ
W 2

2 (ρ̃1, ρ1
0) +

1

2τ
W 2

2 (ρ̃2, ρ2
0)− 1

2τ
W 2

2 (ρ1, ρ1
0)− 1

2τ
W 2

2 (ρ2, ρ2
0)

≤ 1

2τ

ˆ
E2

|x− T 1(x− θ)|2δdx+
1

2τ

ˆ
E1

|x− T 2(x+ θ)|2δdx

− 1

2τ

ˆ
E1

|x− T 1(x)|2δdx− 1

2τ

ˆ
E2

|x− T 2(x)|2δdx

=
1

2τ

ˆ
E1

(
|x+ θ − T 1(x)|2 − |x− T 1(x)|2

)
δdx

+
1

2τ

ˆ
E2

(
|x− θ − T 2(x)|2 − |x− T 2(x)|2

)
δdx

=
δθ

τ

ˆ
E1

(T 2(x+ θ)− T 1(x))dx

where ηi = δ ·L 1 Ei and ηi0 = T i#η
i, i = 1, 2.

Now, it is easy to see that EG +EW2
< 0. Indeed, by the assumptions (2) from (Hyp-1D) one has that

∂xΦ1 − ∂xΦ2 nonpositive, thus

(4.3) EG + EW2
≤ δθ

ˆ
E1

{
[∂xΦ1(ξx,θ)− ∂xΦ2(ξx,θ)] +

1

τ
[T 2(x+ θ)− T 1(x)]

}
dx

is negative since by the assumption (3) from (Hyp-1D) T 2(x+ θ)− T 1(x) < 0.
Thus one concludes that EG + EW2

< 0, which together with (4.2) imply that (ρ̃1, ρ̃2) is a better
competitor than (ρ1, ρ2). This is clearly a contradiction to the uniqueness of the minimizer in (MMm).
Thus the ordering property for {ρ1 > 0} and {ρ2 > 0} follows. �

4.2. Discussion on possibly mixed initial data. Extending the above proposition to more general
cases seems to be challenging, due to possible presence of the mixing zone {ρ1 > 0}∩{ρ2 > 0}. The main
issue, for instance to localize our argument, would be to ensure the finite propagation of mixing zone.
The only available result in this direction arises in the case of the stiff pressure limit, m =∞, Φi = cix,
and with full saturation, that is when we have the constraint ρ1 +ρ2 = 1. In this case Otto ([38]) showed
in one dimensional setting that there is a unique description of the mixing zone that propagates with
finite speed generated by the entropy solution of a conservation law. While we are not sure whether the
same uniqueness results hold for our undersaturated case, we believe that the mixing zone should travel
with finite speed at least in one dimension.

4.3. Existence of a solution for (PMEm) supposing (Hyp-1D).

Theorem 4.2. Let us suppose that m ∈ (1,+∞] and the setting of (Hyp-1D) takes place. Let us consider
(ρ1, ρ2) to be any subsequential limit (uniformly in time w.r.t. W2) of the piecewise constant interpolation
curves (ρ̃1,τn , ρ̃2,τn) when τn ↓ 0, with the initial densities (ρ1

0, ρ
2
0). Then (ρ1, ρ2) satisfies

L 1
(
{ρ1
t > 0} ∩ {ρ2

t > 0}
)

= 0, ∀t ∈ [0, T ]

and the sets {ρ1
t > 0} and {ρ2

t > 0} are ordered in the sense of (Hyp-1D) for all t ∈ [0, T ].
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Proof. First, let us recall that the ordering of {ρ1
0 > 0} and {ρ2

0 > 0} in (Hyp-1D) is such that {ρ2
0 > 0}

is to the left of {ρ1
0 > 0}.

Second, let us underline that by Proposition 3.7 (1) ρi is obtained as the uniform limit in time w.r.t.
W2 (as τ ↓ 0) of the piecewise constant interpolation curves ρ̃i,τ (i = 1, 2). For a fixed time step τ > 0,
considering the above mentioned interpolations, we introduce the following functions I1,τ , I2,τ : [0, T ]→ Ω
defined as

I1,τ (t) := inf
{
x : x ∈ Leb

(
{ρ̃1,τ
t > 0}

)}
and I2,τ (t) := sup

{
x : x ∈ Leb

(
{ρ̃2,τ
t > 0}

)}
.

These functions are well-defined, since Ω is bounded and in particular Proposition 4.1 implies that
I2,τ (t) ≤ I1,τ (t) for all t ∈ [0, T ] and for any τ > 0. Also, by the boundedness of Ω, these functions are
uniformly bounded in t and τ .

Let us take a sequence (τn)n≥0, s.t. τn ↓ 0 as n → +∞ and supt∈[0,T ]W2(ρ̃i,τt , ρit) → 0 as n → +∞,

(i = 1, 2).
(
Ii,τn(t)

)
n≥0

is a bounded sequence for each t ∈ [0, T ], so up to passing to a subsequence (that

we do not relabel), it has a poitwise limit as n→ +∞ that we denote by Ii(t) for t ∈ [0, T ] and i = 1, 2.
Now we show the following.

Claim:

(1) ρ2
t (y) = 0 for a.e. y > I2(t) and (2) ρ1

t (x) = 0 for a.e. x < I1(t).

Proof of the claim. Let us suppose that the claim is false, i.e. the first statement fails to be true (the
proof of (2) is parallel). Then there exits r > 0 and δ > 0 small such that

ˆ I2(t)+2r

I2(t)+r

ρ2
t (x)dx > δ > 0.

But, for n ∈ N large enough such that
∣∣I2,τn(t)− I2(t)

∣∣ < r/2 one has that

W 2
2 (ρ̃2,τn

t , ρ2
t ) ≥ (r/2)2

ˆ I2(t)+2r

I2(t)+r

ρ2
t (x)dx = (r/2)2δ,

which yields a contradiction to the fact that W2(ρ̃2,τ
t , ρ2

t ) → 0 as n → +∞. A similar argument can be
performed to show (2), thus the claim follows.

Now, since I2,τn(t) ≤ I1,τn(t) for all n ∈ N and t ∈ [0, T ], after passing to subsequences if necessary,
one has that I2(t) ≤ I1(t) for any limit points I1(t), I2(t) and for all t ∈ [0, T ]. This together with the
Claim imply that L 1

(
{ρ1
t > 0} ∩ {ρ2

t > 0}
)

= 0, ∀t ∈ [0, T ] and that the sets {ρ1
t > 0} and {ρ2

t > 0} are
ordered in the sense of (Hyp-1D) for all t ∈ [0, T ]. The result follows. �

Remark 4.1. When m ∈ (1,+∞), the above result allows to obtain the strong convergence result of the
density sequences (ρ̃i,τn)n≥0, i = 1, 2 separately. When m = +∞, together with Proposition 4.1 this result
is crucial to fulfill the hypotheses in Remark 3.4, which will lead to the precise weak form of the (PME∞)
system.

Theorem 4.3. Let us suppose that m ∈ (1,+∞) and the setting of (Hyp-1D) takes place. Consider the
piecewise constant interpolations ρ̃i,τn (i = 1, 2) for some (τn)n≥0 such that τn ↓ 0 as n→ +∞. Then up
to passing to a subsequence with (τn)n≥0,

(
ρ̃i,τn

)
n≥0

(i = 1, 2) converges strongly in L2m−1([0, T ] × Ω),

in particular pointwise a.e. in [0, T ]× Ω.

Proof. Let us show first that (ρ̃i,τn)n≥0 (up to passing to a subsequence) converges strongly to ρi (i =
1, 2) in L1([0, T ] × Ω). We pass to subsequences if necessary (that we do not relabel) to ensure that
(ρ̃1,τn + ρ̃2,τn)n≥0 converges strongly to ρ1 + ρ2 in L2m−1([0, T ] × Ω) and (ρ̃i,τn)n≥0 converges to ρi
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(i = 1, 2) weakly in L2m−1([0, T ]× Ω) as n→ +∞. We compute

‖ρ̃i,τn − ρi‖L1([0,T ]×Ω) =

ˆ
[0,T ]×Ω

|ρ̃i,τn − ρi|dt⊗ dx

=

ˆ
{ρi>0}

|ρ̃i,τn − ρi|dt⊗ dx+

ˆ
([0,T ]×Ω)\{ρi>0}

ρ̃i,τn dt⊗ dx

=

ˆ
{ρi>0}

|ρ̃1,τn + ρ̃2,τn − (ρ1 + ρ2)|dt⊗ dx+

ˆ
([0,T ]×Ω)\{ρi>0}

ρ̃i,τn dt⊗ dx

≤
ˆ

[0,T ]×Ω

|ρ̃1,τn + ρ̃2,τn − (ρ1 + ρ2)|dt⊗ dx

+

ˆ T

0

ˆ
([0,T ]×Ω)\{ρi>0}

ρ̃i,τn dt⊗ dx

→ 0, as n→ +∞,

where in the third equality we used the facts (see Theorem 4.2) that ρi = 0 a.e. in {ρi+1 > 0} and
ρ̃i,τn = 0 a.e. in {ρi+1 > 0}, with the convention i+ 1 = 1, when i = 2. Moreover, both terms in the last
sum converge to 0. Indeed, the convergence of the first term is a consequence of the strong convergence
of (ρ̃1,τn + ρ̃2,τn)n≥0 to ρ1 + ρ2 in L2m−1([0, T ]× Ω) as n→ +∞. The convergence to 0 of the last term
is a consequence of the weak convergence of ρ̃i,τn to ρi in L2m−1([0, T ]× Ω).

This together with Theorem 3.5 and Proposition 3.6 imply that (up to passing to a subsequence)(
ρi,τn

)
n≥0

converges strongly in L2m−1([0, T ]× Ω). �

We state now the results on the existence of weak solutions of the PDE systems (PMEm) and (PME∞).

Theorem 4.4. Let us assume that m ∈ (1,+∞), the hypotheses (Hm
ρ ) and (HΦ) are fulfilled and the

setting in (Hyp-1D) takes place. Then the system (PMEm) has a weak solution (ρ1, ρ2) in the sense of
(Weak) such that ρi ∈ L2m−1([0, T ] × Ω) ∩ AC2([0, T ]; (PMi(Ω),W2)), i = 1, 2 and (ρ1 + ρ2)m−1/2 ∈
L2([0, T ];H1(Ω)). In addition, ρi ∈ Lq([0, T ]×Ω) for all 1 ≤ q ≤ m and Ei := − m

m−1∂x(ρ1 +ρ2)m−1ρi−
∂xΦiρ

i belongs to Lr([0, T ]× Ω;Rd) for some 1 ≤ r < 2 with uniform bounds in m. Lastly, if m→ +∞,
q can be arbitrary large and r can be chosen arbitrary close to 2.

Proof. By Theorem 3.8 one has that the limit densities ρ1 and ρ2 belong to

L2m−1([0, T ]× Ω) ∩AC2([0, T ]; (PMi(Ω),W2)).

The same theorem establishes the convergence of (ρ̃i,τ , Ẽ
i,τ

) and the precise form of the limit. By the

fact that (ρ̃i,τ , Ẽ
i,τ

) and (ρi,τ ,Ei,τ ) converge weakly as measures to the same limit (ρi,Ei) and by the
fact that this latter pair solves the continuity equation (3.15) in the weak sense (3.3), so does the precise

limit of (ρ̃i,τ , Ẽ
i,τ

) developed in Remark 3.3(2) (notice that by Theorem 4.3 the assumptions in Remark
3.3(2) are fulfilled). This means in particular that the limit equation reads (for i = 1, 2) as

∂tρ
i − ∂x

(
m

m− 1
∂x(ρ1 + ρ2)m−1ρi + ∂xΦiρ

i

)
= 0,

that has to be understood in the weak sense (Weak) with no-flux boundary condition.

Finally, let us obtain the uniform (w.r.t m) bounds on ρi and Ei. First, by Theorem 3.5 (3.11) one has
that the limit curves are bounded in Lp([0, T ];Lm(Ω)) for all p ≥ 1 with uniform bounds. Take p = m
and any 1 ≤ q ≤ m. Then Hölder’s inequality yields

(4.4) ‖ρi‖Lq([0,T ]×Ω) ≤ (TL 1(Ω))
m−q
qm ‖ρi‖Lm([0,T ]×Ω) ≤ T

1
qL 1(Ω)

m−q
qm C1(m).

Second, let us write

Ei =
m

m− 1/2
∂x(ρ1 + ρ2)m−1/2 ρi

(ρ1 + ρ2)1/2
+ ∂xΦiρ

i.

Notice that by (3.10) (Theorem 3.5) the L2 bound for ∂x(ρ1 + ρ2)m−1/2 remains the same after passing

to the limit with the time step τ . Also, by the previous bound on ρi, ρi

(ρ1+ρ2)1/2
is bounded uniformly in
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L2q([0, T ] × Ω) (since ρi

(ρ1+ρ2)1/2
≤ (ρi)1/2 a.e.). These observations, together with the fact that ∂xΦi is

uniformly bounded let us conclude by Hölder’s inequality that

(4.5) ‖Ei‖Lr ≤
m

m− 1/2
‖∂x(ρ1 + ρ2)m−1/2‖L2‖ρi‖1/2

Lr/(2−r)
+ ‖∂xΦi‖L∞‖ρi‖Lr ,

provided 1 ≤ r < 2 and max
{

r
2−r , r

}
≤ q.

Thus the thesis of the theorem follows. �

Lemma 4.5. Let m ∈ (1,+∞) and let us consider (ρ1, ρ2) the solution of (PMEm) supposing (Hyp-1D)
with given initial data (ρ1

0, ρ
2
0). We assume – similarly to the hypotheses (Hm

ρ ) in the m = +∞ case –
that the measure of Ω is large enough, i.e.

(4.6) L 1(Ω) > (M1 +M2),

where Mi denotes the total mass of ρi0. Then – uniformly in m – we have the following regularity estimates

(1) (ρ1 + ρ2)m ∈ L1([0, T ];C0,α(Ω)) for some 0 < α < 1/2 and in particular it is uniformly bounded
in Lr([0, T ]× Ω) for some 1 < r < 2;

(2) (ρ1 +ρ2)m−1/2 ∈ L1([0, T ];C0,1/2(Ω)) and in particular it is uniformly bounded in L2([0, T ]×Ω).

Proof. We show (1). Using the notations from Theorem 4.4, one has that

E1 + E2 = −∂x(ρ1 + ρ2)m − ∂xΦ1ρ
1 − ∂xΦ2ρ

2.

By the estimations from Theorem 4.4 we know that the quantities E1 + E2 and ∂xΦ1ρ
1 + ∂xΦ2ρ

2 are
bounded uniformly in Lr([0, T ]× Ω;Rd) for some 1 < r < 2.

This implies first that ∂x(ρ1 + ρ2)m is uniformly bounded in Lr([0, T ] × Ω;Rd). Furthermore, the
Poincaré-Wirtinger inequality yields that

(4.7)

∥∥∥∥∥(ρ1 + ρ2)m − 1

TL 1(Ω)

ˆ T

0

ˆ
Ω

(ρ1 + ρ2)mdxdt

∥∥∥∥∥
Lr([0,T ]×Ω)

≤
∥∥∂x(ρ1 + ρ2)m

∥∥
Lr([0,T ]×Ω)

.

So the l.h.s. is uniformly bounded. Let us show that the average of (ρ1 + ρ2)m is uniformly bounded.
Let us fix 0 < ε < 1− (M1 +M2)/L 1(Ω).
Claim 1. For every t ∈ [0, T ] there exists r > 0 and x0 ∈ Ω such that ρ1

t + ρ2
t ≤ 1− ε a.e. in Br(x0).

Fix t ∈ [0, T ]. Let us suppose that the claim is not true. Then in every ball Br(x0), ρ1
t + ρ2

t > 1 − ε
a.e. Since Ω is a bounded interval, this in particular means that ρ1

t + ρ2
t > 1− ε a.e. in Ω. Furthermore,ˆ

Ω

(ρ1
t + ρ2

t )dx > (1− ε)L 1(Ω) > M1 +M2,

and this is clearly a contradiction (by the choice of ε) to fact that
´

Ω
(ρ1
t + ρ2

t )dx = M1 + M2, thus the
claim follows.

Claim 2. (ρ1 + ρ2)m ∈ L1([0, T ];C0,α(Ω)) for some 0 < α < 1/2. In particular, for a.e. t ∈ [0, T ],
(ρ1
t + ρ2

t )
m has bounded oscillation uniformly in m.

Notice that for f : [0, T ] × Ω → R measurable such that ∂xf ∈ Lr([0, T ] × Ω) for some r > 1 and
a, b ∈ Ω, a < b defining

osc[a,b]ft := sup
x∈[a,b]

ft(x)− inf
x∈[a,b]

ft(x),

one has the estimate

ˆ T

0

(osc[a,b]ft)dt ≤
ˆ T

0

ˆ b

a

|∂xft|dxdt ≤

(ˆ T

0

ˆ b

a

|∂xft|rdxdt

) 1
r

(T |a− b|) 1
r′

≤

(ˆ T

0

ˆ
Ω

|∂xft|rdxdt

) 1
r

(T |a− b|) 1
r′ ,

where 1/r + 1/r′ = 1. Since the integrand on the l.h.s. of the previous inequality is non-negative, this
implies that

osc[a,b]ft ≤ C|a− b|
1
r′
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for a.e. t ∈ [0, T ], hence in particular ft has bounded oscillation, with a constant that depends only on
‖∂xf‖Lr and T . Applying this reasoning to (ρ1 + ρ2)m, one obtains the statement of the claim.

Now Claim 1 and Claim 2 imply that (ρ1
t + ρ2

t )
m is uniformly bounded for a.e. t ∈ T . This means

furthermore that the average 1
TL 1(Ω)

´ T
0

´
Ω

(ρ1 + ρ2)mdxdt is uniformly bounded, which together with

(4.7) implies (1).

The proof of (2) follows the same lines. The bound ‖∂x(ρ1,m + ρ2,m)m−1/2‖L2([0,T ]×Ω) ≤ C3(m) in
(3.10) from Theorem 3.5 remains uniform, since C3(m) remains bounded uniformly when m→ +∞. This
bound is enough to perform the same analysis as in (1), thus we can conclude the same way.

�

Theorem 4.6. Let us assume that m = +∞, the hypotheses (Hm
ρ ) and (HΦ) are fulfilled and the setting

in (Hyp-1D) takes place. Then the system (PME∞) has a weak solution (ρ1, ρ2, p) in the sense of (Weak)
such that ρi ∈ L∞([0, T ] × Ω) ∩ AC2([0, T ]; (PMi(Ω),W2)), i = 1, 2 and p ∈ L2([0, T ];H1(Ω)). One has
moreover ρ1 + ρ2 ≤ 1 a.e. in [0, T ]× Ω, p ≥ 0, p(1− ρi) = 0 a.e. in {ρi > 0}, i = 1, 2.

Proof. Let us take a positive vanishing sequence of time steps (τn)n≥0 and consider the piecewise con-

stant and continuous interpolations of density curves (ρ̃i,τn)n≥0, (ρi,τn)n≥0 and momenta (Ẽ
i,τn

)n≥0,

(Ei,τn)n≥0. By Proposition 3.7 (up to passing to subsequences) these objects converge (to ρi and Ei

respectively) in the appropriate weak senses and one has a limit system as in (3.15)-(3.16). To identify a

precise form of the system, we use the fact that the momentum sequences (Ẽ
i,τn

)n≥0 and (Ei,τn)n≥0 and
the curve sequences (ρ̃i,τn)n≥0 and (ρi,τn)n≥0 converge to the same limit.

Now observe that the setting in (Hyp-1D) implies that Theorem 4.2 can be applied, so the assumptions
of Remark 3.4 are fulfilled. This implies that the limit momenta have the form

Ei = −∂xp− ∂xΦiρ
i = −∂xpρi − ∂xΦiρ

i, i = 1, 2.

Here p ∈ L2([0, T ];H1(Ω)) is the weak limit of (pτn)n≥0 obtained in Theorem 3.9, so in particular p ≥ 0
and p(1− (ρ1 + ρ2)) = 0 a.e. in [0, T ]× Ω. These imply that the limit system has the form

∂tρ
i − ∂x

(
∂xpρ

i + ∂xΦiρ
i
)

= 0, i = 1, 2,

which has to be understood in the weak sense with no-flux boundary conditions.
At last, since Theorem 4.2 implies in particular that L 1({ρ1

t > 0} ∩ {ρ2
t > 0}) = 0 for all t ∈ [0, T ],

the relation p(1− (ρ1 + ρ2)) = 0 a.e. in [0, T ]× Ω reads as p(1− ρi) = 0 a.e. in {ρi > 0}, i = 1, 2.
�

It is not hard to verify that, for a fixed τ > 0, the functionals in (MMm) Γ-convergence as m→∞ to
the functional where Fm is replaced by F∞. Thus, it is natural to pose the question about the convergence
of the corresponding gradient flow solutions in the spirit of Sandier and Serfaty (see [41]). Unfortunately,
one cannot use these kinds of results directly, and obtain the convergence of the continuum solutions of
(PMEm) to the solutions of (PME∞), mainly due to the lack of uniqueness. Hence, it is necessary to
proceed by studying the convergence of the continuum solutions at the PDE level. This will be addressed
in the next section.

4.4. Passing to the limit as m → +∞. We will show that solutions of (PMEm) converge, along a
subsequence as m→ +∞, to a solution of (PME∞).

We suppose that the initial data satisfy

‖ρ1
0 + ρ2

0‖L∞ ≤ 1.

Let us recall (see Definition 3.1) that a triple of nonnegative functions (ρ1,∞, ρ2,∞, p∞), such that
ρi,∞ ∈ AC2([0, T ]; PMi(Ω)), ‖ρ1,∞ + ρ2,∞‖L∞([0,T ]×Ω) ≤ 1, and p∞ ∈ L2([0, T ];H1(Ω)), is a weak

solution of (PME∞) if for any φ ∈ C1([0, T ]× Ω) and 0 < s < t ≤ T we have

−
ˆ t

s

ˆ
Ω

ρi,∞∂tφdxdτ−
ˆ t

s

ˆ
Ω

(∂xp+∂xΦi)ρ
i,∞·∂xφdxdτ =

ˆ
Ω

ρi,∞(s, x)φ(s, x)dx−
ˆ

Ω

ρi,∞(t, x)φ(t, x)dx,

and p∞(1− ρ1,∞ − ρ2,∞) = 0 a.e. in [0, T ]× Ω.
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Theorem 4.7. Let (ρ1,m, ρ2,m) be a weak solution to (PMEm) in the setting of (Hyp-1D) with initial
data satisfying ‖ρ1

0 + ρ2
0‖L∞ ≤ 1, where now we have noted m as a parameter. We assume moreover that

the geometric condition (4.6) holds true for the domain Ω.
Then, there exist ρi,∞ ∈ L∞([0, T ] × Ω) ∩ AC2([0, T ]; (PMi(Ω),W2)) and p∞ ∈ Lr([0, T ];W 1,r(Ω))

for all r ∈ (1, 2), such that along a subsequence when m → +∞, ρi,m ⇀ ρi,∞ weakly in Lq([0, T ] × Ω)

for any q ≥ 1, (ρ1,m + ρ2,m)m ⇀ p∞ in Lr([0, T ];W 1,r(Ω)) and Ei,m ⇀ ∂xp
∞ρi,∞ + ∂xΦiρ

i,∞ weakly in
Lr([0, T ]× Ω).

Moreover (ρ1,∞, ρ2,∞, p∞) is a weak solution of (PME∞).

Proof. Let us recall the weak formulation of the system (PMEm).

(4.8) −
ˆ t

s

ˆ
Ω

ρi,m∂tφdxdτ −
ˆ t

s

ˆ
Ω

Ei,m · ∂xφdxdτ =

ˆ
Ω

ρi,ms (x)φ(s, x)dx−
ˆ

Ω

ρi,mt (x)φ(t, x)dx,

for all 0 ≤ s < t ≤ T and φ ∈ C1([0, T ]× Ω), where Ei,m := −
(

m
m−1∂x(ρ1,m + ρ2,m)m−1 + ∂xΦi

)
ρi,m.

First, by the assumption ‖ρ1
0 + ρ2

0‖L∞ ≤ 1, the bounds for ρi,m in AC2([0, T ]; (PMi(Ω),W2)) (see
Lemma 3.3 and (3.9)) are uniform in m, so clearly up to passing to a subsequence with m, (ρi,m)m>1

converges weakly-? to some ρi,∞ ∈ AC2([0, T ]; (PMi(Ω),W2)). In particular this convergence is uniform
in time w.r.t. W2. By the uniform estimation (4.4), it follows that along a subsequence (ρi,m)m>1

converges weakly to ρi,∞ in Lq([0, T ]× Ω) for all q ≥ 1. In particular, these weak convergences allow us
to obtain that in (4.8) the first term on the l.h.s., and both terms on the r.h.s. pass to the limit.

Second, Lemma 4.5 ensures the uniform boundedness of (ρ1,m + ρ2,m)m in Lr([0, T ];W 1,r(Ω)) for
some r ∈ (1, 2) (where r can be chosen arbitrarily close to 2 for m large enough) hence there exists
p∞ ∈ Lr([0, T ];W 1,r(Ω)) such that up to passing to a subsequence in m, (ρ1,m + ρ2,m)m ⇀ p∞ weakly in
Lr([0, T ];W 1,r(Ω)). In particular, one has also that ∂x(ρ1,m + ρ2,m)m ⇀ ∂xp

∞ weakly in Lr([0, T ]×Ω).

Notice that the convergence Ei,m ⇀ ∂xp
∞ρi,∞ + ∂xΦiρ

i,∞ weakly in Lr([0, T ] × Ω) is much more

delicate, since both terms in the product − m
m−1∂x(ρ1,m+ρ2,m)m−1ρi,m (in the definition of Ei,m) converge

only weakly.

We shall provide the convergence Ei,m ⇀ ∂xp
∞ρ2,∞ + ∂xΦiρ

i,∞ only for i = 2, the other case is
analogous. Observe that by the uniform estimation (in m) on E2,m in Lr([0, T ]×Ω) (for some 1 < r < 2)
(see (4.5)), there exists E2,∞ ∈ Lr([0, T ] × Ω) such that up to passing to a subsequence, E2,m ⇀ E2,∞

weakly in Lr([0, T ]×Ω) as m→ +∞. Now let us identify the limit E2,∞. Let us fix a subsequence (that
for simplicity of notation we denote by m), such that (ρ2,m)m>1 converges weakly to ρ2,∞ and (E2,m)m>1

converges weakly to E2,∞ as m→ +∞ in the previously described spaces.
Let us fix 0 ≤ s < t ≤ T . For all τ ∈ [s, t], we define I2,m(τ) be the “right-most point” of the support

of ρ2,m
τ , i.e.

I2,m(τ) := sup
{
x : x ∈ Leb

(
{ρ2,m
τ > 0}

)}
and let us define the set

I =
{

(τ, x) ∈ [s, t]× Ω : ∃ (τn, xn)n≥0, s.t. xn = I2,mn(τn), and (τn, xn)→ (τ, x) as n→∞
}
,

where (mn)n≥0 is a subsequence of the previously chosen subsequence. Then I is a closed subset of
[s, t] × Ω. Let I(τ) := I ∩ ({τ} × Ω). Note that in particular I(τ) is the collection of all subsequential
limits of I2,m(τ).

Observe that if for some τ ∈ (s, t), y ∈ Ω lies to the left of I(τ), i.e. if y < x for any x ∈ I(τ), then
(τ, y) lies in the complement of {ρ1,m > 0} for sufficiently large m, and thus defining

J− := {(τ, y) ∈ (s, t)× Ω : y < x for any x ∈ I(τ)},

one has that when restricted to J−,

E2,m = −∂x(ρ2,m)m − ∂xΦρ2,m,

in the sense of distributions for sufficiently large m. Similarly, defining

J + := {(τ, y) ∈ (s, t)× Ω : y > x for any x ∈ I(τ)},
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one has that ρ2,m = 0 a.e. on J +, hence when restricted to J +, E2,m = 0 a.e. for sufficiently large m.
Clearly, J−, I,J + are Lebesgue measurable and one can write (s, t)×Ω = J− ∪ I ∪ J +, L 1 [0, T ]⊗
L 1 Ω−a.e. Thus, we write furthermoreˆ t

s

ˆ
Ω

E2,m · ∂xφdxdτ =

ˆ
J−

E2,m · ∂xφdτ ⊗ dx+

ˆ
I

E2,m · ∂xφdτ ⊗ dx+

ˆ
J+

E2,m · ∂xφdτ ⊗ dx

=

ˆ
J−

E2,m · ∂xφdτ ⊗ dx+

ˆ
I

E2,m · ∂xφdτ ⊗ dx.

Moreover, the very same decomposition remains valid for the weak limit E2,∞ as well.

Claim 1.
´
I E

2,∞ · ∂xφdτ ⊗ dx can be made arbitrarily small for any smooth test function φ.

If (L 1 ⊗L 1)(I) = 0, then this is obvious. So one can suppose that this set has positive measure. To
show the claim, let us define the width of I(τ), i.e.

W (τ) := max{|x− y| : x, y ∈ I(τ)} = x2
τ − x1

τ ,

where x2
τ := max{x : x ∈ I(τ)} and x1

τ := min{x : x ∈ I(τ)} and these are well-defined since I(τ) is
compact. Let Tn :=

{
τ ∈ (s, t) : W (τ) ≥ 2

n

}
. Then I ⊂ An ∪Bn, where

An :=
⋃
τ∈Tn

(
{τ} × (x1

τ + 1/n, x2
τ )
)

and Bn = I \An.

Note that An and Bn are Lebesgue measurable and the measure of Bn in [0, T ] × Ω is at most 2T/n,
which goes to zero as n→∞.

t

x

Figure 3. The sets I (with orange) and An
(with blue)

We know that W2(ρi,mτ , ρ2,∞
τ ) → 0 as m → +∞, uniformly in τ . This implies in particular that the

sequence (ρ2,m
τ )m are Cauchy w.r.t. W2 uniformly in τ , which means that for any n ∈ N, there exists

N(n) > 0 such that for all τ ∈ [0, T ]

(4.9) W 2
2 (ρ2,mk

τ , ρ2,ml
τ ) ≤ 1

n3
, ∀k, l > N(n),

where mk and ml denote elements of the sequence denoted by m. Now, let us define An(τ) := An∩{τ}×Ω.
Let us show that for all τ ∈ (s, t) on An(τ) all elements of the sequence (ρ2,m

τ )m have small mass.
Indeed, on the one hand, for any point x ∈ An(τ) ∩ I(τ) (if the intersection is ∅, then there is nothing
to show), there is a subsequence m̃ of m such that I2,m̃(τ) → x as m̃ → +∞. On the other hand, since
x1
τ ∈ I(τ), there exists another subsequence m of m such that I2,m(τ)→ x1

τ as m→ +∞. The inequality
(4.9) implies that

1

n2

ˆ
An(τ)

ρ2,m̃
t dx ≤W 2

2 (ρ2,m̃
τ , ρ2,m

τ ) ≤ 1

n3

for n large enough and m̃ and m larger than N(n). The first inequality holds because of the fact that
x− x1

τ ≥ 1/n. Thus for all τ ∈ (s, t)ˆ
An(τ)

ρ2,m
τ dx ≤ 1/n, for any m large enough.
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Considering any smooth test function φ supported in An ∪ J +, the weak formulation (4.8) together
with the fact that E2,m and ρ2,m vanish on J + yield∣∣∣∣ˆ

An

E2,m · ∂xφdt⊗ dx

∣∣∣∣ ≤ sup
An

|∂tφ|
T

n
+ sup

An

|φ| 2
n
,

for sufficiently large m. This together with the fact that the measure of Bn is at most 2T/n and
I ⊂ An ∪ Bn implies that

´
I E

2,m · ∂xφdt ⊗ dx is arbitrary small provided m is large enough, which

implies in particular that
´
I E

2,∞ · ∂xφdt⊗ dx is as small as we would like.

The above claim shows that one needs to describe the weak limit E2,∞ only on the set J−. When
restricted to J−, one can write

E2,m = −∂x(ρ2,m)m − ∂xΦ2ρ
2,m =: −∂xpm − ∂xΦ2ρ

2,m,

and the second term on the r.h.s. of the previous formula passes to the limit due to the weak convergence
of (ρ2,m)m>1. Let us consider a smooth test function φ compactly supported in J−. Then one has

lim
m→+∞

−
ˆ
J−

∂xpm · ∂xφdτ ⊗ dx = lim
m→+∞

ˆ
J−

pm∂
2
xxφdτ ⊗ dx = lim

m→+∞

ˆ
J−

(ρ2,m)m∂2
xxφdτ ⊗ dx

= lim
m→+∞

ˆ t

s

ˆ
Ω

(ρ1,m + ρ2,m)m∂2
xxφdxdτ =

ˆ t

s

ˆ
Ω

p∞∂2
xxφdxdτ

= −
ˆ t

s

ˆ
Ω

∂xp
∞∂xφdxdτ = −

ˆ
J−

∂xp
∞ · ∂xφdτ ⊗ dx

Hence when restricted to J−, E2,∞ = −∂xp∞ − ∂xΦ2ρ
2,∞. Note that ρ2,∞ = 0 as well in I ∪ J +, so we

can write

E2,∞ = −∂xp∞χ{ρ2,∞>0} − ∂xΦ2ρ
2,∞.

Below we will show that p∞ vanishes in ρ2,∞ < 1. This allows us to write

E2,∞ = −∂xp∞ρ2,∞ − ∂xΦ2ρ
2,∞.

Similar reasoning yields the concrete form of E1,∞ as well.

Let us show that ‖ρi,∞‖L∞ ≤ 1. By Lemma 4.5 we know that for a.e. t ∈ [0, T ],

ˆ
Ω

(ρi,mt )mdx ≤ C,

where the constant C is independent of m. Thus for any δ > 0, on the set where ρi,mt ≥ 1 + δ a.e. we
have by Chebyshev’s inequality that

(4.10) (1 + δ)mL 1({ρi,mt ≥ 1 + δ}) ≤
ˆ
{ρi,mt ≥1+δ}

(ρi,mt )mdx ≤
ˆ

Ω

(ρi,mt )mdx ≤ C.

This implies

L 1({ρi,mt ≥ 1 + δ}) ≤ C/(1 + δ)m → 0 as m→∞,
and thus by the arbitrariness of δ > 0 we conclude ρi,∞ ≤ 1 a.e in [0, T ]× Ω.

At last, it remains to show that p∞ is supported in the region {ρ1,∞ + ρ2,∞ = 1}. Notice that since

Theorem 4.2 yields that L 1({ρ1,∞
t > 0} ∩ {ρ2,∞

t > 0}) = 0 for all t ∈ [0, T ], it is enough to show that
p∞(1− ρi,∞) = 0 a.e. in {ρi,∞ > 0} i = 1, 2. We show this property only in the case of i = 2, the other
case is analogous. Let us use the notations

pm := (ρ1,m + ρ2,m)m =a.e. (ρ2,m)m, in {ρ2,∞ > 0} ⊆a.e. J−

p̃m := (ρ1,m + ρ2,m)m−1/2 =a.e. (ρ2,m)m−1/2 = (pm)1− 1
2m , in {ρ2,∞ > 0} ⊆a.e. J−

Claim 2. When m→ +∞,

ˆ T

0

ˆ
Ω

pm(1−ρ2,m)dxdt and

ˆ T

0

ˆ
Ω

p̃m(1−ρ2,m)dxdt are arbitrary small.

Let δ > 0 be small. To show the claim, first observe that [0, T ] 3 t 7→
´

Ω
χ{ρ2,mt ≥1+δ}dx is a measurable

function and by (4.10), [0, T ] 3 t 7→
´

Ω
χ{ρ2,mt ≥1+δ}dx is integrable. Similar properties are valid for other
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characteristic functions of the (sub)level sets. Thus,∣∣∣∣∣
ˆ T

0

ˆ
Ω

pm(1− ρ2,m)dxdt

∣∣∣∣∣ ≤
ˆ T

0

ˆ
{ρ2,mt <1−δ}

pm(1− ρ2,m)dxdt+

ˆ T

0

ˆ
{1−δ≤ρ2,mt ≤1+δ}

pm|1− ρ2,m|dxdt

+

ˆ T

0

ˆ
{ρ2,mt >1+δ}

pm(ρ2,m − 1)dxdt

≤ (1− δ)mTL 1(Ω) + δC

+ ‖pm‖Lq1 ([0,T ]×Ω)‖ρ2,m‖Lq2 ([0,T ]×Ω)

(ˆ T

0

ˆ
{ρ2,mt >1+δ}

1dxdt

)1/q3

≤ (1− δ)mTL 1(Ω) + δC +

(
TC

(1 + δ)m

)1/q3

,

where 1
q1

+ 1
q2

+ 1
q3

= 1, q1 < r, q2 ≤ m and C is independent of m. Here we used also the uniform

estimations from Lemma 4.5(1) and Theorem 4.4. Now the last sum is as small as desired by choosing
δ > 0 small and m large enough, which shows the first part of the claim. A similar reasoning and Lemma
4.5(2) yield the second part of the claim.

Last, one can use the same arguments as in [30, Lemma 3.4, Step 3. in the proof of Theorem 2.1.]
to conclude that p∞(1 − ρ2,∞) = 0 a.e. in J−. Indeed, we know that p̃m is uniformly bounded in

L2([0, T ];H1(Ω)) and by Lemma 4.5(2) ρ2,m
t is uniformly bounded for a.e. t ∈ [0, T ]. These together

with Claim 2 imply in particular that mentioned results from [30] can be applied to obtain that

p̃∞(1− ρ2,∞) = 0, a.e. in J−,

where p̃∞ is the weak limit of (p̃m)m>1 in L2([0, T ];H1(Ω)) as m → +∞. It remains to show only

that p∞ = p̃∞ a.e. in J−. This is straight forward. Indeed, notice that p̃m = (pm)1− 1
2m a.e. in J−.

Lemma 4.5 implies that for a.e. t ∈ [0, T ] both pm(t, ·) and p̃m(t, ·) are (uniformly) Hölder continuous
and converge uniformly (up to passing to a subsequence). This means that p∞t and p̃∞t are the uniform
limits for a.e. t ∈ [0, T ] and p∞t = p̃∞t for a.e. t ∈ [0, T ]. The result follows.

�

4.5. Characterization of the pressure in the case of m = +∞. Here we establish the optimal
regularity of the pressure, which is Lipschitz continuity for a.e. time. The pressure can be discontinuous
in time even in the single density case, when two components of the congested density zone merge into
one (see the discussion in [23] for instance.)

Proposition 4.8. Let (ρ1,∞, ρ2,∞, p∞) be a solution of the system (PME∞) in the setting of (Hyp-1D).
Then p∞(t, ·) is uniformly Lipschitz continuous for a.e. t ∈ [0, T ]. Moreover, p∞(t, ·) is as smooth as Φi
in the interior of the sets {ρi,∞ = 1}, i = 1, 2 for a.e. t ∈ [0, T ].

Let us remark first that p∞ may have positive boundary data on ∂{ρ1,∞ = 1} ∩ ∂{ρ2,∞ = 1}. Also,
notice that the set {ρi,∞ = 1} may have empty interior.

Proof. Considering the sum of the two weak equations tested against smooth test functions supported in
the interior of {ρ1,∞

t + ρ2,∞
t = 1} one obtains that

(4.11) − ∂2
xxp
∞(t, ·) = ∂x(∂xΦ1ρ

1,∞ + ∂xΦ2ρ
2,∞), in the interior of {ρ1,∞

t + ρ2,∞
t = 1},

for a.e. t ∈ [0, T ] with homogeneous Dirichlet boundary data (this is because of the fact that p∞(t, ·) is

Hölder continuous a.e. t ∈ [0, T ]). Since L 1
(
{ρ1,∞
t > 0} ∩ {ρ2,∞

t > 0}
)

= 0 and the sets {ρ1,∞
t > 0}

and {ρ2,∞
t > 0} are ordered in the sense of (Hyp-1D), one gets

(4.12) − ∂2
xxp
∞(t, ·) = ∂2

xxΦi, in the interior of {ρi,∞t = 1}.



27

Therefore p∞(t, ·) is as smooth as Φi in the interior of the sets {ρi,∞t = 1}, i = 1, 2, for a.e. t ∈ [0, T ].

Let us remark also that since p∞(t, ·) is Hölder continuous, the set {p∞(t, ·) > 0} ⊆ {ρ1,∞
t + ρ2,∞

t = 1}
is open. Thus p∞(t, ·) is as smooth as Φi in {p∞(t, ·) > 0} ∩ int{ρi,∞t = 1}.

Let us show that p∞(t, ·) is Lipschitz continuous for a.e. t ∈ [0, T ]. Notice that by the previous
arguments, p∞(t, ·) fails to be differentiable in at most countably many points of Ω, and except these
points it is smooth. By the fact that p∞(t, ·) is a Sobolev function, we know that it is absolutely continuous
for a.e t ∈ [0, T ]. Moreover

|∂xp∞(t, ·)| ≤ C, a.e. in Ω,

where C > 0 is a positive constant that depends only on max{‖∂xΦi‖L∞ : i = 1, 2}. This together with
the absolute continuity imply that p∞(t, ·) Lipschitz continuous for a.e. t ∈ [0, T ].

�

4.6. Patch solutions.

Proposition 4.9. Let (ρ1,∞, ρ2,∞, p∞) be a solution of the system (PME∞) in the setting of (Hyp-1D).

Let us suppose that ρ1,∞
0 and ρ2,∞

0 are patches, i.e. ρi,∞0 = χAi0 for open intervals Ai0 in Ω, i = 1, 2. We

suppose moreover that the drifts −∂xΦi, i = 1, 2 are compressive, meaning that ∂2
xxΦi ≥ 0 on Ω. Then

ρi,∞t , i = 1, 2 is a patch for all t ∈ [0, T ], i.e. there exists {Ai0(t)}t∈[0,T ]: a family of open intervals such

that ρi,∞t = χAi0(t).

Remark 4.2. While we believe our argument can be extended to measurable sets instead of open intervals,
we do not pursue this generalization for simplicity.

Proof. Let us recall that the sets {ρ2,∞
t > 0} and {ρ1,∞

t > 0} are ordered for all t ∈ [0, T ] in the sense of
(Hyp-1D), with ρ2,∞ supported to the left of ρ1,∞. We show the proposition only for ρ2,∞, the case of
ρ1,∞ is analogous.

We define an extension p̃ of p∞ to the right of the support of ρ2,∞. For a.e. t where p∞ satisfies (4.12),

let x0(t) := sup Leb
(
{ρ2,∞
t > 0}

)
. If p∞(t, x0(t)) = 0 then we let p̃(t, ·) = p∞(t, ·). If p(t, x0(t)) > 0, this

means x0(t) lies in the interior of {ρ1,∞
t + ρ2,∞

t = 1}. In this case let us define p̃ to be a C2 extension of
p∞ to the right of x0(t) such that −∂2

xxp̃ = ∂2
xxΦ2.

Let us consider the test function φ, as the solution of the transport equation

∂tφt − vε∂xφ = 0

with initial condition φ(0, ·) = χA2
0
, where we define vε := v?ηε with v = (∂xp̃+∂xΦi) and ηε is a standard

mollifier (the mollification being performed only w.r.t. the space variable). Then ‖vε(t, ·)−v(t, ·)‖Lq ≤ Cε
in the set {ρ2,∞

t > 0} for any q > 0 and a.e. t ∈ [0, T ], where C depends on the Lipschitz constant of p∞

and Φ2. Then, from the weak expression we have∣∣∣∣ˆ
Ω

(ρ2,∞φ)(t, ·)dx−
ˆ

Ω

(ρ2,∞φ)(0, ·)dx

∣∣∣∣ =

∣∣∣∣ˆ t

0

ˆ
Ω

(vε − v)ρ2,∞∂xφdxdτ

∣∣∣∣ ≤ Cε.
Since φ solves a transport equation with spatially smooth velocity which is integrable in time, this equation
is well-posed and φ can be represented using the method of characteristics. In particular φ(t, ·) = χA2

t

for some measurable set A2
t for each time t > 0. Hence the l.h.s. of the above equation is

(4.13)

ˆ
Ω

(ρ2,∞φ)(t, ·)dx−
ˆ

Ω

(ρ2,∞φ)(0, ·)dx =

ˆ
A2
t

ρ2,∞
t dx−

ˆ
A2

0

1dx.

Now we claim that

(4.14) ∂xv
ε ≥ 0.

This is true because p̃ satisfies −∂2
xxp̃ = ∂2

xxΦ2 (or p̃ = p∞) to the right of x0(t) as well as in any interior

point of {ρ2,∞
t = 1}, and to the left of x0(t) we have p̃ = p∞ = max{p∞, 0}, which makes p∞ convex at

any boundary point of the set {ρ2,∞ = 1} to the left of x0(t). Thus we conclude that

∂xv = ∂2
xxp
∞ + ∂2

xxΦ2 ≥ 0 on (−∞, x0(t)) ∩ Ω,

in the distributional sense, which yields ∂xv
ε ≥ 0.
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Due to (4.14) we have L 1(A2
t ) ≤ L 1(A2

0). This, the fact that ρ2,∞
t ≤ 1 a.e., and (4.13) yield thatˆ

A2
t

(1− ρ2,∞
t )dx ≤

ˆ
A2
t

(1− ρ2,∞
t )dx+ L 1(A2

0)−L 2(A2
t ) ≤ Cε.

We still need to let ε ↓ 0 to achieve the desired result. If A2
0 is an interval then A2

t is an interval
(that depends on ε > 0) with uniformly bounded velocity with respect to ε, hence along a subsequence
the endpoints (as a function of t they are equicontinuous) uniformly converge to limiting endpoints

(a(t), b(t)){t>0} as ε ↓ 0. Let A2
0(t) := (a(t), b(t)). Here ρ2,∞

t should be identically one (because of the
previous inequality). But this means that along this subsequence, v was incompressible except in a small
set in A2

t , so that makes L 1(A2
t ) very close to L 1(A2

0) and |b(t)− a(t)| = L 1(A2
0). Since ρ2,∞ preserves

mass over time, this means that

ρ2,∞
t = χA2

0(t).

�

It remains to describe the evolution of the patches {ρi,∞ = 1}. As we see in [24] in [35], the evolution
laws are different depending on whether there are regions of the densities with values between zero and
one. In the above Proposition, we have patch solutions supported on an interval, and the continuity of
the densities over time in W2-distance yields that each patch {ρi,∞ = 1} evolves continuously in time.
Therefore it follows that the space-time interior of those sets taken at time t equals spatial interior at
time t. Thus from (4.12) we have p∞(t, ·) ∈ C2 at every time in the interior of {ρ1,∞

t + ρ2,∞
t = 1}.

Remark 4.3. With the aforementioned regularity of p∞ and {ρi,∞ = 1} at hand, one can verify with
test functions in the weak formulation that the following holds: the velocity law on one-phase boundary
points is given by

(4.15) V = νix(−∂ixp∞ − ∂xΦi) on ∂{ρi,∞ = 1},

where νx is the outward normal of the set {ρi,∞ = 1}, V is the normal velocity of the interface and ∂ix
denotes the x-derivative taken from the interior of the set {ρi,∞ = 1}. This yields the flux matching
across different densities,

(4.16) ∂1
xp
∞
x + ∂xΦ1 = ∂2

xp
∞
x + ∂xΦ2 on ∂{ρ1,∞ = 1} ∩ ∂{ρ2,∞ = 1}.

The equations (4.12), (4.15) and (4.16) corresponds to a generalized two-phase Hele-Shaw flow evolving
by the pressure variable p∞ where different drift potentials are present for each phase ρi,∞.

Appendix A. Optimal transport toolbox

Lemma A.1. Let f : [0,+∞)→ R be a C1 convex function that is superlinear at +∞. Let M > 0. We
consider F : PM (Ω)→ R ∪+∞ defined as

F(ρ) =


ˆ

Ω

f(ρ(x))dx, if ρ� L d,

+∞, otherwise.

Let ν ∈PM (Ω) be given. Then there exists a solution % ∈Pac,M (Ω) of the minimization problem

min
ρ∈PM (Ω)

{
F(ρ) +

1

2
W 2

2 (ρ, ν)

}
.

If in addition ν � L d or if f is strictly convex, then % is unique.
Moreover, ∃C ∈ R such that for a suitable Kantorovich potential ϕ in the optimal transport of % onto

ν one has the following first order necessary optimality condition fulfilled

(A.1)

{
f ′(%) + ϕ = C, %− a.e.,
f ′(%) + ϕ ≥ C, on {% = 0}.

If f ′(0) is finite, then one can express the above condition as f ′(%) = max{C − ϕ, f ′(0)}.

Proof. The proof of the previous results can be found in [11] or [43, Chapter 7]. �
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It turns out that (PM (Ω),W2) is a geodesic space and constant speed geodesics (and absolutely
continuous curves in general) can be characterized by special solutions of continuity equations. Since this
characterization is true for any M > 0, we simply set M = 1 in the theorem below.

Theorem A.2 (see [3, 43]). (1) Let Ω ⊂ Rd compact and (µt)t∈[0,T ] be an absolutely continuous

curve in (P(Ω),W2). Then for a.e. t ∈ [0, T ] there exists a vector field vt ∈ L2
µt(Ω;Rd) s.t.

• the continuity equation ∂tµt +∇ · (vtµt) = 0 is satisfied in the weak sense;
• for a.e. t ∈ [0, T ], one has ‖vt‖L2

µt
≤ |µ′|W2

(t), where

|µ′|W2
(t) := lim

h→0

W2(µt+h, µt)

|h|

denotes the metric derivative of the curve [0, T ] 3 t 7→ µt w.r.t. W2, provided the limit exists.
(2) Conversely, if (µt)t∈[0,T ] is a family of measures in P(Ω) and for each t one has a vector field

vt ∈ L2
µt(Ω;Rd) s.t.

´ T
0
‖vt‖L2

µt
dt < +∞ and ∂tµt + ∇ · (vtµt) = 0 in the weak sense, then

[0, T ] 3 t 7→ µt is an absolutely continuous curve in (P(Ω),W2), with |µ′|W2
(t) ≤ ‖vt‖L2

µt
for

a.e. t ∈ [0, T ] and W2(µt1 , µt2) ≤
´ t2
t1
|µ′|W2

(t)dt. If moreover |µ′| ∈ L2(0, T ), then we say that µ

belongs to the space AC2([0, T ]; (P(Ω),W2)).
(3) For curves (µt)t∈[0,1] that are geodesics in (P(Ω),W2) one has the equality

W2(µ0, µ1) =

ˆ 1

0

|µ′|W2
(t)dt =

ˆ 1

0

‖vt‖L2
µt

dt.

(4) For µ0, µ1 ∈ Pac(Ω), a constant speed geodesic connecting them is a curve (µt)t∈[0,1] such that
W2(µs, µt) = |t− s|W2(µ0, µ1) for any t, s ∈ [0, 1]. One can compute this constant speed geodesic
using McCann’s interpolation, i.e. µt := (Tt)# µ0, for all t ∈ [0, 1], where Tt := (1 − t)id + tT
with T#µ0 = µ1 the optimal transport map between µ0 and µ1. Moreover, the velocity field in the
continuity equation is given by vt := (T − id) ◦ (Tt)

−1.

Let us introduce the Benamou-Brenier functional B2 : M ([0, T ]× Ω)×M d([0, T ]× Ω)→ R ∪ {+∞}
defined as

B2(µ,E) :=


ˆ T

0

ˆ
Ω

|vt|2dµt(x)dt, if E = Et ⊗ dt, µ = µt ⊗ dt and Et = vt · µt,

+∞, otherwise.

It is well-known (see for instance [43, Proposition 5.18]) that B2 is jointly convex and lower semicon-
tinuous w.r.t. the weak−? convergence. In particular if (µ,E) solves ∂tµ +∇ · E = 0 in the weak sense
with B2(µ,E) < +∞, implies that t 7→ µt is a curve in AC2([0, T ]; (P(Ω),W2)).

The following comparison result appears to be well-known but we write it here for completeness.

Lemma A.3. Let µ1, ν1 ∈PM1(Ω) and µ2, ν2 ∈PM2(Ω). Then the following inequality holds true

(A.2) W 2
2 (µ1 + µ2, ν1 + ν2) ≤W 2

2 (µ1, ν1) +W 2
2 (µ2, ν2).

Remark A.1. Note that with the abuse of notation, W2 on the l.h.s. of (A.2) denotes the 2−Wasserstein
distance on PM1+M2(Ω), while on the r.h.s. W2 denotes the corresponding distances on PM1(Ω) and
PM2(Ω) respectively.

Proof of Lemma A.3. The quantity on the l.h.s. of (A.2) is realized by an optimal plan γ ∈ ΠM1+M2(µ1+
µ2, ν1 + ν2) i.e.

W 2
2 (µ1 + µ2, ν1 + ν2) =

ˆ
Ω×Ω

|x− y|2dγ.

Similarly the quantities on the r.h.s. can be written with the help of some optimal plans γi ∈ ΠMi(µi, νi),
i = 1, 2, i.e.

W 2
2 (µi, νi) =

ˆ
Ω×Ω

|x− y|2dγi.
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Now set γ̃ := γ1 + γ2. Clearly since (πx)#γ̃ = µ1 + ν1 and (πy)#γ̃ = µ2 + ν2 one has γ̃ ∈ ΠM1+M2(µ1 +
µ2, ν1 + ν2). Hence

W 2
2 (µ1 + µ2, ν1 + ν2) =

ˆ
Ω×Ω

|x− y|2dγ ≤
ˆ

Ω×Ω

|x− y|2dγ̃

=

ˆ
Ω×Ω

|x− y|2dγ1 +

ˆ
Ω×Ω

|x− y|2dγ2

≤W 2
2 (µ1, ν1) +W 2

2 (µ2, ν2).

Therefore, inequality (A.2) follows. �

Appendix B. A refined Aubin-Lions lemma

In [40] the authors present the following version of the classical Aubin-Lions lemma (see [4]):

Theorem B.1. [40, Theorem 2] Let B be a Banach space and U be a family of measurable B-valued
function. Let us suppose that there exist a normal coercive integrand F : (0, T )×B → [0,+∞], meaning
that

(1) F is B(0, T )⊗B(B)-measurable, where B(0, T ) and B(B) denote the σ-algebgras of the Lebesgue
measurable subsets of (0, T ) and of the Borel subsets of B respectively;

(2) the maps v 7→ Ft(v) := F(t, v) are l.s.c. for a.e. t ∈ (0, T );
(3) {v ∈ B : Ft(v) ≤ c} are compact for any c ≥ 0 and for a.e. t ∈ (0, T ),

and a l.s.c. map g : B ×B → [0,+∞] with the property

[u, v ∈ D(Ft), g(u, v) = 0]⇒ u = w, for a.e. t ∈ (0, T ).

If

sup
u∈U

ˆ T

0

F(t, u(t))dt < +∞ and lim
h↓0

sup
u∈U

ˆ T−h

0

g(u(t+ h), u(t))dt = 0,

then U is relatively compact in M (0, T ;B).
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[4] J.-P. Aubin, Un théorème de compacité, (French), C. R. Acad. Sci. Paris, 256 (1963), 5042–5044.

[5] J. Berendsen, M. Burger, J.-F. Pietschmann, On a cross-diffusion model for multiple species with nonlocal inter-

action and size exclusion, Nonlinear Anal. (2017), to appear.
[6] M. Bertsch, M.E. Gurtin, D. Hilhorst, L.A. Peletier, On interacting populations that disperse to avoid crowding:

preservation of segregation, J. Math. Biol., 23 (1985), No. 1, 1–13.

[7] M. Bertsch, M.E. Gurtin, D. Hilhorst, On interacting populations that disperse to avoid crowding: the case of
equal dispersal velocities, Nonlinear Anal. 11 (1987), no. 4, 493–499.

[8] M. Burger, M. Di Francesco, J.-F. Pietschmann, B. Schlake, Nonlinear cross-diffusion with size exclusion, SIAM

J. Math. Anal. 42 (2010), no. 6, 2842–2871.
[9] M. Burger, M. Di Francesco, S. Fagioli, A. Stevens, Sorting Phenomena in a Mathematical Model For Two

Mutually Attracting/Repelling Species, (2017) preprint https://arxiv.org/abs/1704.04179.

[10] M. Bruna, M. Burger, H. Ranetbauer, M.-T. Wolfram, Cross-Diffusion Systems with Excluded-Volume Effects
and Asymptotic Gradient Flow Structures, J. Nonlinear Sci. (2017) 27, 687–719.

[11] G. Buttazzo, F. Santambrogio, A model for the optimal planning of an urban area, SIAM J. Math. Anal., 37 (2005),
no. 2, 514–530.
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