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Abstract

In this paper, we present a new imprecise statistical inference method for accelerated
life testing data, where nonparametric predictive inferences at normal stress levels
are integrated with a parametric Arrhenius-Weibull model. The method includes
imprecision based on the likelihood ratio test which provides robustness with regard
to the model assumptions. We use the likelihood ratio test to obtain an interval for
the parameter of the Arrhenius link function providing imprecision into the method.
The imprecision leads to observations at increased stress levels being transformed
into interval-valued observations at the normal stress level, where the width of an
interval is larger for observations from higher stress levels. If the model fits well, our
method has relatively little imprecision. However, if the model fits poorly, it leads to
more imprecision. Simulation studies are presented to investigate the performance
of the proposed method.

Keywords: Accelerated life testing, Arrhenius-Weibull model, failure data,
imprecise probability, likelihood ratio test, lower and upper survival functions,
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1. Introduction

Accelerated life testing (ALT) is frequently used to obtain information on the
lifespan of devices. Testing items under normal conditions can require a great deal
of time and expense. To determine the reliability of devices in a shorter period
of time, and with lower costs, it may be possible to use ALT. In ALT, a unit is5

tested under levels of physical stress (e.g. temperature, voltage, or pressure) greater
than normal operating conditions. Using this method, devices will fail more quickly,
enabling estimation of the lifetime under normal conditions via extrapolation using
an ALT model. There is a wide range of designs for ALT, including constant-, step-
and progressive-stress testing [23]. Two components usually used to extrapolate a10
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device’s lifespan under normal use conditions from ALT results are the life time
distribution (e.g. Weibull or log-normal) and the relationship between failure time
and stress level (e.g. Arrhenius law or power law).

In recent decades, various methods for analyzing ALT data and a variety of
applications for assessing the reliability with different ALT scenarios have been in-15

troduced. An excellent introduction to ALT was given by Nelson [23]. Since Nelson
[23], there has been a large amount of literature on ALT and a variety of statistical
methods have been devoloped, we mention several recent contributions. Fan et al.
[14] developed the maximum likelihood estimation (MLE) and Bayesian inference
on all parameters of ALT models under an exponential distribution, with a link20

function between the failure rate and the stress variables in a linear way under the
Box-Cox transformation. Fard and Li [15] presented optimal step stress to obtain
the optimal hold time at which the stress level is changed for step stress ALT design
for reliability prediction. They assumed a Weibull distribution for the failure time
at any constant stress level, and the scale parameter of the Wiebull distribution25

is assumed to be a log-linear function of the stress level. Elsayed and Zhang [13]
proposed an optimal multiple-stress-type ALT plan using a proportional hazards
model to obtain failure time data rapidly in a short period of time. Sha and Pan
[27] introduced step-stress ALT with Bayesian analysis for the Weibull proportional
hazard model. Nasir and Pan [22] posited a Bayesian optimal design criterion and30

presented acceleration model selection ALT studies, while Han [16] conducted re-
search into temporally and financially constrained constant-stress and step-stress
ALT.

Whilst ALT models typically consider failure times as the events of interest, there
have also been important contributions with more detailed modelling, in particular35

exploiting methods to mathematically model degradation processes. For example,
Liao and Tseng [19], proposed an optimal design for step-stress accelerated degra-
dation tests with the degradation process modelled as a stochastic diffusion process.
Pan et al. [25] presented a bivariate constant stress accelerated degradation model
and related inference. They assumed a device which has two performance charac-40

teristics which are controlled by a Wiener process, to determine the relibility of high
quality devices with a time scale transformation, and the Frank copula is used to
model dependence of the two performance characteristics. Duan and Wang [12] pro-
posed a bivariate constant stress accelerated degradation model with inference based
on the Inverse Gaussian Process. It is important to note here that the modelling of45

degradation processes does require much information about the engineering process
and physical properties of the equipment, which may come from detailed measure-
ments of the process or expert judgements. While this is an important development
for real world accelerated life testing, we do not address such approaches further in
this paper and only assume information about the failure times to be present.50

Yin et al. [29] introduced imprecise probability theory [4] for ALT data using the
power-Weibull model. In this paper we follow the same approach used by Yin et al.
[29] but we investigate the Arrhenius-Weibull model, so a different link function is
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used between different stress levels. The methods are basically the same, but Yin et
al. [29] did not give an argument, other than simulation studies, for the imprecision55

in the parameter. We use a parametric statistical test between the pairwise stress
levels, to obtain the intervals for the parameter of the link function for which we do
not reject the null hypothesis. This use of a frequentist statistical test to determine
the level of imprecision is the main novelty in this paper.

We develop a new likelihood ratio test based method for analysing ALT data60

with imprecise probabilities, where nonparametric predictive inferences (NPI) at
the normal stress level is integrated with a parametric Arrhenius-Weibull model.
This new method consist of two steps. First, we assume the Arrhenius-Weibull
model for all levels and we derive an interval for the parameter of the Arrhenius link
function by pairwise likelihood ratio tests, which allows observations of increased65

stress levels to be transformed to interval-valued observations at the normal stress
level. Secondly, we use NPI at the normal stress level for predictive inference on the
failure time of a future unit operating under normal stress, using the original data
at the normal stress level and interval-valued data transformed from higher stress
levels.70

This paper is organized as follows: in Section 3, the main ideas of nonparametric
predictive inference are briefly reviewed. In Section 4, our novel method of imprecise
statistical inference is introduced. Section 5 presents an example with simulated
data in order to illustrate our method and its main properties. In Section 6 the new
method is applied to a data set from the literature. Section 7 presents results of75

simulation studies that investigate the performance of the proposed method. Finally,
some concluding remarks are made in Section 8.

2. The model

In this paper, we consider the Arrhenius model and a Weibull lifetime distribution
for a constant-stress ALT. The Arrhenius model is based on physical or chemical80

theory, and is often an appropriate model to use when the failure mechanism is
driven by temperature [23]. The Weibull distribution is often suitable for examining
component, system or product life. The Arrhenius-Weibull model is adopted to the
current research on imprecise statistical approaches to establish the use of impreci-
sion in modelling the nature of the relationship between stress levels and unit failure85

rates. The main issue here is how to extrapolate the failure data from units tested
at higher-than-normal stress levels to units operating at the normal stress level.

The model at each stress level (the two-parameter Weibull distribution) is

f(t) =
β

αi
(
t

αi
)β−1 exp

[
− (

t

αi
)β
]
. (1)

The unknown parameters of the Weibull distribution are the shape parameter
β, and the scale parameters αi at stress level i, where αi > 0 and β > 0, and its90

survival function is
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P (T > t) = exp
[
−
( t
αi

)β]
.

The Arrhenius-Weibull model is specified as follows. K0 represents the stress at
the normal level. There are m ≥ 1 increased stress levels, with stress Ki at level
i ∈ {1, ...,m}, we assume that Ki increases as a function of i. In this paper, the
Weibull distributions for different stress levels are assumed to have different scale95

parameters αi > 0 for level i, but the same shape parameter β. The Arrhenius link
function for the scale parameters is

αi = α0 exp
( γ
Ki

− γ

K0

)
. (2)

Using this model with varying temperatures (in Kelvin) as stress levels, K0 is
the normal temperature at stress level 0, Ki is the higher temperature at stress level
i, and γ > 0 is the parameter of the Arrhenius link function model.100

Using this link function model, an observation ti at the stress level i, subject
to stress Ki, can be transformed to stress level 0. For fixed γ the transformed
observation denoted by ti→0(γ) from level i to level 0 is given by the equation

ti→0(γ) = ti exp

(
γ

K0

− γ

Ki

)
. (3)

Now, we define the model through the probability density function as:

f(ti;α, β, γ,K) =
β

αi

(
ti→0(γ)

αi

)β−1
exp

(
−
(
ti→0(γ)

αi

)β)
, (4)

where the Arrhenius link function for scale parameters αi should be identified to105

establish a connection between the different stress levels i.
Let all the data be denoted by t

∼
= {t01, ...t0n0

, t11, ...t
1
n1
, ..., tm1 , ...t

m
nm
} and let the

stress levels be denoted by K = {K0, ..., Km}. The likelihood function is defined as

L(t
∼

;α, β, γ,K) =
m∏
j=0

nj∏
i=1

f
(
tji ;α, β, γ,K

)
.

So there are in total three parameters that need to be estimated to fit the com-
plete model, α0, β, and γ. In this paper, we will apply the pairwise likelihood ratio110

test to create an interval for the parameter γ of the link function, as presented in
Section 4. We assume the same β for all stress levels, so differences between stress
levels are only modelled through the αi, and hence in the model through the α0 and
γ parameters of the link function between different stress levels. For ease of pre-
sentation, we assume that there are no right-censored observations and that there115

are failure observations at the normal stress level. We briefly comment on these
assumptions in Section 8.
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3. Nonparametric predictive inference

Nonparametric Predictive Inference (NPI) is a statistical method, which provides
lower and upper survival functions for a future observation based on past data120

using imprecise probability [4, 7]. Hill [17] proposed an assumption which gives
direct conditional probabilities for a future random quantity which depend on the
values of related random qualities [3, 6, 7]. It proposes that the rank of a future
observation among the values already observed will be equally likely to have each
possible value 1, ..., n+ 1. Suppose that X1, X2, ..., Xn, Xn+1 represent exchangeable125

and continuous real-valued possible random quanities, then the ranked observed
values of X1, X2, ..., Xn can be denoted by x(1) < x(2) < ... < x(n). Let x0 = 0 and
xn+1 =∞. The assumption A(n) is

P (Xn+1 ∈ (x(j−1), x(j))) = 1/(n+ 1).

Here, no tied observations are included for convenience, any tied values can be
dealt with by assuming that tied observations differ by a small amount which tends130

to zero [18].
Inferences which are based on A(n) are nonparametric and predictive. They can

be considered suitable if there is hardly any knowledge about the random quantity of
interest, except for the n observations, or if one does not want to use any such further
information. The A(n) assumption is not sufficient to derive precise probabilities for135

many events of interest. However, this approach does yield optimal bounds for
probabilities through the ’fundamental theorem of probability’ [11], which are lower
and upper probabilities in the imprecise probability theory [3, 4].

The lower and upper probabilities for event A are denoted by P (A) and P (A),
respectively. These are open to interpretation in various ways [4]. For instance,140

P (A) can be assumed to be the supremum buying price for a gamble on event A,
such that if A occurs then 1 is paid, if not then 0 is paid. This can also simply be
interpreted as the maximum lower bound for the probability of A, which derives from
the assumptions made. Similarly, P (A) can be interpreted as the minimum selling
price for the gamble on A, or the minimum upper bound based on the assumptions145

made. We have 0 ≤ P (A) ≤ P (A) ≤ 1, and P (A) = 1 − P (Ac) where, Ac is the
complimentary event of A [3, 4].

The NPI lower and upper survival functions for a future observation Xn+1 in
case of no censoring are

SXn+1
(t) =

n− j
n+ 1

, for x ∈ (xj, xj+1), j = 0, ..., n. (5)

SXn+1(t) =
n+ 1− j
n+ 1

, for x ∈ (xj, xj+1), j = 0, ..., n. (6)

The imprecision, the difference between the upper and lower survival functions,
reflects the amount of information in the data. We will only use Equations (5) and
(6) for the NPI method in this paper.150
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4. ALT inference using pairwise likelihood ratio tests

To investigate equality of two independent failure data groups, possibly including
right-censored observations, the likelihood ratio test can be used [26]. This is a
popular statistical test that can be applied to investigate equality of the probability
distribution of two independent groups, which has been briefly introduced in Section155

1 [2, 23].
In this section we present new predictive inference based on ALT data and the

likelihood ratio test. We use NPI at the normal stress level, with the fully parametric
model used in our new statistical method analysing data from ALT. The use of NPI
here provides lower and upper survival functions for a future observation at the160

normal stress level, based on all failure data.
This new statistical method for data in ALT divides into two steps. First, the

basic Arrhenius-Weibull model is adopted [23], and the pairwise likelihood ratio test
is used between the stress levels Ki and stress level K0, to obtain the intervals for the
parameter γ for which we do not reject the null hypothesis that the data transformed165

from stress level i to normal stress level 0, and the original data obtained at the
normal stress level 0, come from the same Weibull distribution. The hypothesis test
we use in this paper is {

H0 : γ = γ′
H1 : γ 6= γ′,

where γ ∈ R. The test statistic is defined as

LR =
L(t
∼

; α̃, β̃, γ′, K)

L(t
∼

; α̂, β̂, γ̂, K)

where α̃, β̃ are such that sup(α,β)∈R+×R+ L(t
∼

;α, β, γ′, K) = L(t
∼

; α̃, β̃, γ′, K)170

and α̂, β̂, γ̂ are such that sup(α,β,γ)∈R+×R+×R L(t
∼

;α, β, γ,K) = L(t
∼

; α̂, β̂, γ̂, K).

The probability density function of the Arrhenius-Weibull model is assumed in
this paper to describe the failure time at a fixed stress level, and its parameters are
therefore maximized in the likelihood ratio test. There are in total three parameters
that need to be estimated under the alternative hypothesis; α0, β, and γ. Under the175

null hypothesis, for which γ is fixed while α0 and β are estimated, the LR follows a
χ1

2 distribution. To get [ γ
i
, γi], for each value of γ we would have different α̂0 and

β̂ but we do not use these any further in our method.
For each i = 1, ...,m, we find γ

i
, the smallest value for γ′ for which we do not

reject the null hypothesis, and γi, the largest value for γ′ for which we do not reject180

the null hypothesis. Then we define γ = max {min γ
i
, 0} and γ = max γi. Note

that, because of the physical interpretation of generally faster failures with increased
stress levels, we exclude negative values which leads to some γ values being set at 0.
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In this paper, we will always restrict γ to non-negative values. We find the γ
i

and
γi numerically using the statistical software R.185

Note that, we do not make a confidence statement for the final NPI lower and
upper survival functions, so we do not explicitly quantify the prediction accuracy. If
indeed the main assumption is valid, that increased stress tends to decreased failure
times, then negative γi are typically resulting from statistical variation and would
disappear for larger samples.190

One may wish to allow γ to be negative, which may e.g. be reasonable if it turned
out that higher stress level could possibly improve a unit’s failure time. However, in
normal ALT applications there tends to be sufficient knowledge about the effect of
the stress on the failure times to justify negative values for γ not to be considered.
Hence we also do not consider such values in this paper. It should be emphasized195

though that our inferential method could still be used if negative values for lower γ
were allowed.

In the second step, we apply the data transformation using γ for all levels i =
1, ...,m to get transformed data at level 0, which are then used together with the
original data at the normal stress level, to derive the NPI lower survival function200

S. Similarly, we apply the data transformation using γ for all levels i = 1, ...,m
to get transformed data at level 0, which are then used together with the original
data at the normal stress level, to derive the NPI upper survival function S. Note
that each observation at an increased stress level transforms into an interval-valued
observation at the normal stress level 0, where the width of an interval is larger for205

an observation from a higher stress level.
Note that, if the model fits really well, we expect most γ

i
values to be quite

similar, as well as most γi values. If the model fits poorly, γ
i

are most probably
very different, or γi are very different, or both. Hence, in case of poor model fit, the
resulting interval [γ, γ] tends to be wider than in the case of good model fit. If the210

model assumed is not too far from reality, we would expect the widest interval for
the parameter γ to come from the likelihood ratio test applied to levels 1 and 0.

If the model assumed is not too far from reality, we would expect the widest
interval for the parameter γ to come from the likelihood ratio test applied to levels
1 and 0. If the model fits well, a level 1 observation is transformed to a smaller215

interval on level 0 than a level 2 interval, if the transferred intervals are close, in
particular if they are overlapping. In the overlapping case, because the level 2
interval is wider, the left and right end points of these intervals from level 2 are
further apart, which implies that the γ in the null hypothesis will be rejected in
more cases. Hence, the interval [γ, γ] from level 1 will be wider than the interval220

[γ, γ] from level 2 (in most cases, due to variability in the samples not in all cases).
If the model is worse than we would expect more often that γ = γ

i
for an i 6= 1, or

γ = γi for an i 6= 1. If the model assumptions are not fully correct, for example,
using some misspecification cases or there is a lot of overlap between the data, then
latter can happen.225

Although our method involves multiple pairwise tests, we do not aim to com-
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bine these into a single test of a hypothesis involving all groups simultaneously. A
multiple testing (comparison) procedure arises in many scenarios, where two groups
of data are compared over time with each other [5, 24]. A well known scenario
that one may be interested in testing is the comparison between two groups based230

on confidence level [24]. While we use pairwise tests in our approach, we do not
combine these into an overall confidence level statement for the resulting inference.
Instead we use NPI to derive the lower and upper predictive survival functions and
we investigate the performance of our predictive method separately via simulations.

If the assumed model is fully correct then the lower and upper γ will form an235

interval with at least 1 − α confidence level, with α the significance level for each
pairwise test. However, we explicitly develop our method for robust inference as
the basic assumed model will in practice not be ‘correct’, and acknowledging this
makes confidence statements hard to justify. This is an interesting topic for future
research. The method proposed in this section is illustrated by two examples using240

simulated data and real data in Sections 5 and 6, and studied in more detailed by
simulation in Section 7.

5. Example: simulated data

In this section we present an example consisting of two cases. In Case 1 we
simulated data at all levels using the parametric model for the link function we245

assume for the analysis. In Case 2 we change these data such that the assumed link
function will not provide a good fit anymore and we investigate the effect on the
interval [γ, γ] and the corresponding lower and upper predictive survival functions
for the normal stress level. We assumed the normal temperature stress level to be
K0 = 283, and the increased temperatures stress levels K1 = 313 and K2 = 353250

Kelvin. We generated ten observations from a Weibull distribution at each stress
level linked by the Arrhenius link function. The Weibull distribution at level K0

had shape parameter β = 3 and scale parameter α0 = 7000, and the Arrhenius
parameter was set at γ = 5200. This model keeps the same shape parameter at each
temperature, and the scale parameters are linked by the Arrhenius relation, which255

led to α1 = 1202.942 at level K1 and α2 = 183.0914 at level K2. The ten failure
times of units were simulated at each temperature, so data of a total of 30 units is
used in the study. The failure times are given in Table 1.

To illustrate the pairwise likelihood ratio tests method using these data, we first
assume the Weibul distribution at each stress level and the Arrhenius link function260

for the data. To obtain the intervals [γ
i
, γi] of the values γi for which we do not

reject the null hypothesis with regard to the well-mixed data transformation, we
used the pairwise likelihood ratio test between Ki for i = 1, 2 and K0. The resulting
intervals [γ

i
, γi] for three significance levels are given in Table 2.

In the second step of our method, we transformed the data using the [γ, γ]265

values. All observations at the increased stress levels were transformed to the normal
stress level. Therefore, the observations at the increased stress levels K1 and K2
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Case K0 = 283 K1 = 313 K2 = 353 K1 = 313 (*1.4) K2 = 353 (*0.4)
1 2692.596 241.853 74.557 338.595 29.823
2 3208.336 759.562 94.983 1063.387 37.993
3 3324.788 769.321 138.003 1077.050 55.201
4 5218.419 832.807 180.090 1165.930 72.036
5 5417.057 867.770 180.670 1214.878 72.279
6 5759.910 1066.956 187.721 1493.739 75.088
7 6973.130 1185.382 200.828 1659.535 80.331
8 7690.554 1189.763 211.913 1665.668 84.765
9 8189.063 1401.084 233.529 1961.517 93.412
10 9847.477 1445.231 298.036 2023.323 119.214

Table 1: Failure times at three temperature levels in the first three columns and corresponding
failure times with misspecification in the last two columns

Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi
Case 1: K1 K0 4060.018 6605.752 4424.881 6261.168 4593.700 6100.653

K2 K0 4377.043 5602.321 4550.205 5434.908 4630.511 5357.037

Case 2: K1 ∗ (1.4), K0 3066.539 5612.273 3431.402 5267.689 3600.221 5107.174
K2 ∗ (0.4), K0 5684.708 6909.985 5857.870 6742.573 5938.175 6664.701

Table 2: [γi, γi] for likelihood ratio test
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Figure 1: Some transformed data using [4060.018, 6605.752]

are transformed to interval-valued observations at the normal stress level K0. We
briefly illustrate this in Figure 1 using only three points of the data at each level,
therefore, we have six lines going down as shown in Figure 1. We transformed the270

data from the higher stress levels K1 and K2 using [4060.018, 6605.752] with 0.01
level of significance, mixed with the original samples at the normal stress level K0.
Note that, in Figure 1 the two largest transformed data points are actually the γ
and γ transformations of the largest observation from level K2. So, this illustrates
the key property of our method, that data transformed from higher levels tend to275

be wider intervals at the normal level.
The NPI lower survival function is based on the original data at level 0 together

with the transformed data from the stress levels K1 to K0 and K2 to K0 using γ.
Similarly, the NPI upper survival function is based on the original data at level 0
together with the transformed data from the stress levels K1 to K0 and K2 to K0280

using γ. The γ transformed the points to the smallest values and therefore is most
pessimistic case which leads to the lower survival function S. The γ transformed the
points to the largest values and therefore is most optimistic case which leads to the
upper survival function S. In Case 1, we take γ = 4060.018 and the γ = 6605.752,
γ = 4424.881 and γ = 6261.168, and γ = 4593.700 and γ = 6100.653 of the pairwise285

K1, K0 with 0.01, 0.05 and 0.10 significance levels, respectively. We used all the
above γ and γ values to transform the data to the normal stress level 0, see Figure
2(a). In this figure, the lower survival function S is labeled as S(γ

i
) and the upper

survival function S is labeled as S(γi). This figure shows that higher significance
levels leads to more imprecision for the NPI lower and upper survival functions.290

In Case 2, we illustrate our method in case of misspecification. We multiply the
data at level K1 by 1.4 and in addition we multiply the data at level K2 by 0.4.
The simulated data values are given in the last two columns in Table 1. In this
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case, we take γ = 3066.539 and γ = 6909.985, γ = 3431.402 and γ = 6742.573,
and γ = 3600.221 and γ = 6664.701 for 0.01, 0.05 and 0.10 significance levels,295

respectively. We used all the above γ and γ values to transform the data to the
normal stress level 0, see Figure 2(b). Figure 2(b) also shows that higher significance
level results in more imprecision for the NPI lower and upper survival functions. In
Case 2, we can see that the [γi, γi] intervals for the two pairwise comparisons are
fully disjoint unlike in Case 1. Note that in Case 2, the observations at level K1300

have increased, leading to smaller γ
1

and γ1 values, which, in turn, leads to the
lower and upper survival functions to decrease in comparison to Case 1. Also, the
observations at K2 stress level in Case 2 have decreased, resulting in larger values
for γ

2
and γ2, and this leads to the lower and upper survival functions to increase in

comparison to Case 1. Therefore, it is obvious that considering the γ and γ values305

give substantially more imprecision in our NPI method. In case of poor model fit,
the NPI lower and upper survival functions in Figure 2(b), using our method as
discussed in Section 4, have more imprecision than if the model fits well.
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Figure 2: The NPI lower and upper survival functions: Case 1 and Case 2.
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Case K0 = 393 K0 = 408 K0 = 423

1 3850 3300 2750
2 4340 3720 3100
3 4760 4080 3400
4 5320 4560 3800
5 5740 4920 4100
6 6160 5280 4400
7 6580 5640 4700
8 7140 6120 5100
9 7980 6840 5700
10 8960 7680 6400

Table 3: Failure times at three temperature levels

Significance level 0.01 0.05 0.1

Stress level γ
i

γi γ
i

γi γ
i

γi
K1 K0 0 4881.225 0 3988.558 0 3572.193
K2 K0 188.348 3540.639 651.091 3077.896 866.927 2862.060

Table 4: [γ
i
, γi] for pairwise likelihood ratio tests.

6. Example: real data

The method proposed in Section 4 is now applied to a data set from the literature310

[28], which result from a temperature-accelerated lifespan test. The time-to-failure
data were collected at three temperatures (in Kelvin): K0 = 393, K1 = 408, and
K2 = 423, with 393 the normal temperature for the process of interest. Ten units
were tested at each temperature, so a total of 30 units where used in the study. All
of the units failed during the experiment. The failure times, in hours, are given in315

Table 3.
For the data in Table 3, we have assumed the Weibull failure time distributions

at each stress level, with the Arrhenius link function between different stress levels.
Then the pairwise likelihood ratio test is used separately between level Ki and K0,
for i = 1, 2 to derive the intervals [γ

i
, γi] for the value of the parameter γ of the320

Arrhenius link function, such that we do not reject the null hypothesis that two
group of failure data (the transformed data from level i and the real data from
level 0) come from the same underlying distribution, is not rejected for values of γ
in this interval. The resulting intervals [γ

i
, γi] are given in Table 4, for three test

significance levels.325

Note that, because the data corresponding to the different stress levels already
have quite some overlap, the likelihood ratio tests even did not rule out some nega-
tive values for γ. However, because of the physical interpretation of generally faster
failures with increased temperature, we exclude negative values which leads to some
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γ
i

values being set at 0. Following the method presented in this paper, we trans-330

formed the data using the overall values [γ, γ], derived as the smallest and largest
corresponding values for the pairwise tests, respectively. Based on the original data
at level 0 together with the data transformed from the stress levels K1 to K0 and K2

to K0 using γ, the NPI approach provides the NPI lower survival function. Similarly,
but using γ for the transformation, we derived the NPI upper survival function. For335

the significance levels 0.01, 0.05, 0.1, the values of γ are always 0 in this case, and for
γ we have, 4881.225, 3988.558 and 3572.193, respectively. The resulting lower and
upper survival functions are presented in Figure 3, where of course the three differ-
ent significant levels lead to the same lower survival function due to the restriction
for the γ values to be non-negative. In this figure, the lower survival function S is340

labeled as S (γ
i
) and the upper survival function S is labeled as S (γi). This figure

shows that a smaller significance level leads to more imprecision for the NPI lower
and upper survival functions, which is directly resulting from the fact that the inter-
vals of not rejected values of γi in the pairwise tests will be nested, becoming larger
if the significance level is decreased. These lower and upper survival functions can345

also be used to deduce corresponding lower and upper values for percentiles, which
are found in the usual way by inverting the respective functions. These functions
can also be used as inputs into decision processes, for example with regard to setting
warranty policies, this is a topic of ongoing research by the authors.
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Figure 3: The NPI lower and upper survival functions. Example 6
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7. Simulation studies350

The imprecise predictive statistical method we propose in this paper for ALT,
uses the pairwise likelihood ratio tests with the parametric Arrhenius-Weibull model.
This is intuitively attractive because it shows some robustness, and demonstrates
the effect of imprecision when we lack perfect information about the link between
different stress levels. In this section, we first apply simulation studies to investigate355

the performance of our proposed method when considering the assumed Arrhenius-
Weibull model as the true underlying model.

To investigate the predictive inference performance of our new method for ALT
data, we conduct a simulation study. We assumed the temperature stress levels to
be K0 = 283, K1 = 313, and K2 = 353. In this analysis, we run the simulation360

10,000 times with the data simulated from the Weibull distribution with β = 3, α
= 7000, and the Arrhenius link function parameter γ = 2000, where we have used
n = 10, 50, 100 assigned to each stress level. We applied the method described in
Section 4, with levels of significance 0.01, 0.05, and 0.10. For good performance
of the method, we check the results by taking into account a future observation,365

and we consider if it mixes well among the data at level K0, where we use both
the actual data at level K0 and the data transformed to level K0. We examined
the performance in the quartiles of NPI lower and upper survival functions for
q = 0.25, 0.50, 0.75, and whether or not the future observation at the normal stress
level has exceeded these quartiles in the right proportion. One can use different370

quartiles but these quartiles provided a good indicator of the performance of our
method. We conducted simulation with assumed Arrhenius-Weibull model, hence
with data generated from the same model as used for our method, hence we expect
a good performance.

For good performance of the method, we require that the future observation for375

each run at the normal stress level has exceeded the first, second, and third quartiles
of the NPI lower survival functions just over proportions 0.75, 0.50 and 0.25 of all
runs, respectively, and for the NPI upper survival functions just under proportions
0.75, 0.50 and 0.25. Table 5 presents the results of the performance of our method
for this simulation. All cases in Table 5 show an overall good performance of the380

proposed method, with levels of significance 0.01, 0.05, and 0.10, and with sample
size n = 10, 50, 100. Note that the quartiles in this table are denoted by qL and qU ,
corresponding to the NPI lower and upper survival functions, respectively. We note
that for corresponding proportion with larger values of n, the differences between
lower and upper survival functions tend to decrease. That means that when have385

more data, the NPI lower and upper survival functions allow more precise infer-
ence. As mentioned in Section 4, if the model fits very well or perfectly, then in
most cases γ = γ

1
, and γ = γ1. Table 6 shows that when we simulate from the

assumed Arrhenius-Weibull model out of 10,000 runs with 0.05 level of significance,
hence with data generated from the same model, that most of the widest intervals390

come from level K1. From these simulations, we conclude that the proposed ap-
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proach using the Arrhenius-Weibull model provides suitable predictive inference if
the model assumptions are fully correct. We will investigate robustness in case of
model misspecification in the next three simulation cases.

In Case 1, we are dealing with a particular misspecification of the model for sta-395

tistical inference for ALT data [20, 21]. Table 7 presents the results of the predictive
performance of our method. We used the same scenario as in the first simulation
but we assumed shape parameter β = 2 for each level, in the analysis. Now only
the scale parameter α and the parameter γ of the link function are explicitly maxi-
mize in the likelihood ratio. In comparison to the first simulation where the shape400

parameter β = 3 was estimated, there is a slight effect on the quartiles in Table
7. From Table 5 and Table 7, the effect of fixing the shape parameter β = 2 in
the analysis can also be seen on the quartiles of the NPI lower and upper survival
functions for q = 0.25, 0.50, 0.75, which is reflected by more imprecision for this case.
Also, we checked whether or not the future observation at the normal stress level405

has exceeded these quartiles in the right proportion. Further note that, in Table 7,
there seems to be more imprecision than in Table 5. Throughout this simulation,
when we fixed the shape parameter β = 2 in the fitted model, our novel method
provided sufficient robustness against the misspecification.

In Case 2, we investigate the predictive performance of our method for ALT data410

we change these data such that the assumed link function will not provide a good fit
and we show the change to the resulting quartiles of NPI lower and upper survival
functions for q = 0.25, 0.50, 0.75, and whether or not the future observation at the
normal stress level has exceeded these quartiles in the right proportion.

To illustrate this, we generated data sets as before with n = 10, 50, 100 observa-415

tion at each stress level using the Arrhenius-Weibull model. But now all the data at
stress level K1 are multiplied by 1.2 and in addition we multiply all the data at level
K2 by 0.8. We run the simulation 10,000 times. Using these generated data, we
again applied our method as described in Section 4, with levels of significance 0.01,
0.05, and 0.10. We compute the likelihood ratio test within the statistical software420

R to the simulated data set separately between the stress levels K1 to K0 then K2 to
K0 for finding the values γ and γ. Then we used these γ and γ values to transform
the data to the normal stress level K0. All the results in Case 2 provide an insight
into whether or not the presented method shows sufficient robustness against the
misspecification case considered. Table 8 presents the results of these simulations425

with n = 10, 50, 100.
For n = 50, 100 there are a few cases for which the future observation for each

run at the normal stress level has exceeded the first, second, and third quartile
(qU0.25, qU0.50, qU0.75) corresponding to the NPI upper survival functions just
over 0.75, 0.50, 0.25 of the pairwise level K1 ∗ (1.2) to K0, receptively, see Table430

8. They are highlighted by bold font in Table 8. Exceeding the first, second, and
third quartile (qU0.25, qU0.50, qU0.75) of the NPI upper survival function just over
0.75, 0.50, 0.25 corresponds to the use of this misspecification case where the data at
stress level K1 are multiplied by 1.2 and in addition we multiply all the data at level
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K2 by 0.8. There are slight increase in qU0.25, qU0.50, qU0.75, which means that we435

have too many observations passing these quartiles from the upper 0.75, 0.50, 0.25.
They seem that the points 0.75, 0.50, 0.25 occurred a bit earlier and they should be
related to the effect of multiplying the data by 1.2 and 0.8 for the stress levels K1

to K0 and K2 to K0, respectively. As mentioned, this is in line with expectation,
which is mainly due to the misspecification case we assumed as well as increasing n440

that caused the imprecision in the method to become small. Note that, the lower
significance level leads to less imprecision for the NPI lower and upper survival
functions. Further note that in this simulation, the observations at the stress level
K1 have increased, resulting in smaller γ1 and γ1, and hence possibly smaller γ and
γ compared to the earlier simulations, when we assume the model assumptions are445

fully correct. Also, the data at level K2 ∗ (0.8) have decreased, resulting in larger
γ2 and γ2 and hence possibly larger γ and γ, in comparison to the first simulation
results in Table 5.

Table 9 shows the numbers of the simulation runs with γ = γ1 or γ = γ1 or both
for this case considered, out of 10,000 simulation runs with 0.05 level of significance.450

It shows that when we use the simulated data for this case, that most of the γ =
γ1 intervals come from level K1 and few of the γ = γ1 intervals come from level
K1 in comparison to the Table 6 when we assume the correct model. Note that,
the resulting intervals at level K2 ∗ (0.8) become larger, that why most cases of the
γ come from γ2 in comparison to the first simulation. Therefore, in case of worse455

model fit, the NPI lower and upper survival functions for q = 0.25, 0.50, 0.75, using
our proposed method discussed in Section 4, have more imprecision.

We next investigate the robustness and the performance of our predictive infer-
ence against the necessary assumptions. To conduct this, we simulated the data
from the Eyring-Weibull model with the parameters α0 = 7000, β = 3 and λ =460

2000. The Weibull distributions for different stress levels are assumed to have dif-
ferent scale parameters αi > 0 for level i, but the same shape parameter β. The
Eyring link function for the Weibull scale parameters is

αi = α0 ∗ (K0/Ki) ∗ exp
[
(λ/Ki − λ/K0)

]
(7)

Where using this model with temperatures as stress levels, K0 is the normal
temperature (Kelvin) at stress level 0, Ki is the higher temperature (Kelvin) at465

stress level i, and λ > 0 is the parameter of the Eyring link function model. In
this simulation we used the assumed Arrhenius link function model between dif-
ferent stress levels. We applied the method described in Section 4, with levels of
significance 0.01, 0.05, and 0.10, with 10, 000 simulation runs. Table 8 shows the
results of the predictive performance of our method. We use the same scenario470

as in the first simulation but with data generated from the Eyring-Weibull model.
In comparison with the simulation where the model assumptions are fully correct,
the results in Table 8 are very similar to those in Table 7, which means that from
the preceding investigation that the Eyring model and the Arrhenius model lead to
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similar conclusions. These simulations show that the proposed approach provides475

suitable robustness in predictive inference against the model assumptions in case
of this specific model misspecification. One can similarly investigate other cases of
model misspecification.

The main findings drawn from the above simulations are: the future observation
at the normal stress level K0 has exceeded the quartiles that we considered in the480

right proportions. Both with the Arrhenius-Weibull model and the power-Weibull
model, our method achieves suitable predictive inference if the model assumptions
are fully correct, and the intervals [γ, γ] have reasonable imprecision. However, in
case of model misspecification, the intervals [γ, γ] have wider imprecision compared
to if the model assumptions are correct. One can similarly investigate other cases of485

model misspecification. Of course, in the case of large misspecification, no method
would give meaningful inferences; in our model it would lead to large imprecision,
which would reflect that there is a problem of model fit. We have seen that when
the number of observations at each stress level is n = 100, the imprecision between
the NPI lower and upper survival functions tends to decrease compared to when the490

number of observations at each stress level n = 10.
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K1K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.9386 0.4960
0.8227 0.1407
0.5670 0.0197

0.8565 0.6287
0.6726 0.3208
0.4314 0.0900

0.8293 0.6717
0.6349 0.3684
0.3818 0.1245

0.05 0.25
0.50
0.75

0.9058 0.5531
0.7557 0.2192
0.5049 0.0470

0.8326 0.6585
0.6322 0.3660
0.3966 0.1238

0.8131 0.6938
0.6028 0.4000
0.3511 0.1531

0.1 0.25
0.50
0.75

0.8871 0.5804
0.7143 0.2604
0.4664 0.0667

0.8214 0.6730
0.6137 0.3866
0.3755 0.1415

0.8048 0.7030
0.5880 0.4155
0.3351 0.1681

K2K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.8795 0.5054
0.6974 0.2869
0.4588 0.0649

0.8088 0.6923
0.5919 0.4072
0.3525 0.1599

0.7974 0.7132
0.5712 0.4361
0.3162 0.1838

0.05 0.25
0.50
0.75

0.8538 0.6418
0.6524 0.3392
0.4073 0.1035

0.7945 0.7073
0.5699 0.4287
0.3287 0.1792

0.7881 0.7220
0.5552 0.4518
0.2998 0.2005

0.1 0.25
0.50
0.75

0.8398 0.6589
0.6285 0.3644
0.3818 0.1239

0.7881 0.7146
0.5594 0.4411
0.3175 0.1900

0.7835 0.7260
0.5470 0.4605
0.2917 0.2079

min γ and the max γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.9427 0.4925
0.8277 0.1352
0.5732 0.0149

0.8577 0.6273
0.6749 0.3189
0.4333 0.0886

0.8299 0.6708
0.6363 0.3672
0.3834 0.1235

0.05 0.25
0.50
0.75

0.9122 0.5459
0.7664 0.2087
0.5150 0.0376

0.8347 0.6562
0.6362 0.3625
0.4003 0.1203

0.8144 0.6920
0.6058 0.3982
0.3538 0.1500

0.1 0.25
0.50
0.75

0.8957 0.5714
0.7299 0.2485
0.4792 0.0546

0.8238 0.6700
0.6202 0.3818
0.3812 0.1366

0.8074 0.7002
0.5920 0.4122
0.3384 0.1642

Table 5: Proportion of runs with future observation greater than the quartiles, Arrhenius model.

min γ and the max γ n = 10 n = 50 n = 100

γ = γ
1

γ = γ1
γ = γ

1
and γ = γ1

8699
8675
7374

8963
9003
7966

9022
9087
8109

Table 6: Number of the simulation runs with γ = γ1 or γ = γ1 or both out of 10,000 simulation
runs with 0.05 level of significance.
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K1K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.9524 0.4640
0.8432 0.0915
0.5807 0.0028

0.8727 0.6028
0.7047 0.2859
0.4629 0.0795

0.8599 0.6357
0.6913 0.3120
0.4400 0.0831

0.05 0.25
0.50
0.75

0.9169 0.5211
0.7686 0.1542
0.5056 0.0112

0.8396 0.6336
0.6447 0.3336
0.4019 0.0995

0.8339 0.6669
0.6450 0.3625
0.3910 0.1193

0.1 0.25
0.50
0.75

0.8941 0.5413
0.7230 0.1878
0.4600 0.0221

0.8193 0.6518
0.6076 0.3521
0.3752 0.1151

0.8218 0.6945
0.6217 0.4096
0.3663 0.1618

K2K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.8828 0.5851
0.7026 0.2563
0.4514 0.0447

0.8196 0.6791
0.6096 0.3971
0.3700 0.1518

0.8118 0.6982
0.6012 0.4088
0.3472 0.1565

0.05 0.25
0.50
0.75

0.8524 0.6135
0.6491 0.3076
0.3939 0.0862

0.7998 0.6960
0.5780 0.4161
0.3338 0.1683

0.7976 0.7135
0.5740 0.4368
0.3186 0.1834

0.1 0.25
0.50
0.75

0.8356 0.6029
0.6169 0.3132
0.3601 0.1266

0.7869 0.7038
0.5587 0.4258
0.3165 0.1781

0.7910 0.7240
0.5622 0.4584
0.3068 0.2042

min γ and the max γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.9539 0.4623
0.8468 0.0889
0.5844 0.0027

0.8748 0.5958
0.7081 0.2757
0.4667 0.0656

0.8602 0.6356
0.6915 0.3118
0.4402 0.0826

0.05 0.25
0.50
0.75

0.9216 0.5089
0.7779 0.1484
0.5184 0.0222

0.8450 0.6303
0.6522 0.3267
0.4085 0.0948

0.8357 0.6663
0.6481 0.3614
0.3938 0.1177

0.1 0.25
0.50
0.75

0.9017 0.5064
0.7369 0.1727
0.4782 0.0580

0.8258 0.6476
0.6182 0.3474
0.3824 0.1108

0.8243 0.6896
0.6258 0.4008
0.3714 0.1519

Table 7: Proportion of runs with future observation greater than the quartiles, Arrhenius model,
β = 2 in the fitted model. Case 1.
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K1 ∗ (1.2), K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.9684 0.5460
0.8544 0.2169
0.5674 0.0501

0.9179 0.7178
0.7662 0.4495
0.4701 0.1909

0.8995 0.7575
0.7398 0.5044
0.4467 0.2421

0.05 0.25
0.50
0.75

0.9487 0.6200
0.8145 0.3172
0.5236 0.1020

0.9013 0.7468
0.7370 0.4931
0.4466 0.2316

0.8857 0.7770
0.7183 0.5373
0.4271 0.2689

0.1 0.25
0.50
0.75

0.9353 0.6551
0.7872 0.3607
0.4972 0.1333

0.8933 0.7608
0.7208 0.5141
0.4350 0.2499

0.8785 0.7883
0.7072 0.5530
0.4169 0.2815

K2 ∗ (0.8), K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.8679 0.5767
0.6690 0.2470
0.4135 0.0481

0.7896 0.6642
0.5596 0.3710
0.3106 0.1303

0.7778 0.6918
0.5368 0.3960
0.2788 0.1479

0.05 0.25
0.50
0.75

0.8379 0.6135
0.6209 0.3024
0.3675 0.0793

0.7756 0.6793
0.5377 0.3928
0.2864 0.1470

0.7648 0.7011
0.5204 0.4171
0.2637 0.1621

0.1 0.25
0.50
0.75

0.8232 0.6307
0.5976 0.3282
0.3465 0.0971

0.7690 0.6869
0.5260 0.4041
0.2747 0.1563

0.7594 0.7055
0.5130 0.4233
0.2557 0.1701

min γ and the max γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.9807 0.5149
0.8619 0.1722
0.5681 0.0182

0.9483 0.6253
0.7977 0.3107
0.4721 0.0780

0.9368 0.6541
0.7756 0.3328
0.4498 0.0952

0.05 0.25
0.50
0.75

0.9675 0.5637
0.8309 0.2346
0.5263 0.0393

0.9358 0.6430
0.7764 0.3369
0.4506 0.0973

0.9261 0.6666
0.7619 0.3503
0.4332 0.1063

0.1 0.25
0.50
0.75

0.9585 0.5868
0.8125 0.2648
0.5020 0.0536

0.9283 0.6505
0.7635 0.3478
0.4398 0.1042

0.9198 0.673
0.7547 0.3592
0.4239 0.1131

Table 8: Proportion of runs with future observation greater than the quartiles, Arrhenius model.
K1 ∗ (1.2) and K2 ∗ (0.8). Case 2.
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min γ and the max γ n = 10 n = 50 n = 100

γ = γ
1

γ = γ1
γ = γ

1
and γ = γ1

9993
1821
1814

10000
12
12

10000
5
5

Table 9: Number of the simulation runs with γ = γ1 or γ = γ1 or both out of 10,000 simulation
runs with 0.05 level of significance, Arrhenius model.K1 ∗ (1.2) and K2 ∗ (0.8). Case 2.

K1K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU

0.01 0.25
0.50
0.75

0.9396 0.4970
0.8238 0.1426
0.5694 0.0205

0.8583 0.6306
0.6762 0.3254
0.4338 0.0938

0.8332 0.6718
0.6426 0.3706
0.3889 0.1251

0.05 0.25
0.50
0.75

0.9068 0.5547
0.7573 0.2230
0.5051 0.0477

0.8355 0.6612
0.6350 0.3700
0.3988 0.1264

0.8162 0.6942
0.6089 0.4007
0.3570 0.1544

0.1 0.25
0.50
0.75

0.8887 0.5822
0.7184 0.2630
0.4692 0.0694

0.8244 0.6763
0.6176 0.3908
0.3785 0.1457

0.8084 0.7035
0.5944 0.4165
0.3418 0.1686

K2K0 n = 10 n = 50 n = 100
α q qL qU qL qU qL qU

0.01 0.25
0.50
0.75

0.8782 0.6038
0.6965 0.2848
0.4571 0.0648

0.8072 0.6911
0.5905 0.4053
0.3486 0.1576

0.7959 0.7116
0.5704 0.4336
0.3140 0.1820

0.05 0.25
0.50
0.75

0.8529 0.6407
0.6497 0.3381
0.4047 0.1020

0.7943 0.7054
0.5673 0.4271
0.3265 0.1775

0.7875 0.7204
0.5540 0.4501
0.2970 0.1971

0.1 0.25
0.50
0.75

0.8379 0.6558
0.6261 0.3618
0.3795 0.1222

0.7871 0.7131
0.5571 0.4393
0.3153 0.1883

0.7822 0.7243
0.5455 0.4578
0.2902 0.2056

min γ and the max γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU
0.01 0.25

0.50
0.75

0.9433 0.4934
0.8281 0.1366
0.5749 0.0153

0.8583 0.6286
0.6777 0.3229
0.4349 0.0916

0.8338 0.6705
0.6435 0.3690
0.3902 0.1238

0.05 0.25
0.50
0.75

0.9133 0.5472
0.7671 0.2116
0.5142 0.0373

0.8376 0.6583
0.6384 0.3650
0.4016 0.1222

0.8176 0.6915
0.6117 0.3975
0.3592 0.1503

0.1 0.25
0.50
0.75

0.8966 0.5723
0.7334 0.2495
0.4800 0.0566

0.8261 0.6727
0.6229 0.3848
0.3831 0.1386

0.8103 0.6999
0.5980 0.4116
0.3445 0.1634

Table 10: Proportion of runs with future observation greater than the quartiles, Eyring model.
Case 3.
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8. Concluding remarks

This paper has presented statistical methods for ALT using the Arrhenius-
Weibull model under constant stress testing, supported by the theory of imprecise
probability [3, 4], where the imprecision results from the use of the likelihood ra-495

tio test [26]. The proposed method applies the use of the likelihood ratio test to
compare the survival distribution of pairwise stress levels, in combination with the
Arrhenius model finding the interval of γ values according to the null hypothesis.
The observations at the increased stress levels were transformed to interval-valued
observations at the normal stress level by developing imprecision in the link function500

of the Arrhenius model via a classical test between the pairwise stress levels. We
found that using an interval of values for the parameter in the link function between
different stress levels enabled us to achieve a greater level of robustness than if we
were to use a single point for the parameter. Using the Arrhenius model, we linked
the data at different stress levels to the normal stress level, after which NPI can505

be used at normal stress level. The most pessimistic case, which leads to the lower
survival function S, uses γ to transform the data points to the smallest values at
the normal stress level. Unlike the most optimistic case, which uses γ to transform
the data points to the largest values at the normal stress level.

We discussed the use of pairwise tests instead of one test on all stress levels510

simultaneously, elsewhere [1]. If the model fits poorly, a single test on all stress levels
would result in less imprecision while our proposed method, combining pairwise
tests, tends to result in more imprecision. It should be mentioned that we were quite
surprised to see that the classical literature in this field mostly presents methods
for parameter estimation, with no explicit attention to prediction at the normal515

stress level. Hence, we did not find classical methods that were suitable for direct
comparison with our method. Using the proposed approach, the intervals [γ, γ]
for the parameter for the link function have adequate imprecision if the model fits
well. However, the intervals [γ, γ] for the parameter for the link function get wider
if the model fits poorly. The latter can happen if the model assumptions are not520

fully correct. However, if we have large imprecision, the remaining inferences are
probably of no use at all. Therefore, it will be a strong recommendation to do
more detailed modelling or to sample more data in such cases. Regarding the choice
of the values of the factors for assessing robustness of the methods, we only show
that any suggested form of misspecification can be included in simulations to then525

study the level of robustness. We have shown how the use of different significant
levels for the pairwise likelihood ratio tests lead logically to varying imprecision in
the final inferences. An interesting topic for future research concerns the choice of
the significance level, in particular related to theoretical coverage properties for the
final predictive inference resulting from the NPI-based inference in the form of lower530

and upper survival functions for a future observation at the normal stress level. It
should be emphasized here, however, that our aim differs substantially from the
usual hypothesis testing in frequentist statistics, as we do not aim at a good test
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performance in order to decide between two hypotheses, but we want to provide a
method which can also be used if the assumed basic model does not fit well, which535

will then be indicated by large imprecision.
The application of our novel method in this paper assumed that we have failure

times observed at the normal stress level K0. The assumption of having failure
data at the normal stress level K0 may not be realistic in real world applications.
In this case, we can apply our method with basic function to a higher stress level540

that is above the normal stress level K0. The combined data at that level are then
transformed all together to the normal stress level K0. Investigating this is a topic
for future research.

Usually, events of interest in reliability and survival analysis are failure times
[8, 9]. However, such data often includes right-censored observations. The A(n)545

assumption cannot handle right-censored observations, and demands fully observed
data. Coolen and Yan [10] presented a generalization of A(n), called rc-A(n), which
is suitable for NPI with right-censored data. This method can be used at the
second step in our approach if there are right-censored data, and also the likelihood
ratio test can be applied. So generalizing this method to data including right-550

censored observations is straightforward. Moreover, a transformation link function,
generalizing Equation (3), can also be derived if we allow different shape parameters
βi for each level i, so our method can be generalized in this way as well. Investigating
these generalizations, for example to consider the effect of such changes on the
imprecision in the resulting lower and upper survival functions is an important topic555

for future research. Of course, one may want to use a different parametric model
at each stress level. As long as the model enables the Arrhenius link function (or
a similar link function) to be used to link scale parameters, and transformations of
data at higher stress levels to the normal stress levels can be written explicitly as
function of a parameter of the link function, then the method as presented in this560

paper can straightforwardly be adapted. It is also possible to apply the basic idea
of our new method without assuming a parametric model at each stress level, but
instead using the Arrhenius link function directly to transform observations to the
normal stress level. In that case, the likelihood ratio test used in this paper must be
replaced by a nonparametric test to determine a range of values for the parameter565

of the Arrhenius link function for which the transformed data mix well with actual
data at the normal stress level. As this approach requires substantially different
aspects to be explained compared to the method presented in this paper, it will be
presented elsewhere.

As mentioned in the introduction section, there is an increasing literature on more570

detailed modelling of degradation processes related to accelerated test scenarios. It
will be of interest to investigate if the method presented in this paper can also be
developed for inference based on such more detailed models. While this will pose
substantial challenges, the main idea to avoid very detailed or complicated models
through the use of simpler models in combination with imprecision suggests that575

there may be strong advantages possible for similar methods related to degradation
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processes.
Since we began this research, we have not found ALT methods with imprecision

in the literature. The classical methods as presented in the literature seem effec-
tively to stop at parameter estimates, so no predictions and certainly not predictions580

explicitly at the normal stress level are considered. Of course, there are more pub-
lished imprecise statistical methods for other reliability inferences [8, 9]. The main
approach presented in this paper, that is taking a simple model and adding impre-
cision to a parameter, then using corresponding transformed data for imprecision at
the level of interest, has not been presented before for any inference problem. One585

important aspect of ALT applications is the decision of the design of the experi-
ment, so which stress levels to use and how many items to use at each level. There
is substantial attention to this in the literature on ALT, and we have not addressed
it yet in combination with the inferential method presented in this paper, hence this
is left as an important topic for future research.590

As with any novel statistical method developed for real-world applications, the
real value of our method should be shown in practical applications. To implement
the method, not more is needed on the modelling side then for the classic inference
methods with the same model assumptions, but the main questions are how one can
use the resulting lower and upper survival functions to support real-world decisions.595

In continuing research, we are investigating this important aspect in the context of
warranty contracts, while it is also interesting to consider the use of our method for
other decision support scenarios. Finally, we are starting research into different ALT
scenarios, where we aim to develop a similar approach, e.g. for the case of step-stress
testing.600
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