1	High oxytocin infants gain more mass with no additional maternal
2	energetic costs in wild grey seals (Halichoerus grypus)
3	Authors: Kelly J. Robinson ¹ *, Neil Hazon ² , Sean D. Twiss ³ , Patrick P. Pomeroy ¹
4	Affiliations:
5	¹ Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews,
6	Fife, KY16 8LB, UK.
7	² Scottish Oceans Institute, University of St Andrews, Scotland, KY16 8LB, UK.
8	³ Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
9	*Corresponding author: Kelly J. Robinson, email: kjr33@st-andrews.ac.uk, phone: 01334 462635
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

21 Abstract

22 Maximising infant survival requires secure attachments and appropriate behaviours between 23 parents and offspring. Oxytocin is vital for parent-offspring bonding and behaviour. It also 24 modulates energetic balance and neural pathways regulating feeding. However, to date the 25 connections between these two areas of the hormone's functionality are poorly defined. We 26 demonstrate that grey seal (Halichoerus grypus) mothers with high oxytocin levels produce pups 27 with high oxytocin levels throughout lactation, and show for the first time a link between 28 endogenous infant oxytocin levels and rates of mass gain prior to weaning. High oxytocin infants 29 gained mass at a greater rate without additional energetic cost to their mothers. Increased mass 30 gain in infants was not due to increased nursing, and there was no link between maternal mass 31 loss rates and plasma oxytocin concentrations. Increased mass gain rates within high oxytocin 32 infants may be due to changes in individual behaviour and energy expenditure or oxytocin 33 impacting on tissue formation. Infancy is a crucial time for growth and development, and our 34 findings connect the oxytocin driven mechanisms for parent-infant bonding with the energetics 35 underlying parental care. Our study demonstrates that oxytocin release may connect optimal 36 parental or social environments with direct physiological advantages for individual development.

37

38 Keywords

Maternal bonding; infant bonding; infant development; positive feedback loop; mass gain;
parental investment

41

42 **1. Introduction**

43 Parental attachment and care giving behaviours are of fundamental importance to reproductive44 success in many species. Throughout the mammalian clade, maternal bonding and nurturing

45	behaviours are of particular importance, and infant survival is frequently solely dependent on how
46	mothers interact with their offspring. Mothers cannot succeed in raising offspring without some
47	degree of co-ordination between parties to accomplish the common goal of infant survival to
48	independence (Fleming et al., 1999). Cognitive and physiological systems that promote
49	behavioural synchrony across parent-infant dyads play a vital role in this co-ordination. However,
50	any mechanism that enables parent-infant interactions must function despite changing infant
51	cognitive abilities as they develop across the period they are dependent on their parent(s) (Rice
52	and Barone, 2000). Therefore, in infants, physiological systems mediating behavioural expression
53	may be key to keeping dependent offspring with their parents and ensuring infants act
54	appropriately towards them and other conspecifics.
55	
56	The neuropeptide hormone oxytocin (OT) is vital for both social and parental bonding, plays a
57	key role in the initiation of maternal behaviour and in some species mediates the continuance of
58	good quality infant care throughout the dependent period (Gimpl and Fahrenholz, 2001; Ross and
59	Young, 2009; Rilling and Young, 2014). At birth, a mother's OT release initiates bonding with
60	her infant and maternal care (Gimpl and Fahrenholz, 2001; Ross and Young, 2009). It has been
61	theorised that OT then acts in a positive feedback loop within mother-infant pairs to develop
62	secure attachment between the two and to mediate maternal behaviour directed towards the infant
63	(Rilling and Young, 2014; Nagasawa et al., 2012). A mother's OT feedback loop is initiated via
64	filial infant stimuli causing additional OT release in the mother after birth (Strathearn et al.,
65	2009). This OT expression has been shown to trigger care giving behaviours towards human
66	infants while activating dopamine 'reward' systems a mother's brain (Strathearn et al., 2009), and
67	in humans there is high co-expression between OT and dopaminergic receptor genes to facilitate
68	this (Quintana et al., 2019). Then, by performing care giving behaviours towards her infant, a
69	mother is more likely to be exposed to additional infant stimuli that causes even more OT release

70	in the mother, perpetuating the 'loop' and generating elevated OT concentrations within securely
71	attached mothers (Rilling and Young, 2014). This positive feedback loop is also theorised to exist
72	in the infant, with good quality maternal care causing infant attachment to the mother and OT
73	release due to parental stimuli (Kojima et al., 2012), generating high OT concentrations in the
74	infant. Therefore, if double positive OT feedback loops exist in mother-infant pairs, with one loop
75	in each individual, high OT mothers should also have high OT infants (Rilling and Young, 2014).
76	Experiments using non-filial socially bonded individuals show that positive OT feedback loops
77	exist across individuals in social contexts (Nagasawa et al., 2015). However, there is no evidence
78	to date that such loops exist within mother-infant pairs, due to a lack of data on infant OT
79	responses alongside their mother's OT concentrations.
80	
81	While the effects of changing OT concentrations within mothers is well studied (Gimpl and
82	Fahrenholz, 2001), impacts on infants, or the physiology of peripheral tissues, remain poorly
83	understood. There is evidence from laboratory manipulation studies that OT influences the
84	development of a variety of peripheral tissues (Uvnäs-Moberg et al. 1998; Elabd et al., 2014;
85	Colaianni et al., 2015; Rault et al., 2015) and exposure to OT during infancy can have long term
86	impacts on weight gain (Uvnäs-Moberg et al. 1998), as this time period is crucial for body growth
87	and formation (Metcalfe and Monaghan, 2001). In humans (Homo sapiens) problems with infant
88	nutrition and development are estimated to cause 45% of deaths in children under five years old
89	globally, with suboptimal breastfeeding, growth stunting and wasting critically affecting child
90	development and survival in the first 1000 days of life (Black et al. 2013). Current interventions
91	to overcome infant 'failure to thrive' in humans, such as complimentary feeding, only show
92	modest success in tackling these problems (Dewey and Adu-Afarwuah, 2008) and understanding
93	physiological mechanisms driving an infant's ability to gain weight and mature is therefore of
94	great importance. If the mass changes induced via OT manipulations in laboratory settings can be

detected in natural systems, then elevation of infant OT through successful bonding and
interacting with maternal figures would be a fundamental driver of an infant's ability to thrive and
reach independence.

98

99	Grey seals (Halichoerus grypus) are colonially breeding marine mammals, with females that
100	produce one pup per year. The pups are nursed on high fat milk while mothers fast before
101	weaning abruptly approximately 18 days post-partum (Pomeroy et al., 1999). They present an
102	excellent model system to study maternal behaviour and physiology as blood samples can be
103	collected from both adults and infants, mothers are solely responsible for raising pups to
104	independence, are individually identifiable and the entire dependent period can be observed in a
105	relatively short time period for a large mammal. Additionally, of the few OT systems studied in
106	animal species in the wild, to date the most is known about grey seals (Robinson et al., 2014;
107	2015; 2017). In this study mother-pup pairs were monitored to assess whether mothers with high
108	OT concentrations produced pups with high OT concentrations, and whether the variation in OT
109	concentrations within mothers and pups were correlated to patterns of mass change across the
110	dependent period.

111

112 **2. Materials and Methods**

113 2.1 Study sites and animals

114 Field work was conducted on the island of North Rona (NR), Scotland (59°06'N, 05°50'W) and

115 the Isle of May (IoM), Scotland (56°11'N, 02°33'W), both grey seal breeding colonies with long

term research projects. Data and samples were collected from both colonies during the winter

- 117 breeding season in 2010 and 2011. Across the two study years, plasma samples were collected
- 118 from 66 mothers and their pups (36 from NR, 30 from the IoM). 20 mothers occurred in both

119	study years (11 from NR, 9 from the IoM). Mothers were identified by unique markings (natural
120	pelage patterns, or applied tags or brands (Smout et al., 2011)). Sampling was restricted to
121	mothers first seen either pre-partum or with newborn pups. We attempted to capture mother-pup
122	pairs twice during the lactation period to obtain plasma samples at 1–7 days after the pup's birth
123	('early lactation') then 9–15 days after the first sampling event ('late lactation') (Robinson et al.,
124	2015a). We also attempted to re-capture as many pups post-weaning as possible during the
125	natural 1-4 week post-weaning fast in this species (Reilly 1991), and sampled 43 weaned study
126	pups (15 from NR, 28 from the IoM).
107	
127	
128	2.2 Mass Measurements, Plasma and Milk Sampling and Analysis
129	Grey seal mothers with pups were approached, captured, weighed and sampled as previously
130	described (Pomeroy et al., 1999; Robinson et al., 2015a). The use of chemical immobilization
131	ameliorates physiological stress responses to capture and handling in phocid seals (Harcourt et al.,
132	2010), and prior validation studies have shown that in grey seals, there was no change in plasma
133	OT with handling time (Robinson et al., 2014; 2015b) and no difference in extracted plasma OT
134	levels across chemically immobilized or physically restrained seals (Robinson et al. 2014).
135	Plasma samples were collected by venipucture, transported to a field laboratory and stored frozen
136	at -20°C as described in Robinson et al. (2014; 2015). Our capture protocol meant that there was
137	always a 10-minute wait for mothers to become immobilised before a plasma sample could be
138	collected. This wait would eliminate any plasma OT peaks triggered by pre-capture nursing as OT
139	has a short half-life in plasma (Robinson et al., 2014). It is typically only possible to obtain milk
140	samples from seal mothers after an intravenous OT injection, however this could have
141	confounded endogenous OT concentrations in the milk collected. Using plastic 20ml syringes
142	adapted for drawing milk, two milk samples were successfully collected from grey seal mothers

142

143 without the use of exogenous OT. The analysis protocol for milk samples supplied with the OT

144	ELISA (see above) was followed with two alterations, detailed in the supplementary materials
145	(Appendix A. Methods), to prevent the high fat content of the milk (60%, (Iverson et al., 1993))
146	interfering with the assay.
147	
148	Plasma was analysed for OT in duplicate using an ELISA (produced by Assay Designs Inc. at the
149	time of this analysis, ELISA kit is currently produced by Enzo Life Sciences but uses a different
150	antibody) with each sample undergoing solid-phase extraction prior to analysis following
151	methodology previously validated for detecting phocid plasma OT (Robinson et al., 2014). Plates
152	were read using a BioTek ELx800 reader. The standard curve and assay results for all plates were
153	fitted using the calibFit package (Haaland et al., 2011) in R version 2.15.0 (R Development Core
154	Team, 2012). Recovery rates for the extraction and ELISA procedure were 107.2% (n=10), inter-
155	assay coefficient of variance (COV) over the 14 plates used in this study was 16.1% and intra-
156	assay COV for this assay was 3.5%.

157

158 2.3 Statistical Analysis

All analyses were performed using the statistical package R 3.4.1 (R Development Core Team,2012).

161

Plasma concentrations for mothers and their pups in early and late lactation were compared using a one-way ANOVA. The data were analysed after a natural log transformation as the original data were not normally distributed (Shapiro Wilk test, p<0.001). Basal plasma OT concentrations were also calculated for the 43 post-weaning pups that we were able to locate on the colony. The OT concentrations from these individuals during early lactation (with mother), late lactation (with mother) and post-weaning (without mother) were compared using a one-way ANOVA. The data

1

were analysed after a natural log transformation as the original data were not normally distributed(Shapiro Wilk test, p<0.001).

170

171	GAMMs (Wood, 2006) were used to analyse variables affecting the OT concentration detected in
172	dependent pups and for exploring the relationships between variables affecting mass gain in pups
173	and mass loss in mothers. Details of model construction, selection process and the final model
174	coding are given in the supplementary materials (Appendix A. Methods), For the GAMMs
175	investigating pup mass gain and mother mass loss, rates of mass change were calculated in kg/day
176	for all mother-pup pairs which had mass measurements and were sampled for plasma OT
177	detection in both early and late lactation (n = 58 mother-pup pairs). Larger grey seal mothers lose
178	mass at a faster rate than smaller mothers (Iverson et al., 1993); therefore, the rate of mass loss
179	(kg/day) for all mothers was transformed by dividing mass loss rates by the mother's mass at first
180	capture, during early lactation. This gave individual mass specific rates of mass loss for all
181	mothers for use in subsequent analysis. In pups, plasma OT concentrations detected in early and
182	late lactation were significantly positively correlated ($r = 0.54$, $p < 0.001$, 95% CIs [0.32, 0.7],
183	Appendix A. Methods, Figure A.1) and therefore a mean of the two values was used to correlate
184	with mass gain. Mother plasma OT concentrations across the early and late sampling points were
185	not significantly correlated (r = 0.12, p = 0.37, 95% CIs [-0.14, 0.37], Appendix A. Methods,
186	Figure A.2) and therefore concentrations from early and late lactation were analysed separately
187	with the transformed mass loss rate.

188

189 **3. Results**

190 3.1 OT concentrations in mothers and pups

191 Basal plasma OT concentrations in pup plasma were significantly higher than those detected in

192 mothers throughout early and late lactation (Figure 1, ANOVA: F3,232= 141.4, p<0.001). No

193 significant differences were detected between pups in early and late lactation (mean \pm SE: 21.9 194 ± 1.5 pg/ml and 19.9 ± 1.4 pg/ml respectively. Tukey honest significant difference test, p = 0.5) or 195 mothers in early and late lactation (mean \pm SE: 8.2 \pm 0.6 pg/ml and 7.6 \pm 0.5 pg/ml respectively, 196 Tukey honest significant difference test, p = 0.7). Maternal plasma OT concentrations ranged 197 from 3.5 - 25.5 pg/ml in early lactation and 3.5 - 16.9 pg/ml in late lactation. Pup plasma OT 198 concentrations ranged from 11.5 - 48.1 pg/ml in early lactation and 8 - 52.2 pg/ml in late 199 lactation. There was a significant positive relationship between pup plasma OT concentration and 200 that of its mother (Figure 2, GAMM: R2 = 0.34, p=0.02, Appendix B. Table B.1). Pups from NR 201 also had significantly higher plasma OT concentrations than pups from the IoM (Figure 2, 202 p<0.001). 203

204 3.2 Maternal presence vs. milk OT as drivers of high infant OT

205 To explore whether maternal presence may be driving elevated OT levels in pups, samples of

206 plasma OT from as many pups as possible were collected after weaning, when mothers were

absent during the natural 1-4 week post-wean fast that occurs in this species (Reilly, 1991). Pups

that had weaned from their mothers had significantly lower plasma OT concentrations (10.9

 ± 0.9 pg/ml) than when they were with their mothers in both early or late lactation (Figure 3,

ANOVA: F2,126= 37.18, p<0.001, Tukey honest significant difference test, p=0.5 between early

and late pup groups and p<0.001 between weaned pups and all non-weaned pup groups).

212

213 To explore whether pups may be ingesting and absorbing OT from their mothers' milk, milk

samples were collected from as many grey seal mothers as possible (n=2) to estimate

215 concentrations of OT that pups ingest from milk consumption. The two milk samples collected

contained 128.9 and 95.6 pg/ml OT, giving a mean of 112.2 ±16.6 pg/ml (SE) in phocid milk.

0	1	7
7	T	1

218 3.3 OT concentrations, maternal mass loss and pup mass gain rate

219 Pup mass gain rate was linked to mean pup plasma OT concentrations across the lactation period

220 (GAMM: R2 = 0.38, p = 0.016, Appendix B. Table B.2) with the two being significantly

- positively correlated (r = 0.35, p = 0.007, 95% CIs [0.1, 0.6], Figure 4). A mother's rate of mass
- loss was independent of maternal OT concentrations in both early and late lactation (GAMM: R2
- 223 = 0.31, p = 0.17 and p = 0.11 respectively, Appendix B. Table B.3).

224

225 **4. Discussion**

226 4.1 High OT mothers produce high OT pups

227 The results for this study support the existence of positive OT feedback loops within mothers and 228 pups in both of the seal colonies studied. Maternal and pup plasma OT concentrations were 229 significantly higher on average than those detected in non-breeding female grey seals (4.3 ± 0.5) 230 pg/ml, Robinson et al., 2015a), but there was great variation in individual values, especially 231 within pups. Data on infant plasma OT levels are currently scarce, however, two studies 232 measuring newborn OT plasma levels exist for humans and laboratory mice that mirror the OT 233 patterns reported in this study. Human newborns had elevated plasma OT concentrations 234 compared to adults in a study monitoring them for the first 4 days of life (Leake et al., 1981), 235 while weaned human children have plasma OT concentrations comparable to those in adults 236 (children 6-11 years: 1.2pg/ml (Modahl et al., 1998), adults: <2pg/ml (Szeto et al., 2011). 237 Laboratory mice pups approaching and at the point of weaning also have high plasma OT levels 238 compared to other developmental stages (Higashida et al., 2010). Elevated OT levels are known 239 to trigger proximity seeking behaviours in adult and infant grey seals (Robinson et al., 2015a; 240 2017). If stimuli from the presence of the mother/pup is causing the high OT concentrations

241	recorded across the pair, the mother-infant positive feedback loop system proposed by Rilling and
242	Young (2014) can be constructed with our data from a natural population (Figure 5).

243

257

244	By documenting infant OT concentrations alongside their mother's levels, we provide the first
245	evidence, to our knowledge, of double OT loops in mother-infant pairs, with one loop in each
246	individual but dependent on each other's presence for their continuation (Figure 5). Such loops
247	would act to keep mothers and offspring together, synchronising them behaviourally and
248	physiologically towards the common goal of infant survival. The structure and function of OT is
249	widely conserved across the mammalian clade (Gimpl and Fahrenholz, 2001; Feldman et al.,
250	2016; Jurek and Neumann 2018). Thus far, grey seals have been shown to posses an OT system
251	that is directly comparable to other domestic or captive animal species and humans, as their basal
252	plasma concentrations, plasma clearance rates and maternal patterns of plasma OT expression
253	match those detected in laboratory model species and humans (Robinson et al., 2014; 2015).
254	Therefore, it is likely that the evidence for positive OT feedback loops across mother-infant pairs
255	from grey seals would be present in other species.
256	

whether any meaningful correlations exist between the two is still debated (Valstad et al., 2017).
However, peripheral and central release of OT due to stimuli from dependent infants has been
documented in humans and rodents, including nursing, sounds and sight of the infant and
interacting with the infant (Strathearn et al., 2009; Uvnäs-Moberg et al., 1998). Peripheral OT
concentrations are also arguably more relevant to measure when investigating links between the
hormone's concentrations in relation to mass changes in peripheral tissues, such as adipose
deposits or skeletal muscle.

The relevance of peripheral OT concentrations compared to central OT concentrations, and

265 266 4.2 Maternal presence as a driver of high OT in pups 267 Our study found that pup plasma OT concentrations remain consistently high throughout the 268 dependent period, only decreasing once they weaned and the mother was no longer present. A 269 pup's developmental stage and the fasting state weaned pups enter as soon as the mother leaves 270 could theoretically influence plasma OT levels. However, OT concentrations in individual grey 271 seal pups show no variation across two weeks of fasting (Robinson et al., 2015b) and remain 272 consistent when pups leave the breeding colony and start feeding at approximately one month of 273 age, and throughout their first year of life $(8.3 \pm 0.6 \text{ pg/ml}, \text{Robinson et al.}, 2014)$. There is also 274 no change in plasma OT levels across the various developmental stages either side of weaning, as 275 levels in newborns are comparable to pups approaching weaning (see results section 3.1), pups 276 that have been fasting for 3 days are comparable to those who have fasted for several weeks 277 (Robinson et al. 2015b) and fasting pups are comparable to all other developmental stages in the 278 first vear of life (Robinson et al., 2014). Pup OT decreases significantly and consistently in the 279 first three days of the mother leaving, regardless of the age at time of weaning (Robinson 2014). 280 Pup plasma OT levels are subsequently stable for weeks despite undergoing sustained fasting and 281 substantial developmental changes, and do not change as pups shift from fasting to feeding or 282 undergo all the developmental changes that occur in their first year. It is more likely that some 283 aspect of maternal presence is driving elevated OT in dependent pups, because once the mother 284 leaves and this stimulus is removed, pup OT levels fall.

285

286 Ingestion of OT from breast milk has been proposed as a route of neonatal exposure to this

hormone in humans (Uvnäs-Moberg et al., 1998; Carter, 2003) and mice (Higashida et al., 2010).

Higashida et al. (2010) attribute ingested milk as the cause of high OT levels in mouse pups due

to the sheer quantity of OT present in mouse milk. However, this interpretation must be viewed

290 with caution, as the OT levels reported from that study indicate that unextracted substrates were 291 used in the analysis which gives high, inaccurate results (Robinson et al., 2014; Leng and 292 Sabatier, 2016). Higashida et al. (2010) also only detect the amount of OT in mouse milk, without 293 putting this value into context with how much mice pups actually drink. Other studies state that 294 physical barriers to absorption and uptake and chemical degradation in the digestive tract make 295 ingested milk an unlikely source of significant amounts of OT in infants (Fiellestad-Paulsen et al., 296 1995). Even when medical trials have given high buccal doses of OT to humans, their ability to 297 raise plasma OT concentrations is limited (Dawood et al., 1980; Landgraf 1985). When put into 298 context with the OT we detected in seal milk and the volumes of milk a seal pup ingests daily, it 299 is apparent that the OT levels in seal milk are not high enough to impact on plasma concentrations 300 (see Appendix C and Table C.4 for these calculations). The low number of milk samples that 301 were obtained (n=2) is a potential limitation of this study, as additional mothers may yield 302 samples with higher OT concentrations. However, even if the questionably high OT levels 303 detected in laboratory rat milk from Higashida et al. (2010) is used to calculate whether ingested 304 OT could impact on pup plasma levels, these milk concentrations are still far too low to raise 305 infant plasma levels significantly (see Appendix C and Table C.4 for these calculations). It is 306 therefore plausible that aspects of the mother's presence other than her ability to provide milk are 307 driving elevated OT in pups, potentially including the scent, sounds and sight of the mother.

308

Conspecific stimuli from individuals that are bonded to each other have already been shown to cause elevations in peripheral OT (Strathearn et al., 2009, Nagasawa et al., 2015). Other findings from this study also lend support to the theory that it is a mother's presence driving high pup OT levels. The inter-colony differences in mother-pup OT levels show that NR mother-pup pairs had significantly higher plasma OT than IoM pairs. Mothers on NR spend more time in close proximity to their pups than mothers on IoM (Redman et al., 2002) primarily due to topographical

differences at the two colonies affecting access to water (Caudron et al., 2001; Redman et al.,

316 2002). According to the positive loop theory, more time in close proximity equates to greater OT

release and concentrations in bonded individuals, and the OT results from the two colonies agreewith this (Fig 2).

319

320 An endocrinological system that stimulates synchrony of both physiology and behaviour across 321 individuals has the potential to act on other important bonds outside of maternal ones. There is 322 evidence from social insects that complex social traits evolve from co-opting systems acting on 323 maternal behaviour and physiology (Amdam et al., 2006), and it seems likely this has happened 324 with the positive OT loop mechanism. There is already direct evidence that positive OT loops 325 stimulate pro-social behaviour and elevate OT concentrations across socially bonded, but 326 unrelated pairs even across species boundaries (Nagasawa et al., 2015). Therefore, this unique 327 mechanism could enable the co-ordination of a number of individuals' physiology, across pairs or 328 groups. By aligning group members' motivation to perform specific behaviours, OT may 329 stimulate group synchrony even when faced with individual risks such as serious injury or death 330 (Samuni et al., 2016). The existence of co-operative behaviour has generated much research into 331 theoretical reasons for its development and perpetuation in individuals, populations and species; 332 however, the underlying physiological mechanisms driving such behaviour remain relatively 333 poorly understood (Soares et al., 2010). The OT loop system acting both within individuals and 334 across group or bond members is a promising area for future work, uncovering how individuals 335 can be motivated to act against their own interests in high risk or low reward contexts.

336

337

339 4.3 High OT pups gain mass faster

340 High OT concentrations were associated with greater pup growth rates without extra energetic 341 cost to their mothers, as no differences in relative maternal mass loss rates were detected. Two 342 results suggest that the difference in mass gain rates between high and low OT pups is not due to 343 variation in how much milk pups ingest. First, behavioural data was collected from the NR 344 mother-pup pairs in this study, and their plasma OT concentrations showed no relationship with 345 variation in nursing bout frequency or duration (Robinson et al., 2015a). Second, if high OT pups 346 were achieving their additional mass gain by ingesting more milk from their mothers, those 347 mothers would show greater mass loss rates per day than low OT mothers, which was not 348 observed. OT is known to modulate feeding in mammalian species (Gaetani et al., 2010; Atasov 349 et al., 2012) and has been shown to reduce food intake in several animal species (reviewed in 350 Olszewski et al., 2010). This may explain why infants with elevated OT concentrations are not 351 motivated to nurse more from their mothers. However, it does not explain how high OT infants 352 are able to gain mass at a higher rate, without ingesting additional milk.

353

354 The variation in mass gain across high to low OT pups may be due to behavioural differences 355 impacting individual metabolism and fat accumulation in pups. The elevated OT concentrations 356 in pups are likely indicative of successful mother-pup attachment, and elevated OT would trigger 357 pups to remain close to their mothers (Robinson et al., 2015a; 2017). This may reduce energetic 358 expenditure in pups by preventing excursions away from their mother, which would elevate 359 metabolic rate and initiate conflicts with adjacent seals. It is also possible that by encouraging 360 pups to remain close to their mothers, high OT pups are more sheltered from strong winds 361 (McCafferty et al., 2005), experiencing a microclimate that reduces their thermal output and 362 lowers metabolic overheads. OT manipulations in laboratory rats indicate that the hormone 363 triggers huddling behaviour (Alberts 2007) and modulates the function of brown adipose tissue,

directly impacting on thermoregulation in infants (Harshaw et al., 2018). Therefore, rather than
actively stimulating mass gain, elevated OT concentrations in pups may reduce activities that
divert resources away from growth prior to weaning.

367

368 With the growing body of evidence linking OT to the development of several tissue types, it is 369 also possible that elevated OT in pups stimulates physiological pathways that cause increased 370 mass development. Experiments giving OT to rat pups promoted weight gain in adults via 371 increased deposition of adipose tissue (Uvnäs-Moberg et al., 1998) and when given to young pigs 372 (Sus scrofa domesticus), OT reduced mass lost during weaning events (Rault et al., 2015). OT has 373 also been linked to skeletal muscle development in mice (Mus musculus) (Elabd et al., 2014) and 374 bone mass accumulation in mice and humans (Colaianni et al., 2015). Physiological pathways for 375 increased OT concentrations influencing mass changes independent of food intake have been 376 proposed (Rault et al., 2015; Colaianni et al., 2015), such as OT causing the stimulation of 377 digestive activity and fat storage by linking increases in plasma cholecystokinin, insulin and 378 adipose tissue in OT treated rats (Uvnäs-Moberg et al., 1998). More research is needed to identify 379 which biological tissues are affected by OT, so that the developmental consequences for exposure 380 to high or low OT levels due to variation in social or parental stimuli can be determined.

381

Grey seal mothers fast while nursing their pups and lose up to 40% of their body mass at parturition during this time (Pomeroy et al., 1999), using approximately 80% of their energetic reserves to produce milk and sustain themselves on the colony (Fedak and Anderson, 1982). The ability to wean at as large a mass as possible is the most important factor affecting grey seal pup survival in its first year of life (Hall et al., 2001). That OT facilitates mass gain or slows mass loss in dependent pups with no additional energetic cost to the mother is of great importance in a true capital breeding species which has rapid offspring mass gain and abrupt termination of maternal

care. Any physiological factors enabling efficient mass gain in infants will be highly selected for
as it would increases the probability of success for a mother within that breeding episode without
additional investment costs.

392

393	Steady mass gain postpartum is crucial for successful infant development and survival in all
394	animal species, including humans (Black et al., 2013; Shields et al., 2012). Any factors that
395	increase infant mass gain while minimising the energetic costs to parents is highly advantageous
396	in any species exhibiting parental care. All organisms must give their offspring the best
397	developmental start in life while attempting to balance the negative costs to themselves; any
398	factor reducing the conflict between these two contrasting demands on an organism will impact
399	on their survival, their current and future reproductive success. A link between good maternal
400	care, high OT and increased infant mass gain has been previously proposed in rodents based on
401	manipulating OT levels experimentally (Uvnäs-Moberg et al., 1998). Additionally, a study
402	investigating weight gain and massage therapy in preterm human babies theorised that elevated
403	plasma OT in babies receiving massages indicated a role for the hormone in mediating infant
404	weight gain (Field, 2001). To our knowledge, our study provides the first evidence of an OT-mass
405	gain relationship in wild mother-infant pairs and highlights the importance of understanding the
406	hormone's role in mediating mother-infant bonds, care giving behaviour and physical
407	development in infants.

408

409 **5.** Conclusions

410 Our study provides the first evidence that positive OT loops acting across bonded individuals
411 exist in mother-infant pairs in natural environments, and that they are linked to the promotion of
412 infant development without additional energetic costs to mothers. Including energetic benefits in

413	the proposed loop mechanism highlights how such systems physiologically give selective
414	advantage to securely bonded mother-infant pairs (Figure 5). OT facilitates and regulates parental
415	and social bonds throughout the mammalian clade, with OT-like peptides in bird
416	(Chokchaloemwong et al., 2013) and fish (O'Connell et al., 2012) species fulfilling similar roles
417	in other vertebrate groups. OT loops and the associated fitness benefits linked to them may
418	therefore be a widespread mechanism for connecting optimal parental or social environments
419	with direct physiological advantages for individual development. Understanding the mechanisms
420	by which OT and OT-like peptides affect interactions between the bonded individuals and infant
421	mass gain has wide ranging implications for animal husbandry practises, medical interventions,
422	advice to human parents, societal understanding of how health and relationships are linked and
423	studying the energetic constraints of parental care.
424	

425 Acknowledgements

- 426 We would like to thank William Patterson, Hannah Wood, Simon Moss, Matthew Bivins, Paula
- 427 Redman, Theoni Photopoulou, Johanna Baily and everyone who assisted with the sample
- 428 collection on North Rona and the Isle of May during the 2010 and 2011 seasons. The help and
- 429 cooperation of Scottish National Heritage, HM Coastguard and the Northern Lighthouse Board
- 430 are gratefully acknowledged.
- 431

432 Funding

433 The UK's Natural Environmental Research Council (NERC) funded the long-term program of

434 research on grey seals at North Rona and the Isle of May. PPP and SDT were in receipt of NERC

435 grant NE/G008930/1 and PPP was in receipt of Esmée Fairburn Foundation grant 08-1037 during

436 the work. This paper formed part of KJR's PhD funded by the UK Natural Environment Research

437 C	ouncil (NERC)	grant NE/H524930/1	and by SMRU	Marine, St.	Andrews, UK	. The funding
-------	---------------	--------------------	-------------	-------------	-------------	---------------

- 438 bodies had no role in the design of the study, the collection of samples, the analysis of samples or
- 439 data and the interpretation of the data.
- 440

441 **Ethical approval**

- 442 All animal procedures were performed under the UK Home Office project license #60/4009 and
- 443 conformed to the UK Animals (Scientific Procedures) Act, 1986. All research received prior
- 444 ethical approval from the University of St Andrews Animal Welfare and Ethics Committee and
- the School of Biology's Ethics Committee.

446

447 Data Availability

- 448 The dataset supporting the conclusions of this article is included within the article and its
- 449 Appendices (Appendix D).

450

451 **Competing interests**

452 Declarations of interest: none

453

454 Authors' contributions

- 455 KJR conceived the study; KJR, SDT and PPP collected samples in the field; KJR performed all
- 456 sample and data analysis; NH provided essential laboratory equipment; KJR wrote the
- 457 manuscript; all authors critically revised the manuscript and gave final approval of the version to

458 be published.

460	Refere	nces
461	1.	Alberts JR. 2007 Huddling by rat pups: ontogeny of individual and group behavior. Dev.
462		Psychobiol. 49, 22-32.
463	2.	Amdam GV, Csondes A, Fondrk, MK, Page RE. 2006 Complex social behaviour derived
464		from maternal reproductive traits. Nature 439, 76-78.
465	3.	Atasoy D, Betley JN, Su HH, Sternson SM. 2012 Deconstruction of a neural circuit for
466		hunger. Nature 488, 172.
467	4.	Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M,
468		Grantham-McGregor S, Katz J, Martorell R, Uauy R. 2013 Maternal and child
469		undernutrition and overweight in low-income and middle-income countries. Lancet 382,
470		427-451.
471	5.	Carter CS. 2003 Developmental consequences of oxytocin. Physiol. Behav. 79, 383-397.
472	6.	Caudron AK, Joiris CR, Ruwet JC. 2001 Comparative activity budget among grey seal
473		(Halichoerus grypus) breeding colonies-the importance of marginal populations.
474		Mammalia; 65, 373-382.
475	7.	Chokchaloemwong D, Prakobsaeng N, Sartsoongnoen N, Kosonsiriluk S, El Halawani
476		M, Chaiseha Y. 2013 Mesotocin and maternal care of chicks in native Thai hens (Gallus
477		domesticus). Horm. Behav. 64, 53-69.
478	8.	Colaianni G, Sun L, Zaidi M, Zallone A. 2015 The "love hormone" oxytocin regulates
479		the loss and gain of the fat-bone relationship. Front. Endocrinol. 6, 79.
480	9.	Dawood MY, Ylikorkala O, Fuchs F. 1980 Plasma oxytocin levels and disappearance rate
481		after buccal Pitocin. Am. J. Obstet. Gynecol. 138, 20-24.
482	10.	Dewey KG, Adu-Afarwuah S. 2008 Systematic review of the efficacy and effectiveness
483		of complementary feeding interventions in developing countries. Matern. Child Nutr. 4,
484		24-85.

485	11.	Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, Kung S, Jiang KP,
486		Conboy IM. 2014 Oxytocin is an age-specific circulating hormone that is necessary for
487		muscle maintenance and regeneration. Nat. Commun. 5, 4082.
488	12.	Fedak MA, Anderson SS. 1982 The energetics of lactation: accurate measurements from
489		a large wild mammal, the grey seal (Halichoerus grypus). J. Zool. 198, 473-479.
490	13.	Feldman R, Monakhov M, Pratt M, Ebstein RP. 2016 Oxytocin pathway genes:
491		evolutionary ancient system impacting on human affiliation, sociality, and
492		psychopathology. Biol. Psychiat. 79, 174-184.
493	14.	Field T. 2001 Massage therapy facilitates weight gain in preterm infants. Curr. Dir.
494		Psychol. Sci. 10, 51-54.
495	15.	Fjellestad-Paulsen A, Söderberg-Ahlm C, Lundin S. 1995 Metabolism of vasopressin,
496		oxytocin, and their analogues in the human gastrointestinal tract. Peptides, 16, 1141-
497		1147.
498	16.	Fleming AS, O'Day DH, Kraemer GW. 1999 Neurobiology of mother-infant
499		interactions: experience and central nervous system plasticity across development and
500		generations. Neurosci. Biobehav. R. 23, 673-685.
501	17.	Gaetani S, Fu J, Cassano T, Dipasquale P, Romano A, Righetti L, Cianci S, Laconca L,
502		Giannini E, Scaccianoce S, Mairesse J. 2010 The fat-induced satiety factor
503		oleoylethanolamide suppresses feeding through central release of oxytocin. J. Neurosci.
504		30, 8096-8101.
505	18.	Gimpl G, Fahrenholz F. 2001 The oxytocin receptor system: structure, function, and
506		regulation. Physiol. Rev. 81, 629-683.
507	19.	Haaland P, Samarov D, McVey E. 2011 calibFit: Statistical models and tools for assay
508		calibration. R package version 2.1.0/r17. Available from: http://R-Forge.R-
509		project.org/projects/calibfun/

510	20.	Hall AJ, McConnell BJ, Barker RJ. 2001 Factors affecting first - year survival in grey
511		seals and their implications for life history strategy. J. Anim. Ecol. 70, 138-149.
512	21.	Harcourt RG, Turner E, Hall A, Waas JR, Hindell M. 2010 Effects of capture stress on
513		free-ranging, reproductively active male Weddell seals. J. Comp. Physiol. A. 196, 147-
514		154.
515	22.	Harshaw C, Leffel JK, Alberts JR. 2018. Oxytocin and the warm outer glow:
516		Thermoregulatory deficits cause huddling abnormalities in oxytocin-deficient mouse
517		pups. Horm. Behav 98, 145-158.
518	23.	Higashida H, Lopatina O, Yoshihara T, Pichugina YA, Soumarokov AA, Munesue T,
519		Minabe Y, Kikuchi M, Ono Y, Korshunova N, Salmina, AB. 2010 Oxytocin signal and
520		social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and
521		CD38 gene knockout mice. J. Neuroendocrinol. 22, 373-379.
522	24.	Iverson SJ, Bowen WD, Boness DJ, Oftedal OT. 1993 The effect of maternal size and
523		milk energy output on pup growth in grey seals (Halichoerus grypus). Physiol. Zool. 66,
524		61-88.
525	25.	Jurek B, Neumann ID. 2018 The oxytocin receptor: from intracellular signaling to
526		behavior. Physiol. Rev. 98, 1805-1908.
527	26.	Kojima S, Stewart RA, Demas GE, Alberts JR. 2012 Maternal contact differentially
528		modulates central and peripheral oxytocin in rat pups during a brief regime of mother-
529		pup interaction that induces a filial huddling preference. J. Neuroendocrinol. 24, 831-840.
530	27.	Landgraf R. 1985 Plasma oxytocin concentrations in man after different routes of
531		administration of synthetic oxytocin. Exp. Clin. Endocr. Diab. 85, 245-248.
532	28.	Leake RD, Weitzman RE, Fisher DA. 1981 Oxytocin concentrations during the neonatal
533		period. Neonatology 39, 127-131.

534	29.	Leng G, Sabatier N. 2016 Measuring oxytocin and vasopressin: bioassays, immunoassays
535		and random numbers. J. Neuroendocrinol. 28, 1-13.
536	30.	McCafferty DJ, Moss S, Bennett K, Pomeroy PP. 2005 Factors influencing the radiative
537		surface temperature of grey seal (Halichoerus grypus) pups during early and late
538		lactation. J. Comp. Physiol. B 175, 423-431.
539	31.	Metcalfe NB, Monaghan P. 2001 Compensation for a bad start: grow now, pay later?
540		Trends Ecol. Evol. 16, 254-260.
541	32.	Modahl C, Green LA, Fein D, Morris M, Waterhouse L, Feinstein C, Levin H. 1998
542		Plasma oxytocin levels in autistic children. Biol. Psychiat. 43, 270-277.
543	33.	Nagasawa M, Okabe S, Mogi K, Kikusui T. 2012 Oxytocin and mutual communication in
544		mother-infant bonding. Front. Hum. Neurosci. 6, 98-107.
545	34.	Nagasawa M, Mitsui S, En S, Ohtani N, Ohta M, Sakuma Y, Onaka T, Mogi K, Kikusui
546		T. 2015 Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science,
547		348, 333-336.
548	35.	O'Connell LA, Matthews BJ, Hofmann HA. 2012 Isotocin regulates paternal care in a
549		monogamous cichlid fish. Horm. Behav. 61, 725-733.
550	36.	Olszewski PK, Klockars A, Schiöth HB, Levine AS. 2010 Oxytocin as feeding inhibitor:
551		maintaining homeostasis in consummatory behavior. Pharmacol. Biochem. Be. 97, 47-54.
552	37.	Pomeroy PP, Fedak MA, Rothery P, Anderson S. 1999 Consequences of maternal size for
553		reproductive expenditure and pupping success of grey seals at North Rona, Scotland. J.
554		Anim. Ecol. 68, 235-253.
555	38.	Quintana DS, Rokicki J, van der Meer D, Alnæs D, Kaufmann T, Córdova-Palomera A,
556		Dieset I, Andreassen OA, Westlye LT. 2019 Oxytocin pathway gene networks in the
557		human brain. Nat. Commun. 10, 668.

558	39.	R Development Core Team. 2012. R: A language and environment for statistical
559		computing. R Foundation for Statistics Computing, Vienna, Austria. Available from:
560		http://www.R-project.org.
561	40.	Rault JL, Ferrari J, Pluske JR, Dunshea FR. 2015 Neonatal oxytocin administration and
562		supplemental milk ameliorate the weaning transition and alter hormonal expression in the
563		gastrointestinal tract in pigs. Domest. Anim. Endocrin. 51, 19-26.
564	41.	Redman P. 2002 The role of temporal, spatial and kin associations in grey seal breeding
565		colonies. Doctoral Thesis. University of St Andrews.
566	42.	Reilly JJ. 1991 Adaptations to prolonged fasting in free-living weaned gray seal pups.
567		Am. J. Physiol-Reg. I 260, 267-272.
568	43.	Rice D, Barone S. 2000 Critical periods of vulnerability for the developing nervous
569		system: evidence from humans and animal models. Environ. Health Persp. 108, 511.
570	44.	Rilling JK, Young LJ. 2014 The biology of mammalian parenting and its effect on
571		offspring social development. Science 345, 771-776.
572	45.	Robinson KJ (2014) The role of oxytocin in the maternal behaviour of the grey seal
573		(Halichoerus grypus). Doctoral thesis, the University of St Andrews
574	46.	Robinson KJ, Hazon N, Lonergan M, Pomeroy PP. 2014 Validation of an enzyme-linked
575		immunoassay (ELISA) plasma oxytocin in a novel mammal species reveals potential errors
576		induced by sampling procedure. J. Neurosci. Meth. 226, 73-39.
577	47.	Robinson KJ, Twiss SD, Hazon N, Pomeroy PP. 2015a Maternal oxytocin is linked to
578		close mother-infant proximity in grey seals (Halichoerus grypus). PloS one 10, e0144577.
579	48.	Robinson KJ, Twiss SD, Hazon N, Moss S, Lonergan M, Pomeroy PP. 2015b
580		Conspecific recognition and aggression reduction to familiars in newly weaned, socially
581		plastic mammals. Behav. Ecol. Sociobio. 69, 1383-1394.

582	49.	Robinson KJ, Twiss SD, Hazon N, Moss S, Pomeroy PP. 2017 Positive social behaviours
583		are induced and retained after oxytocin manipulations mimicking endogenous
584		concentrations in a wild mammal. Proc. R. Soc. B 284, 20170554.
585	50.	Ross HE, Young LJ. 2009 Oxytocin and the neural mechanisms regulating social
586		cognition and affiliative behavior. Front. Neuroendocrin. 30, 534-547.
587	51.	Samuni L, Preis A, Mundry R, Deschner T, Crockford C, Wittig RM. 2016 Oxytocin
588		reactivity during intergroup conflict in wild chimpanzees. P. Natl. Acad. Sci. USA 114,
589		268-273.
590	52.	Shields B, Wacogne I, Wright CM. 2012 Weight faltering and failure to thrive in infancy
591		and early childhood. Brit. Med. J. 345, e5931.
592	53.	Smout S, King R, Pomeroy P. 2011 Estimating demographic parameters for capture-
593		recapture data in the presence of multiple mark types. Environ. Ecol. Stat. 18, 331-347.
594	54.	Soares MC, Bshary R, Fusani L, Goymann W, Hau M, Hirschenhauser K, Oliveira RF.
595		2010 Hormonal mechanisms of cooperative behaviour. Philos. T. Roy. Soc. B. 365, 2737-
596		2750.
597	55.	Strathearn L, Fonagy P, Amico J, Montague PR. 2009 Adult attachment predicts maternal
598		brain and oxytocin response to infant cues. Neuropsychopharmacol. 34, 2655-2666.
599	56.	Szeto A, McCabe PM, Nation DA, Tabak BA, Rossetti MA, McCullough ME,
600		Schneiderman N, Mendez AJ. 2011 Evaluation of enzyme immunoassay and
601		radioimmunoassay methods for the measurement of plasma oxytocin. Psychosom. Med.
602		73, 393.
603	57.	Uvnäs-Moberg K, Alster P, Petersson M, Sohlström A, Björkstrand E. 1998 Postnatal
604		oxytocin injections cause sustained weight gain and increased nociceptive thresholds in
605		male and female rats. Pediatr. Res. 43, 344-348.

606	58. Valstad M, Alvares GA, Andreassen OA, Westlye LT, Quintana DS. 2017 The
607	correlation between central and peripheral oxytocin concentrations: a systematic review
608	and meta-analysis. Neurosci. Biobehav. R. 78, 117-124.
609	59. Wood S. 2006 Generalized Additive Models: An introduction with R. Chapman and
610	Hall/CRC
611	
612	
613	Figure Legends
614	
615	Figure 1. OT concentrations in mothers and pups. Mean basal plasma oxytocin (pg/ml) in grey
616	seal mothers and their pups during early and late lactation with median, upper and lower quartiles,
617	1.5x interquartile range and outliers shown. Significant differences at the p<0.001 level between
618	groups are denoted by asterisks.
619	
620	Figure 2. Mother - pup plasma oxytocin relationships. Prediction plot showing the GAMM
621	output of the relationship between mother and pup plasma oxytocin concentration (pg/ml) on
622	North Rona (solid line) and the Isle of May (dashed line).
623	
624	Figure 3. Maternal presence as drivers of high infant OT. Mean basal plasma oxytocin
625	(pg/ml) pups during early lactation, late lactation and post-weaning with median, upper and lower
626	quartiles, 1.5x interquartile range and outliers shown. Significant differences at the p<0.001 level
627	between groups are denoted by asterisks.

629	Figure 4. OT	concentrations and	pup mass	gain rate.	The significant	positive relationsh	ip
					0	1	

- 630 between pup plasma oxytocin concentrations (pg/ml) and the mass a pup gains per day while still
- 631 with its mother (kg/day) with the Pearson's correlation significance value.

633	Figure 5. Positive mother -	infant OT loops and infa	nt mass gain.	Proposed	double positive
-----	-----------------------------	--------------------------	---------------	----------	-----------------

- 634 feedback loop involving oxytocin (OT) release, mother-pup bonding and behaviour and mass
- 635 changes in grey seals.

649	Appendix Files for	: "High	oxvtocin infants	gain more	mass with n	o additional	maternal	energetic
· · ·						0		

650 costs in a natural system" by Kelly J. Robinson, Neil Hazon, Sean D. Twiss and Patrick P.

- 651 Pomeroy.
- 652

653 Appendix A. Methods

654

655 Milk Sample Analysis

656 The protocol supplied with the oxytocin ELISA was followed for analysing the two milk samples

657 with the following alterations;

- 1. In addition to the clarification protocol given with the ELISA, milk samples then
- 659 underwent solid-phase extraction with the same protocol used to extract plasma samples660 (Robinson et al., 2014).
- 661 2. The two milk samples were run on the ELISA plate diluted to 1:2.
- 662

```
663 Statistical Analysis
```

664

All analyses were performed using the statistical package R 3.4.1 (R Development Core Team,

666 2012).

667

668 GAMM for investigating oxytocin concentrations detected in dependent pups

669 Biologically plausible explanatory variables used in this GAMM (Wood, 2006a) model was

670 plasma oxytocin concentration of the pup's mother, sample timing during the season (early or late

671 lactation), the pup's sex, the colony the pup was born on (NR or IoM) and the year of sampling

672 (2010 or 2011). The model was fitted using the multiple generalized cross validation library mgcv

- 673 (Wood, 2012). The identities of the mothers were fitted as a random effects smooth (Wood,
- 674 2006b) to control for pseudo-replication in the dataset from using some of the same individuals

675	over the two years of the study and to control for consistent individual differences in behaviour
676	(Twiss et al, 2012; Robinson et al., 2015a). The smoothing parameters were set by maximum
677	likelihood to reduce the risk of over fitting associated with other methods (Wood, 2011). The
678	model was fitted with a Gamma error distribution. Model selection was done by backwards
679	stepwise elimination through examination of R ² values, AIC values, QQ and residual plots to
680	identify the best model for the data. During the selection process, the 'year of sampling' variable
681	was discarded to improve the model's fit to the data and the 'plasma oxytocin concentration of
682	the mother', 'timing during season' (early/late), 'pup sex' and 'colony' variables were retained.
683	
684	Final GAMM code for investigating oxytocin concentrations detected in dependent pups;
685	GammOutput 1 <- gam(PupOxytocin ~ MotherOxytocin + EarlyLateLactation + PupSex + Interval (PupOxytocin ~ MotherOxytocin + EarlyLateLactation + PupSex + Interval (PupOxytocin ~ MotherOxytocin + EarlyLateLactation + PupSex + Interval (PupOxytocin ~ MotherOxytocin + EarlyLateLactation + PupSex + Interval (PupOxytocin ~ MotherOxytocin + EarlyLateLactation + PupSex + Interval (PupOxytocin ~ MotherOxytocin + EarlyLateLactation + PupSex + Interval (PupOxytocin ~ MotherOxytocin + EarlyLateLactation + PupSex + Interval (PupOxytocin + I
686	Colony + s(ID, bs="re"), family=Gamma(link="log"), method="ML",
687	data=GreySealOxytocinData)
688	
689	GAMMs for investigating mass gain in pups and mass loss in mothers
690	Biologically plausible explanatory variables used in these GAMM models (Wood, 2006a) were
691	plasma oxytocin concentration of the pup or mother (mean of early/late concentrations in pups for
692	pup model, early and late concentrations separately for mother model) and the pup's sex. The
693	models were fitted using the multiple generalized cross validation library mgcv (Wood, 2012).
694	The identities of the mothers were fitted as a random effects smooth (Wood, 2006b) for the same
695	reasons given above. The colony the mother-pup pair belonged to (NR or IoM) was also fitted as
696	a random effect smooth based on the results of the first GAMM model described above. The
697	smoothing parameters were set by maximum likelihood to reduce the risk of over fitting
698	associated with other methods (Wood, 2011). Models were fitted with a Gaussian error
699	distribution. Model selection was performed by backwards stepwise elimination through
700	examination of R2 values, AIC values, QQ and residual plots to identify the best model for the

701	data. When selecting variables for the model of pup mass gain rate, removing the 'pup sex'
702	variable improved the model's fit to the data. During the selection process for the models of
703	maternal mass loss, the 'pup sex' variable was removed to improve the model's fit to the data.
704	
705	Final GAMM code for investigating mass gain in pups;
706	GammOutput2 <- gam(PupMassGain ~ PupOxytocinMean + s(ID, bs="re")+s(Colony, bs="re"),
707	method="ML", data=GreySealOxytocinMassData)
708	
709	Final GAMM code for investigating mass loss in mothers;
710	$GammOutput 3 <- gam(MotherMassLossTransformed \thicksim MotherOxytocinEarlyLactation + State 1 - State$
711	MotherOxytocinLateLactation + s(ID, bs="re") + s(colony, bs="re"),
712	method="ML", data= GreySealOxytocinMassData)
713	
714	
715	
716	
717	
718	
719	
720	
721	
722	
723	
724	
725	
726	

727 **Figure A.1**

Mother plasma oxytocin concentration - Early lactation (pg/ml)

734		
735	Referen	nces
736	1.	R Development Core Team. 2012. R: A language and environment for statistical
737		computing. R Foundation for Statistics Computing, Vienna, Austria. Available from:
738		http://www.R-project.org.
739	2.	Robinson KJ, Hazon N, Lonergan M, Pomeroy PP. 2014 Validation of an enzyme-linked
740		immunoassay (ELISA) plasma oxytocin in a novel mammal species reveals potential
741		errors induced by sampling procedure. J. Neurosci. Meth. 226, 73-39.
742	3.	Robinson KJ, Twiss SD, Hazon N, Moss S, Lonergan M, Pomeroy PP. 2015 Conspecific
743		recognition and aggression reduction to familiars in newly weaned, socially plastic
744		mammals. Behav. Ecol. Sociobiol. 69, 1383-1394.
745	4.	Twiss SD, Cairns C, Culloch RM, Richards SA, Pomeroy PP. 2012 Variation in female
746		grey seal (Halichoerus grypus) reproductive performance correlates to proactive-reactive
747		behavioural types. PLOS one 7, e49598.
748	5.	Wood S. 2006a Generalized Additive Models: An introduction with R. Chapman and
749		Hall/CRC
750	6.	Wood S. 2006b Low-rank scale-invariant tensor product smooths for generalized additive
751		mixed models. Biometrics 62, 1025-1036.
752	7.	Wood S. 2011 Fast stable restricted maximum likelihood and marginal likelihood
753		estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. B. 73, 3-36.
754	8.	Wood S. 2012. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML
755		smoothness estimation. Available from: <u>https://CRAN.R-project.org/package=mgcv</u>
756		
757		
758		
759		

760 Appendix B. Tables

- **Table B.1**
- 763 GAMM output for variables affecting pup oxytocin concentrations in plasma, their estimates,
- standard errors and p values.

	Explanatory variable		Standard	
Dependent variable		Estimate	Error	P value
Pup oxytocin	Maternal plasma oxytocin			
concentration (pg/ml)	concentration (pg/ml)	0.019	0.0083	0.02
	Sample timing during the season			
	(early/late)	-0.052	0.053	0.33
	Pup sex (male/female)	0.077	0.065	0.24
	Colony (North Rona/Isle of			
	May)	0.34	0.071	<0.001
	Smooth term for mother's			
	identity	Na	Na	0.02

Table B.2

- 767 GAMM output for variables affecting pup mass gain rate, their estimates, standard errors and p
- values.

	Explanatory variable		Standard	
Dependent variable		Estimate	Error	P value
Rate of mass gain in	Mean pup oxytocin			
pups (kg/day)	concentration (pg/ml)	0.02	0.007	0.016
	Smooth term for colony (North			
	Rona/Isle of May)	Na	Na	0.07
	Smooth term for mother's			
	identity	Na	Na	0.06

Table B.3

776 GAMM output for variables affecting mother mass gain rate, their estimates, standard errors and

p values.

D	Explanatory variable	F -4 ¹ 4-	Standard	D I
Dependent variable	Matana 1 areata ain	Estimate	Error	P value
Rate of mass loss in	Maternal oxytocin			
mothers (kg/day)	locate (ng/ml)			
raisionned by maternal	lactation (pg/mi)	0.00017	0.00012	0.17
size close to parturnion	Maternal evutacin	0.00017	0.00012	0.17
	material oxytochi			
	lactation (ng/ml)	0.00030	0.00018	0.11
	Smooth term for colony	0.00030	0.00018	0.11
	(North Rona/Isle of May)	Na	Na	0.25
	Smooth term for mother's	Ina	Ind	0.23
	identity	Na	Na	0.07
	Identity	Ina	Ina	0.07

792 Appendix C. Buccal OT doses, peripheral OT concentrations and seal milk ingestion

793

794	When put into context with the volumes of milk a seal pup ingests daily, it is apparent that the OT
795	levels in seal milk are not high enough to impact on plasma concentrations. The mean volume of
796	milk a grey seal pup ingests is 3030ml/day (Iverson et al., 1993). Using the mean OT
797	concentration in grey seal milk detected in this study (112.2pg/ml), a grey seal pup ingests
798	approximately 339966pg of oxytocin per day, or 0.48% of the lowest buccal dose that has been
799	shown to have no effect on plasma OT levels (Table C.4). Furthermore, in seals this intake is split
800	into approximately five suckling bouts in a 24-hour period (Iverson et al., 1993). Therefore, on
801	average pups only consume 67993.2pg of OT per suckling bout, or 0.01% of the buccal dose
802	which had no demonstrable effect on plasma OT levels (Table C.4). Pups would have to drink far
803	greater quantities of milk than they actually consume within a two-hour period to approach the
804	doses proven to significantly raise plasma OT concentrations. As this study had only two milk
805	samples to calculate ingested OT from, the high milk OT values from mice reported in Higashida
806	et al. (2010) can also be used to demonstrate that their levels would still not be high enough to
807	impact pup plasma levels. Mouse milk from Higashida et al. (2010) contained approximately
808	1,200pg/ml OT, which would mean if a seal pup had a mother producing comparable levels of
809	OT in her milk, the pup would ingest 3,636,000pg of OT per day, or 5% (1% if splitting the
810	ingestion over five suckling bouts per day) of the lowest buccal dose that has been shown to have
811	no effect on plasma OT levels (Table C.4). Therefore, it is unlikely that ingested milk is the
812	source of the high plasma OT concentrations found in pups consistently throughout early and late
813	lactation. Other aspects of the mother's presence, potentially including scent, sounds and sight of
814	the mother, are more credible stimuli for release of the hormone within the pup.

815	Table C.4 Ex	perimentally	tested buccal	doses of o	oxytocin fo	or adult humans	s and their success
-----	--------------	--------------	---------------	------------	-------------	-----------------	---------------------

816 rates.

Buccal dose given (units as stated in source)	Frequency administered	Total dose given in picograms	Successful?	Reference
70µg	Once	70,000,000pg	No	Landgarf, 1985
200 IU	Every 20 minutes for 2 hours	2,400,000,000pg	No	Dawood et al., 1980
400 IU	Every 20 minutes for 2 hours	4,800,000,000pg	Yes (majority elevated to 24 - 50pg/ml)	Dawood et al., 1980

817

818 *References*

819	1.	Dawood MY, Ylikorkala O, Fuchs F. 1980 Plasma oxytocin levels and disappearance rate
820		after buccal Pitocin. Am. J. Obstet. Gynecol. 138, 20-24.

- 821 2. Higashida H, Lopatina O, Yoshihara T, Pichugina YA, Soumarokov AA, Munesue T,
- 822 Minabe Y, Kikuchi M, Ono Y, Korshunova N, Salmina, AB. 2010 Oxytocin signal and
- social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and

- 825 3. Iverson SJ, Bowen WD, Boness DJ, Oftedal OT. 1993 The effect of maternal size and
- 826 milk energy output on pup growth in grey seals (Halichoerus grypus). Physiol. Zool. 66,827 61-88.
- 4. Landgraf R. 1985 Plasma oxytocin concentrations in man after different routes of
 administration of synthetic oxytocin. Exp. Clin. Endocr. Diab. 85, 245-248.
- 830
- 831 Appendix D. Original data. For 'Pup post-wean OT (pg/ml) column, codes for individuals not
- 832 sampled are as follows: NA: not applicable, SCO: single capture only, NRC: not re-captured

Mother		Mother OT	Colony	Voor	Early or late	Pup	Pup mass gain		Transformed mother mass loss		Pup post-w	rean
R	(pg/iii) 15.1	(pg/iii) 9.5	NR	2010	F	M	SCO	uay)	SCO	.e, kg/uay)	NRC	
S	27.7	7.4	NR	2010	E	M	000	2.18	000	0.021538462		6.7
S	26.9	9.1	NR	2010	L	M	NA	2.10	NA	0.021000102	NA	0.17
Т	11.9	6.7	NR	2010	E	F	2.254	4545455		0.0120012	NRC	
Т	18.4	8.4	NR	2010	L	F	NA		NA		NRC	
U	16.4	8.3	NR	2010	E	F	2.79	5833333		0.022610405	NRC	
U	20.7	8.8	NR	2010	L	F	NA		NA		NRC	
V	33.6	7.5	NR	2010	E	Μ	2.177	777778		0.017364248	NRC	
V	18.7	6.7	NR	2010	L	Μ	NA		NA		NRC	
W	21	15.8	NR	2010	E	F		1.84		0.026219512	NRC	
W	19.6	3.8	NR	2010	L	F	NA		NA		NRC	
А	28.2	25.5	NR	2011	E	Μ		2.89		0.025224327		8.2
A	10.6	9.7	NR	2011	L	Μ	NA		NA		NA	
Н	21.4	24.9	NR	2011	E	Μ		2.3		0.022289258		12.6
Н	20.3	6.6	NR	2011	L	Μ	NA		NA		NA	
J	30.7	7.6	NR	2011	E	F		2.6		0.026589595		10.8
J	47.4	12.2	NR	2011	L	F	NA		NA		NA	
Х	31.5	8.2	NR	2011	E	F		2.255		0.022246456	NRC	
Х	37.1	8.3	NR	2011	L	F	NA		NA		NRC	
Y	36.2	4.3	NR	2011	E	М	SCO		SCO		NRC	
L	28.3	6.9	NR	2011	E	F	2.354	4545455		0.024467649		15.1
L	34.7	8.9	NR	2011	L	F	NA		NA		NA	
М	29.2	13.2	NR	2011	E	F		1.7		0.018356589		14.1
М	34.1	8.9	NR	2011	L	F	NA		NA		NA	
Ν	43.9	15.6	NR	2011	E	Μ		2.325		0.022449336	NRC	
Ν	23.6	8.7	NR	2011	L	Μ	NA		NA		NRC	
Р	44.1	13.7	NR	2011	E	Μ		2.36		0.02452381		20.5
Р	33.7	9.9	NR	2011	L	Μ	NA		NA		NA	
0	22.1	3.3	NR	2011	E	F	SCO		SCO		NRC	
U	31.4	7.4	NR	2011	E	Μ	2.74	5454545		0.01338091	NRC	
U	40.6	13	NR	2011	L	Μ	NA		NA		NRC	

Mother		Mother OT	Colony	Veer	Early or late	Pup	Pup mass gain		Transformed mother mass loss		Pup post-	wean
	(pg/m) 15.6	(pg/m) 63		1 ear		Sex M	rale (Kę	J/uay) 1 73	(mass spe		OT (pg/m) 13.0
VV \\/	17.0	0.3		2011		M	ΝΔ	1.75	ΝΔ	0.020209077	ΝΔ	13.9
Т	27.5	9.7	NR	2011	F	F		23		0 02213762	NRC	
Т	13.4	8.3	NR	2011		F	NA	2.0	NA	0.02210102	NRC	
Z	22.1	9	IOM	2010	E	M	2.06	66666667		0.021982414		38.9
Z	19.4	10.3	IOM	2010	L	М	NA		NA		NA	
AA	23.8	5.7	IOM	2010	E	F	2.22	22222222		0.021668472		9.6
AA	24.3	5.7	IOM	2010	L	F	NA		NA		NA	
BB	13.7	8.1	IOM	2010	E	М	1.86	66666667		0.020150419		25.2
BB	18.9	10.3	IOM	2010	L	М	NA		NA		NA	
CC	14.9	6.7	IOM	2010	E	М		2.25		0.020120898		11.4
CC	19.5	4.9	IOM	2010	L	М	NA		NA		NA	
DD	16.6	13.5	IOM	2010	E	F	1.67	71428571		0.020493912	NRC	
DD	24.1	6.2	IOM	2010	L	F	NA		NA		NRC	
EE	27	7.7	IOM	2010	E	Μ	2.3	14285714		0.022569164		24.5
EE	17.8	7.8	IOM	2010	L	М	NA		NA		NA	
FF	26.6	13.5	IOM	2010	E	Μ	1.6′	16666667		0.023644388		11.7
FF	18	9.5	IOM	2010	L	М	NA		NA		NA	
GG	28.9	10.4	IOM	2010	E	М	1.87	72727273		0.025245782		12.9
GG	52.2	6.2	IOM	2010	L	М	NA		NA		NA	
HH	24.6	8.2	IOM	2010	E	М	1.96	69230769		0.02572482		18.3
HH	16.3	7.6	IOM	2010	L	Μ	NA		NA		NA	
II	21.3	6.1	IOM	2010	E	F		2.125		0.023020258		14.3
II	15.9	6.7	IOM	2010	L	F	NA		NA		NA	
JJ	18.2	9.1	IOM	2010	E	F	2.11	11111111		0.027543789		13
JJ	20.8	10.8	IOM	2010	L	F	NA		NA		NA	
KK	24.4	8.8	IOM	2010	E	Μ		2.4		0.029495472		13.5
KK	18.5	6.7	IOM	2010	L	Μ	NA		NA		NA	
LL	18.9	7.3	IOM	2010	E	F	2.18	81818182		0.027156041		20.9
LL	8.8	7.9	IOM	2010	L	F	NA		NA		NA	
MM	12.5	5.7	IOM	2010	E	F		1.66		0.017397078		11

Mother		Mother OT	Colony	Voor	Early or late	Pup	Pup mass gain		Transformed mother mass loss		Pup post-v	vean
MM	(pg/m) 17.5	(pg/iii) 8.2		2010	I	F	NA		NA		NA)
NN	13.8	9.1	IOM	2010	E	M		0.8		0.016148207	NRC	
NN	10.9	8.3	IOM	2010	L	M	NA	0.0	NA	0.0.01.0201	NRC	
EE	23.7	7.8	IOM	2011	E	F	1.842857143			0.025065354		10.9
EE	15.4	8.2	IOM	2011	L	F	NA		NA		NA	
00	15.6	3.5	IOM	2011	E	М		1.1		0.016336634		10.4
00	10	7.4	IOM	2011	L	М	NA		NA		NA	
FF	18.6	6.2	IOM	2011	E	Μ	1.533333333			0.022793054		10.6
FF	14.9	8.5	IOM	2011	L	Μ	NA		NA		NA	
II	15.5	5.4	IOM	2011	E	F		2.14		0.024508671		11.5
II	15.9	6.5	IOM	2011	L	F	NA		NA		NA	
CC	11.5	4.3	IOM	2011	E	F		1.86		0.020927602	NRC	
CC	8	4.4	IOM	2011	L	F	NA		NA		NRC	
HH	25	6.7	IOM	2011	E	Μ	1.166	6666667		0.020134228		7.4
HH	14.8	5	IOM	2011	L	Μ	NA		NA		NA	
PP	21.4	9	IOM	2011	E	F	1.371428571			0.025718962		10.1
PP	16.7	16.9	IOM	2011	L	F	NA		NA		NA	
KK	20.3	8.6	IOM	2011	E	Μ	1.742857143			0.028613507		12.4
KK	17.1	6.9	IOM	2011	L	Μ	NA		NA		NA	
QQ	17.4	7.6	IOM	2011	E	Μ	1.371428571			0.022911051		7.7
QQ	14.3	7.9	IOM	2011	L	М	NA		NA		NA	
JJ	20.1	6.7	IOM	2011	E	F		2.2		0.025756953		6.9
JJ	18	7.1	IOM	2011	L	F	NA		NA		NA	
RR	16.2	8.1	IOM	2011	E	Μ	2.228	3571429		0.030819434		7.2
RR	18.6	11.8	IOM	2011	L	М	NA		NA		NA	
GG	22.9	7.1	IOM	2011	E	F	1.276923077			0.017932987		14
GG	12.6	6.7	IOM	2011	L	F	NA		NA		NA	
SS	20.9	5.1	IOM	2011	E	F	1.553846154			0.021249469		7.8
SS	22.2	8.5	IOM	2011	L	F	NA		NA		NA	
TT	16.1	5.7	IOM	2011	E	F	1.836363636			0.026677353		4.9
TT	13.8	14.8	IOM	2011	L	F	NA		NA		NA	
LL	16.1	10.8	IOM	2011	E	F	1.709090909			0.021577644		8.8