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Abstract: An end-to-end machine learning approach for classifying rolling contact fatigue (RCF) 

defects utilizing defect images is presented and evaluated. The core component of this approach is the 

use of a fine-tuned AlexNet architecture (FT-AlexNet), which is a well-known pre-trained deep 

Convolutional Neural Network (DCNN). Through comparing the FT-AlexNet method with two 

classical two-step classification methods that include a feature extraction step and then train a classifier, 

it was found that the FT-AlexNet could not only avoid the need of additional steps and variability 

involved in selection of feature extraction methods and classification strategies and parameters, but 

also obtain the comparatively better classification accuracy and generalization ability. In addition, the 

‘black box’ working principle of FT-AlexNet was analyzed through visualization, which displayed its 

robustness to noise and background interference to some degree. However, it was also found that the 

FT-AlexNet architecture, although improved compared to the more traditional methods, was not as 

accurate for the identification of micro defects for cases with substantial variation in the image 

background.  

 

Keywords: RCF defect classification, Pre-trained deep Convolutional Neural Networks (DCNN), 

AlexNet, transfer learning, visualization technology 

1. Introduction 

At present, rolling contact fatigue (RCF) defects, occurring on rail surfaces and near surfaces, 
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has become one of the main causes of derailment accidents. RCF defects mainly manifest as three 

types: (1) head check, (2) shelling, and (3) squat [1]. As these different types of RCF defects have 

different degrees of risk and significance of outcomes, accurate classification and identification is 

critical for establishing reasonable maintenance methods and ensuring safe operation of trains [2]. 

Existing rail defect detection technologies include ultrasonic testing, magnetic particle testing, 

electromagnetic testing and Computer vision inspection (CVI) [3-7]. Among them, due to its 

advantages of non-contact, high speed and high precision，CVI is becoming a more prominent tool 

for recognizing the rail surface defects with the improvements of computer performance and signal 

processing technology [7]. CVI-based rail defect recognition/classification processes usually consist 

of two steps: feature extraction and classifier training, as shown in Figure 1. In general, one major 

challenge with the two-step approach is that it is often difficult to know a priori about what features 

would be reliable predictors and no model will be a successful classifier without the appropriate 

features to work with [8-9]. Moreover, the feature extraction often is a costly and cumbersome trial 

and error process. [10-11]  

In principle, an ideal method for defect classification would be end-to-end, rather than two distinct 

steps, in hopes that potential information could be directly extracted from the images and used to guide 

the classification process. Recently, deep learning (DL) neural network architectures have been 

developed and applied to achieve end-to-end systems that can automatically learn and apply features 

from raw inputs [12]. The traditional two-step method is contrasted with an end-to-end method in 

Figure 1.  

 

Figure 1. The two-step method for defect classification compared to the end-to-end method 

In recent years, DL has been adopted in various application areas for machine learning, such as 

automatic natural language processing, acoustic modeling and bioinformatics, due to its end-to-end 

convenience and promising results in terms of accurate system representation [13-15]. However, DL 
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has been rarely applied in the engineering field for defect recognition thus far. One challenge is that 

defect datasets are normally too small to train DL networks. Normally, a relatively large amount of 

data is required for DL methods to avoid generalization issues from overfitting. However, collecting 

defect images from rails is difficult because of the low occurrence of these defects. The second 

challenge is that the training process for DL can be excessively time consuming. Moreover, DL 

networks (and similar tools) are generally regarded as black box tools, because it is difficult to interpret 

the model due to the large number of neurons, complicated structures, and non-linear transfer functions 

[16].  

Transfer learning (TL) methods based on deep convolutional neural network (DCNN) have been 

shown to be a potential solution to the problems associated with relatively small datasets, 

inaccuracy/overfitting, and the computational cost of training [17-18]. TL is an approach to DL 

network training, in which a model that has already been trained for a relatively similar task is reused 

for the desired task. The network only needs to be “fine-tuned” according to the desired task, which 

often leads to both accurate representation and improved generalization ability, while significantly 

reducing the training cost [19]. Additionally, visualization analysis methods for DCNN can provide an 

effective tool for exploring the black box processes of DCNN and lead to the ability to rationally 

design the DCNN structure [20-21].  

This paper presents an end-to-end approach for RCF defect recognition utilizing DCNN. In 

particular, the strategy presented applies a pre-trained DCNN based on image data from a different 

domain, taking advantage of the TL capability. This approach for end-to-end RCF defect recognition 

realized by DCNN with TL is briefly discussed in the following Section 2. In Section 3, the proposed 

method is verified and compared with alternate two-step classification strategies in terms of 

recognition accuracy and generalization capability. The ability of DCNN to extract significant features 

relating to RCF defects is also evaluated using visualization techniques. Lastly, conclusions and 

potential further research directions are provided in Section 4. 

2. Methods 

2.1 Deep Convolutional Neural Networks (DCNN) 

DCNN are a type of feed-forward neural network widely applied for image-related analysis with 

end-to-end learning, that is, learning/classifying from the original data without any a priori feature 
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selection. DCNN mainly consist of at least three types of layers: 1) convolutional layers; 2) pooling 

layers; and 3) fully connected layers. [18] .  

The convolutional layers consist of a series of fixed-size filters, which perform convolution on the 

image data to highlight some patterns, such as edges and position, used to characterize images. A non-

linear excitation function, defined as rectified linear unit (ReLU) is often imposed after convolutional 

layer to facilitate faster training of a DCNN. The output of the convolutional layer can be calculated 

as follows: 

( )1

1

S
r r r r

j i ij j

i

V V W b −

=

 
=  + 

 
                           (1) 

where, 
r
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rectified linear units (ReLU). ReLU can be defined as: 
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The pooling layers are normally applied after the convolutional layers to reduce the feature 

dimensions and to avoid overfitting problems. Pooling layers perform down-sampling operations by 

sliding windows across the feature maps and apply linear or nonlinear operations, such as calculating 

the local mean or maximum values. Max pooling is most commonly used in CNN and is written as: 
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where,
m

jP  represents the jth  output feature map of mth  band pooling layer. p  and n  are the pooling 

size and sub-sampling factor. 

 Fully connected (FC) layers are used to interpret patterns generated by the previous layers. For 

classification problem, the softmax function is the common last layer. The cross-entropy between the 

estimated softmax output probability distribution and the target class probability distribution is 

selected as the loss function.  
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2.2 Fine-tuned AlexNet Architecture 

The AlexNet architecture was utilized and fine-tuned (taking advantage of transfer learning) for the 

present study on RCF defect recognition. AlexNet is a pretrained DCNN whose architecture and 

parameters have been trained using a large-scale annotated natural image dataset. The architecture of 

AlexNet includes 5 convolutional layers, 3 pooling layers and 3 FC layers, as shown in Figure 2. The 

last FC layer is a classifier including 1000 nodes connecting to 1000 classes and the rest of the 

architecture can be considered as a feature extractor. The input data used for AlexNet is RGB images 

with size of 227 × 227 ×3pixels [22].  

 

Figure 2. The architecture of the DCNN AlexNet 

The fine-tuning for the desired application can then be realized by replacing the last FC layer and 

retraining the parameters of each layer, producing a fine-tuned AlexNet (FT-AlexNet). The process of 

producing the FT-AlexNet is shown in Figure 3. 

 

Figure 3. The principle of transfer learning and fine-tuning using AlexNet 

It can be seen that the last FC layer (named as FC8 in Figure 3) is replaced by a FC layer with 3 

neurons, corresponding to the three RCF defect types, which takes the extracted features from previous 

layers and maps them into the three classes of RCF defects. The fine-tuned network retains the same 

architecture as the pre-trained network, except for the replaced layer. The network will learn the new 

mapping as well as refine the feature extraction by fine-tuning the parameters to be slightly more 
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specific to the application after training with the new training set. There are a number of popular 

DCNN frameworks. In this work, the Matlab Deep Learning Toolbox was used to implement a FT- 

AlexNet [23]. 

 

3 Result and discussion  

3.1 Dataset 

Imaging data available for detecting RCF defects in actual practice is often very different than those 

from laboratory tests due to significant uncontrollable variations, including the illumination, potential 

tread reflections and other unpredictable interferences. So, in order to ensure the results herein have 

practical significance, an initial set of 70 images of RCF defects published in [24], comprised of 27 

head check, 15 shelling and 28 squat defects, that were acquired from field images of actual rails, with 

natural variations in lighting and background was utilized. In order to further simulate the influence 

of noise and increase the amount of data, the final dataset was formed by replicating the original 70 

images 8 times and adding different levels of noise to each replicated image. Specifically, randomly 

generated “Salt & Pepper” noise was used with intensity of 0.05. The dataset was reviewed manually 

to ensure each image could be discerned by a human operator and too much noise was not present (i.e., 

to ensure the images would be acceptable in practice). 24 images were deemed to be indiscernible and 

were removed. Therefore, 606 images with RCF defects were used to evaluate the performance of the 

FT-AlexNet in this study. 

 It should be noted that this was not a particularly large dataset for an application of a DCNN for 

classification, which further emphasized the need for the transfer learning property utilized. Figure 4 

shows two examples each for the three defect types from the image dataset. Of note was that even 

within the same defect category there were significant differences in appearance, in large part due to 

the variations in lighting and background in the dataset.   

   

(a)               (b)               (c) 

Figure 4. Example images from the dataset, including two of each category: (a) Head check, (b) Shelling, 

and (c) Squat. 
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3.2 RCF Defect Classifiers 

As discussed in Section 2, the FT-AlexNet was applied to create an end-to-end classifier to 

recognize RCF defect. To compare the capabilities of the end-to-end DCNN approach to more 

traditional methods, common two-step methods (following the approach shown in Figure 1) were also 

applied to classify the RCF defects using the same datasets. The Histogram of oriented gradients (HOG) 

approach was used to extract features, and two different types of classifiers were trained using these 

HOG features: (1) random forest classifiers (RFs), (2) support vector machine classifiers (SVMs). For 

the RFs, the numbers of trees were varied from 10 to 3000. The kernel functions used for the SVMs 

were ‘linear’, ‘polynomial’, and ‘Gaussian’, and the orders of the ‘polynomial’ considered were 2, 3, 

and 5. Considering the SVM's sensitivity to parameters, the optimal parameters of the SVMs were set 

through heuristic search [25].   

Besides the above-mentioned two-step methods, several well-known pretrained DCNN were 

applied to recognize the RCF defects and compared with FT-AlexNet in terms of accuracy and time 

cost. 

3.3 Classification Results 

3.3.1 Initial Comparison of Classification Methods 

The dataset of 606 images was first broken arbitrarily into two mutually exclusive datasets: a 

training set of 389 images and a testing set of 217 images, and Table 1 shows the distribution of each 

defect category in these image sets. As normal, the network was trained using the training set, and then 

the generalization capability was evaluated by applying the network to predict the classes for the 

unseen testing set.  

Table 1. Distribution of each defect category in the RCF defect image dataset and division into training and 

testing sets for the initial test. 

 Head check Shelling Squat Total 

Total 237 133 236 606 

Training Set 159 82 148 389 

Testing Set 78 51 88 217 

The FT-AlexNet approach and each of RF and SVM methods with HOG features were applied as 

detailed previously. In addition, to examine the features that the FT-AlexNet approach extracts 

internally and how they develop through the various layers the outputs of the six internal layers prior 

to the classification layer (FC8) were individually used as features and combined with the RF and 
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SVM classification strategies to predict the RCF defect types. Specifically, in the order that they occur 

in the FT-AlexNet architecture, the outputs from the first Pooling layer (Pool1), the second Pooling 

layer (Pool2), the third ReLU layer (ReLU3), the fourth ReLU layer (ReLU4), the fifth Pooling layer 

(Pool5) and the seventh FC layer (FC7) were considered, in turn, as features. The classification 

accuracies were calculated as the ratio between the number of correct predictions and the total number 

of samples in the testing set. Table 2 shows the accuracy for each combination of features and classifier, 

as well as the end-to-end FT-AlexNet.  

Table 2. The accuracies of each classification strategy with respect to the combination of feature vectors and 

classifier parameters for the initial test. 

 Parameter setting HOG Pool1 Pool2 ReLU3 ReLU4 Pool5 FC7 

RF 

10 52.15 79.75 80.36 76.56 76.93 77.91 76.68 

50 55.82 85.52 86.25 84.41 83.19 84.41 82.21 

300 55.82 84.17 83.55 85.40 83.31 85.52 79.75 

1000 58. 90 83.43 82.41 84.29 84.66 86.09 83.84 

3000 57.96 83.43 82.20 85.40 83.31 86.09 83.64 

SVM 

linear 77.30 71.78 87.12 78.52 91.41 88.34 90.80 

Gaussian 76.07 38.65 38.65  71.60 72.39 87.11 92.02 

polynomial(2) 77.91 87.73 88.95  91.41 90.79 87.73 90.79 

polynomial(3) 76.07 60.74 89.57  90.79 90.79 88.95 91.41 

polynomial(5) 77.30 71.78 88.34  88.34 84.05 85.27 91.00 

FT-AlexNet — — — — — — — 94.47 

The FT-AlexNet achieved the highest recognition accuracy compared with all of the variations of 

the two-step approach considered. The accuracy of the SVM classifiers was generally higher than the 

RF classifiers, but still about 2.5% less accurate for the best case compared to the FT-AlexNet accuracy, 

and almost 20% less accurate than the FT-AlexNet when using the HOG features. There was some 

variation depending on the RF and SVM classifier parameters, particularly the SVM cases when using 

the FT-AlexNet layer output as features. The analysis using the FT-AlexNet internal layer outputs as 

features highlights a likely major reason for the high accuracy of the FT-AlexNet, which is that the 

FT-AlexNet can extract natural features that were more easily related to the defect class than the HOG 

features. This was particularly clear for the RF classifiers, which all increased in accuracy by more 

than 20% when switching from HOG to the FT-AlexNet internal layer outputs as features. The 

accuracy of the RF classifiers did not increase significantly as the information was propagated deeper 

into the network, whereas the SVM classifiers produced substantially more accurate classification 

results when using the latter FT-AlexNet layer outputs as features.  

Figure 5 shows the progression of the accuracy and loss of the FT-AlexNet during training for one 
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of the experiments. Both accuracy and loss with respect to the training set and the unseen testing set 

are shown. Of particular importance, the testing accuracy reached approximately 95% in this case, 

which indicates overfitting had not occurred.  

  

Figure 5. Accuracy and loss with respect to the training and testing sets as FT-AlexNet was trained for the 

initial test 

The confusion matrix for the classification results is shown as Figure 6. The FT-AlexNet recognition 

accuracies for each type of defect were over 90%, and the accuracy in identifying squat defects was 

100%, despite the effects of light, background and noise. Thus, the end-to-end FT-AlexNet method 

can circumvent challenges of more traditional two-step approaches in terms of feature design and 

classifier parameter selection, while potentially significantly improving classification accuracy as well. 

  

Figure 6 Confusion matrix for AlexNet for the initial test. 

 

Alexnet is an early pretrained DCNN, and the subsequent pretrained DCNNs adopt a deeper or 

broader network architecture in order to improve the classification accuracy for specific problems. 

Table 3 shows the recognition results of FT-AlexNet and several well-known pretrained DCNNs on 

RCF defect. The same training options and parameters of the replaced FC layer were set for each 

DCNN. In order to ensure a faster learning speed, a larger learning rate is given for the replaced FC 
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layer. At the same time, in order to avoid under-fitting problems due to less training set data, a small 

learning rate is set for other layers during the fine-tuning process. In this experiment, the learning rate 

of the replaced FC layer was 20, and the learning rate of the other layers was 410− . 

As can be seen from Table 3, the FT-AlexNet had advantages in terms of accuracy and time cost for 

recognizing RCF defect in this study. The result is likely because the architecture of AlexNet is 

relatively straightforward and not too large. Furthermore, AlexNet is trained on more than a million 

natural images and has learned rich feature representations for a wide range of images. However, when 

choosing a DCNN architecture, it is always necessary to make compromises based on characteristics 

such as accuracy, speed, and size for specific problem considered. 

Table 3 also shows the comparison of the FT-AlexNet with the traditional AlexNet, which is written 

as AlexNet (Freeze) in Table 3. Here, the so-called traditional AlexNet refers to the AlexNet 

architecture of only retraining the parameters of the replaced FC layer and keeping the parameters of 

the other layers unchanged. The traditional AlexNet had a faster speed because it does not need to 

readjust the parameters of others layer. FT-AlexNet is slower, but it is often more accurate due to 

extracting better features for the particular application. The computer used herein was a standard 

desktop PC with Intel Core i5-7300CPU and 8GB of RAM, and all tests utilized only one CPU. 

Table 3. Comparison of several pre-trained DCNN 

Network Depth Size 
Parameters 

(Millions) 
Image Input Size Accaracy（%） Time（s） 

Vgg16 16 515MB 138.0 224-by-224 87.10 6500 

googlenet 22 27MB 7.0 224-by-224 92.63 3084 

Inceptionv3 48 89MB 23.9 299-by-299 80.18 11884 

Resnet50 50 96MB 25.6 224-by-224 86.17  7857 

AlexNet（Freeze） 8 227MB 61.0 227-by-227 85.23 477 

FT-AlexNet 8 227MB 61.0 227-by-227 94.47 501 

One important note is that there is a stochastic component to these methods, and if the processes are 

repeated the resulting accuracies will change. To address this issue the following section more 

thoroughly evaluates the consistency of each approach through repeated trials of each test and more 

controlled divisions of the training and testing datasets. 

 

3.3.2 Reduced Training Set Size  

Although the FT-AlexNet approach showed the highest classification accuracy in the initial tests, 

one particular criticism of deep learning is the relatively large amount of training data that is often 
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needed for accurate generalization in contrast to two-step approaches. Therefore, to evaluate the 

generalization, the FT-AlexNet and the two-step classifiers were again applied to build RCF defect 

classifiers using decreasing training data. Additionally, the dataset listed in Table 1 was reshuffled, and 

grouped with respect to the original 70 images, such that there was no overlap between the training set 

and testing set. Six tests were performed, starting with 80% of the dataset as the training set and 

reducing this to 30% of the dataset at 10% intervals. For these tests, only the best performing two-step 

classification methods using the HOG features from the initial tests were considered, SVM with the 

quadratic polynomial kernel function and the RF with 1000 trees. The classification accuracies of the 

three classifiers are shown in Table 4. The classification accuracies were the average from 10 

repetitions of the experiments. Additionally, the time cost in terms of the total time to train and test a 

single instance of each classifier is also shown in Table 4 to intuitively compare the speed of the three 

classifiers.  

Table 4. The accuracies of each classification strategy with respect to the percentage of the dataset used for 

training.  

 80% 70% 60% 50% 40% 30% 

 Accuracy  Time(s)  Accuracy  Accuracy  Accuracy  Accuracy  Accuracy  Time(s) 

HOG+SVM(Poly2) 53.33 1183 50.00 44.38 44.33 44.81 43.94 461 

HOG+RF(1000) 62.58 307 52.22 51.75 50.76 48.22 46.79 244 

FT-AlexNet 92.50 779 87.78 86.58 77.73 71.69 68.64 368 

As the training set decreased from 80% to 30%, the classification accuracies of all classifiers 

decreased in general. The FT-AlexNet again achieved the highest recognition accuracy compared with 

the two-step approaches considered. Moreover, the relative improvement through FT-AlexNet 

compared to the two-step methods was substantially higher than the improvement seen in the initial 

tests, with a maximum difference of more than 30% and minimum difference of more than 20%, 

depending on the size of the training set. A likely reason was that the FT-AlexNet classifiers were more 

capable of deriving the actual pattern from the physical differences in the defect types and generalized 

better. It can also be seen from Table 4 that the accuracy of SVM is significantly lower than that of 

Table 2. This is because the test set corresponding to Table 4 contained unfamiliar data caused by the 

original image that does not overlap the training set. However, the accuracy of RF has not decreased 

significantly. On the contrary, because of the higher number of training samples, the accuracy of RF 

shown in Table 4 is higher than that in Table 2. This is partly because that RF has the advantages of 

handling high-dimensional data and being insensitive to parameter settings, which makes it possible 
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to obtain better accuracy than SVM when the testing set contains a large number of unfamiliar samples. 

Although the minimum training set size of 30% (181 images) is relatively small for applications of 

DCNN architectures, the fact that the FT-AlexNet still maintained the highest accuracy emphasizes 

the benefits of using pre-trained models. In terms of the computing cost (i.e., total computing time 

shown in Table 4), that of the FT- AlexNet approach was between the two two-step methods. Thus, 

the computing cost of utilizing such a pre-trained DCNN is not significantly different than more 

traditional approaches.   

 Figure 7 again shows the confusion matrices for one trial each of the FT-AlexNet classifier trained 

using 70% and 30% of the total training set. As the training set was reduced from 70% of the total data 

to 30%, the ability to correctly classify the three types of RCF defects clearly decreased. The head 

check defect became particularly difficult to identify as the training set size decreased. The accuracy 

of the head check case is somewhat surprising as there were considerably fewer shelling cases in the 

training set in comparison, and yet shelling was more accurately classified. This result highlights that 

it is not just the amount of data that affects the classification capability, and the ease with which a 

specific defect type can be discerned contributes significantly as well. 

 

(a)                          (b) 

Figure 7. Confusion matrix for FT-AlexNet trained with (a) 70% and (b) 30% of the total dataset.  

3.4 Network Visualization 

Although initially DCNNs were generally applied as blackbox tools, more recently, work has shown 

that DCNN processes can be visualized using aspects such as the activations produced by each layer 

of a trained network [26]. Thus, this visualization approach can be used to at least in-part explain the 

effectiveness of the FT-AlexNet classifiers evaluated in the previous sections. For example, it has been 

shown that with the deepening of the architecture, the features extracted by a DCNN become more 

inclined to abstract information. For the case of defect or object detection applications such as the one 
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herein, the first convolutional layer of FT-AlexNet usually extracts information such as the outline and 

color of the objects in the image, whereas the fifth convolutional layer can extract characteristics such 

as the position and texture of the object. 

In AlexNet, the size of the ith activated layer is written as i i ir r n  , where in  is the channel 

number and each channel corresponds to a separate i ir r  grayscale image that contains activation 

information, generally known as receptive field. For convolutional layers and pooling layers, the 

output size of the receptive field can be determined by the following relationship:  

( )
1

2
1

i i i

i

i

r k p
r

s
+

− + 
= +                             (4) 

ir and 1ir +  indicate the width (and height) of the input and output receptive fields, respectively. ik ,

is and ip are the kernel size, stride and padding, respectively. The parameters of convolutional layers 

and pooling layers used for AlexNet are shown in Table 5 [30]. Figure 8 shows the activation-based 

visualization results for an arbitrarily chosen squat defect image, including the dimensions of each 

layer output (note that the size of input image is 227 227 3  ). 

Table 5. Parameters for each layer of AlexNet. 

 Conv1 Pool1 Conv2 Pool2 Conv3 Conv4 Conv5 Pool5 

ik  11 3 5 3 3 3 3 3 

is  4 2 1 2 1 1 1 2 

ip  0 0 2 0 1 1 1 0 

in  96 96 256 256 384 384 256 256 

 

 

Figure 8. Visualization of every convolutional layer for AlexNet processing an arbitrarily chosen squat 

defect image.  

In the following, the outputs of the FT-AlexNet classifiers for RCF defects are examined to explore 
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the type of features that are highlighted within the different layers of the network and how these 

features are affected by variations in noise and other image aspects, such as background. 

3.4.1 Robustness to Noise 

Figure 9(a) shows the original squat defect image and the subgraphs from the 43rd channel of the 1st 

convolutional layers (Con1) and the 199th channel from the 5th convolutional layer (Con5). It can be 

seen that Con1 extracted the outlines of the rail head and the defect, excluding the rest of the image, 

while Con5 further refined the extraction down to the position and the general shape of the defect 

alone. Figure 9(b) shows a noisy version of the same original squat defect image and the subgraphs 

from same channels of the same layers. Even in the presence of noise, FT-AlexNet was still able to 

clearly extract the rail head and defect, with those images being nearly identical to the noise-free case, 

and even though there was some distortion due to the noise, the further refined position and shape of 

the squat defect remained consistent as well.  

 

(a) 

 

(b) 

Figure 9. From left to right – the input image and the subgraphs from the 43rd channel of Con1 and the 

199th channel of Con5 produced by the FT-AlexNet for an example squat defect image (a) original image 

(without noise) and (b) noisy image 

Figure 10 shows subgraphs from the 69th and 80th channels of Con1 for the same two input images 

shown in Figure 9. There is nothing shown in the subgraphs for the original image (i.e. input image 

without noise), as shown in Figure 10(a), whereas there are speckles distributed in the outputs for the 

noisy image, shown in Figure 10(b), which follow the same pattern as the salt and pepper noise 

included in the image. This result shows how FT-AlexNet is capable of extracting/differentiating noise 

from the images by segregating it to certain channels during the training process. In particular for this 

example, Con1 was able to distinguish the high frequency information of the white noise, to effectively 

denoise the signal. Although this denoising process did cause a certain amount of information to be 
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lost, as shown in the output for Con5 in Figure 9(b), the important features of the defect were still able 

to be seen. 

 

(a) 

 

(b) 

Figure 10. From left to right – the input image and the subgraphs from the 69th channel and the 80th 

channel of Con1 produced by the FT-AlexNet for an example squat defect image (a) original image and (b) 

noisy image.  

For comparison with the FT-AlexNet results, Figure 11 shows the features extracted from the same 

two squat defect images (with and without noise) using the HOG method. The HOG features are 

sensitive to the presence of the defect for the image without noise, but when noise is included, it is no 

longer possible to see any clear pattern in the effect of the defect location on the HOG features. 

Although the HOG method has been shown to have some robustness against light changes, it is clearly 

limited in the presence of substantial noise.  

       

(a)                                    (b) 

Figure 11. Input image with the HOG features (top left), HOG features alone (top right), close-up view of 

the defect region in the image with the HOG features (bottom left) and close-up view of the HOG features in 

the region of the defect (bottom right) for an example squat defect image (a) original image and (b) noisy 

image.  

3.4.2 Robustness to Background Changes 

There was significant variation in the dataset used herein with respect to how much of the image 

was part of the rail being inspected and how much was background. In general, the outputs of the 
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convolutional layers of images with a larger portion of background (i.e., non-rail portions of the image) 

were substantially more complex. However, the classification results showed that the pre-trained 

network was robust to the interference from these variations in the amount of background, as shown 

through the high classification accuracy. To explore an example with a significant portion of the image 

as background, Figure 12 shows the 133rd channel of Con1 and its subsequent ReLU layer (ReLU1) 

for an example squat defect image (different than that used in the previous section) without noise. The 

133rd channel of Con1 still shows much of the original image, including both rail and background. 

However, the ReLU1 output clearly highlights the rail tread and the squat defect, separating these from 

the background, even though it is a relatively smaller portion of the total image. 

 

Figure12. From left to right – the input image and the subgraphs from the 133rd channel of Con1 and 

ReLU1 produced by the FT-AlexNet for an example squat defect image.  

To examine the latter layers of the network, Figure 13 shows the output of 6 different channels of 

the 5th convolutional layer (Con5) for the squat defect example. These outputs show that there are 

several different channels that identify different localized features relating to the position of the rail 

and the different components of the rail image, such as the defect, roadbed, rail web, and fasteners. 

However, the output of Con5 is substantially more abstract than that shown for Con1, which is 

expected as the information propagates further into the network. Note that although Con5 is the last 

convolutional layer, the features would be further refined for the final classification by the following 

three fully connected layers, but this process is even more abstract than that for the convolutional 

layers and visualization is not tractable.  
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Figure 13. From left to right – (top) the input image and the subgraphs from the 14th, 50th and 168th 

channels of Con5 and (bottom) the input image and the subgraphs from the 33rd, 62nd and 133rd channels of 

Con5 produced by the FT-AlexNet for an example squat defect image. 

The examples visualized so far have all been squat defect cases, but the various convolutional layer 

operations (i.e., filters) have different sensitivities to different features, which will ideally be dependent 

upon the type of defect in a given image. To examine a different defect type, Figures 14 and 15 show 

the outputs of various channels of Con1 and ReLU1 for two example head check defect images, one 

with minimal non-rail background and one with significant background. In Figure 14, the 43rd channel 

is shown to extract the rail tread profile, while the 85th channel is shown to extract the profile of the 

head check alone. In Figure 15, the 70th channel is shown to discern the dense head checks on the tread 

surface, while the 90th channel recognizes the contours of the head checks also, but also clearly 

includes the shape of the hand in the background. However, as could be seen from Figure 15, since 

the head check is small and the background (hand) is a large proportion in the image, it is not surprising 

that portions of the defect information extracted by Con1 are contaminated (i.e., include information 

unrelated to the defect to be classified). The result of such contamination can be seen in the confusion 

matrices (Figures 6 and 7), in which the head check cases were found to be the least accurately 

classified overall. Thus, background variations can have a significantly negative influence on the 

classification capability of such a DCNN approach, particularly if the defect to be identified is 

relatively small, as is the case for head checks.   

 

 

Figure 14. From left to right – (top) the input image and the subgraphs from the 43rd channel of Con1 and 

ReLU1 and (bottom) the input image and the subgraphs from the 85th channel of Con1 and ReLU1 produced 

by the t FT-AlexNet for an example head check defect image and minimal non-rail background. 
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Figure 15. From left to right – (top) the input image and the subgraphs from the 70th channel of Con1 and 

ReLU1 and (bottom) the input image and the subgraphs from the 90th channel of Con1 and ReLU1 produced 

by the FT-AlexNet for an example head check defect image and substantial non-rail background.  

4 Conclusions  

This paper presented and evaluated a novel end-to-end method for classification of RCF defects on 

rail surfaces based on FT-AlexNet pretrained DCNN. Using the concept of transfer learning, it was 

only necessary to replace the last FC layer and to fine tune the weight parameters of each layer by 

using the RCF defect data. Through transfer learning, a large amount of training time was saved, while 

maintaining the classification accuracy. This method was compared with two classical two-step 

methods that rely on HOG features and several well-known pretrained DCNN as well. FT-AlxNet not 

only had better accuracy and generalization capabilities than these two-step methods, but also had 

advantages in terms of accuracy and time in comparison with other pretrained networks. The 

classification process of the FT-AlexNet was analyzed using visualization of layer outputs, which 

showed how the network naturally extracted features relating to the defects and how these features are 

robust with respect to noise and background interference to some extent. Further work will focus on 

how to improve the architecture and parameters of pretrained DCNN in order to increase the 

recognition accuracy of micro-defect with a large amount of background interference.  
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