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Planetary magnetic fields are generated by the
motion of conductive fluid in the planet’s interior.
Complex flows are not required for dynamo action;
simple flows have been shown to act as efficient
kinematic dynamos, whose physical characteristics
are more straightforward to study. Recently, Chen et
al. (2018, J. Fluid Mech., 839, 1-32) found the optimal,
unconstrained kinematic dynamo in a sphere, which,
despite being of theoretical importance, is of limited
practical use. We extend their work by restricting the
optimisation to three simple two-mode axisymmetric
flows based on the kinematic dynamos of Dudley
and James (1989, Proc. R. Soc. A., 425, 407-429).
Using a Lagrangian optimisation, we find the smallest
critical magnetic Reynolds number for each flow-type,
measured using an enstrophy-based norm. A Galerkin
method is used, in which the spectral coefficients of
the fluid flow and magnetic field are updated in order
to maximise the final magnetic energy. We consider
the t01s

0
1, t01s

0
2 and t

0
2s

0
2 flows and find enstrophy-based

critical magnetic Reynolds numbers of 107.7, 142.4

and 125.5 (13.7, 19.6 and 16.4 respectively with the
energy-based definition). These are up to four times
smaller than the original flows. These simple and
efficient flows may be used as benchmarks in future
studies.

c� The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction
The Earth’s magnetic field and the processes responsible for the generation of planetary dynamos
have been investigated for hundreds of years [1], with Joseph Larmor first proposing the currently
accepted dynamo theory exactly one century ago [2]. While dynamo action is fully described
using the equations of magnetohydrodynamics (MHD), solving these equations in the parameter
regime relevant to Earth requires resolution on vastly different spatial and temporal scales to
those that are currently computationally possible.

Given that it is not possible to study the MHD equations in the parameter regime relevant to an
Earth-like setting through direct numerical simulation (DNS) [1], it can be insightful to consider a
simplified system. In this vein, we adopt the kinematic dynamo approximation, where we study
the very basic interactions between the motion of conductive fluid and the resulting magnetic
field. A steady velocity is prescribed, and the resulting magnetic field studied. The back-reaction
of the magnetic field on the flow is negligible at the onset.

One of the earliest attempts at generating a kinematic dynamo was undertaken by Bullard
and Gellman [4]. They selected a simple velocity field composed of two modes, one poloidal
and one toroidal, motivated by computational restrictions and by dynamics. Despite promising
preliminary results, their solutions were found not to converge when computed at higher
resolution. The first convergent growing numerical solutions to the induction equation in a sphere
were found by G.O. Roberts [5] and Gubbins [6]. Since then, many numerical kinematic dynamo
studies have been successfully conducted (e.g. Pekeris et al. [7], Kumar and Roberts [8]). Of
particular note are the two-mode flows of Dudley and James [9], subsequently referred to as DJ
flows, which are some of the simplest and most efficient velocity fields demonstrated to produce
kinematic dynamo action.

Some of these studies took careful consideration of the physical motivation for the different
flow patterns which might be capable of sustaining a dynamo. However, to find the most efficient
flows, a more systematic approach must be undertaken. Efficiency is measured according to the
magnetic Reynolds number, Rm, a dimensionless parameter which is a measure of the relative
strength of inductive, field-creating processes compared to ohmic dissipation in the system. More
efficient flows require a smaller Rm to produce dynamo action. In keeping with the work of Chen
et al. [10], we use an enstrophy-based Rm, defined in section 2(a). Variational optimisation using
a direct adjoint looping is well suited to seeking these efficient flows, and has been widely used in
studies of flows’ transition to turbulence ( [11], [12] ), as well as in oceanography, thermoacoustics
and weather forecasting [13].

In this paper, we define an objective functional quantifying the efficiency of the dynamo,
which is extremised by iteratively updating the velocity and initial magnetic field subject to
various constraints. Willis [14] was the first to implement this variational optimisation technique
to flows in a periodic box, achieving one of the lowest minimal Rm dynamo thresholds, Rmc,
ever observed. This was extended by Chen et al. [15] to a finite cubic domain, while Chen et
al. [10] found the most efficient kinematic dynamo in a sphere. Both these optimisations produced
flows with much lower Rmc than previously considered kinematic dynamos. One of the natural
extensions to this work is the optimisation of the purely axisymmetric DJ flows. Making use of the
code developed by Chen et al. [10], we show that the three DJ-type flows can be optimised to be
more efficient, displaying growing solutions for significantly reduced values of enstrophy-based
Rm. The significance of this result lies in its improvement of the theoretical limits for dynamo
action in a restricted symmetry class, as well as providing simple benchmark flows which may
be used in further computation or even for future experimental kinematic dynamo studies. These
simple flows can be generated more easily than complicated flows with a large number of modes,
so they could be used in an attempt to produce an efficient laboratory dynamo, similar in design
to the von Kármán Sodium (VKS) experiment of Monchaux et al. [16].



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

2. Variational optimisation of flows in a sphere
The work presented in this paper exploits the techniques and code developed by Chen et al. [10],
with some modification to only consider the subspace of interest. A brief overview of the method
is given below.

(a) Background
The simplest system that can be used to model a planetary dynamo is a spherical region V

with boundary ⌃ filled with electrically conducting fluid. The region exterior to the sphere, V̂ ,
is current free and extends to infinity. The aim of our study is to find the axisymmetric flows
which produce the fastest growing magnetic field for a given set of parameters, and thus the
most efficient axisymmetric kinematic dynamos in a sphere. The magnetic field’s time evolution
is described by the induction equation:

@B⇤

@t⇤
=r⇤ ⇥ (U⇤ ⇥B⇤) + ⌘

⇤r2B⇤ (2.1)

where U⇤(x⇤) is the fluid velocity, B⇤(x⇤
, t

⇤) is the magnetic field, x⇤ is the position vector,
⌘
⇤ = 1/(µ⇤

0�
⇤) is the magnetic diffusivity of the fluid, µ⇤

0 is the magnetic permeability of free
space and �

⇤ is the fluid’s electrical conductivity. The asterisk denotes a dimensional quantity.
This equation can be non-dimensionalised to give:

@B
@t

=Rmr⇥ (U⇥B) +r2B (2.2)

where all un-starred quantities are non-dimensional. The variables have been made
dimensionless by using the scalings: [x] =L

⇤, [t] = (L⇤)2/⌘⇤, [B] =B
⇤ and [U] = !

⇤
L
⇤. L⇤ and

⌘
⇤ are the dimensional spherical radius and magnetic diffusivity, B⇤ is an arbitrary dimensional

magnetic field scale and !⇤ is the root mean square dimensional enstrophy, defined as:

!
⇤ =

s
1
V

Z

V
(r⇥U⇤)2dV (2.3)

The enstrophy-based magnetic Reynolds number, Rm, is defined as:

Rm=
!
⇤
L
⇤2

⌘⇤
(2.4)

The more traditional kinetic energy-based definition of the magnetic Reynolds number, Rm
u =

U
⇤
L
⇤
/⌘

⇤, cannot be used when performing an optimisation, as Proctor [17] showed that there is
no lower limit on Rm

u. This is because reducing the size of the fluid container (the region where
u 6= 0) allows solutions to the induction equation for Rm! 0. Therefore, it is meaningless to seek
the lowest critical Rm

u for a flow, which is why we adopt the enstrophy-based Rm instead.
Conversion formulae to the historically more conventional kinetic energy and strain based Rm

are given in Appendix A. Since the velocity field is steady and the induction equation is linear in
B, we can use the ansatz:

B(x, t) =
X

i

aibi(x)e
�it (2.5)

for the magnetic field, where ai is a coefficient, bi(x) is an eigenvector and �i is its growth rate.
After a sufficiently long time, the most rapidly growing eigenvector should dominate the solution.
At the critical magnetic Reynolds number, Rmc, the fastest growing mode has <(�) = 0, implying
that either a steady or oscillatory dynamo is achieved. The lower Rmc, the more efficient the
dynamo. The growth rate of the magnetic field B is measured at a time T , long enough for any
transient behaviour to have died away, where B(x, T ) =BT . The objective functional is chosen
to be the logarithm of the magnetic energy E averaged over all space, as this is a direct measure
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of the magnetic field’s growth rate; E is given by

E =
1

V + V̂

Z

V+V̂
B2

T dV (2.6)

The optimisation computes the velocity U and initial magnetic field B0 =B(x, 0) that maximise
the objective functional, subject to various constraints that enforce normalisation of the velocity
and the initial magnetic field in an enstrophy and energy norm respectively, as well as requiring
that the equations encapsulating the physics are satisfied. The non-dimensional equations
relevant to our optimization are:

r ·B= 0 x2 V, V̂ (2.7) @tB=�r⇥E x2 V, V̂ (2.8)

r⇥B= 0 x2 V̂ (2.9) E=r⇥B�Rm(U⇥B) x2 V (2.10)

where E(x, t) is the electric field (non-dimensionalised by [E] =B
⇤
⌘
⇤
/L

⇤). Eq. (2.7) is the
solenoidal condition for the magnetic field, eq. (2.8) is Faraday’s law, eq. (2.9) and eq. (2.10)
are Ampère’s law for the insulating and conductive regions respectively. Eqs. (2.8) and (2.10)
can be combined to produce eq. (2.2). We use the equations in this primitive formulation as it
simplifies the treatment of the boundary terms when taking the variation of the Lagrangian [10].
The magnetic field satisfies insulating boundary conditions and decays at least as fast as r

�3 in
the insulating region. B and E satisfy the continuity conditions:

B|⌃+ �B|⌃� = 0, r̂⇥ (E|⌃+ �E|⌃�) = 0 (2.11)

on the outer, ⌃+, and inner, ⌃�, surfaces of the sphere. The velocity field U is taken to be time-
independent, incompressible and satisfies no-slip boundary conditions:

r ·U= 0, U|⌃� = 0 (2.12)

The complete Lagrangian for our problem, chosen by Chen et al. [10], is:

L= lnh(BT )
2i � �1

� 1
V
h(r⇥U)2i � 1

�
� �2(h(B0)

2i � 1)� h⇧r ·Ui �
ZT

0
h †r ·Bidt

�
ZT

0
hB† · [@tB+r⇥E]idt�

ZT

0
hE† · [�rE+RmU⇥B�r⇥B]idt

(2.13)

where h...i is an integral over all space:

h...i=
Z1

0

Z2⇡

0

Z⇡

0
... r

2 sin ✓ d✓ d� dr (2.14)

and �1,�2,⇧(x), †(x, t),B†(x, t) and E†(x, t) are Lagrange multipliers. B†(x, t) and E†(x, t)
are referred to as the adjoint magnetic and electric fields, and satisfy the same boundary
conditions as the physical fields. �r is the relative electrical conductivity, which is unity inside
the sphere and vanishes in the exterior.

(b) Optimisation procedure
The variation of the Lagrangian (2.13) with respect to each of its variables vanishes at the
optimum, producing the Euler-Lagrange equations for the system. The variation with respect to
all variables except U and B0 is taken to vanish automatically, producing a system of equations
that can be solved iteratively by updating the velocity and initial magnetic field in the direction of
the local gradient. Adjoint methods enable the efficient calculation of the required quantities [20].
Of special note is the use of the Galerkin basis to represent the vector fields, which has a number
of desirable properties. Foremost, it automatically incorporates both the boundary conditions at
r= 1 and the solenoidality constraints, so that they do not need to be imposed separately. The
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basis functions are orthonormal with respect to a chosen inner product and for smooth functions
the representation converges spectrally. The velocity, magnetic field and adjoint magnetic field
are expanded as:

2

64
U

B

B†

3

75=
nmaxX

n=1

`maxX

`=1

X̀

m=�`

2

64
tnm`U

t
nm` + snm`U

p
nm`

Tnm`B
t
nm` + Snm`B

p
nm`

T
†
nm`B

t
nm` + S

†
nm`B

p
nm`

3

75 (2.15)

where tnm`, snm`, Tnm`, Snm` and T
†
nm`, S

†
nm` are the spectral coefficients of the toroidal and

poloidal modes. Since B and B† satisfy the same boundary conditions, they can be expanded in
the same basis. The vector basis fields correspond to a standard toroidal/poloidal decomposition
for divergence-free fields, given by:

Ut
nm`(r, ✓,�) =r⇥ (t`n(r)Y

m
` (✓,�)r̂), r2 V (2.16)

Up
nm`(r, ✓,�) =r⇥r⇥ (p`n(r)Y

m
` (✓,�)r̂), r2 V (2.17)

Bt
nm`(r, ✓,�) =

(
r⇥ (T`

n(r)Y
m
` (✓,�)r̂), r2 V

0, r2 V̂
(2.18)

Bp
nm`(r, ✓,�) =

(
r⇥r⇥ (P`

n(r)Y
m
` (✓,�)r̂), r2 V

�`P`
n(1)r(r�(`+1)

Y
m
` (✓,�))), r2 V̂

(2.19)

t
`
n(r), p`n(r), T`

n(r) and P`
n(r) are radial basis functions for the toroidal/poloidal parts of the

velocity and magnetic field, chosen to satisfy the boundary and orthogonality conditions. The
form of the radial basis functions is given in Appendix B. The index n specifies the radial basis
function that is being considered, while ` and m represent the degree and order of the spherical
harmonic associated with the component. The latter two values describe the structure of the flow;
the number of distinct cells present for a given mode is determined by the difference `�m, while
m controls the number of longitudinal nodes. The velocity basis functions are orthonormal with
respect to the an enstrophy-based inner product:

1
V
h(r⇥Ut

nm`) · (r⇥Ut
n0m0`0)i= �mm0�``0�nn0 (2.20)

1
V
h(r⇥Up

nm`) · (r⇥Up
n0m0`0)i= �mm0�``0�nn0 (2.21)

The magnetic field basis functions are orthonormal with respect to an energy-based inner product:

hBt
nm` ·B

t
n0m0`0i= �mm0�``0�nn0 (2.22)

hBp
nm` ·B

p
n0m0`0i= �mm0�``0�nn0 (2.23)

The boundary conditions satisfied by the basis fields are:

t
`
n(1) = 0, p

`
n(1) =

@p
`
n

@r
(1) = 0, T`

n(1) = 0,
@P`

n(1)
@r

+ `P`
n(1) = 0 (2.24)

After each optimization loop, the velocity and magnetic field’s spectral coefficients are
updated. The toroidal and poloidal parts of the B0 update projected onto the Galerkin basis are:

�Tnm`(0) =
↵2

2�2
(T †

nm`(0)� 2�2Tnm`(0)) �Snm`(0) =
↵2

2�2
(S†

nm`(0)� 2�2Snm`(0)) (2.25)

where the (0) refers to coefficients of B and B† at t= 0.
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The velocity updates are:

�tnm` =
↵1

2�1
(Jtnm` � 2�1tnm`) �snm` =

↵1

2�1
(Jpnm` � 2�1snm`) (2.26)

where ↵1 is the step size for the velocity update and Jt,pnm` is:

Jt,pnm` =
NX

i=0

�i�thUt,p
nm` · [B(x, ti)⇥ (r⇥B†(x, ti))]i (2.27)

�i are integration weights set to 0.5 at i= 0, N and 1 otherwise. An explanation of the origin of
these expressions is omitted here for brevity, but is outlined in [10]. �1 and �2 are chosen such
that the velocity and initial magnetic field remain normalised according to eqs. (2.20)-(2.21) and
(2.22)-(2.23). As we are interested in optimising the simplest dynamos, we restrict our attention to
axisymmetric velocity modes (m= 0) with `= 1 or 2. To ensure that the flow remains constrained
to these subspaces during the optimisation, the updated flow coefficients are "projected" onto the
desired ` and m modes by extinguishing the coefficients of other modes. The initial flows and
each update vector are projected in this manner, such that the final velocity remains in the correct
subspace. The optimisation loop is repeated until the total residue, rt, is smaller than 10�4, where
rt is defined by:

rt =
q

r
2
U + r

2
B0

(2.28)

with

r
2
U =

X

nm`

�t
2
nm` + �s

2
nm` r

2
B0

=
X

nm`

�T
2
nm` + �S

2
nm` (2.29)

where the �s represent the change in the toroidal and poloidal parts of the velocity and magnetic
field. All optimisations are performed at resolution (`max, nmax) = (40,40), to ensure spectral
convergence of the solutions. A time step of at most 10�4 magnetic diffusion times is used and
the forward simulations are run for 2 diffusion times, i.e. T = 2. In this case, the velocity field is
written:

Ut(r, ✓,�) =
X

`,m

r⇥ (tm` (r)Y m
` (✓,�)r̂) (2.30)

Up(r, ✓,�) =
X

`,m

r⇥r⇥ (pm` (r)Y m
` (✓,�)r̂) (2.31)

where t
m
` and p

m
` are related to t

`
n and p

`
n via:

t
m
` =

X

n

tnm` t
`
n(r) (2.32)

p
m
` =

X

n

snm` p
`
n(r) (2.33)

We make use of this notation to represent the flows that we optimize (t01s
0
1, t

0
1s

0
2, t

0
2s

0
2), so that

our results can readily be compared to those of Dudley and James [9]. The form of these three
flows as well as the radial functions defined by DJ are given in Appendix C.

3. Optimisation results
The optimisation results for the three Dudley-James type flows are given in Table 1. All three
flows have quite a similar Rmc, with t

0
1s

0
1 being the most efficient flow. This is consistent with our

expectations, as Chen et al. [10]’s optimum for a sphere has the greatest enstrophy contribution
from the `= 1 modes, more than three times larger than that of the `= 2 modes. In the t

0
1s

0
2 case,

the net helicity of the flow when averaged over solid angle is zero, due to the orthogonality of the
different spherical harmonic components. Helicity, the inner product of the vorticity and velocity
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t
0
1s

0
1 t

0
1s

0
2 t

0
2s

0
2

Rmc 107.70 142.42 125.50

Table 1. Critical enstrophy-based Rm for the optimised DJ-type flows. The t01s
0
1 flow acts as the most efficient dynamo,

followed by t02s
0
2 and finally t01s

0
2 .

0 0.4 0.8 1.2 1.6 2
t

0

0.2

0.4

0.6

0.8

1

1.2

Rm=107.7 

Rm=108 

Rm=107.5 

ln
 

 B
2  

Figure 1. Plot of the logarithm of the final magnetic energy hB2
T i of the t01s

0
1 flow for two magnetic diffusion times. The

growth rate of the dominant eigenmode is given by the gradient in the final 100 steps of this plot, from t= 1.99 to 2. The

red and yellow lines show a growing and decaying solution respectively. The blue line illustrates a case where the critical

Rm has been found, as the growth rate is ⇡ 0.

vectors, is thought to be a key ingredient for a successful kinematic dynamo [18], so it is perhaps
not surprising that the t

0
1s

0
2 flow is the least efficient. The results from this small sample of flows

suggest that having two modes with the same spherical harmonic components, and thus a net
helicity averaged over solid angle, is beneficial to creating an efficient dynamo. Furthermore, these
results sustain the idea that first arose from Dudley and James’ [9] work that more complicated
flows are not necessarily more efficient than simpler kinematic dynamos.

(a) Verification of results
All results are checked graphically to ensure the transient behaviour has decayed within this
time frame. The growth rates are measured near the end of the time interval, to avoid any
transient behaviour affecting the result. Figure 1 shows an example of the plots used to extract the
growth rate. Although the optima can be achieved starting from any appropriately constrained
random field, seeking the optimum in this manner is rather time consuming. Instead, the
simulations are restarted from previously optimised fields, in order to systematically optimise
the flows at lower and lower Rm, until Rmc is identified. To ensure that the global maximum
has been achieved, a separate optimisation with a random restart is conducted at Rmc. The
results of these two optimisations are consistent for all three flows. Furthermore, the flows were
checked independently using an eigenvalue solver, which confirms the magnetic field growth
rate produced and the convergence of the solutions, as shown in Table 2. The optimal magnetic
field was always found to be composed of m= 1 modes. The dynamos with a toroidal `= 1

mode are oscillatory, whereas the t
0
2s

0
2 dynamo is steady. The same is true for the original DJ
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(nmax, `max) �(t01s
0
1) �(t01s

0
2) �(t02s

0
2)

(30, 30) 0.00115785514± 0.03052836772i 0.00163169179± 1.65823279695i 0.00399936144± 0i

(40, 40) 0.00115785506± 0.03052836773i 0.00163171018± 1.65823279861i 0.00399936800± 0i

(50, 50) 0.00115785537± 0.03052836778i 0.00163171123± 1.65823279868i 0.00399936778± 0i

Table 2. Growth rates � for the m= 1 BT mode, produced by the optimal flows at Rmc. The growth rates were

calculated at resolutions (nmax, lmax) = (30, 30), (40, 40) and (50, 50) using the eigenvalue solver. The growth rates

converge well for all three flows, confirming the veracity of our results. The growth rates obtained from the optimization

code for the t01s
0
1, t01s

0
2 and t02s

0
2 at resolution (40, 40) are 0.0011, 0.0012 and 0.005 respectively.

Optimum t10(r)

Terse t10(r)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

r

Figure 2. The orange line is the optimal t01 radial basis function plotted as function of r, whereas the blue line is the terse

analytical approximation to the toroidal part of the t01s
0
1 flow, satisfying the required symmetry and boundary conditions.

flows. Typically, ↵! dynamos are oscillatory, whereas ↵2 dynamos are steady [19]. However, it
is not easy to isolate these mechanisms in our solutions, which all appear to have a significant
contribution from the shearing velocity (plots of the � components of the flow are provided in the
supplemental material).

(b) Terse flows
The optimised flows can be approximated by analytical functions, i.e. simplified into a terse form
which may be easily reproduced in subsequent studies, without requiring the cumbersome radial
basis functions. The terse functions were obtained by fitting the solutions with simple polynomial
and sinusoidal functions in r using a non-linear least squares regression, keeping in mind both
the symmetry of the flows and the no-slip boundary conditions. Figure 2 shows the fit between
the terse and optimum t

0
1(r) radial function. The analytical form of the terse flows is presented in

Table 3.
Naturally there is a trade off between simplicity and optimality, however this was found to be

quite small. The critical Rm for the terse flows was checked both with a forward run and using
the eigenvalue solver. As shown in Tables 1, 3 and 4, Rmc is < 12% higher for any of the terse
flows, which is not very significant in the range of Rm considered.

(c) Flow structure in physical space
Meridional and equatorial plots of the optimised flows are presented in figures 3 and 4. Figures
5-7 show the spatial structure of the optimised velocity and magnetic field at time T of the three
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Flow type Toroidal rad. function Poloidal rad. function Rmc �

t
0
1s

0
1 0.792(1� r

2)7 sin2(⇡r) 0.076(1� r
2)3 sin2(⇡r) 120.31 0.00119201224±

1.95689566474i

t
0
1s

0
2 0.557(1� r

2)3 sin2(⇡r) 0.023(1� r
2) sin3(⇡r) 159.66 0.00036943245±

1.25906575369i

t
0
2s

0
2 0.190(1� r

2) sin3(⇡r) 0.023(1� r
2) sin3(⇡r) 131.54 0.00043598313±

0i

Table 3. Analytical approximations to the optimised flows’ toroidal and poloidal radial functions, i.e. the terse flows. The

last column gives their growth rate near Rmc for a resolution of (nmax, lmax) = (50, 50) measured by the eigenvalue

solver code. These approximate values of Rmc are not significantly higher than those of the optimal flows presented in

Table 1.

�(t01s
0
1) �(t01s

0
2) �(t02s

0
2)

Rm 120.31 159.66 131.54

(30,30) 0.00119201169 ± 1.95689566479i 0.00036943438 ±1.25906575473i 0.00043597869 ± 0i

(40,40) 0.00119201166 ± 1.95689566483i 0.00036943353 ± 1.25906575398i 0.00043598311 ± 0i

(50,50) 0.00119201224 ± 1.95689566474i 0.00036943245 ± 1.25906575369i 0.00043598313 ± 0i

Table 4. Growth rates � for the m= 1 BT mode, produced by the terse flows at resolutions (nmax, lmax) =

(30, 30), (40, 40) and (50, 50) with the eigenvalue solver code.

(a) (b) (c)

Figure 3. Equatorial sections of the sphere showing the magnitude of U for the optimal flows (a) t01s
0
1, (b) t01s

0
2 and

(c) t02s
0
2.

(a) (b) (c)

Figure 4. Meridional sections of the sphere showing the magnitude of U for the optimal flows (a) t01s
0
1, (b) t01s

0
2 and

(c) t02s
0
2.
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(a) (b)

Figure 5. (a) Streamlines of U and (b) magnetic field lines of BT for the optimised t01s
0
1 dynamo.

(a) (b)

Figure 6. (a) Streamlines of U and (b) magnetic field lines of BT for the optimised t01s
0
2 dynamo.

flows within the sphere (i.e. r 2 [0, 1]). The streamlines are colour coded according to the intensity
of the field: red indicates faster flows, blue slower ones. The t

0
1s

0
1 velocity streamlines shown in

figure 5(a) display a weak north to south directed meridional flow in the outer half of the sphere,
which is regenerated by a strong south to north flow in the centre. The t

0
1s

0
1 BT field lines are

shown in figure 5(b). Similarly to the velocity, the magnetic field intensity is strongest in the inner
25% of the sphere, where the field twists into oppositely directed branches which join again in the
upper hemisphere. Figure 6(a) illustrates the t

0
1s

0
2 velocity streamlines, which run from the poles

to the equator. The t01s
0
2 peak velocity is ⇠ 65% the intensity of the peak t

0
1s

0
1 flow. In contrast to the

latter, there are high intensity regions out to r⇠ 0.45 and a low velocity patch in the very centre
of the sphere. This radial intensity variation can also be seen in the BT field, whose structure is
shown in figure 6(b). The field is strongest at intermediate radii, becoming less intense near the
centre. The t

0
2s

0
2 velocity field has a peak intensity of only 53% that of the t

0
1s

0
1 flow. As shown

in figure 7(a), the flow along the axis travels rapidly towards the poles, with a slow back-flow
in the outer region and very low velocities in the equatorial plane. Figure 7(b) shows that the
magnetic field is most intense in the centre, where it twists. The highest flow magnitudes are
within r < 0.25, with low speeds in the outer regions.

The velocity and vorticity fields are well aligned in the inner half of the sphere for both the
t
0
1s

0
1 and t

0
2s

0
2 flows, such that these flows have large pointwise helicities, as shown in figures 8(a)

and 8(b). The alignment between velocity and vorticity persists up to larger radii compared to
Chen et al. [10]’s solution. It is not present in any region of the sphere for the t

0
1s

0
2 case (figure

8(b)), resulting in lower overall helicity.
The alignment corroborates the work of many authors ( [18], [21], [22] ) who found that flows

which display greater helicity allow for more efficient dynamo action. At the onset of dynamo
action, the external magnetic field BT for all flows is dipolar, as shown in figure 9. This is because
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(a) (b)

Figure 7. a) Streamlines of U and (b) magnetic field lines of BT for the optimised t02s
0
2 dynamo.

(a) (b) (c)

Figure 8. (a) t01s
0
1 for r 0.325 (b) t01s

0
2 for r 0.5 (c) t02s

0
2 for r 0.75. The arrows show the direction of the velocity

(red) and vorticity (black) fields for the t01s
0
1 (left), t01s

0
2 (centre) and t02s

0
2 (right) flows. The t01s

0
2 flow doesn’t display any

significant local alignment. A subspace of the unit sphere is shown to highlight the alignment of the velocity and vorticity.

(a) (b) (c)

Figure 9. External magnetic fields for the (a) t01s
0
1 (b) t01s

0
2 and (c) t02s

0
2 flows up to r= 2, shown in the same orientation

as in figures 5(b), 6(b) and 7(b). All fields are dipolar.

the m= 1 magnetic modes have the largest real growth rate, as mentioned in section 3(a). Both
the t

0
1s

0
1 and t

0
2s

0
2 flows produce magnetic fields which do not display a specific symmetry; BT

contains all ` modes, with both cosine and sine harmonic contributions. The t
0
1s

0
2 flow, on the

other hand, is symmetric with respect to a reflection in the equatorial plane, and antisymmetric
with respect to a rotation through ⇡ radians about the ✓= 0 axis. Thus, it only contains the modes:

S
1c
1 , S

1s
1 , T

1c
2 , T

1s
2 , S

1c
3 , S

1s
3 , ...

Investigating the angularly averaged properties of these optimised flows can also be useful,
as they might highlight radial structures which are important for dynamo action. The radial
distribution of a given quantity is found by taking the average over solid angle.
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Figure 10. Radial distributions of (a) kinetic energy, (b) helicity, (c) magnetic energy and (d) maximum strain rate for the

t01s
0
1 optimised solution, including profiles of the original DJ flow for reference.
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Figure 11. Radial distributions of (a) kinetic energy, (b) helicity, (c) magnetic energy and (d) maximum strain rate for

the t01s
0
2 optimised solution, including profiles of the original DJ flow for reference. Helicity averaged over solid angle is

identically zero for this flow, due to the presence of different spherical harmonic components.
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Figure 12. Radial distributions of (a) kinetic energy, (b) helicity, (c) magnetic energy and (d) maximum strain rate for the

t02s
0
2 optimised solution, including profiles of the original DJ flow for reference.

For example, the radial magnetic energy distribution is:

BT (r)
2 =

1
4⇡

Z2⇡

0

Z⇡

0
(Bt

T )
2 + (Bp

T )
2 sin ✓ d✓ d� (3.1)

An analogous expression produces the radial kinetic energy and helicity distributions, keeping in
mind that the helicity components are:

H
p(r) =

1
4⇡

Z2⇡

0

Z⇡

0
Up ·r⇥Ut sin ✓ d✓ d� H

t(r) =
1
4⇡

Z2⇡

0

Z⇡

0
Ut ·r⇥Up sin ✓ d✓ d� (3.2)

In addition, we consider the radial distribution of shear. Shear is important for processes such
as the Omega effect, where it helps to transform poloidal magnetic field into toroidal field [23].
Regions with most shear are thus likely to be associated with magnetic field generation. The radial
profile of the maximum shear at a given point, Smax, can be quantified via the maximum absolute
strain rate, through:

Smax(r) =max
r2V

|eig(rU+rUT )/2| (3.3)

The angularly averaged properties of the t
0
1s

0
1 flow in figure 10 present distinct similarities to the

optimal flow found by Chen et al. [10], despite the physical flow structure being quite different.
The helicity and kinetic energy profiles are quite similar, peaking near the centre of the sphere (at
r= 0 and r= 0.08 respectively) and again demonstrating the velocity-vorticity alignment. This
can also be observed in the t

0
2s

0
2 profile (figure 12), although here the peaks are both shifted

towards r= 0.3, due to the greater number of circulation cells. The kinetic energy of the t
0
1s

0
2

flow, shown in figure 11, peaks at r= 0.22, an intermediate radius compared to the single ` flows.
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The flow is nearly stagnant in the outer half of the sphere for t01s
0
1 , which was also observed by

Chen et al. [10]. In fact, all flows have a sluggish layer spanning at the least the outer 20% of the
sphere. Bullard and Gubbins [24] suggested that such a layer could improve dynamo action by
reducing energy loss by magnetic diffusion.

In the t
0
1s

0
1 case, the total magnetic energy appears to follow the shear, with both quantities

reaching a maximum near r= 0.2, albeit not exactly at the same position. The t
0
2s

0
2 BT field

also appears to peak in a similar location to the maximum shear, however shear variations at
larger r are not mirrored closely. In the t

0
1s

0
2 case, the magnetic field generation does not appear

to be linked to the shear. Therefore, although in many cases shearing can amplify the magnetic
field through an Omega-type effect, this mechanism is not necessarily present in all optimised
dynamos, but appears to act in the more efficient ones.

(d) Spectral analysis of flow fields
The solutions’ convergence can also be verified by looking at the spectra of the optimised flows.
Figures 13(a)-(c) shows the magnetic energy and squared enstrophy in each n mode, while figures
13(d)-(f) give the magnetic energy in each ` mode. These were computed using the partial sums:

Bn =
X

m,`

Tnm`B
t
nm` + Snm`B

p
nm` (3.4)

An analogous expression can be written for Un and the ` spectrum. The enstrophy spectra include
at most two distinct `modes and as such are not very smooth. Nonetheless, they do follow a linear
trend, which indicates the exponential convergence typical of spectral methods [25]. The magnetic
field spectra are much smoother, due to the averaging effect of including all ` modes. Chen et
al. [10] provide spectra with respect to `. When their results are plotted against n, comparable
convergence rates are found for their velocity field, while the magnetic field solutions found here
converge more rapidly.

(e) Comparison to theoretical bounds and optimal dynamo for a sphere
The magnetic Reynolds numbers for each flow can be compared to theoretically determined lower
bounds for dynamo action, to see how far above this minimum requirement the dynamos are
operating. In particular, we consider the Backus and Childress bounds, based on maximum strain
and velocity respectively:

Backus : Rm
s
> ⇡

2

Childress : Rm Umax > ⇡

The definitions for different Rm conventions are given in section 2(a). A comparison was
also made with the bound of Proctor [26], however this was not particularly applicable as the
bound is most useful in the limit Up ! 0, which does not hold in our case. Table 5 presents the
energy, enstrophy and strain based Rmc for each optimised flow, as well as their proximity to
the theoretical bounds defined above. For comparison, these same quantities are reported for
the original DJ flows and the optimum dynamo in a sphere. The optimised flows operate at
significantly reduced Rmc compared to the original DJ flows (save for the strain-based Rm

s),
but still 18-30 times above the Childress bound and 30-50 times above the Backus bound. The
t
0
1s

0
1 flow shows the greatest improvement, with an enstrophy-based Rmc which is more than

four times smaller than the original onset for dynamo action. The t
0
1s

0
2 flow’s Rmc has been

reduced by more than a factor of 2, while the t
0
2s

0
2 flow’s Rmc is now 35% smaller. The root-mean

squared speeds of the optimised flows are at least four times smaller than the original DJ flows’,
while their maximum strain rates remain comparable. The optimised axisymmetric flows’ Rmc

are similar to that of the overall optimum flow for a sphere, differing at most by a factor of 2.2.
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Figure 13. Final magnetic energy (blue) and kinetic energy (red) for: each n mode of the optimised flows (a) t01s
0
1, (b)

t01s
0
2, (c) t02s

0
2 and each l mode (d) t01s

0
1, (e) t01s

0
2, (f) t02s

0
2. Panel (e) shows the symmetry separation of the t01s

0
2 BT

solution, where the poloidal and toroidal component only contain odd and even ` modes respectively.

The most efficient axisymmetric flow is the t
0
1s

0
1, which displays very similar characteristics to the

optimum of Chen et al. [10]. This was expected, as their flow is dominated by t
0
1 and s

0
1 modes.

The physical structure of the resulting magnetic field is comparable, with two main branches
and a central twist (compare to figure 4 of [10]). The angularly averaged properties are also very
similar in form and magnitude. The main difference is an extended contribution to the toroidal
magnetic field beyond r⇠ 0.3 for the axisymmetric flow. The overall optimal axisymmetric flow
without restriction on the number of modes present was also computed, and was found to have
Rmc = 96.38. This result agrees with a previous study [27], and is only 10% smaller than the Rmc

of the t01s
0
1 flow. Streamlines of the optimal U and BT are presented in Figure 14. The optimal flow

is dominated by the first three ` modes, with the `= 2 providing the largest contribution. Overall
the `= 1� 3 modes account for over 90% of the enstrophy. The region of maximal velocity is
offset from the sphere’s centre, in contrast to the DJ optima. The optimal magnetic field is again
dipolar, containing all ` modes, and so does not display specific symmetries.
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(a) (b)

Figure 14. a) Streamlines of U and (b) magnetic field lines of BT for the optimised axisymmetric dynamo, in which all

m= 0 flow modes are allowed.

Rm
u
c Rmc Smax Rm

s
c Rm

s
c/⇡

2
Urms Umax RmcUmax/⇡

t
0
1s

0
1 13.7 107.70 2.36 254.7 25.8 0.13 0.87 29.8

t
0
1s

0
2 19.6 142.42 3.68 524.5 53.1 0.14 0.56 25.5

t
0
2s

0
2 16.4 125.50 2.08 261.1 26.5 0.13 0.46 18.2

Axisymmetric 13.0 96.38 2.02 194.7 19.7 0.14 0.77 23.6

DJ t01s
0
1 104 476 1.77 274 27.8 0.67 1.12 169.7

DJ t01s
0
2 60 310 2.45 233 23.6 0.64 1.07 105.6

DJ t02s
0
2 32 193 2.84 153 15.5 0.59 0.94 57.7

Unconstrained 7.0 64.45 3.33 215 21.8 0.11 0.69 14.2

Table 5. Quantitative comparison between the new optima, the overall optimum for axisymmetric flows, the classical

Dudley-James flows and Chen et al. [10]’s optimum for flows in a sphere. The second, third and fifth columns give the

energy, enstrophy and strain based Rmc respectively. Smax and Umax are the maximum strain and velocity magnitudes

present in the flow. Urms is the root-mean square velocity of the flow. The sixth and ninth columns provide a comparison

with the Backus and Childress bounds respectively.

Chen et al. [10] found that the maximum strain rate appears to be correlated with the radially
averaged BT field. We see this correlation for the t

0
1s

0
1 flow, and to a certain extent for the t

0
2s

0
2

flow, however the mixed ` field does not display any obvious connection between these two
properties. This may be another reason why the t

0
1s

0
2 flow is less efficient.

It is important to note that the choice of Rm convention strongly influences the form of
the resulting flows. The enstrophy-based Rm does not place a restriction on the system’s local
maximum strain, so the optima do not necessarily have a lower Rm

s than the original flows.
However, due to the use of no-slip boundary conditions, the root mean enstrophy is equal to the
global shear magnitude [10], which is small. Thus, our optimisation selects flows with moderate
velocities which do not present strong gradients perpendicular to the flow and might therefore
be more likely to occur in a physical setting for sustained periods of time.

4. Conclusions
In this paper, we optimised three axisymmetric flows to find the lowest magnetic Reynolds
number for which they operate as kinematic dynamos. The form of these flows was originally
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proposed by Dudley and James [9]. A modified variant of the Lagrangian optimization procedure
developed by Chen et al. [10] was applied in conjunction with a Galerkin basis to optimise
the spectral coefficients of the fluid flow and initial magnetic field. This work extends Chen et
al. [10]’s optimisation method, which finds the most efficient unconstrained flows in a sphere,
to flows containing only two modes. The optimal flows were found to have enstrophy-based
values of Rmc of 107.7, 142.4 and 125.5 for the t

0
1s

0
1, t01s

0
2 and t

0
2s

0
2 modes respectively, up to four

times smaller than the original DJ bounds. The flows containing the same toroidal and poloidal `
have strain-based values of Rmc which are ⇠ 26 times the Backus bound, while the Rmc for the
flow containing mixed ` modes is 53 times the Backus bound. The magnetic field growth rates
and the convergence of the solutions were corroborated using a numerical eigenvalue solver.
The optimised flows’ radial functions were fitted with analytical expressions obeying the same
boundary conditions and symmetry constraints, producing terse flows, whose Rmc is at most
12% higher. Compared to the original flows, all three optimised dynamos have quite similar
values of Rmc, with the single `-mode flows being slightly more efficient. These flows display an
alignment of velocity and vorticity in the inner third of the sphere, resulting in large point-wise
helicity. On the other hand, the t

0
1s

0
2 flow does not display such an alignment, further confirming

the observations of previous authors ( [18], [28]) that helicity improves a dynamo’s efficiency. Our
results also corroborate previous observations ( [24], [10]) that the presence of a nearly stagnant
layer near the surface of the sphere promotes dynamo action, as all three optimised flows have
very low velocities near the edge of the fluid container.

Overall, these are some of the simplest and most efficient kinematic dynamos known to exist.
We hope that the simple form of the terse flows might make them a useful reference for future
studies, and perhaps form the basis for an experimental dynamo.
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A. Magnetic Reynolds number conversion formulae
The enstrophy-based magnetic Reynolds number, Rm, defined in section 2(a) can be converted to
the more conventional energy (Rm

u) and strain based (Rm
s) definitions through the following

relations:

Rm
u =

✓s
1
V

Z

V
U2 dV

◆
Rm where Rm

u =
U

⇤
L
⇤

⌘⇤

Rm
s =

✓
max
V

|eig(rU+rUT )/2|
◆
Rm= SmaxRm where Rm

s =
S
⇤
maxL

⇤2

⌘⇤

The notation is the same as in the main body of the paper, with the asterisk denoting
dimensional quantities. We note that our optimisation focuses on the enstrophy of the flow, not
the strain, so that the Rm

s of the optimised flows may be higher than that reported by similar
flows in other studies, e.g. [29].

B. Galerkin basis radial functions
The magnetic field, B, radial functions are:
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T`
n(r) =N

h
n,`r

`+1(1� r
2)P

(2,`+1/2)
n�1 (2r2 � 1)

P`
n(r) =N

k
n,`r

`+1(c1P
(0,`+1/2)
n (2r2 � 1) + c2P

(0,`+1/2)
n�1 (2r2 � 1))

(A 1)

With

c1 = n(2`+ 2n� 1), c2 =�(n+ 1)(2n+ 2`+ 1) (A 2)

The velocity field, U, radial functions are:

t
`
n(r) =N

f
n,`r

`+1(P
(0,`+1/2)
n (2r2 � 1)� P

(0,`+1/2)
n�1 (2r2 � 1))

p
`
n(r) =N

g
n,`r

`+1
3X

i=1

ciP
(0,`+1/2)
n+2�i (2r2 � 1)

(A 3)

With

c1 = 2`+ 4n+ 1, c2 =�2(2`+ 4n+ 3), c3 = 2`+ 4n+ 5 (A 4)

P
(↵,�)
n are Jacobi Polynomials and N

�
↵,� are normalisation factors ensuring the basis’

orthonormality. The boundary conditions satisfied by the basis fields are:

t
`
n(1) = 0, p

`
n(1) =

@p
`
n

@r
(1) = 0, T`

n(1) = 0,
@P`

n(1)
@r

+ `P`
n(1) = 0 (A 5)

C. Form of DJ flows
The explicit forms of the three DJ flows are given below.

t
0
1s

0
1 : U(r, ✓,�) =r⇥ (t01(r)Y

0
1 (✓,�)r̂) +r⇥r⇥ (p01(r)Y

0
1 (✓,�)r̂) (A 1)

t
0
1s

0
2 : U(r, ✓,�) =r⇥ (t01(r)Y

0
1 (✓,�)r̂) +r⇥r⇥ (p02(r)Y

0
2 (✓,�)r̂) (A 2)

t
0
2s

0
2 : U(r, ✓,�) =r⇥ (t02(r)Y

0
2 (✓,�)r̂) +r⇥r⇥ (p02(r)Y

0
2 (✓,�)r̂) (A 3)

(A 4)

We use fully normalised spherical harmonics, which satisfy:

Z⇡

✓=0

Z2⇡

�=0
Y

m
` Y

m0

`0 d⌦ = �``0�mm0 (A 5)

The radial functions used by Dudley and James [9] are:

t
0
1(r) =

r
4⇡
3
r sin(⇡r), t

0
2(r) =

r
4⇡
5
r
2 sin(⇡r) (A 6)

s
0
1(r) = "

r
4⇡
3
r sin(⇡r), s

0
2(r) = "

r
4⇡
5
r
2 sin(⇡r) (A 7)

(A 8)

where "= 0.17, 0.13 and 0.14 for the t
0
1s

0
1, t

0
1s

0
2 and t

0
2s

0
2 flows respectively. The numerical

prefactors appear because Dudley and James [9] use a Neumann normalisation for spherical
harmonics:
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