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Abstract –We discuss the potential use of an algebraic method to compute the value of the solar axial
dipole moment at solar minimum, widely considered to be the most reliable precursor of the activity level
in the next solar cycle. The method consists of summing up the ultimate contributions of individual active
regions to the solar axial dipole moment at the end of the cycle. A potential limitation of the approach is its
dependence on the underlying surface flux transport (SFT) model details. We demonstrate by both analyt-
ical and numerical methods that the factor relating the initial and ultimate dipole moment contributions of
an active region displays a Gaussian dependence on latitude with parameters that only depend on details
of the SFT model through the parameter g/Du where g is supergranular diffusivity and Du is the divergence
of the meridional flow on the equator. In a comparison with cycles simulated in the 2 � 2D dynamo model
we further demonstrate that the inaccuracies associated with the algebraic method are minor and the
method may be able to reproduce the dipole moment values in a large majority of cycles.

Keywords: solar cycle / rogue sunspots / surface flux transport modeling

1 Introduction

Predicting the amplitude of an upcoming solar cycle is the
central issue of space climate forecasting. It is widely accepted
that the best performing, physically well motivated prediction
method is based on the good linear correlation between the solar
axial dipole moment in solar activity minimum and the ampli-
tude of the next cycle (Schatten et al., 1978; Wang & Sheeley,
2009; Muñoz-Jaramillo et al., 2013; Hathaway & Upton, 2016;
Petrovay, 2020). In order to extend the rather short, 3–4 year
long time span of these forecasts, in recent years efforts have
been made to “predict the predictor”, i.e. to model and forecast
the evolution of the magnetic flux distribution over the solar sur-
face (Jiang et al., 2018).

Starting with the pioneering work of DeVore et al. (1985),
the standard approach to this problem has been the use of
surface flux transport (SFT) simulations. This approach
assumes that the line-of-sight magnetic field component shown
in synoptic maps constructed from solar magnetograms corre-
sponds to the projection of an inherently radial mean photo-
spheric magnetic field with strength Br, the transport of which
is governed by advection due to large scale flows and diffusion
due to supergranular motions:
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where t is time, k and / are heliographic latitude and longitude,
R is the radius of the Sun, X is the angular velocity of differen-
tial rotation, u(k) = u0f(k) is the meridional flow, and g is the
supergranular diffusivity. The source term Sr represents the
emergence of new flux into the atmosphere in active regions,
while the term �Br/s is the simplest (though not the most
realistic) form of a sink term representing the effects of radial
diffusion that would appear in a consistent derivation of the
transport equation from the radial component of the induction
equation. For further discussion of the decay term see e.g.
Baumann et al. (2006), Whitbread et al. (2017) or Petrovay &
Talafha (2019). For general reviews of the SFT modelling
approach see Sheeley (2005), Mackay & Yeates (2012), Jiang
et al. (2014b), Wang (2017).

Numerous studies have been performed with the objective
to reproduce and predict the evolution of the solar dipole
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moment (Wang & Sheeley, 1991; Virtanen et al., 2017;
Whitbread et al., 2017). Despite some spectacular successes,
this approach still suffers from two main limitations:

1. Ill constrained SFT model ingredients. The model has at
least 3 free numerical parameters (u0, g, s) as well as a free
function, the observationally not well mapped meridional
flow profile f(k). Attempts to determine the ingredients
from direct observations have dubious relevance and often
yield contradictory results. Internal optimizations of the
model, in turn, result in parameter combinations that may
depend on the choice of merit and still allow a rather wide
freedom in the choices (Lemerle et al., 2015; Virtanen
et al., 2017; Whitbread et al., 2017; Petrovay & Talafha,
2019). The ill constrained ingredients imply that in order
to obtain a realistic estimate of the uncertainities in the pre-
dictions an ensemble of models with varying parameters
should be studied; with the need to numerically solve the
partial differential equation (1) for each of these models
the process can get rather lengthy and cumbersome.

2. A realistic representation of the active region source.
These sources are often represented as simple bipoles
instantaneously introduced into the simulation, or, more
realistically, by assimilating actual magnetograms taken
at the time of their central meridian passage. In reality,
however, during the evolution of an active region its mag-
netic flux distribution keeps changing as a consequence of
the emergence of new flux and the proper motions of sun-
spots and other magnetic flux concentrations driven by
subsurface dynamics and/or by random, localized photo-
spheric flows – effects which are not accounted for in
the SFT model. The choice of the proper form of the
source and the time of its introduction is therefore a
highly nontrivial problem. And the very large number
(thousands) of active regions arising in a solar cycle
makes this task challenging even in the simplest, idealized
case of bipole representation. These problems are even
further aggravated in the case of historical data, when
the objective is to understand and reproduce the course
of evolution of solar activity in centuries past.

The objective of this paper is to consider ways to alleviate
these difficulties by simplifying the prediction method to its bare
essentials. Specifically, in Section 2 we will show that the SFT
modelling approach of solving a partial differential equation can
be reduced to the calculation of an algebraic sum. Sections 3
and 4 demonstrate that the result of this procedure only depends
on two numerical combinations of the model parameters with-
out the need to specify the choice of any unknown function.
Then, in Section 5 we validate the approach in a comparison
with activity cycles simulated in a dynamo model. These results
may pave the way towards a more robust and effective approach
to solar cycle prediction.

2 Mathematical formulation of the problem

The axial dipolar moment of the Sun is given by

DðtÞ ¼ 3
2

Z p=2

�p=2
Bðk; tÞ sin k cos k dk; ð2Þ

where B ¼ 1
2p

R 2p
0 Br d/ is the azimuthally averaged field

strength. Throughout this paper, D will denote the global
dipole moment of the whole Sun as defined in equation (2),
while dD will denote the contribution to D from an individual
active region. The evolution of B, and consequently D, is
determined by the 1D surface flux transport equation obtained
by azimuthally integrating equation (1):
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In this azimuthally averaged representation a tilted
bipolar region is then a pair of flux rings of opposite polarity,
appearing as a bipole source with a finite latitudinal separation
in equation (3).

Figure 1 presents solutions of equation (3) for a particular
case where the source is a single bipole placed at k0 = +15�
latitude at time t = 0. Both polarities were assumed to initially
have a Gaussian profile in k with a half-width r0 = 6�. The
left-hand panels show the evolution of the axial dipolar
moment. The right-hand panels display the evolution of B in
the time-latitude plane. The cases shown in the top and bottom
rows only differ in the value of s: in the first case s is effectively
infinite (no decay), while in the second case it is shorter than the
solar cycle period. As it is easy to understand from the structure
of equation (3), the two solutions only differ by the presence of
an exponential factor exp(�t/s) when s is finite.

The evolution is determined by the competition of two pro-
cesses. The diffusive spreading of the two polarity patches of
opposite sign leads to the cancellation of a large part of the flux
originally present, yet a small fraction of the flux still manages
to reach the Southern hemisphere where it is transported to the
South pole by the meridional flow. The “leading” polarity flux
patch, situated closer to the equator, gives a larger contribution
to the flux ultimately reaching the South pole, so in the final
state, a leading polarity patch remains at the South pole, while
a corresponding trailing polarity patch remains at the North
pole. While the flux in these patches is a fraction of the original
flux in the region, their high latitudinal separation gives rise to a
dipole moment that, in the case plotted in Figure 1, exceeds the
initial value. In the limit s ? 1 the dipole moment remains
very nearly constant at a fixed value dD1(k0). For finite s the
dipole moment asymptotically behaves as dD1exp(�t/s).

This implies that if, ignoring the complex details of its struc-
ture and evolution, the ith active region in cycle n (starting at
time tn) is represented by a simple dipole instantaneously intro-
duced into the SFT model at time ti with an initial dipole
moment dD1,i, the ultimate contribution of all active regions
at the end of the cycle will be given by

�Dn � Dnþ1 � Dn ¼
XN tot

i¼1

dDU ;i ¼
XN tot

i¼1

dD1;i eðti�tnþ1Þ=s

¼
XN tot

i¼1

f1;i dD1;i eðti�tnþ1Þ=s; ð4Þ

where Ntot is the total number of ARs in the cycle, dDU is the
ultimate contribution of an active region to the global dipole
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moment at the end of a cycle, and the asymptotic dipole
contribution factor is

f1 ¼ dD1=dD1: ð5Þ

From equation (2) it is straightforward to show that for a point-
like bipole consisting of a pair of pointlike polarities with a
small latitudinal separation dk the initial dipole moment
contribution dD1 is given by

dD1 ¼ 3
4pR2 U dk cos k0; ð6Þ

where U is the magnetic flux in the northern flux patch.
Equations (4)–(6) offer a simple algebraic tool to extend the

temporal scope of the polar field precursor method by “predict-
ing the precursor”, i.e. computing the dipole moment built up
during a solar activity cycle without the need to solve the partial
differential equation (3) or (1). For the case of cycle 23 this
approach has been already exploited by Jiang et al. (2019) for
one particular SFT model setup.

Generally, however, this approach is subject to a number of
limitations. These limitations were already outlined in the
Section 1 above. In more detail, they are:

(1a) The result depends on details of the SFT model used,
mainly through the f1,i, and for models with a decay term
also through the exponential factor in (4).
(1b) As illustrated in Figure 1, the asymptotic solution is
approximated after a transitional period of 2–3 years only.
The contribution of active regions emerging in the last years
of the cycle is therefore not accurately represented by this
formula. As, however, activity in this late phase of the cycle
is normally rather low, this is not expected to be a major
limitation in most cases.
(2a) The assumption that active regions may be represented
by the instantaneous introduction of simple bipoles into the
simulation is undoubtedly a strong simplification.
(2b) The number Ntot of terms in the sum, i.e. the number of
bipolar regions contributing to the solar axial dipole moment
can be quite high.

Fig. 1. Solutions of the 1D SFT equation with a bipolar source placed at k0 = +15� latitude at time t = 0. Units of the model parameters shown
on top of the rows are m/s, km2/s and year, respectively. The meridional flow profile is given by equation (9). Dashed blue lines in the left-hand
plots mark the asymptotic solutions D = dD1 (top) and D = dD1exp(�t/s) (bottom).
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In the present work we focus on issues (1a), (1b) and (2a).
Issue (2b) will be dealt with in a companion paper.

3 Calculating the ultimate dipole contribution
of active regions

The dependence of the asymptotic dipole contribution factor
f1 on latitude was first considered by Jiang et al. (2014a). In a
series of numerical experiments with one particular SFT model
they found a Gaussian dependence on latitude:

f1 ¼ A expð�k20=2k
2
RÞ: ð7Þ

In what follows, kR will be referred to as the dynamo effectivity
range of active regions.

Let us consider whether this conclusion holds generally for
other SFT model setups. In Figure 2 the results of a similar set
of experiments for different model setups are shown: in addition
to Jiang et al.’s original setup, the other SFT models used were
those of Lemerle et al. (2015), Lemerle & Charbonneau (2017),
Whitbread et al. (2017) and Wang (2017). It is apparent that the
Gaussian dependence identified by Jiang et al. (2014a) holds
generally. Indeed, even in an SFT model where active region
shapes are determined by assimilation rather than fitted with
bipoles, Whitbread et al. (2018) still found a Gaussian. In all
these cases, however, the width and amplitude of the Gaussian
are different. It was indeed already found by Nagy et al. (2017)
that the dynamo effectivity range in the case of the Lemerle &
Charbonneau (2017) setup was significantly wider than
expected from the results of Jiang et al. (2014a).

In order to understand the dependence of kR and A on model
parameters we determine these parameters on a large grid of
SFT models. Our model grid is essentially identical to the grid
considered by Petrovay & Talafha (2019), except that here we
limit ourselves to models with effectively no decay term
(s = 1000 years) as the effect of s has already been separated
in the exponential factor in equation (4). Four types of flow pro-
files are considered (cf. Fig. 3).

Flow 1: a simple sinusoidal profile

u ¼ u0 sinð2kÞ ð8Þ
Flow 2: a sinusoidal profile with a dead zone around the

poles

u ¼ u0 sinðpk=k0Þ if jkj < k0
0 otherwise

�
ð9Þ

Flow 3: The Lemerle & Charbonneau (2017) profile
peaking at high latitudes,

u ¼ u0
u�0

erf ðV cos kÞ erf ðsin kÞ u�0 ¼ 0:82 V ¼ 7 ð10Þ

Flow 4: A profile peaking at very low latitudes, considered
by Wang (2017):

u ¼ 1:08 u0 tanhðk=6�Þ cos2 k ð11Þ

For each of the profiles, u0 was allowed to vary between 5 and
20 m/s in steps of 2.5, while g varied from 50 to 750 km2/s in

steps of 50. From numerical runs like the one plotted in Figure 1
the values of kR and A were determined for each model.

Experimenting with different simple combinations of the
input and output parameters we find the clearest relationship
in the case plotted in Figure 4. Here,

�u ¼ 1
R
du
dk

����
k¼0

ð12Þ

is the divergence of the meridional flow at the equator.
The finding that the single parameter combination g/Du

determines f1 for all but one of our 2-parameter model grids,
irrespective of the choice of the meridional flow profile is an
impressive and somewhat unexpected result which calls for a
theoretical interpretation.

Fig. 2. Dependence of the asymptotic dipole contribution factor f1
of bipolar sources on their latitude in various SFT model setups.
Solid lines are Gaussian fits to the numerical results.

Fig. 3. The meridional flow profiles used in the paper.
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4 Analytical derivation of the asymptotic
dipole contribution factor

4.1 Low-latitude Cartesian limit

To make the problem analytically tractable, we limit our-
selves to the neighbourhood of the equator (k� 1 radian) where
the spherical coordinate grid may be locally approximated by a
Cartesian setup and meridional flow is expressed by the leading
term of its Taylor expansion as u = RDukwithDu = const. This is
formally identical to the cosmological case of a one-dimensional
Hubble flow in a vacuum dominated universe and the advection
of a frozen-in magnetic field configuration by the flow is an
exponential expansion. This cosmological analogy suggests to
consider the evolution in the Lagrangian comoving (co-expand-
ing) frame, where fluid elements are labelled by their latitude kL
at time zero, rather than their current latitude k ¼ e�utkL.

We recall the initial condition of the evolution, as illustrated
in Figure 1: a pair of opposite polarity flux rings with Gaussian
profile of half width r0 � 1 radian, situated at latitude k0, with a
separation dk � 1 radian between the rings. (In the diffusive
case, other assumed initial profiles will also soon approach
Gaussian by virtue of the central limit theorem.) What we are
looking for is the amount of net transequatorial flux (flux in
the other hemisphere) in the limit t ? 1.

4.1.1 Asymptotic magnetic field profile

In the Lagrangian frame flow advection is absent by defini-
tion, so the flux transport equation simplifies to a diffusion
equation

dBL

dt
¼ gL

R2

o2BL

okL
2 ; ð13Þ

where, however, the diffusivity gL(t) is now time dependent.
Indeed, in the comoving frame the unit of length expands

exponentially as exp(Dut), so the diffusivity, of dimension
length2/time, expressed in these units, will scale as
gL / e�2�ut. For the same reason, the Lagrangian flux density
BL is related to the Eulerian by B ¼ BLe��ut.

Consider the evolution of one of the two flux patches com-
prising the bipole. Our initial condition is

BLðkL; 0Þ ¼ a
r0

exp�ðkL � k0Þ2
2r2

0

: ð14Þ

This problem may be solved exactly using Fourier transforms
(cf. Mackay et al., 2016). First, we change the time variable
from t to t0 ¼ 1

R2

R t
0 gLð~tÞ d~t to obtain the standard diffusion

equation

oBL

ot0
¼ o2BL

ok2L
; ð15Þ

which may be solved using standard techniques. In particular,
if we define the Fourier transform

B̂Lðk; t0Þ ¼ 1
2p

Z 1

�1
BLðkL; t0Þe�ikkL dkL ð16Þ

then equation (15) implies that B̂Lðk; t0Þ ¼ B̂Lðk; 0Þe�k2t0 . The
Fourier transform of our initial condition is

B̂Lðk; 0Þ ¼ affiffiffiffiffiffi
2p

p exp� r2
0k

2 þ 2k0ki
2

: ð17Þ

Inverting the transform finally gives

BLðkL; t0Þ ¼
Z 1

�1
B̂Lðk; t0ÞeikkL dk

¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t0 þ r2

0

p exp� ðkL � k0Þ2
2ð2t0 þ r2

0Þ
: ð18Þ

Fig. 4. Dependence of the dynamo effectivity range kR (left) and the amplitude A (right) of the asymptotic dipole contribution factor of bipolar
sources on selected parameter combinations in various SFT model setups for r0 = 6�. In the left-hand panel the solid line shows the analytic
result (22) in the low-latitude Cartesian limit, while the dashed line shows a fiducial analytic fit of the type (26). In the right-hand panel the
shaded region is the range expected for a sinnk equilibrium polar field profile with n > 7; the horizontal line marks the value for n = 8.
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Since t0 ¼ � g
2R2�u

ðe�2�ut � 1Þ, we arrive at

BL ¼ a
rðtÞ exp�

ðkL � k0Þ2
2rðtÞ2 ; ð19Þ

with

rðtÞ ¼ r2
0 þ

g

R2�u
ð1� e�2�utÞ

� �1=2
: ð20Þ

Note that this self-similar solution might have been anticipated,
given that the Gaussian is known to be a self-similar solution
of the diffusion equation and the meaning of BL is (one-
dimensional) flux density, so magnetic flux conservation
requires the amplitude of the Gaussian to scale with the inverse
of r. Plugging equation (19) back into (13) then returns (20).

4.1.2 Transequatorial flux

In the t ? 1 limit equation (19) gives

BL;1 ¼ a
kR

exp�ðkL � k0Þ2
2kR2

; ð21Þ

with

kR ¼ r2
0 þ

g

R2�u

� �1=2

: ð22Þ

Using equation (21), and taking k0 > 0 for concreteness, the
fraction of flux of this single polarity in the opposite (Southern)
hemisphere is given by

fUðk0Þ ¼
Z 0

�1
BL;1 dkL

.Z 1

�1
BL;1 dkL ¼ 1

2
1� erf ðk0=

ffiffiffi
2

p
kRÞ

h i
:

ð23Þ
For our pair of flux rings separated by dk, the net transequatorial
flux fraction is then

U1=U1 ¼ fUðk0 � dk=2Þ � fUðk0 þ dk=2Þ

’ dk

21=2p1=2kR
exp

�k20
2k2R

; ð24Þ

where the last form is the leading term in a Taylor expansion
for small dk.

4.2 Sphericity effects

To compute the asymptotic dipole contribution dD1 from
U1 by equation (2) we need to return to spherical geometry.
The poleward meridional flow results in a “topknot” equilibrium
field distribution strongly peaked near the poles (Sheeley et al.,
1989). Indeed, approximating the field profile as B(k) / sinnk,
even flows mildly concentrated on the poles will result in n ’ 7
(cf. Fig. 4 in Wang, 2017). Observational constraints indicate
n J 8–9 (Petrie, 2015). With this approximation, using equa-
tions (2), (5), (6) and (24), we have the following expression for
the asymptotic dipole contribution factor in the low-latitude
limit:

f1 ¼ a
kR

exp� k20
2k2R

with a ¼ 2
p

� �1=2 nþ 1
nþ 2

: ð25Þ

(A factor 1/cosk0 originating from (6) has been omitted as in the
low-latitude limit it becomes unity.) For n = 8 this yields
a = 41�.16; values for n > 7 are in the range between 40�.66
and 45�.7. The curves in the right-hand panel of Figure 4 are
in agreement with this result.

The curves representing flow types 1–3 in the left-hand
panel of Figure 4 are well fitted by the solution (22) at low
values of kR. This is to be expected as these flows peak at
latitudes above 40� so for low latitudes the profiles are well
approximated as linear. For the same reason, while for values
kR ~ 10–20� curvature effects do come into play, the curves still
do not diverge as the nonlinearity of the flow profile remains
low, hence, with an appropriate planar projection of the
spherical surface, the flow may still be transformed out switch-
ing to a homologously expanding Lagrangian frame. In this case
equation (13) generalizes to the diffusion equation on a spheri-
cal surface which has no flux-conserving solution with an
exactly Gaussian profile, though Figure 2 indicates that at
moderate latitudes the solutions may still be well approximated
by a Gaussian. The dynamo effectivity range, however,
changes. A good empirical fit to the curves is found to be

kR;fit ¼ g1=2ðx ¼ g=R2�uÞkR;limit ð26Þ
with

gðxÞ ¼ ðm1xþ c1Þf1� tanh½ðx� c0Þ=w�g
þ ðm2xþ c2Þ tanh½ðx� c0Þ=w�: ð27Þ

The points representing flow type 4 in the left-hand panel of
Figure 4 strongly diverge from both equations (22) and (26).
The reason is that for this profile peaking at very low latitude,
the nonlinearity of the profile becomes important already at
k ~ r0. In effect, in most of the area covered by the AR flux
during its evolution the expansion rate will be far below the
nominal equatorial value – at k > 13� the surface will actually
already contract, strengthening the field. Hence, nominal values
of the parameter g/Du are not really relevant for the determina-
tion of kR in this case.

To close off our analytic discussion we note that the expres-
sion (22) for the dynamo effectivity range can also be under-
stood in simple physical terms. The time scale associated with
diffusion to the other hemisphere from latitude k is (Rk)2/g.
The latitude where this equals the advective time scale 1/Du is
just (g/R2Du)

1/2: for higher latitudes diffusion cannot compete
with the poleward advection and little flux from here can reach
the other hemisphere.

5 Comparison to a dynamo model solution

Our suggested algebraic approach to solar cycle prediction
consists in using equation (4) to calculate the net dipole moment
at the end of a solar cycle, where the dynamo effectivity f1 is
given by equation (25), with kR and a taken from either a direct
interpolation of the numerical results plotted in Figure 4, from
their analytical approximation (dashed curve) or even from
the low-latitude limit (22).

In order to test the validity and accuracy of the suggested
algebraic approach, in Figure 5 we compare the results of a
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run of the 2 � 2D dynamo model, as described in Lemerle &
Charbonneau (2017), with the results of our algebraic approach.
For the SFT parameters used in the Lemerle & Charbonneau
(2017) model (u�0 ¼ 0:82, u0 = 17 m/s, g = 600 km2/s,
s = 10 yr) the numerical results plotted in Figure 4 give
kR = 13�.6 and A = 3.75. The advantage of using the 2 � 2D
model is that it explicitly includes a 2D SFT model as one of
its components, with the source term represented as idealized
bipoles with parameters that can be directly extracted from
the models. In this way, factors like an arbitrary choice of model
parameters or ill-specified sources will not influence the
comparison.

Plotted in blue is the net change in the axial dipole moment
|Dn+1 � Dn| between subsequent minima of the cycle in the
model. The red dashed curve shows the values computed by
adding to the actual dipole moment at the start of a cycle the
expected total dipole moment contribution calculated by the
algebraic method, equations (4) and (25), with the parameter
values quoted above; dD1,i values are computed using the
BMR properties extracted from the dynamo code. While the
overall agreement is quite good, some smaller discrepancies
remain. The standard deviation of the relative error is 10.1%.
Sources contributing to this unexplained variance include the
invalidity of formula (4) for active regions emerging in the last
three years of each cycle: as illustrated in Figure 1, in these
cases the time elapsed from emergence to solar minimum is
too short for the asymptotic solution to set in. Other contributing
factors are smaller differences in model details between the
2 � 2D model and the 1D SFT model forming the basis of
our algebraic approach.

The green dashed curve, in turn, diplays the result of the
algebraic method for the “reduced stochasticity” case. In this
case, bipolar magnetic regions (as the active regions are called
in the 2 � 2 D model) are substituted with regions of the same
flux and latitude, but with tilt and polarity separation values
corresponding to the expected values for the given flux and
latitude, as given by equations (15) and (16a) in Lemerle
et al. (2015). While the agreement is noticeably poorer (standard
deviation of the relative error now reaches 21.2%), the net

dipole moment change is still reproduced with less than 25%
error in about 90% of the cases. This indicates that detailed
knowledge of the structure and evolution of each individual
active region may not be indispensable for a tolerably good pre-
dictive skill in the algebraic method in most (though not all)
cycles. This issue will be discussed further in the second paper
of this series (Nagy et al., 2020).

6 Conclusions

We have discussed the potential use of an algebraic method
to predict the value of the solar axial dipole moment at solar
minimum. The method, already applied in the case of one par-
ticular SFT model by Jiang et al. (2019), consists in summing
up the ultimate contributions of individual active regions the
solar axial dipole moment as given by equations (4) and (25).

In Section 2 we listed four potential limitations of the
approach. The first of these, (1a) was its dependence on SFT
model details. Indeed, the meridional flow profile is still rather
uncertain and potentially variable; in addition, systematic inflows
towards the activity belts are also expected to impact on flux
transport, see Nagy et al. (2020, in this issue). Disregarding time
dependent effects here we demonstrated by both analytical
and numerical methods that the dynamo effectivity range kR
and the equatorial value of the asymptotic dipole contribution
factor A only depend on details of the SFT model through the
parameter g/Du. This significantly reduces the uncertainty
introduced by the choice of model details and makes the
algebraic method preferable to the more computation-intensive
traditional method of numerically solving the SFT equation.

While numerical costs and a more limited freedom in the
choice of parameters advocate the use of this algebraic
approach, this clearly goes at the cost of accuracy. One source
of the inaccuracy, (1b), is inapplicability of the ultimate dipole
contribution to active regions appearing in the last years of a
solar cycle, as the contributions of such ARs have not yet
reached equilibrium at the time of minimum. In a comparison
with cycles simulated in the 2 � D dynamo model we

Fig. 5. Comparison of total net change in the solar axial dipole moment |Dn+1 � Dn| in the 2 � 2D dynamo simulation and its approximations
with the algebraic method in a segment of 80 cycles. Plotted are absolute values of the quantities shown in the legend. See text for further
explanations.
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demonstrated that the inaccuracy introduced by this effect and
by differences in the underlying numerical models is small
and does not constitute a great obstacle in the way of correctly
reproducing the dipole moment.

Another source of inaccuracy of this approach, (2a), is that
the representation of active region sources by idealized bipoles
is likely to be far from perfect. Applying our method to the
same dynamo-simulated cycles but substituting the assumed
initial AR dipole moments with their expected values for an
AR of the given size and latitude showed that in this case the
dipole moment could still be reasonably well reproduced in
the large majority of cycles, lending further support to the alge-
braic approach. Nevertheless, in a small fraction of cycles inac-
curate representation of the sources does lead to significant
inaccuracies in the resulting dipole moment values. Note that
while in the dynamo model used here for comparison ARs were
assumed to be be bipolar, in applications to solar data a further
source of uncertainty concerns to what extent a bipolar represen-
tation reflects the structure of ARs (cf. Iijima et al., 2019; Jiang
et al., 2019; Yeates, 2020).

The fourth limitation of themethod, (2b) is related to the very
high number of terms in the summation that are theoretically
needed for the correct representation of the dipole contributions,
which exacerbates the issue with the correct representation of the
initial AR contributions. On the other hand, the fact that there are
many regions might help fluctuations from the Gaussian trend to
average out in an overall prediction. This issue will be discussed
further in the second part of this series.
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