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Abstract:

• In social surveys involving questions that are sensitive or personal in nature, respondents may
not provide correct answers to certain questions asked by the interviewer. The impact of this non-
response or inaccurate response becomes even more acute in the case of small area estimation (SAE)
where we already have the problem of small sample size coming from the small area. To obtain a
truthful response, we use randomized response techniques in each small area. We assume that a
non-sensitive auxiliary variable, highly correlated with the study variable, is available. We use the
word model in two senses — one in the context of population models, i.e. the relationship between
the study variable and the auxiliary variable; and second, the scrambled response model. We focus
on the problem of estimating small area total and examine its performance both theoretically and
numerically.
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1. INTRODUCTION

In social sciences, responses on some stigmatizing variables are often needed to make
inference about the behavior of some human populations. Examples of such situations are
where questions are asked that are related to topics like tax evasion, use of illegal drugs,
extra marital affairs, ethical issues, political affiliation, etc. In the case of stigmatizing study
variables, non-sampling error may increase due to missing or false responses, which leads to
biased estimates of population parameters such as mean, total or proportion. To reduce such
bias in sample surveys, [34] proposed a randomized response technique (RRT) for obtaining
more accurate estimates. A lot of research has been done for improving the original RRT
model of [34]. Authors contributing in this area include [17], [18], [35], [6], [12], [22], [7],
[3], [19, 20], [21] and [9, 10, 11]. In RRT literature, much more attention has been paid to
design-based approach which assumes the population to consist of fixed constants. But in
many real-life situations, population values are generated as realizations of a set of stochastic
variables. Such population is called a superpopulation and the statistical models for such type
of populations are called superpopulation models. Superpopulation models help in sample
selection, constructing estimators for population parameters of interest, and enhancing the
precision of estimates. A superpopulation model uses the relationship between the study
variable and the auxiliary variable(s) to predict the population values for the non-sampled
units assuming non-informative sampling approach. Under the framework of model-based
inference, [14] dealt with the problem of estimation of a finite population mean or total.
[27] and [8] attempted to obtain optimal model-unbiased estimators of the population mean
and total using least squares estimation methods and the well-known Gauss–Markov theorem.
Some discussion on model-based approach can be found in [2], [15], [16], [30, 31], [29], [28],
and [33]. A detailed review of model-based estimation is also available in [32].

[13] and [24] have suggested post-censal estimates (estimates obtained immediately af-
ter census using the census results) for small areas and called it small area estimation (SAE).
[23] dealt with labor force trend estimation for small areas. Work related to such methods can
also be found in [25, 26] and [38]. More recently, [36] have considered estimation of uncertainty
in spatial micro-simulation approaches for SAE. The main purpose of SAE is to overcome
the problem of small sample when separate estimates for domains are needed. In this article,
we develop some model-based estimators for small area totals assuming the study variable in
each domain is sensitive. A generalized randomized response model has been used to collect
information about the study variable. The rest of the article is structured as follows: an
overview of SAE under direct response is considered in Section 2 with some superpopulation
models. Section 3 extends the SAE given in Section 2 to randomized response models, as-
suming a sensitive quantitative study variable and non-sensitive auxiliary variable. Section 4
presents a numerical study based on two real life data sets. Some concluding remarks are
provided in Section 5.
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2. SAE UNDER DIRECT RESPONSE

Consider a finite population U = {U1, U2, ..., UN} of N units as a realization of a super-
population with variable of interest y, and auxiliary variable x. For a specific sup-population
Ak, also known as “small area”, let dki be an area specific binary variable, for k = 1, 2, 3, ...m
and i = 1, 2, ...N , such that dki = 1 if Ui belongs to Ak, and zero otherwise. Further, let
Nk =

∑
U dki be the size of the k-th sub-population or k-th small area (usually unknown),

Tyk =
∑

U dki yi and Txk =
∑

U dki xi be the population totals, µyk = Tyk

Nk
and µxk = Txk

Nk
be

the population means, and σ2
yk = 1

Nk

∑
U dki(yi − µyk)2 and σ2

xk = 1
Nk

∑
U dki(xi − µxk)2 be

the population variances of the study variable and the auxiliary variable respectively in
the k-th area. The notation

∑
U is used for summing the values over U . Also, let the

covariance between the study variable and the auxiliary variable in the k-th area be σyxk =
1

Nk

∑
U dik (yi−µyk)(xi−µxk). Suppose that s is a member of the set S of all possible samples

that can be drawn from U using simple random sampling without replacement (SRSWOR)
scheme with size n, and s̄ consists of all those elements of U that are not selected in sample s.
The population total for the study variable, quantity of interest or estimand, in k-th area can
then be expressed as Tyk =

∑
s dki yi +

∑
s̄ dki yi. A predictor for Tyk is obtained as follows:

(2.1) T̂yk =
∑

s

dki yi +
∑

s̄

dki ŷi .

The main problem is to find ŷi for Ui ∈ s̄. The predictor ŷi is obtained assuming different
superpopulation models. We consider three most widely used population models:

1. Homogenous Population Model (HPM): y = µyk + ε ,

2. Linear Population Model (LPM): y = αk + βx+ ε ,

3. Ratio Population Model (RPM): y = γx+ x1/2ε ,

for k = 1, 2, ...,m, where ε is the stochastic error term which has mean 0 and a constant
variance σ2. Also, µyk and αk are mean effects in k-th area and β and γ are the coefficients of
the regression line of y on x for the whole population for the cases with and without intercepts.
In model based approach, these parameters are termed as superpopulation parameters.

2.1. Homogeneous Population Model (HPM)

In case of HPM, a BLUP for µyk, obtained by minimizing the residual sum of square∑
s dki(yi − µyk)2 is ȳk = 1

nk

∑
s dki yi, which yields an estimator for Tyk given by

(2.2) t̂kh =
∑

s

dki yi +
∑

s̄

dki ȳk =
N

n

∑
s

dki yi .

The sub-script ‘h’ is used to indicate that the superpopulation model is homogeneous.
It is straight forward to show that t̂kh is an unbiased estimator of population total Tyk

with variance given by

(2.3) Var(t̂kh) = λ
[
θk σ

2
yk + θk(1− θk)µ2

yk

]
,
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where θk = Nk
N is the population proportion of the units belonging to k-th small area, and

λ = N(N−N)
n . For proof readers can see [5, p. 156–160].

2.2. Linear Population Model (LPM)

Now consider LPM for finding ŷi, Ui ∈ s̄. The BLUP for αk and β are obtained by
minimizing the sum of squared prediction errors for specific areas, i.e.

SSPE =
∑

s

dki(yi − αk − xiβ)2 .

These are given by α̂k = ȳk − β̂ x̄k and β̂ =
P

s dki (yi−ȳk) (xi−x̄k)P
s dki(xi−x̄k)2

, where ȳk and x̄k are the
sample means corresponding to k-th small area. The estimator of Tyk under LPM is given by

t̂klr =
∑

s

dki yi +
∑

s̄

dki

(
α̂k + β̂ xi

)
.

After some simplifications and using assumption from [5], i.e. Nk
N ≈ nk

n , we get

(2.4) t̂klr =
N

n
tyk + β̂

(
Txk −

N

n
txk

)
,

where tyk =
∑

s dki yi and txk =
∑

s dki xi are the sample totals for k-th small area. Further,
β̂ given in (2.4) is based on local (area specific) observations only, which do not account for
relationship between the variables for the entire population. To overcome this deficiency,
different area level models have been proposed in literature. For simplicity, we assume that
the regression coefficient β of y on x is known for the whole population. For known β,
we have

(2.5) t̂klr =
N

n
tyk + β

(
Txk −

N

n
txk

)
.

The sub-script ‘lr’ is used to denote that the underlying model is linear. For known β, t̂klr is
unbiased for Tyk with variance given by

(2.6) Var(t̂klr) = λ
(
σ∗2yk + β2σ∗2xk − 2βσ∗yxk

)
,

where σ∗2yk = θkσ
2
yk + θk(1 − θk)µ2

yk, σ∗2xk = θkσ
2
xk + θk(1 − θk)µ2

xk and σ∗yxk = θkσyxk +

θk(1− θk)µyk µxk. The value of β that minimizes the variance is βopt =
σ∗yxk

σ∗2xk
. The corre-

sponding minimum variance of t̂klr is given by

(2.7) Var(t̂klr)opt = λ
(
1− ρ∗2yxk

)
σ∗2yk ,

where ρ∗yxk =
σ∗yxk

σ∗ykσ∗xk
. From Equations (2.7) and (2.3), it is obvious that t̂klr is always more

efficient than t̂kh for any linear relationship between y and x.
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2.3. Ratio Population Model (RPM)

For situations when there is a proportional relationship between the survey variable
and the auxiliary variables, the RPM [32] is often preferred as the working model. RPM is
given by

(2.8) y = γx+ x1/2ε .

The estimator for γ which minimizes the sum of squared errors, i.e. SSE∗ =
∑

s dki

(yi−xiγ

x
1/2
i

)2,

is given by γ̂ =
P

s dki yiP
s dki xi

. Now consider

(2.9) t̂kr =
∑

s

dki yi +
∑

s̄

dki(γ̂xi)

as an estimator of Tyk. The sub-script ‘r’ is used to denote the ratio population model for
the response variable. After simplification and assuming Nk

N ≈ nk
n , we get

(2.10) t̂kr =
∑

s dki yi∑
s dki xi

∑
s̄

dki xi =
N

n

[
tyk

nµxk

txk

]
.

The bias and MSE respectively, of t̂kr, are given by

(2.11) Bias(t̂klr) ∼=
λ

N
µyk

(
C∗2

xk − C∗
yxk

)
and

(2.12) MSE(t̂kr) ∼= λµ2
yk

(
C∗2

yk + C∗2
xk − 2C∗

yxk

)
,

where C∗2
yk =

σ∗2yk

µ2
yk

, C∗
xk=

σ∗2xk

µ2
xk

and C∗
yxk=

σ∗yxk

µyk µyk
. From (2.3) and (2.12), it can be inferred that

MSE(t̂kr) ≤ Var(t̂kh) if ρ∗yxk ≥
1
2

C∗
xk

C∗
yk

.

3. SAE UNDER RANDOMIZED RESPONSE TECHNIQUE

When the study variable is of sensitive nature, it is difficult to obtain 100% response
through direct response method. For improved response rate in such situations, survey statis-
ticians prefer to use RRT. Assuming quantitative study variable, and following [11], we use
the following scrambled response model

(3.1) z = ay + b ,

where y is the sensitive study variable which follows one of the population models given in
Section 2, a and b are two uncorrelated scrambling variables with means µa and µb, and
variances σ2

a and σ2
b respectively. Further, a and b are independent of the study variable y.

Note that respondents from each small area use the same scrambling variables a and b whose
distributions are unknown to the interviewer while the means and variances are known.
Taking expectation of Equation (3.1) with respect to randomization mechanism, we have
ER(z) =µay+µb. The transformed scrambled response is obtained as y= ER(z)−µb

µa
. A sample

unbiased estimate for y is ỹ = z−µb
µa

.
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3.1. Homogeneous Population Model (HPM)

When the underlying population model is homogeneous, i.e. when there is no covariate
affecting the outcome variable, a BLUP for the superpopulation parameter µyk is ˜̄yk = t̃yk/nk

which yields an estimator for Tyk given by

(3.2) t̃kh =
∑

s

dki ỹi +
∑

s̄

dki ˜̄yk = nk ˜̄yk + (Nk − nk) ˜̄yk =
N

n
t̃yk ,

where t̃yk =
∑

s dki ỹi. We assume that the sampling weights for the whole sample and the
sample within k-th domain are same, i.e. Nk

N ≈ nk
n . It is easy to show that t̃kh is an unbiased

estimator of population total Tyk with variance

(3.3) Var(t̃kh) = λ
(
θk σ̃

2
yk + θk(1− θk)µ2

yk

)
,

where σ̃2
yk = Var(ỹi | dki =1) = 1

µ2
a

Var(zi | dki =1), and

Var(zi | dki =1) = Vs
{
ER(zi | dki =1)

}
+ VR

{
ES(zi | dki =1)

}
= Es

(
σ2
a y

2
i + σ2

b | dki =1
)

+ Vs
(
µayi +µb | dki =1

)
= σ2

a µ2,yk + σ2
b + µ2

aσ
2
yk ,

(3.4)

where Es and Vs are the expectation and variance with respect to the data generating mech-
anism. Also µ2,yk is the second order raw moment for k-th area. Using value of σ̃2

yk from
(3.3), we get

Var(t̃kh) = λ
(
θkσ

2
yk + θk(1− θk)µ2

yk + θkψ
2
yk

)
,

Var(t̃kh) = Var(t̂kh) + λ
(
θkψ

2
yk

)
,(3.5)

where ψ2
yk = 1

µ2
a

(
σ2
a µ2,yk + σ2

b

)
. It is observed from (3.5) that Var(t̃kh) is always larger than

Var(t̂kh) as the second term is positive. For detailed derivation, see [1]. The Var(t̃kh) de-
creases with decrease in variance of the scrambled variables but this leads to reduction in
respondent’s privacy as well. Hence, the variance of the scrambled response models should
be of a reasonable size resulting in a proper tradeoff between respondent’s privacy and the
efficiency of the proposed estimators.

To improve efficiency for a fixed level of privacy protection, we use model relationship
between the available auxiliary variable and the study variable. Subsections 3.2 and 3.3
cover linear and ratio population models respectively that utilize the relationship between
the variables at unit level to increase efficiency.

3.2. Linear Population Model (LPM)

Assuming LPM, we find the predicted transformed scrambled response ỹi, Ui ∈ s̄. The
BLUP for αk and β are obtained by minimizing the sum of squared errors for the k-th area
as follows:

SSE =
∑

s

dki ẽ
2
i =

∑
s

dki(ỹi − αk − xiβ)2 ,
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where ˜̂αk = ˜̄yk −
˜̂
β x̄k and ˜̂

β =
P

s dki(ỹi−˜̄yk) (xi−x̄k)P
s dki(xi−x̄k)2

. The predictive estimator under LPM using
transformed scrambled response is given by

(3.6) t̃klr =
∑

s

dki ỹi +
∑

s̄

dki

( ˜̂αk + ˜̂
βxi

)
.

After some simplification, we get

t̃klr =
N

n
t̃yk + ˜̂

β

(
Txk −

N

n
txk

)
.

By same argument as given in Subsection 2.2, we have

(3.7) t̃klr =
N

n
t̃yk + β

(
Txk −

N

n
txk

)
.

For known β, t̃klr is unbiased for Tyk, with variance given by

(3.8) Var(t̃klr) = λ
(
σ̃∗2yk + β2σ∗2xk − 2βσ∗yxk

)
.

The optimum value of β is βopt =
σ∗yxk

σ∗2xk
with corresponding design optimum variance

(3.9) Var(t̃klr)opt = λ
(
1− ρ̃∗2yxk

)
σ̃∗2yk ,

where ρ̃∗yxk =
σ∗yxk

σ̃∗yk σ∗xk
. Equation (3.9) shows that t̃klr is always more efficient than t̃kh for any

correlation between y and x.

3.3. Ratio Population Model (RPM)

For the situation when there is a proportional relationship between the sensitive study
variable, and the auxiliary variable whose values are available for all population units and
the variance of the survey variable is also proportional to the auxiliary variable, the RPM is
often preferred. Consider (3.1), where y follows the ratio population model. The estimator
for γ which minimizes the sum of squared errors, i.e. SSE∗ =

∑
s dki

( ỹi−xiγ

x
1/2
i

)2, is given by

˜̂γ =
P

s dki ỹiP
s dki xi

. Consider the prediction problem as follows

(3.10) t̃kr =
∑

s

d̃ki ỹi +
∑

s̄

dki

(˜̂γxi

)
.

After simplification, we get

(3.11) t̃kr =
∑

s dki ỹi∑
s dki xi

∑
s̄

dki xi =
N

n

[
t̃yk

nµxk

txk

]
.

The bias and MSE of t̃kr are given by

(3.12) Bias(t̃klr) ∼=
λ

N
µyk

(
C∗2

xk − C∗
yxk

)
and

(3.13) MSE(t̃kr) ∼= λµ2
yk

(
C̃∗

yk + C̃∗
xk − 2C∗

yxk

)
,

where C̃∗2
yk =

σ̃∗2yk

µ2
yk

and C∗
yxk =

σ∗yxk

µyk µxk
. Equation (3.12) shows that the use of RRT to collect

response on the dependent variable does not affect the bias of ratio estimator. From (3.5)
and (3.13), it can be inferred that MSE(t̃kr) ≤ Var(t̃kh) if ρ̃∗yxk ≥

1
2

C∗
xk

C̃∗
yk

.
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4. NUMERICAL STUDY

For numerical validation of our proposed estimators, two real life data sets, one with
two small areas and the other with three small areas, are used. The detailed descriptions
along with summary statistics of the populations are given in following subsections.

Blood transfusion data

The data are taken from [37], where F , the frequency of donations, is the study variable,
T (Time in months since first donation) is taken as the covariate, and a binary variable
representing whether he/she donated blood in March 2007 (1 stands for donating blood;
0 stands for not donating blood) is taken as the area membership variable.

Players head circumference data

This data is taken from [4] which contains physical measures of N= 90 players forming
three groups, i.e. high school football players (Group 1), college football players (Group 2)
and Non-football players (Group 3), each having 30 students. The three groups represent the
small areas. The study variable y and the auxiliary variable x respectively are jaw width and
ear-to-top-of-head measurement of players. The scrambling variables a and b are generated
from Uniform distributions with different ranges.

Table 1: Summary statistics.

Parameter Data 1 Data 2

k 1 2 1 2 3

θk 0.7620 0.2380 0.3333 0.3333 0.3333

µyk 4.8018 7.7978 13.0833 10.0800 10.9467

µxk 4.8018 7.7978 14.7333 13.4533 13.6967

σ2
yk 22.5318 64.5916 1.0876 1.1520 1.4577

σ2
xk 605.4251 558.3500 0.8920 0.5702 0.3921

σyxk 76.3885 140.5756 0.5402 0.0870 0.0870
ρyxk 0.6540 0.7402 0.3333 0.3333 0.3333

Table 1 provides the summary statistics for the data sets. The theoretical results (TR)
are obtained using Variance/MSE expressions given in Section 2. The simulated results (SR)
are obtained using following algorithm:

1. Select a simple random sample of size n (100 and 30 for Populations I and II re-
spectively) without replacement from the populations described above and stratify
the populations according to the domain membership variable dk.
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2. Record information y and x for all small areas after generating values of scrambling
variables a and b from uniform distribution with different ranges.

3. Calculate the values of small area estimators under direct and randomized response
technique.

4. Repeat Steps 1–3 50000 times and obtain the simulated Variance, MSE and PRE.

The PRE in Table 2 are computed as PREr = Var(t̂kh)

MSE(t̂kr)
and PRElr = Var(t̂kh)

Var(t̂klr)
for t̂kr and

t̃klr are respectively while PREh is 100 for t̂kh. Table 2 gives the theoretical and simulated
PREs of the small area total estimators for different domains under direct response (without
using randomized response techniques) with both data sets. PREs in Tables 3 and 4 are
obtained in similar manner using the Variances and MSEs under RRT. The theoretical and
simulated values of PRE are reported in Tables 2–4 with notations TR and SR respectively.

Table 2: PREs of the SAE under direct response.

Type PREh PREr PRElr

Data I

k = 1
TR 100 215.864 216.839
SR 100 217.230 218.106

k = 2
TR 100 378.592 379.123
SR 100 370.443 375.775

Data II

k = 1
TR 100 13853.214 13862.216
SR 100 12993.771 14382.960

k = 2
TR 100 5134.249 5137.867
SR 100 4855.831 5352.376

k = 3
TR 100 6770.974 6770.974
SR 100 6371.760 7076.799

From Table 2, one can infer that for both data sets, total estimators under RPM and LPM (see
the last two columns) which utilize auxiliary information provide smaller variance than the
MSE of Total estimator under HPM. Further, estimator obtained through LPM outperforms
the other two competitors in all cases.

Tables 3 and Table 4 give a comparison of the three competing population models in
term of PREs for Data I and Data II respectively under randomized response. Going from top
to bottom in Tables 3 and 4, we observe that the PREs decrease with increase in variability
in the scrambling variables. Also, comparing Table 2 with Tables 3 and 4, we can infer that
the efficiency of the domain estimators decreases when using randomized response technique.
But that is expected given that RRT introduces noise in the data. Without RRT, the real
loss of efficiency will be much larger due to “invisible” response bias.
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Table 3: PRE of the SAE under randomized response for Data I.

a b Type PREh PREr PRElr

k = 1

U(2, 3)

U(0, 1)
TR 100 210.572 211.480
SR 100 210.726 211.501

U(0, 5)
TR 100 208.031 208.907
SR 100 207.984 208.938

U(1, 4)

U(0, 1)
TR 100 181.451 182.026
SR 100 179.096 179.553

U(0, 5)
TR 100 180.063 180.625
SR 100 177.685 178.235

k = 2

U(2, 3)

U(0, 1)
TR 100 363.439 363.921
SR 100 355.997 360.266

U(0, 5)
TR 100 360.746 361.220
SR 100 351.889 357.175

U(1, 4)

U(0, 1)
TR 100 284.007 284.270
SR 100 275.869 277.921

U(0, 5)
TR 100 282.689 282.949
SR 100 273.902 276.442

Table 4: PRE of the SAE under randomized response for Data II.

a b Type PREh PREr PRElr

k = 1

U(2, 3)

U(0, 1)
TR 100 3740.45 3740.97
SR 100 2624.11 2797.29

U(0, 5)
TR 100 3403.93 3404.35
SR 100 2368.88 2524.28

U(1, 4)

U(0, 1)
TR 100 631.56 631.57
SR 100 435.21 460.29

U(0, 5)
TR 100 623.77 623.78
SR 100 429.72 454.59

k = 2

U(2, 3)

U(0, 1)
TR 100 2578.63 2579.54
SR 100 1991.16 2127.92

U(0, 5)
TR 100 2318.17 2318.90
SR 100 1758.21 1875.70

U(1, 4)

U(0, 1)
TR 100 593.55 593.59
SR 100 424.67 447.19

U(0, 5)
TR 100 582.27 582.31
SR 100 416.73 438.87

k = 3

U(2, 3)

U(0, 1)
TR 100 2930.02 2930.02
SR 100 2203.50 2354.74

U(0, 5)
TR 100 2642.70 2642.70
SR 100 1967.09 2095.90

U(1, 4)

U(0, 1)
TR 100 608.22 608.22
SR 100 432.67 455.85

U(0, 5)
TR 100 598.12 598.12
SR 100 426.19 448.82
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5. CONCLUSION

In this study, an attempt for obtaining separate total estimates for the sensitive study
variable in each domain (small area) is made using the model relationship between the sen-
sitive study variable and the auxiliary variable. It is observed that the small area total
estimators under randomized response techniques possess larger variance (as they should) as
compared to the estimators obtained through direct responses. As the privacy and efficiency
move in opposite directions, one can’t improve both at the same time. Our proposed esti-
mators provide greater efficiency in estimating small area totals when an appropriate model
relationship between the study variable and the auxiliary variable is used. Our numerical
study with two real life data sets supports the theoretical findings. This is clear from the fact
that both PREr and PRElr are greater than PREh.
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