
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 1

Quantum Codes from Classical
Graphical Models

Joschka Roffe1,4, Stefan Zohren2, Dominic Horsman3,1, Nicholas Chancellor1

1Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, United Kingdom
2Oxford-Man Institute, Department of Engineering Science, Oxford University, United Kingdom

3Laboratoire d’Informatique de Grenoble, Université Grenoble Alpes, France
4Department of Physics & Astronomy, University of Sheffield, United Kingdom

Abstract—We introduce a new graphical framework for de-
signing quantum error correction codes based on classical prin-
ciples. A key feature of this graphical language, over previous
approaches, is that it is closely related to that of factor graphs
or graphical models in classical information theory and machine
learning. It enables us to formulate the description of the recently-
introduced ‘coherent parity check’ quantum error correction
codes entirely within the language of classical information theory.
This makes our construction accessible without requiring back-
ground in quantum error correction or even quantum mechanics
in general. More importantly, this allows for a collaborative
interplay where one can design new quantum error correction
codes derived from classical codes.

Index Terms—Quantum computing, Quantum error correc-
tion, Factor graphs

I. INTRODUCTION AND BACKGROUND

INFORMATION is processed, communicated and stored
using physical systems that are susceptible to error. As

such, error detection and correction protocols are necessary
to ensure reliable operation. The fundamental principle under-
pinning classical information theory and error correction [1],
[2] is that data is redundantly encoded across an expanded
space of bits. The resultant logical data has additional degrees
of freedom which can be exploited to actively detect and
correct errors. The exact method by which information is
redundantly encoded to create logical data is specified by a
set of instructions know as a code. In practice, most error
correction schemes are based on an efficient class of protocols
known as linear block codes. For block codes, error correction
proceeds by tracking the correlations between data bits by
using parity checks. The role of the additional redundancy bits
in a block code is to store the parity information so that it can
be decoded over time. Modern protocols such as low-density-
parity check (LDPC) codes [3]–[5] and turbo codes [6], [7]
perform at close to the Shannon rate, which is the maximum
theoretical rate for information transfer along a noisy channel
[8].

In quantum error correction [9]–[12] bits are replaced with
quantum bits (from now on referred to as qubits). Qubits
exhibit several features, discussed in more detail below, which
complicate the process of creating quantum error correction
codes. State of the art quantum error correction codes, such
as the surface code [13], rely upon a special type of quantum
measurement known as a stabilizer [14]. Stabilizers play a

similar role to the previously mentioned parity checks, but are
subject to various constraints that make it difficult to derive
quantum codes in direct analogy to efficient classical codes.

In recent work [15], the so-called coherent parity check
(CPC) codes were introduced as a new framework to derive
quantum error correction codes. The specific advantage of
CPC codes is a fail-safe code structure that guarantees that
the quantum mechanical requirements of the code are satisfied.
As a result, the CPC construction provides a useful framework
for the conversion of classical block codes to quantum codes.
In [15], CPC code design was demonstrated using the ZX-
calculus as well as a corresponding generator matrix formula-
tion.

In this work, we outline a complementary, special-purpose,
formalism for CPC codes to allow them to be expressed in
terms of classical factor graphs of the type commonly used in
classical information theory and machine learning [16]. Factor
graphs provide a simple representation of correlations within
multivariate probability distributions. In the context of coding
theory, factor graphs reveal structure that enables decoding
using efficient approximate inference algorithms [2], [4], [5].
Factor graph techniques have previously been adapted for the
decoding of quantum codes in [17], [18], as well as being used
as tools for the discovery and analysis of new quantum codes
in [19], [20]. In this paper, we develop factor graph methods
for use with CPC codes. The strength of our mapping is that
it provides a general tool for optimization of quantum codes
which does not require the user to be versed in quantum theory.
Such flexible tools are likely to be important in the near term,
as gate model quantum devices are just entering the so-called
‘noisy intermediate-scale’ stage of their development [21].
Given the highly constrained nature of these early quantum
devices, bespoke error correction protocols will be required.
As such, there is a need for optimization and design methods
capable of incorporating a variety of hardware constraints. Our
methods here are intended to fill precisely this niche, allowing
codes to be optimised against complex metrics for quality and
suitability for specific hardware.

In developing the factor graph mapping for CPC codes,
we first introduce an intermediate graphical language called
the operational representation. In addition to providing a
visualisation of operations performed between qubits, the
role of the operational representation is to abstract away the
quantum mechanical properties of the code into a form that

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 2

d1 d2

p1
(a)

d1 d2

p1
(b)

(c)

Fig. 1. Examples of classical factor graphs. (a) The [3, 2, 2] detection
code in standard factor graph notation including ‘dangling’ edge to indicate
measurement of the parity. (b) The same but with the additional node
suppressed for visual clarity, this is the style which we use for the remainder
of the manuscript, with a single additional node implicit on each parity check
node. (c) The [7, 4, 3] Hamming code in our notation. Note that in the context
of coding these graphs (without the node suppressed) are sometimes referred
to as Tanner graphs.

enables it to be mapped to a classical factor graph. Following
this translation, any code design and optimisation proceeds
using purely standard graphical models, without any further
reference to quantum mechanics. We first demonstrate the
utility of the classical factor graph representation for quantum
code design by outlining the derivation of a simple quantum
detection code. We then describe how factor graphs can be
used to construct a quantum error correction code based on
classical Hamming codes.

A. Graphical models in classical information theory

We begin by outlining standard conventions in the graph-
ical representation of classical error correction codes (for an
overview see [2], [22]). This provides a point of reference with
which to compare the graphical language for quantum error
correction presented in this paper. In a classical block code,
parity bits are introduced to measure and track the parity of
the data bits. A factor graph is a tool designed to provide a
visualisation of the relationship between data and parity bits
in a given error correction code.

As a simple first example of factor graph notation, we
consider a single (classical) parity-check cycle on a two-bit
data register r = (D1, D2), where D1 and D2 are classical
data bits with values 0 or 1. In the encode stage of the parity-
check cycle, an extra bit is introduced to measure and store
the parity check of the data bits, which is calculated as the
binary sum p = (D1 +D2)mod 2. The resultant three-bit
string c = (D1, D2, p) is called the codeword. A factor graph
representation of this encoding is shown in Figure 1a, where
the circles represent the data bits and the square the parity
bit. The edges in the factor graph indicate which data bits

are involved in a given parity check. For the graphs in this
paper we choose to suppress the edge and node indicating the
measurement of each parity check as depicted in Figure 1b.
Since every check will have a single such node, doing so does
not introduce any ambiguity in our notation. Mathematically,
we can also express this relation through the generator matrix
of the code G, which relates the data register and the code
word via c = GT r (mod 2). In the above example the
generator matrix reads

G =

[
1 0 1
0 1 1

]
(1)

giving the code word equation D1

D2

p

 =

 1 0
0 1
1 1

[D1

D2

]
=

 D1

D2

D1 +D2

 (2)

Whilst in some cases it is useful to work with the generator
matrix, we note that the same information is contained in the
factor graph, on which we focus here.

A single error on any of the three bits in the protocol
depicted in Figure 1a,b can be detected by comparing the
values of parity checks at successive times p(t0) and p(t1).
A bit-flip error occurring between these checks will cause the
value of the parity to change such that p(t0) 6= p(t1). Under
the standard labelling convention, this parity-check cycle is an
[n = 3, k = 2, d = 2] code, where n is the total number of
bits and k is the number of data bits. The code distance d
is the Hamming distance between code words, and so is the
minimum weight of an error operator that will not be picked
up as an error. For the code depicted in Figure 1a, the distance
is d = 2, as an error of weight two will cause the parity bit
to flip back to its original value.

The [3, 2, 2] code can detect the presence of a single bit-flip,
but does not provide enough information to pinpoint which of
the bits the error occurred on. It is therefore a detection code.
Full error correction codes, with the ability to both detect and
localise errors require multiple overlapping parity checks. An
example is the [7, 4, 3] Hamming code, the factor graph for
which is shown in Figure 1c. For correction codes, the task
of decoding involves deducing the most likely error from a
set of parity-check measurements. This information about the
most likely error allows the data to be corrected to its original
state with high probability. For the case of small codes, such
as the Hamming code, decode tables can be constructed by
exhaustively testing the code with all possible error chains.

In general, to decode larger codes one views the decod-
ing problem as a maximum posterior inference problem.
The use of factor graphs naturally leads to techniques from
graphical models [22] to efficiently find the maximum poste-
rior estimator. In many large real world codes, doing exact
maximum posterior inference is computationally hard, but
efficient approximate inference algorithms are known, such as
belief propagation [22]. Therefore, the use of graphical model
representations of error correction codes not only provides
an intuitive visualisation of the generator matrix, but also
affords access to a number of powerful approximate inference
algorithms designed for graphical models.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 3

|0i

|1i

| i =
1p
2
(|0i + |1i)

Fig. 2. Pure quantum states can be represented as a point on the surface of
the so-called Bloch sphere.

B. From classical to quantum error correction

Before we describe our graphical language for quantum
error correction, we give a brief overview of the challenges
quantum mechanics imposes on quantum code design (for
reviews see [23], [24]). This discussion is included to put our
work into context, as our graphical language is self-consistent
and can in principle be applied without any knowledge of
quantum mechanics.

In classical information theory and computer science, in-
formation is commonly represented through bits which take
values 0 and 1. In quantum mechanics, the formalism gives
rise to what is known as a quantum bit, or qubit for short. The
mathematical representation of a qubit can best be understood
as a point on a Bloch sphere (see Figure 2), which represents a
wavefunction denoted as |ψ〉 in Dirac notation [25]. Analogous
to classical bits, a qubit can be in states |ψ〉 = |0〉 and
|ψ〉 = |1〉, as depicted in Figure 2. However, they can also be
in a superposition such as |ψ〉 = 1√

2
(|0〉 + |1〉). The general

form of the qubit wavefunction is given by |ψ〉 = α |0〉+β |1〉
where α and β are complex numbers satisfying the condition
|α|2+|β|2 = 1. One important property of quantum mechanics
is known as the collapse of the wave function. A measurement
of the general state

|ψ〉 = α |0〉+ β |1〉 , (3)

for example, ‘collapses’ the qubit to |ψ〉 = |0〉 or |ψ〉 = |1〉
with probabilities |α|2 and |β|2 respectively. The important
consequence is that measurement is not typically passive in
quantum mechanics: measuring a system in general changes
its state. The above is enough to understand some of the
challenges of quantum error correction.

First, as a qubit is no longer a binary number but the
mathematical equivalent of a point on a three-dimensional
sphere, it becomes clear that errors can occur in different
forms, corresponding to flipping the state around a different
axis. This gives rise to two different types of errors, the so-
called bit and phase errors. The standard quantum notation for
a bit-flip operator is the symbol X , which has the following
effect on the general qubit state (3)

X |ψ〉 = αX |0〉+ βX |1〉 = α |1〉+ β |0〉 . (4)

X
X

Z

Z

X

Z

X Z
X

X

Z

Z

a) b) c)

Fig. 3. The operational representation: The triangle nodes represent data
qubits and the stars parity qubits. The nodes are connected by three types
of edges. (a) Bit-check edges (drawn in red) copy X-errors from data qubits
to parity qubits. Z-errors are back propagated in the reverse direction. (b)
Phase-check edges (drawn in black) between data and parity qubits. This edge
propagates a Z-error as a X-error between the qubits. The phase-check edge
is symmetric and has the same error propagation behaviour in both directions.
(c) Cross-check edges connect parity check qubits to other parity check qubits.
The error propagation behaviour for cross-check edges is identical to that of
phase-check edges.

Similarly, phase-flip operators are represented by the symbol
Z and transform the general qubit state (3) as follows

Z |ψ〉 = αZ |0〉+ βZ |1〉 = α |0〉 − β |1〉 . (5)

In this paper, we also refer to bit-flip and phase-flip errors as X-
errors and Z-errors respectively. Mathematically, the operators
{X,Z} can be represented as Pauli matrices. A quantum error
correction code must have the ability to detect and correct both
types of errors. Technically, there is also the possibility of a
Y -error which can be understood as a simultaneous X- and Z-
error. For our outline of graphical models for quantum error
correction, it initially suffices to focus on X- and Z-errors
only, with discussion of Y -errors left to the end. Note that
because of the projective nature of quantum measurement, the
ability to determine the location of X , Z, and Y errors is
sufficient to correct against arbitrary quantum errors.

A second issue is that arbitrary quantum data cannot be
copied, or cloned. In general, then, simple quantum repetition
codes cannot be established [26], [27].

A third challenge in the design of quantum error correction
codes has to do with the aforementioned ‘collapse of the wave
function’. Parity checking depends crucially on measurement,
which is considered non-disturbing classically. In contrast, the
parity checking sequences in a quantum code must be carefully
chosen so not to collapse the encoded information. Such non-
disturbing measurements are referred to as stabilizers [14].

A final complication to quantum error correction compared
to classical error correction is that quantum parity checks are
performed via ‘unitary’ operations on the combined system
of data plus parity qubits. A consequence of unitarity is that
operations are in general bi-directional: both qubits involved
in an operation change their state (this is connected to the fact
that quantum data cannot be cloned). This means that parity
checks themselves can propagate faults to the data register,
resulting in an additional pathway for errors that needs to be
accounted for.

C. Coherent parity check codes

The challenges of quantum error correction described in
the previous section have complicated the development of
good quantum codes with high rates. For example, the surface
code [13], [28]–[30] – currently the favoured experimental
quantum error correction protocol – requires a minimum of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 4

13 qubits 1 to encode a single logical qubit [31]. The coherent
parity check (CPC) framework for quantum error correction
has recently been introduced in [15] and further developed in
[32], with the aim of providing a toolset for the construction
of efficient quantum codes as well as easily modify existing
high-quality codes. Central to this new framework is a fail-
safe code structure that ensures all CPC codes are stabilizer
codes. The advantage to this is that there no longer restrictions
on the form of parity checks performed on the quantum
data; the fact that CPC codes are stabilizer codes guarantees
that the chosen parity check will not collapse the encoded
information. Consequently, the CPC framework allows for
code construction methods that do not rely upon a detailed
understanding of quantum mechanics. In [32], it is shown how
CPC codes can be discovered via exhaustive machine search.
Another promising application of the CPC framework is as a
tool for the conversion of classical codes to quantum codes
[15]. Here, we expand upon this work by demonstrating that
CPC codes can be described using graphical methods inspired
by the classical factor graph notation.

As is the case in classical parity check codes such as the
Hamming code, the qubits in a CPC code are separated into
data qubits and parity check qubits. Error detection in a CPC
code involves performing a round of phase-parity checks,
followed by a round of bit-parity checks. At the end of the
code a final round of cross-checks is performed between the
parity check qubits to mitigate the effect of undetected errors
on the parity check qubits. The only requirement for this
construction is that the two classical codes encode the same
number of bits. A more detailed presentation of the CPC code
structure can be found in [15], [32], although we give an
overview of the structure of the codes in circuit notation in
appendix E. Note that the order in which the different types
of parity check are performed in a CPC encoder is important.
In the following sections we assume a canonical CPC ordering
involving cross-checks, bit-checks and then phase-checks. This
ensures that there is a restricted set of error propagation
pathways that can be accounted for in a systematic way.

D. CPC and CSS codes

We now discuss the relationship between our CPC code
design methods and the existing Calderbank, Shor, and Steane
(CSS) [10], [11] methods for stabilizer code construction. The
CSS construction provides a method by which a quantum
code can be formed by combining a pair of dual classical
codes. However, as the number of classical codes satisfying
the duality requirement is limited, the CSS construction does
not provide a comprehensive method for the translation of
arbitrary classical codes to quantum codes. In contrast, the
CPC code design method guarantees a stabilizer code from
any pair of classical codes that encode the same number of
logical bits. It is not, in fact, constructive – unlike our CPC
code design method. This guarantees a stabilizer code from
any pair of classical codes that encode the same number of
logical bits (while noting that the resultant stabilizer code has

1The minimum number of qubits is 10 if the requirement for nearest-
neighbour-only interactions is dropped.

a reduced code distance compared to the original classical
code). As a result, the CPC framework can be seen as a better
tool for making contact between classical and quantum coding
theory.

In [15] it is proved that any CSS code can be expressed
as a CPC code with a three-part encoder. Furthermore, a
CPC structural template is presented in [33] that allows a
distance-three CSS code to be derived from the starting point
of (almost) any distance-three classical code. As a result, the
CPC methods for distance-three code construction improves
over the original CSS approach. It should also be noted that
the CPC framework is not limited to CSS codes. For example,
the [[10, 4, 3]] code derived in Section IV-B falls outside the
CSS family of codes.

Although all the CPC codes in this paper are derived from
the starting point of classical codes, there are other methods
for CPC code design. In [32], for example, it is shown that new
CPC codes can be discovered via machine search techniques.
Another approach to CPC code design is to start with an
existing quantum code, and use the graphical methods outlined
in this paper to modify it. In contrast, the CSS construction
does not include the flexibility to modify existing codes in this
way.

When a CPC code is constructed from two classical codes,
the resultant code will not be the same as a CSS code
constructed from those two codes (assuming they meet the
necessary conditions). This can be most easily seen by a
counting argument on the number of logical qubits. The
number of logical qubits in a CPC code is equal to the number
of logical bits in each classical code. In contrast, for a CSS
code, the number of logical qubits is equal to |k1−k2|, where
k1 and k2 are the number of logical qubits in each of the input
classical codes [10], [11].

A further, notable, advantage of the CPC construction is
that it comes equipped with high-level graphical languages
and representations – including those given in this paper.
The lack of high-level tools has been a significant bottleneck
in the development of deployable quantum codes. The CPC
construction includes CSS codes, but it a much broader and
more powerful construction for general stabilizer codes.

Other methods for constructing quantum codes from arbi-
trary pairs of classical codes include entanglement assisted
codes [34] and hypergraph product codes [35]. The strength of
the CPC framework over the entanglement assisted construc-
tion is that it is not necessary to prepare additional noiseless
entanglement bits as part of the CPC protocol. The advantage
of CPC codes compared to hypergraph product codes is that it
is possible to create smaller quantum codes relative to the size
of the original classical base-code; the length of a CPC code
is linearly proportional to the length of its classical base-code,
compared to the quadratic increase in block-length that results
from the hypergraph product construction. The disadvantage
of the CPC construction, compared to the aforementioned
methods, is that there is no guarantee on the minimum distance
of the quantum code when the classical base-code has distance
d > 3.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 5

X

XX

X

a)

XX

Z Z

b)
1 2

3
1 2

3

Fig. 4. The operational representation for quantum parity checking cycles on
a register of two data qubits. The qubit nodes in these graphs are labelled
1-3. (a) The bit-flip code or [[3, 2, 1]] code detects X-errors on any of the
three qubits. Z-errors on the data qubits will, however, go undetected as the
bit-check edges do not propagate Z-errors from data qubits to parity qubits.
(b) The phase-flip code or [[3, 2, 1]] code. Here Z-errors on the data qubits
are propagated to the parity-qubit as X-errors, allowing them to be detected
via a measurement. Z-errors on the parity qubit will propagate a correlated
XX error to the register that goes undetected.

II. A GRAPHICAL LANGUAGE FOR QUANTUM PARITY
CHECK OPERATIONS

A. Operational representation of quantum parity check codes

We now introduce an intermediary graphical representation
we call the operational representation of CPC codes. This nota-
tion is designed to enable easy visualisation of the propagation
of the different types of quantum errors between qubits, and
will serve as a stepping stone to our eventual presentation of
CPC codes using classical factor graphs in Section III.

Graphs of the operational representation have two types of
nodes:

1) triangles () representing data qubits and
2) stars () representing parity qubits.

The nodes are connected via edges that denote the different
error propagation pathways between the qubits. The three
types of edges between qubit nodes are shown in Figure
3. The first type of edge in the operational representation,
shown in red in Figure 3a, is called a bit-check edge and
propagates quantum information in two directions: bit-errors
are propagated from the data qubit to the parity qubit and
phase-errors in the opposite direction. In a quantum computer,
bit-check operations are implemented via the application of a
controlled-not (CNOT) gate. Further details about the operation
of CNOT gates in the context of CPC codes can be found in
[15], [32]. Note that throughout this paper we assume that
gates function ideally.

The black edge in Figure 3b connects a data qubit to a
parity qubit, and is referred to as a phase-check edge. The
phase-check edge propagates Z-errors and converts them into
X-errors, as shown in Figure 3b. This conversion between
error types is important, as it allows a Z-error to be detected
as a X-error via a parity check measurement. These gates also
cause unavoidable propagation of Z-errors on the parity check
qubits as X-errors on the data qubits. Phase-check operations
of this type are realised via the implementation of a conjugate-
propagator gate in a quantum computer. Specific details about
this gate are outlined in [32].

The third type of edge is a black edge connecting two
parity qubits, as shown in Figure 3c. This edge is called a
cross-check, and has the same error propagation behaviour as
the phase-check operation. This gate is symmetric, so a Z-
error on either qubit is propagated as a (detectable) X-error
on the other. Cross-check operations are useful for detecting

X

X

Z

X

X

Z

X

X

Z

X

Z

X

X

X
X

Z

X

X

Z

X

a) b)

Fig. 5. Construction of a [[4, 2, 2]] CPC detection code. (a) The operational
representation for the code formed by combining a [[3, 2, 1]] bit-flip code
with a [[3, 2, 1]] phase-flip code. A Z-error on the bit parity check qubit
(labelled) will propagate errors to the register without flagging a check. As
this error goes undetected, this is a [[4, 2, 1]] code. (b) The [[4, 2, 2]] code
is constructed by adding a cross-check edge between the parity check qubits.
The additional cross-check ensures all single-qubit errors are detected and
fixes the code distance to d = 2.

the errors that are back-propagated to the register by the phase-
check and bit-check edges.

Throughout this manuscript we will refer to individual
edges (or two qubit operations) as bit, phase, or cross check
edges (operations). This is not intended to imply that an
individual one of these operations is performing a check, the
parity checks themselves are actually performed by the qubit
measurements which follow these interactions (and in general
may involve both bit and phase information). We have chosen
this terminology to highlight the role each of these interactions
in terms of the kind of information they propagate.

Figure 4 shows the operational representation for two [[n =
3, k = 2, d = 1]] = [[3, 2, 1]] quantum parity check codes; the
first is designed to detect bit-flip errors and the second phase-
flip errors. The error propagation rules summarised in Figure 3
can be used to determine the operation of each code. It can be
verified that the bit-flip [[3, 2, 1]] code will detect any single-
qubit error from the set {X1, X2, X3}. Here Xi refers to the
X-error of qubit i as labelled in Figure 4. However, as we are
dealing with a quantum information, the full single-qubit error
set includes the phase-errors {Z1, Z2, Z3}. Figure 4a shows
that Z errors on the data qubits in the bit-flip [[3, 2, 1]] code
are not propagated to the register. As a result a single-qubit
error can go undetected, meaning the code has distance d = 1.

Figure 4b shows the operational representation for the
phase-flip [[3, 2, 1]] code. Single-qubit Z-errors that occur on
the data qubits are propagated to the parity qubit as an X-
error, which is then detected by a measurement. A Z-error
on the parity qubit itself, however, will go undetected as the
parity qubit measurement is unchanged by phase-flip errors.
This is a problem, as the black edges can propagate errors from
the parity qubit back to the register, meaning certain errors
can go undetected. When a Z-error occurs on the parity-qubit
of the phase-flip [[3, 2, 1]] code, a correlated X1X2 error is
propagated to the register qubits. Back propagation of errors
to the register in this way severely complicates the construction
of quantum codes. In the next section, we show how the CPC
codes can be designed to account for such errors.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 6

B. The [[4,2,2]] CPC detection code
We now introduce the simplest CPC code, the [[4, 2, 2]]

detection code. This code is not only uniquely the smallest
error detecting stabilizer code with two qubits [36], [37], it
is also the smallest error detecting CPC code. The [[4, 2, 2]]
code is formed by combining the bit-flip [[3, 2, 1]] code and
the phase-flip [[3, 2, 1]] code. Additional cross-check edges are
then added between the parity qubits to ensure that any errors
that are back-propagated to the register can be detected. This
fixes the code distance to d = 2 ensuring the [[4, 2, 2]] code
can detect both X- and Z-errors on any of the four qubits.

Figure 5a shows the operational representation of a code
constructed by combining the bit- and phase-flip [[3, 2, 1]]
codes. The canonical CPC code ordering stipulates that phase-
checks are performed before the bit-checks. Under this or-
dering, and by applying the previously described error prop-
agation rules, it can be verified that the code in Figure 5a
will detect single-qubit X- and Z-errors that occur on either
of the data qubits. However, as shown by the arrows in
Figure 5a, a phase-flip error on the parity qubit connected
to the data qubits via bit-check edges propagates errors to the
register that go undetected. As a result, the code depicted in
Figure 5a is a [[4, 2, 1]] code. However, the undetected error
propagation pathway can be closed by applying a cross-check
edge between the two parity qubits as shown in Figure 5b.
This cross-check ensures that the code detects all single-qubit
X- and Z- errors, and so fixes the code distance to d = 2.
The code shown in Figure 5b is therefore a [[4, 2, 2]] code,
capable of detecting both bit- and phase-flip errors on any of
the four qubits.

C. Annotated operational representation for general CPC
codes

All CPC codes follow the same general construction as
the [[4, 2, 2]] code. Two codes – one for bit-flips and one
for phase-flips – are merged to form a combined code. The
code distance is then fixed via the addition of cross-checks
between the parity qubits. Under the canonical CPC ordering,
the phase-checks are performed first, the bit-checks second and
the cross-checks last. Any CPC code can be represented via the
operational representation consisting only of the qubit nodes
and edges described in Section II-B. For larger codes, it is
often useful to annotate the operational representation graph to
better visualise the pathways for indirect propagation of errors.
As an example, consider the case of a data qubit connected to
two parity qubits, the first via a bit-check edge (red) and the
second via a phase-check edge (black). A Z-error that occurs
on the parity qubit to the right will be copied to the data qubit
as an X-error when the phase-check operation is applied. The
resultant X-error on the data qubit is then propagated to the
other parity qubit by the bit-check operation. At the end of
the CPC cycle, the initial Z-error is therefore detected as a
bit-flip error on the other parity qubit. We can annotate the
operational representation as follows:

Z

XX

X

. (6)

Here the error propagation pathway between the two parity
qubits is highlighted by a directed pink edge. This edge can
be considered a virtual edge, as it does not correspond to a
physical operation between the qubits it connects. The process
of adding the virtual edges to an operational representation is
called annotation. The net effect of the virtual edge in terms
of error detection is therefore that a Z-error on the data qubit
at the root of the arrow is propagated as an X-error on the
qubit at the head of the arrow.

In addition to the case described above, there is another
pathway for the indirect propagation of an error through a
CPC code. Consider a data qubit connected to a parity qubit
by both a bit-check and a phase-check edge. A phase-flip error
on the parity qubit will propagate to the register and then back
to the parity qubit as a bit-flip error. The annotation works as
follows:

ZX

XX

(7)

This propagation can be described in terms of a self-loop
virtual edge. The annotation is performed by adding exactly
one virtual edge for each pair of bit and phase check edges
incident on the same data qubit. Once all of these pairs have
been considered, the process is complete.

In larger CPC codes, there will be multiple virtual edges
that can cancel each other out. The addition of virtual edges
can also lead to simplifications that reduce the total number
of phase- and bit-check edges. A complete list of rules for
adding virtual edges, along with various simplification rules, is
included in Table II in Appendix B. Formally the simplification
process is the process of cancelling redundant propagation
and therefore expressing the annotated factor graph in the
simplest possible form. The process of simplification does not
change which errors are propagated to where, it just refines
this information to the most compact possible form.

The advantage of the annotated operational representation
is that the virtual edges provide a way of illustrating the
propagation of errors without having to consider the canonical
CPC ordering. We will see in the following section that this
simplification helps with the mapping from the operational
representation to classical factor graphs.

III. MAPPING THE GRAPHICAL LANGUAGE TO GRAPHICAL
MODELS IN CLASSICAL INFORMATION THEORY

A. Translation rules mapping the operational representation
to classical factor graphs

The graphical language of the operational representation,
outlined in the previous section, allows quantum codes to
be illustrated in terms of the physical operations connecting
qubits. The annotated version of a operational representation
includes virtual edges that highlight indirect propagation path-
ways for errors. We now show how the annotated operational
representation can be mapped to an equivalent classical factor
graph notation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 7

The data and parity nodes in the operational representation
correspond to qubits that store both bit and phase error
information. In a classical factor graph, a qubit can therefore
be represented as two bits, one for each type of error. A data
qubit is mapped to two classical data bits, one representing
the bit information and the other the phase information:

. (8)

As a convention, we choose to draw these bits side-by-side,
with the node representing bit information on the left (coloured
yellow) and the node representing phase information on the
right (coloured blue). A parity qubit is also mapped to two
bits in classical factor graph notation:

. (9)

The bit information component of a qubit is used as a parity
measurement, and is therefore drawn as a classical parity
check node. The phase information of parity check qubit,
however, cannot be directly measured. As such, the phase-
information component of the parity check qubit is mapped to
an unmeasured classical data bit (shown in blue on the right).

We can now describe how the different edge types in the
operational representation are drawn in a classical factor graph.
Bit-check edges connect data qubits to parity qubits. Their
action is to propagate bit information from the data qubit to the
parity qubit and phase information in the opposite direction.
The mapping of a bit-check edge to classical factor graph
notation is shown here:

X

X

. (10)

An edge is drawn between the bit information component
of the data qubit and the bit information component of the
parity qubit. Notice, however, that there is no edge drawn
between the phase-components of two qubits to indicate the
propagation of phase-flip errors from the parity qubit to the
data qubit. This is omitted, as there is no concept of indirect
error propagation in a classical factor graph; the edges in a
classical factor graph are only permitted between data and
parity nodes, and not between nodes of the same type. Instead,
indirect propagation of errors are accounted for in classical
factor graphs by placing edges in the place of the virtual edges
in an annotated operational factor graph. An explicit example
of this is shown later in this section.

The classical factor graph representation of a phase-check
edge reads:

Z

X

. (11)

The phase component of the data qubit is connected to the
bit-component of the parity qubit via an edge. This shows that
the phase-check edge propagates phase-errors on data qubits
to bit-errors on the parity qubits. Recall that phase-edges are
symmetric and that error propagation also occurs in the reverse

direction. The back-propagation of errors in this way is not
shown in the classical factor graph. The reason for this is
again that edges are only permitted between data and parity
nodes in a classical factor graph.

The classical factor graph representation of a cross-check
edge reads:

Z

X Z

X

. (12)

The phase-component of each qubit is connected to the bit-
component of the other. This reflects the expected error
propagation behaviour for cross-check edges.

The next component to be mapped to classical factor graphs
are the virtual edges that depict the indirect propagation of
errors through the code. Virtual edges show how a phase-
error on one parity qubit can be detected as a bit-flip error
on another. The classical factor graph mapping of a virtual
edge is given by

. (13)

A virtual edge is directed meaning error information only
propagates in one direction.

The final translation rule is for the virtual self loop edge.
In the classical factor graph notation this edge is represented
as follows:

. (14)

A summary of the translation rules for mapping the operational
representation to the classical factor graph representation can
be found in Appendix C.

B. Translation example: The [[4, 2, 2]] detection code

We have now outlined how to translate the operational
representation to classical factor graphs. Here we provide
an example by analysing the development of the [[4, 2, 2]]
detection code in terms of both representations.

In Section II-B we showed how a preliminary CPC code
can be constructed by combining the bit-flip and phase-flip
[[3, 2, 1]] codes. The distance of this code was determined to
be d = 1 by consideration of the propagation of bit- and phase-
flip errors through the code. The code distance was then fixed
to desired length of d = 2 via the addition of a cross-check
edge between the two parity qubits. The [[4, 2, 2]] code is the
simplest CPC detection code, and as such the code distance
can essentially be determined by inspection. However, for
larger CPC codes, calculating the code distance may become
a hard problem. In these cases, however, other quantities such
as error rate measured by Monte Carlo could be used as a
metric of code performance instead [38].

Figure 6a shows the annotated operational factor graph for
the preliminary code formed by combining the bit-flip and
phase-flip [[3, 2, 1]] codes. As both of the virtual edges connect

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 8

a) b)

Fig. 6. The [[4, 2, 1]] CPC code formed by combining the bit-flip and phase-
flip [[3, 2, 1]] codes. (a) The annotated operational representation. The virtual
edges connect the same nodes in the same direction. They therefore cancel
each other out, as per the rules outlined in Appendix B. (b) The code in
classical factor graph form. It can immediately be seen that there are two
unconnected data bits, meaning the code has distance d = 1.

a) b)

Fig. 7. The [[4, 2, 2]] detection code. (a) The operational representation. (b)
Classical factor graph version of the code. The edges that are added to the
classical factor graph correspond to a cross-check edge in the operational
representation.

the same nodes in the same direction they cancel each other
out, in accordance with the simplification rules outlined in
Appendix B. By following the mapping procedure outlined in
the previous subsection, we obtain the classical factor graph of
the preliminary code which is shown in Figure 6b. Inspection
of the classical factor graph reveals that there are two data bits
that go unchecked, from which it can be concluded that the
distance of the code is d = 1. The classical distance of the code
represented by the classical factor graph is the same as the
quantum distance of the operational factor graph it is based on.
The preliminary CPC code is therefore a [[4, 2, 1]] code. We
discussed in Section II-B how to move from the [[4, 2, 1]] to the
[[4, 2, 2]] code by the addition of a cross-check edge between
the two parity qubits. The corresponding annotated operational
representation is shown in Figure 7a which translates into the
classical factor graph shown in Figure 7b.

IV. DESIGNING QUANTUM ERROR CORRECTION CODES
WITHOUT KNOWING QUANTUM MECHANICS

A. General design rules to develop quantum error correction
codes using classical factor graphs

The factor graph formalism provides a highly general tool
for the design of quantum error correction codes. We now
outline a specific code design strategy that can be employed
using classical factor graphs, without having to refer back to
the operational form after the initial mapping. Our approach

enables quantum codes to be constructed using classical tech-
niques and does not require detailed knowledge of quantum
mechanics. The steps of this code design procedure can be
summarised as follows:

1) Construct a preliminary code in the annotated opera-
tional representation by combining two classical codes,
the first for bit-flip errors and the second for phase-flips.
Convert the resultant graph to a classical factor graph
using the mappings described in Section III.

2) Calculate the distance of the preliminary code. If code
distance is not tractable, then use another metric such
as simulated error rate.

3) Determine the form of the cross-checks that need to be
added to fix the code distance to the desired length. If
code distance is not tractable, then use another metric
such as simulated error rate.

Following the initial mapping from the operational representa-
tion, the optimisation steps of the code design process (steps
2 and 3) are carried out entirely within the classical factor
graph framework. The reason that this method can be followed
without reference to the operational form is that the addition
of cross-checks does not lead to any indirect propagation of
errors. In a classical factor graph, cross checks are added
between parity qubits according to the following rule,

, (15)

where a pair of edges link the phase component of one qubit
to the bit component of the other. A situation which may be
encountered when using this rule, occurs when a cross-check
is applied between qubits that are already connected by one or
more edges. For this case, we need to define a simplification
rule for a double edge. Since the XOR of a bit value with itself
is always zero, it stands to reason that two edges between the
same pair of nodes in a factor graph will cancel as follows,

. (16)

As an example, consider the case, depicted below, in which a
cross-check is added between a pair of qubits that are already
connected by a virtual edge,

=

. (17)

The double edge that is formed cancels to give the factor
graph on the right. From this, we can deduce the rule that
when a cross-check is added between a pair of qubits already
connected by a virtual edge, the direction of the virtual edge
is reversed. The operational version of this rule is listed in
Table II in Appendix B.

B. Example: Designing a quantum error correction code
based on the Hamming code

We now apply the code design method outlined in the
previous subsection to a small example. We first combine two

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 9

1 2

3

4

5

6

7 8

9

10

Fig. 8. The annotated operational representation of the preliminary code formed by combing two copies of the classical Hamming code, the first to detect
bit-flips and the second to detect phase-flips. The parity qubits that detect bit-errors on the data qubits are circled in yellow, and the parity qubits that detect
phase-flips on the data qubits are circled in blue. The virtual edges (pink) are added to the graph following the rules outlined in Table II. The qubits are
numbered 1-10.

copies of the classical Hamming code given in Figure 1c to
form a preliminary quantum code. After applying the indirect
error propagation annotations (following the rules given in
Table II in appendix B), the operational representation of
the preliminary code is given by Figure 8. This annotated
operational form of the preliminary code then maps to the
factor graph depicted in Figure 9. From this point onwards,
the construction and optimisation of the code proceeds entirely
within the classical factor graph framework. By inspection,
we see immediately that the preliminary code has some nodes
which are not joined to any parity check nodes. These nodes
correspond to the phase-components of the parity check qubits.
As a result, some errors will go undetected, meaning the
preliminary code is a [[10, 4, 1]] quantum code.

To turn the preliminary code into a distance three quantum
error correcting code, each data node must be connected to at
least two parity checks. We must further ensure that all single-
bit errors result in a unique error pattern. By construction, the
parity check qubits in the code in Figure 9 fall into two disjoint
subsets.
• Subset S1: the parity check qubits which detect X-errors

(bit flip) on data qubits (circled in yellow).
• Subset S2: the parity check qubits which detect Z-errors

(phase) on data qubits (circled in blue).
This separation will help in categorising the different types
of errors and the error patterns they produce. For example, it
can be seen that bit-flip errors on the data qubits will result
in an error pattern involving only parity check qubits in S1.
Similarly, phase-flip errors on the data qubits result in an error
pattern involving only the parity check qubits in S2.

The first modification to be made to the preliminary code
is to add edges to the unconnected phase nodes in each
parity check qubit. This can be achieved through the addition
of cross-checks between the affected parity check qubits, as
depicted by the blue edges in Figure 10. Notice that we have
specifically chosen cross-checks that connect parity qubits

in S1 to parity qubits in S2. This ensures that the error
patterns resulting from Z-errors on the parity check qubits
will contain a combination of measurements from S1 and
S2. Consequently, Z-errors on the parity check qubits are
distinguishable from X- and Z-errors on the data bits. As
there are no longer are any unconnected bits, the modified
code in Figure 10 is a [[10, 4, 2]] detection code.

We now have a code that will detect Z-errors on any of
the parity qubits. The next step is to find a code modification
that will guarantee that the error patterns produced by these
errors are distinguishable. One way of achieving this is to add
cross-checks between all parity qubits in S1 and likewise for
S2. The final factor graph is shown in Figure 11, where the
cross-checks connecting S1 are shown in yellow and the cross-
checks connecting S2 are shown in blue. Based on previous
arguments, this code is now a [[10, 4, 3]] code for an error
model containing X- and Z-errors.

We now show that the [[10, 4, 3]] code depicted in Figure
11 will also produces unique error patterns for another type
of error, the Y -error. In terms of the classical factor graphs,
Y -errors correspond to a specific type of burst error in which
both the bit- and phase-components of a qubit are errored
simultaneously. We first note that all Y -errors on data qubits
result in detection patterns of weight four or six with half of
the parity measurements in S1 and half in S2. Fortunately, the
error patterns with two parity measurement in each subset are
distinct from those produced by a Z-error in S2. On the other
hand, Y -errors on S1 parity check qubits will result in error
patterns of weight four, of which three of the measurements
occur in S1 and one of the measurement in S2. For Y -errors
on S2, there will be three measurements in S2 and two in
S1. Since the weight of the error patterns resulting from Y -
errors are greater than that for X or Z, the signatures that are
produced are unique. The factor graph in Figure 11 is therefore
also a [[10, 4, 3]] code for an error model containing X-, Z-
and Y -errors. Table I summarises the structure of signatures

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 10

Fig. 9. The classical factor graph for the preliminary code formed by combining two copies of the classical Hamming code depicted in Figure 1b. Parity
check qubits belonging to S1 are circled in yellow, while those belonging to S2 are circled in blue. The phase-components of each parity check qubit are not
connected to any other nodes. As a result, Z-errors of the parity check qubits go undetected, meaning the code has distance d = 1. The preliminary code is
therefore a [[10, 4, 1]] code. The operational representation of this code is shown in Figure 8.

Fig. 10. The code formed by the addition of cross-check edges (highlighted in blue) between parity check qubits in S1 and S2. As each bit node in the
graph is connected to least one parity check node, this is a [[10, 4, 2]] detection code.

produced for different types of errors in the [[10, 4, 3]] code.

The complete syndrome table for the [[10, 4, 3]] code shown
in the factor graph in Figure 11 is shown in Table IV in
Appendix D. We have now shown that a distance d = 3
quantum code can be constructed from a starting point of
two classical codes using factor graph methods. The necessary
modifications to the code were deduced entirely through visual
inspection of the classical graph. Cross-checks were chosen
in such a way that different types of error on different
components of the code produced error signatures of distinct
types. It should be noted that the solution we have found is

not unique; other combinations of cross-checks exist that will
also fix the code distance to d = 3.

V. DISCUSSION

We have introduced a framework to create classical graph-
ical models or factor graphs for quantum error correcting
codes. This process begins with an operational representation,
designed to show how the qubits interact to form a coherent
parity check code [15]. The operational representation given
here is a human readable analogue of the machine readable
matrix based formalism in [15]. Unlike the more general

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 11

Fig. 11. The code formed by the addition of cross-checks between all the qubits in S1 and likewise for S2. The yellow cross-checks connect qubits in S1,
and the blue cross-checks connect qubits in S2. This code will produce unique syndromes for an error model containing X-, Z- and Y -errors. It is therefore
a [[10, 4, 3]] code.

TABLE I
TABLE LISTING THE STRUCTURE AND WEIGHT OF THE ERROR

SIGNATURES (ALSO REFEREED TO AS SYNDROMES) RESULTING FROM
DIFFERENT TYPES OF ERRORS IN THE [[10, 4, 3]] CODE DEPICTED IN

FIGURE 11. EACH ERROR-TYPE RESULTS IN A DIFFERENT SYNDROME
STRUCTURE, MEANING SINGLE-QUBIT ERRORS ARE DISTINGUISHABLE.

THE FULL SYNDROME LIST FOR THIS CODE CAN BE FOUND IN APPENDIX
D.

error type # of detections in S1 # of detections in S2

X data qubit 2 or 3 0

Z data qubit 0 2 or 3

Y data qubit 2 if 2 in S2 or 3 if 3 in S2 2 or 3

X , S1 1 0

Z , S1 2 1

Y , S1 3 1

X , S2 0 1

Z , S2 2 2

Y , S2 2 3

ZX calculus used in [15], this is a special-purpose graphical
representation specifically designed to show error propagation.
Because of the nature of the interactions between qubits,
there is unavoidable indirect propagation of errors. However,
this propagation can be understood in terms of graphical
rules which amount to the addition of virtual edges to the
operational representation. Once the virtual edges have been
added to the operational representation, there is a further set
of graphical rules to map it to a classical factor graph. This
classical factor graph represents error propagation within the
quantum code.

We demonstrated a design procedure using classical factor
graphs which requires no reference to the operational represen-

tation, and allows for quantum code design to be treated as
classical problem with restrictions on how interactions may
be added. This means that code design can be performed
based on completely classical intuition about error correction.
Highly-optimised tools for classical LDPC and turbo codes
can therefore be applied to quantum error correction, without
the user having to understand quantum theory. An interesting
direction for future work would be to apply our CPC factor
graph methods to existing constructions for converting LDPC
codes to quantum codes [35].

In the design example we have given here, we have calcu-
lated code distance to verify the performance of our code. For
larger codes with larger code distances, such a calculation will
not be possible, and performance would have to be verified by
another method, for example, calculating logical error rates
using Monte Carlo [38]. The real power of our method is
that it allows a visual representation of any (CPC formulated)
quantum code which on one hand directly corresponds to the
physical interactions between qubits through the operational
representation, and on the other hand to the processing of
error information through the factor graph representation.
These graphical representations allow a very general handle
for human intuition to be used in the design process without
prior knowledge of quantum mechanics. The primary purpose
of this paper is not to propose a specific new design technique
for quantum codes (although we propose one to demonstrate
how our techniques can be used), but to provide an additional
tool which can be used either on its own or in conjunction
with known techniques.

While it is likely that the graphical methods proposed here
could be used on their own to produce highly competitive
quantum codes, our design methods do not need to be used
in a stand-alone setting. For instance if a good CSS code
were already known, our methods could be used to make

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 12

modifications to improve it, for instance by making a version
which is more compatible with the allowed interactions in a
given quantum hardware, or by performing local modifications
to try to further reduce the logical error rate. The second of
these would be particularly useful if errors on a subset of
the physical qubits were identified as being disproportionately
responsible for logical errors. Because a broad class of existing
quantum codes can be represented in the CPC framework, the
methods proposed here can be used to augment the existing
toolkit of techniques for quantum error correction.

We have shown the utility of our graphical representation
with both error detection codes and error correction codes. In
general, factor graph methods can be applied equally well to
codes that are designed to suppress errors rather than fully
correct. Many of the most promising quantum algorithms for
quantum simulation (i.e. the variational quantum eigensolver
[39]–[41]) and optimisation (i.e. the quantum approximate
optimisation algorithm [42]–[45]) are tolerant to some error. In
this context, bespoke error suppression codes designed using
factor graphs would be useful.

A further advantage to the classical factor graph represen-
tation is that the graph effectively tracks all of the detected
errors, and can therefore be viewed as a simplified simulation
of the code’s error propagation pathways. This means that
the factor graph representation can reliably give information
about error propagation of complex and correlated errors. To
illustrate this, we consider the propagation of Y -errors which
arise on quantum hardware when a bit- and phase-flip occur
simultaneously. Such errors can be thought of as a two-bit
burst error, occurring on both the bit and phase part of a qubit
simultaneously.

Although we do not provide an example in this paper, it
is possible to construct CPC codes that include a second-
tier of parity qubits whose role it is to monitor other parity
qubits. A construction of this type is outlined in [15] to
provide a general method for converting any pair of distance
three classical codes to a quantum code. As the second-tier
of parity qubits only check other parity bits, they do not
interact with the data qubits. Because of this, errors that occur
on second-tier parity qubits can be considered benign in the
sense that they do not propagate errors to the data qubits.
As such, it is only necessary to detect the benign errors
instead of fully correcting. Performance metrics, such as code
distance, are calculated without taking into account benign
errors, and can therefore be thought of as a lower bound
on the code performance based on a conservative decoding
strategy. The codes outlined in this paper do not include
second-tier parity qubits, and benign errors do not need to be
considered. However, in future work it would be interesting to
search for codes where consideration of benign errors becomes
important, and to modify our notation to account for this.

An important consideration in the design of quantum codes
is that some interactions between qubits may be difficult or
impossible to implement directly on real quantum hardware.
The fact that the physical layout of the device is important,
highlights another strength of our graphical formalism: the
graph created by the operational representation of the code is
the interaction graph of the qubits. It is therefore natural to

include hardware constraints into the methods given here. This
allows for the design of quantum codes specially optimised to
the demands of a given quantum device.

The search for bespoke codes for given quantum hardware
can be further assisted by machine learning techniques. The
framework presented here is particularly powerful with regard
to this. Firstly, we can use design patterns from classical codes
to construct quantum codes with specific features. Secondly,
we can start from known quantum codes and perform local
search around those as well as impose (global) constraints
on them as mentioned above. Modern machine learning
algorithms combine techniques from Bayesian optimisation
for global search with other local search methods, such as
simulated annealing, and automatically switch between those.
It is in this situation that the CPC construction in general, and
the graphical methods given in particular, will be especially
useful. The structural representation, and the ability to search
over propagation of errors, makes it particularly amenable for
use in small-change optimisation strategies. This means any
given code (including e.g. one’s favourite existing quantum
or classical code) can be used as input and changed slightly
in order to optimise it for specific hardware or architectural
considerations. In future work we plan to combine the graph-
ical framework presented in the work together with the above
machine learning techniques to provide methods of automated
code design.

In summary, we have given in this paper a new way to
connect the knowledge and skills of classical information
processing to the design of quantum error correction pro-
cedures. By representing error propagation in an intuitive,
graphical, and classical-style way, the problem of designing
and simulating quantum codes becomes much more tractable.
The connection to classical graphical representations is both
interesting theoretically and of powerful practical use. The
expectation is that these tools will allow the skills and intuition
of the classical error correction community to be brought to
bear on the next generation of quantum error correction codes.

ACKNOWLEDGEMENTS

Joschka Roffe acknowledges funding from a Durham Doc-
toral Studentship (Faculty of Science) and the support of
the QCDA project which has received funding from the
QuantERA ERA-NET Cofund in Quantum Technologies im-
plemented within the European Union’s Horizon 2020 Pro-
gramme. Nicholas Chancellor acknowledges funding from
EPSRC grant refs EP/L022303/1 and EP/S00114X/1. Do-
minic Horsman acknowledges funding from EPSRC grant ref
EP/L022303/1 and the “Investissements d’avenir” (ANR-15-
IDEX-02) program of the French National Research Agency.
Stefan Zohren is funded by the Oxford-Man Institute. The
authors thank Aleks Kissinger and Viv Kendon for useful
discussions. The diagrams in this paper were produced using
the Tikzit tikz editor [46]. The authors also acknowledge the
use of the NumPy Python package for calculations associated
with this paper [47].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 13

TABLE II
(TOP BLOCK) THE ANNOTATION RULES FOR ADDING VIRTUAL EDGES IN THE OPERATIONAL REPRESENTATION OF CPC CODES. THE ANNOTATION RULES
ARE APPLIED ONCE BEFORE ANY GRAPH SIMPLIFICATIONS ARE APPLIED. (BOTTOM BLOCK) SIMPLIFICATION RULES FOR ANNOTATED FACTOR GRAPHS.
THESE RULES ARE APPLIED REPEATEDLY UNTIL NO SIMPLIFICATIONS ARE POSSIBLE. THE ORDER DOES NOT MATTER AS LONG AS THE FIRST BLOCK OF

ANNOTATION RULES IS APPLIED FIRST.

Rule Before Rule After Rule

Virtual
Edge
Creation

Virtual
Loop
Creation

Virtual Edge
Cancellation

Virtual
Loop
Cancellation

Virtual Edge
Reversal

Virtual Edge
Addition

APPENDIX A
GENERAL RULES FOR ANNOTATING GRAPHS OF THE

OPERATIONAL REPRESENTATION

The operational representation of a factor graph is annotated
through the addition of directed virtual edges. These virtual
edges show where Z-errors on the parity bits are detected.
The rules for annotating operational factor graphs are shown
in Table II. Table II also lists simplification rules that arise
when multiple edges combine.

APPENDIX B
GENERAL RULES FOR ANNOTATING GRAPHS OF THE

OPERATIONAL REPRESENTATION

The operational representation of a factor graph is annotated
through the addition of directed virtual edges. These virtual
edges show where Z-errors on the parity bits are detected.
The rules for annotating operational factor graphs are shown
in Table II. Table II also lists simplification rules that arise
when multiple edges combine.

APPENDIX C
GENERAL RULES FOR MAPPING THE OPERATIONAL

REPRESENTATION TO THE CLASSICAL FACTOR GRAPH
REPRESENTATION

The rules for mapping the annotated operational graph to a
classical factor graph are listed in Table III.

APPENDIX D
SYNDROME TABLE FOR THE [[10, 4, 3]] CODE

Table IV is the syndrome table for the [[10, 4, 3]] code
depicted in the classical factor graph in Figure 11. The
qubit numbers correspond to the qubits labels shown in the
operational form of the code in Figure 8. The syndromes
can be inferred by direct inspection of the factor graphs.
Alternatively, the syndrome table can be calculated using the
matrix methods outlined in [15], [32].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 14

TABLE III
RULES FOR MAPPING THE ANNOTATED OPERATIONAL REPRESENTATION TO THE CLASSICAL FACTOR GRAPH REPRESENTATION.

Description Operational representation Classical Factor Graph

Phase
Check
Edge

Bit
Check
Edge

Cross
Check
Edge

Virtual
Edge

Virtual
Self Loop

TABLE IV
SYNDROME TABLE FOR THE [[10, 4, 3]] HAMMING CODE DEPICTED IN OPERATIONAL FORM IN FIGURE 8 AND IN CLASSICAL FACTOR GRAPH FORM IN
FIGURE 11. THE SYNDROMES FOR EACH ERROR ARE REPRESENTED AS SIX-BIT BINARY STRINGS. THE BITS, FROM LEFT-TO-RIGHT, CORRESPOND TO

THE MEASUREMENT OUTCOMES OF THE PARITY QUBITS 5− 10 (LABELLED IN FIGURE 8). THE FIRST THREE BITS IN THE SYNDROME STRING
(COLOURED RED) REPRESENT MEASUREMENT OUTCOMES FROM THE PARITY QUBITS IN SUBSET S1 . THE FINAL THREE-BITS (COLOURED BLUE) IN THE

SYNDROME REPRESENT MEASUREMENT OUTCOMES OF THE PARITY-QUBITS IN SUBSET S2 .

X-error syndrome Z-error syndrome Y -error syndrome

data

qubits

qubit 1 111000 000111 111111

qubit 2 101000 000110 101110

qubit 3 110000 000011 110011

qubit 4 011000 000101 011101

parity

qubits

qubit 5 100000 011100 111100

qubit 6 010000 101010 111010

qubit 7 001000 110001 111001

qubit 8 000100 101011 101111

qubit 9 000010 110101 110111

qubit 10 000001 011110 011111

APPENDIX E
THE QUANTUM CIRCUIT-MODEL REPRESENTATION OF CPC

CODES

The Coherent Parity Check (CPC) framework was first
introduced in [15] with the aim of providing new perspectives
and tools for the construction of stabilizer codes. In this paper,

the goal is to provide an introduction to the CPC framework
exclusively in terms of a graphical representation that does
not require prior knowledge of quantum circuit notation. For
completeness, in this appendix, we provide a brief outline
of the CPC framework in the quantum circuit picture. Prior
knowledge of standard quantum circuit notation, as seen for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 15

|ψ〉D

|0〉P

E

Encoder Decoder

Fig. 12. The CPC code structure in circuit-model notation. The code qubits are
partitioned into data qubits |ψ〉D and parity qubits |0〉P . The encoder/decoder
is split into three stages: 1) Cross-check stage (depicted by the green gate)
between parity qubits; 2) Phase-check stage (depicted by the blue gate); 3)
Bit-check stage (depicted by the red gate). The ordering of the three stages
of the encoder is important, as it influences the derivation of rules for dealing
with indirect propagation of errors in our graphical models. We refer to the
ordering depicted here as the canonical ordering.

example in [23], is assumed. A more thorough introduction
to the CPC framework using quantum circuit notation can be
found in [32].

All CPC codes have a symmetric structure of the form
shown in Figure 12. The code qubits are separated into two
distinct types, corresponding to the data register |ψ〉D and the
parity register |0〉P . The decoder of the circuit is split into
three parts. In the first stage (shown by the red square gate in
Figure 12), a round of phase-checks are performed between
the data register and the parity register. In the second stage
(depicted by the blue gate in Figure 12), a round of bit-checks
are performed. The final stage of the CPC decoder involves
performing a round of cross-checks between the parity qubits
themselves (depicted by the green square in Figure 12). Each
of these check stages can take the parity checking sequence
from an existing classical code. The encoder is simply the
unitary inverse of the decoder. For well chosen parity checks,
it is possible to detect errors that occur in the region marked
E by measuring the parity qubits at the end of the circuit.

Note that the ordering of the different checks in the en-
coder/decoder of the CPC circuit in Figure 12 is important, as
it will influence the definition of graphical rules for indirect
propagation. We refer to the specific ordering depicted in
Figure 12 – cross-checks, bit-checks and then phase-checks
– as the canonical form for CPC codes.

We now describe the gates with which the three stages of
a CPC circuit of the form depicted Figure 12 are realised. In
addition, we provide a mapping for each circuit-model gate
to the operational representation. Bit-checks (depicted by the
blue gate in Figure 12) are performed via CNOT gates. A
simple bit-check CPC gadget, with one data qubit and one
parity qubit, is shown below

|ψ〉d

|0〉p
E −→ ,

(18)
where the diagram to the right is the corresponding CPC circuit
in the operational representation. Similarly, the phase-check
stage involves conjugate-propagator gates. The simplest phase-

check CPC gadget is given by

|ψ〉d

|0〉p
E −→ ,

(19)
where the diagram to the right is the operational representation
of the circuit. The two-qubit gates with the black squares are
the conjugate-propagator gates, which can be defined in terms
of CNOT gates as follows

=

H H

. (20)

Finally, cross-checks are realized as conjugate-propagator
gates acting between parity qubits. A simple example, and
its mapping to the operational representation, is shown below

|0〉p1

|0〉p2

E −→ .

(21)
We have defined the CPC codes such that in the encoder

the bit information is propagated to the parity check qubits
via CNOTs before the phase information is propagated. The
decoder then performs the operations in reverse ordering. Fig.
12 depicts an example of this canonical ordering. Note that
the cross check operations commute with both the bit and
phase checks as well as each other: the time at which they are
performed therefore does not affect the unitary implemented
by the encoder and decoder. We however conventionally
choose to draw the bit checks in the encoder.

As explained in Section II-C, virtual edges depict how
Z-errors on the parity qubits can be detected via indirect
propagation pathways. We now illustrate such a pathway in the
quantum circuit for a CPC code. Consider the circuit shown
below

−→ .

(22)
A data qubit |ψ〉D is connected to one parity via a CNOT
gate and to another via a conjugate-propagator gate. Under
this setup, a Z-error in the wait stage on parity qubit p2 will
be propagated to the data register via the conjugate-propagator
gate, before being propagated to parity qubit p1 by the CNOT
gate (for methods to calculate propagation of this type see
[32]). A Z-error on parity qubit p2 is therefore detected
indirectly on parity qubit p1. In the operational representation,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 16

shown to the right of Figure 22, this indirect propagation is
depicted by the pink virtual edge.

APPENDIX F
THE QUANTUM PARITY CHECK MATRIX OF A CPC CODE

This appendix describes how to deduce the stabilizers of a
CPC code from the operational representation [15], [32], [33].
As outlined in appendix E, the encoder of a CPC code consists
of three stages: cross-checks, bit-checks and phase-checks.
Each of these stages can be thought of as a sub-graph of
the operational representation with a corresponding adjacency
matrix. In general, the adjacency matrices for a CPC code are
given by

mb =

[p1] [p2] [...] [pm]

[D1] b11 b12 ... b1

[D2] b21 b22 ... b2m

[...]

[Dk] bk1 bk2 ... bkm

,

mp =

[p1] [p2] [...] [pm]

[D1] h11 h12 ... h1m

[D2] h21 h22 ... h2m

[...]

[Dk] hk1 hk2 ... hkm

,

mc =

[p1] [p2] [...] [pm−1] [pm]

[p1] 0 c12 ... c1(m−1) c1m

[p2] c12 0 ... c2(m−1) c2m

[...]

[p(m−1)] c1(m−1) c2(m−1) ... 0 c(m−1)m

[pm] c1m c2m ... c(m−1)m 0

,

(23)

where mb is the bit-check adjacency matrix, mp is the
phase-check adjacency matrix and mc is the cross-check adja-
cency matrix. In the above, the rows and columns are labelled
to indicate whether they refer to data qubits D (triangles in
the operational representation) or parity qubits P (stars in the
operational representation). The binary variables, b, h and c,
indicate error propagation between two qubits if set to ‘1’.
Note that the cross-check matrix is always symmetric around
the diagonal to account for the fact that phase errors propagate
in both directions. As an example, the adjacency matrices for

D1 D2

p1

p2

Fig. 13. The [[4, 2, 2]] CPC code in the operational representation.

the [[4, 2, 2]] code depicted in figure 13 are given by

mb =

[p1] [p2]()
[D1] 1 0

[D2] 1 0

, mp =

[p1] [p2]()
[D1] 0 1

[D2] 0 1

,

mc =

[p1] [p2]()
[p1] 0 1

[p2] 1 0

.

(24)

From the mb matrix above, we can see that bit-errors on data
qubits D1 and D2 are detected by parity qubit P1. This is
consistent with the black edges in figure 13. Likewise, from
mp, we see that phase errors are detected by parity qubit p2.
Finally, adjacency matrix mc tells us that phase-errors on qubit
p1 are detected by qubit p2 and vice-versa.

The GF(2) quantum parity matrix GXZ(SCPC) for a CPC
code is written in terms of its adjacency matrices as follows

GXZ(SCPC) =

[D1, ..., Dk] [p1, ..., pn−k] [D1, ..., Dk] [p1, ..., pn−k]()
mT

p mT
b ·mp ⊕mc mT

b 11n−k
.

(25)

The stabilizers SCPC of the CPC code are given by the
rows of the quantum parity matrix. As an example, consider
the quantum parity check matrix for the [[4, 2, 2]] CPC code
obtained by substituting equation (24) into equation (25)

GXZ(S[[4,2,2]]) =
[D1] [D2] [p1] [p2] [D1] [D2] [p1] [p2]()
0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

.
(26)

From the above, the two GF(2) rows translate to the stabilizers
ZD1ZD2Zp1Xp2 and XD1XD2Xp1Zp2 in Pauli notation.

The stabilizers of a quantum code must mutually commute.
This condition means that the quantum parity check matrix of
the code must satisfy the following relation

GX ·GT
Z ⊕GZ ·GT

X = 0, (27)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 17

where GX and GZ are the X- and Z- components of the
quantum parity check matrix given by GXZ = (GX | GZ).
Substituting equation (25) into equation (27) we obtain

GXG
T
Z ⊕GZG

T
X = (mT

p | mT
b ·mp ⊕mc) · (mT

b | 11n−k)T

⊕ (mT
b | 11n−k) · (mT

p | mT
b ·mp ⊕mc)

T

= (mT
p ·mb | mT

b ·mp ⊕mc)⊕ (mT
b ·mp | mp ·mT

p ⊕mT
c)

= (mT
p ·mb ⊕mT

p ·mb | mT
b ·mp ⊕mc ⊕mT

b ·mp ⊕mT
c)

= 0
(28)

From the above, we see that the CPC code structure guarantees
a set of commuting stabilizers for all combinations of the
adjacency matrices mb, mp and mc. As such, the CPC
framework provides a method for creating a valid stabilizer
code from any sequence of parity checks.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,
2006.

[2] D. J. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2003.

[3] R. G. Gallager, Low Density Parity Check Codes, ser. MIT Research
monograph series. MIT Press, 1963, no. 21.

[4] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of
low density parity check codes.” Electronics Letters, vol. 32, no. 18, p.
1645, 1996.

[5] D. J. C. MacKay, “Good error correcting codes based on very sparse
matrices,” IEEE Trans. on Info. Theory, vol. 45, no. 2, p. 399, 1999.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes.” in Proc. 1993 IEEE
International Conf. on Communications, Geneva, Switzerland, 1993, p.
1064.

[7] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes.” IEEE Trans. on Communications, vol. 44, p.
1261, 1996.

[8] C. E. Shannon, A Mathematical Theory of Communication. University
of Illinois Press, 1949.

[9] P. W. Shor, “Scheme for reducing decoherence in quantum computer
memory,” Phys. Rev. A, vol. 52, p. R2493, 1995.

[10] A. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett.,
vol. 77, pp. 793–797, 1996.

[11] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Phys. Rev. A, vol. 54, pp. 1098–1106, 1996.

[12] D. A. Lidar and T. A. Brun, Quantum Error Correction. Cambridge
University Press, 2013.

[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Physical
Review A, vol. 86, no. 3, p. 032324, 2012.

[14] D. Gottesman, “The Heisenberg representation of quantum computers,”
in Group theoretical methods in physics. Proceedings, 22nd Interna-
tional Colloquium, Group22, ICGTMP’98, Hobart, Australia, July 13-
17, 1998, 1998, pp. 32–43, arχiv:quant-ph/9807006.

[15] N. Chancellor, A. Kissinger, J. Roffe, S. Zohren, and D. Horsman,
“Graphical structures for design and verification of quantum error
correction,” arχiv:1611.08012, 2016.

[16] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 498–519, 2001. [Online]. Available:
https://doi.org/10.1109/18.910572

[17] M. Leifer and D. Poulin, “Quantum graphical models and belief
propagation,” Annals of Physics, vol. 323, no. 8, pp. 1899–1946, Aug.
2008. [Online]. Available: https://doi.org/10.1016/j.aop.2007.10.001

[18] J. M. Renes, “Belief propagation decoding of quantum channels
by passing quantum messages,” New Journal of Physics, vol. 19,
no. 7, p. 072001, Jul. 2017. [Online]. Available: https://doi.org/10.
1088/1367-2630/aa7c78

[19] P. O. Vontobel, “Stabilizer quantum codes: A unified view based on
forney-style factor graphs,” in 2008 5th International Symposium on
Turbo Codes and Related Topics. IEEE, September 2008. [Online].
Available: https://doi.org/10.1109/turbocoding.2008.4658700

[20] J. X. Li and P. O. Vontobel, “Factor-graph representations of
stabilizer quantum codes,” in 2016 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, September
2016. [Online]. Available: https://doi.org/10.1109/allerton.2016.7852350

[21] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https:
//doi.org/10.22331/q-2018-08-06-79

[22] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

[23] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2011.

[24] E. Rieffel and W. Polak, Quantum Computing: A Gentle Introduction.
MIT Press, 2011.

[25] P. M. Dirac, The Principles of Quantum Mechanics. Oxford University
Press, 1930.

[26] J. L. Park, “The concept of transition in quantum mechanics,”
Foundations of Physics, vol. 1, no. 1, pp. 23–33, Mar 1970. [Online].
Available: https://doi.org/10.1007/BF00708652

[27] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”
Nature, vol. 299, no. 5886, pp. 802–803, October 1982. [Online].
Available: https://doi.org/10.1038/299802a0

[28] N. Nickerson, Y. Li, and S. Benjamin, “Topological quantum computing
with a very noisy network and local error rates approaching one percent,”
Nature Communications, vol. 4, p. 1756, 2013.

[29] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,
T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and
J. M. Martinis, “Superconducting quantum circuits at the surface code
threshold for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503,
apr 2014. [Online]. Available: https://doi.org/10.1038/nature13171

[30] M. Takita, A. W. Cross, A. Córcoles, J. M. Chow, and J. M. Gambetta,
“Experimental demonstration of fault-tolerant state preparation with
superconducting qubits,” Physical Review Letters, vol. 119, no. 18,
October 2017. [Online]. Available: https://doi.org/10.1103/physrevlett.
119.180501

[31] C. Horsman, A. Fowler, S. Devitt, and R. Van Meter, “Surface code
quantum computing by lattice surgery,” New Journal of Physics, vol. 14,
no. 12, p. 123011, 2012.

[32] J. Roffe, D. Headley, N. Chancellor, D. Horsman, and V. Kendon,
“Protecting quantum memories using coherent parity check codes,”
Quantum Science and Technology, vol. 3, no. 3, p. 035010, 2018.
[Online]. Available: https://doi.org/10.1088/2058-9565/aac64e

[33] J. Roffe, “The coherent parity check framework for quantum error
correction,” PhD Thesis, Durham University, 2019. [Online]. Available:
http://etheses.dur.ac.uk/13055/

[34] T. Brun, I. Devetak, and M.-H. Hsieh, “Correcting quantum errors with
entanglement,” Science, vol. 314, no. 5798, pp. 436–439, Oct. 2006.
[Online]. Available: https://doi.org/10.1126/science.1131563

[35] J.-P. Tillich and G. Zemor, “Quantum LDPC codes with positive
rate and minimum distance proportional to the square root of the
blocklength,” IEEE Transactions on Information Theory, vol. 60,
no. 2, pp. 1193–1202, February 2014. [Online]. Available: https:
//doi.org/10.1109/tit.2013.2292061

[36] L. Vaidman, L. Goldenberg, and S. Wiesner, “Error prevention
scheme with four particles,” Physical Review A, vol. 54, no. 3,
pp. R1745–R1748, September 1996. [Online]. Available: https:
//doi.org/10.1103/physreva.54.r1745

[37] M. Grassl, T. Beth, and T. Pellizzari, “Codes for the quantum erasure
channel,” Physical Review A, vol. 56, no. 1, pp. 33–38, July 1997.
[Online]. Available: https://doi.org/10.1103/physreva.56.33

[38] M. C. Davey and D. J. MacKay, “Monte carlo simulations of infinite
low density parity check codes over gf(q),” Proc. of Int. Workshop on
Optimal Codes and related Topics, Bulgaria, 1998.

[39] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, “Hardware–efficient variational
quantum eigensolver for small molecules and quantum magnets,”
Nature, vol. 549, pp. 242–246, 2017. [Online]. Available: https:
//www.nature.com/articles/nature23879

[40] Nikolaj Moll et. al., “Quantum optimization using variational algorithms
on near-term quantum devices,” 2017, arχiv:1710.01022.

[41] D. Wang, O. Higgott, and S. Brierley, “A generalised variational quantum
eigensolver,” 2018, arχiv:1802.00171.

[42] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014, arχiv:1411.4028.

[43] ——, “A quantum approximate optimization algorithm applied to a
bounded occurrence constraint problem,” 2014, arχiv:1412.6062.

https://doi.org/10.1109/18.910572
https://doi.org/10.1016/j.aop.2007.10.001
https://doi.org/10.1088/1367-2630/aa7c78
https://doi.org/10.1088/1367-2630/aa7c78
https://doi.org/10.1109/turbocoding.2008.4658700
https://doi.org/10.1109/allerton.2016.7852350
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/BF00708652
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/nature13171
https://doi.org/10.1103/physrevlett.119.180501
https://doi.org/10.1103/physrevlett.119.180501
https://doi.org/10.1088/2058-9565/aac64e
http://etheses.dur.ac.uk/13055/
https://doi.org/10.1126/science.1131563
https://doi.org/10.1109/tit.2013.2292061
https://doi.org/10.1109/tit.2013.2292061
https://doi.org/10.1103/physreva.54.r1745
https://doi.org/10.1103/physreva.54.r1745
https://doi.org/10.1103/physreva.56.33
https://www.nature.com/articles/nature23879
https://www.nature.com/articles/nature23879

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2938751, IEEE
Transactions on Information Theory

JOURNAL NAME, PUBLICATION DATE 18

[44] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and C. Chamon,
“Optimizing variational quantum algorithms using Pontryagin’s mini-
mum principle,” Phys. Rev. X, vol. 7, p. 021027, May 2017. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevX.7.021027

[45] E. Farhi, J. G. amd S. Gutmann, and H. Neven, “Quantum algorithms
for fixed qubit architectures,” 2017, arχiv:1703.06199.

[46] “Tikzit,” http://tikzit.github.io/, 2013, accessed April 20th, 2018.
[47] “Numpy 1.11.1,” http://www.numpy.org/, 2016, accessed August 10th,

2016.

Joschka Roffe is a research associate at The University of Sheffield. He
graduated with a physics (MPhys) degree from The University of Manchester
in 2015. Following this, he studied a PhD in quantum computing at Durham
University under the supervision of Viv Kendon. His thesis, ‘The Coherent
Parity Check Framework for Quantum Error Correction’, was awarded the
2019 Durham Winton Doctoral Prize in Computational Physics. Joschka now
works as part of the Quantum Code Design and Architectures project (http://
www.qcda.eu). His current research focuses on the design and implementation
of quantum error correction protocols. Up-to-date information about Joschka
can be found on his website: http://www.roffe.eu.

Stefan Zohren is an Associate Professorial Research Fellow at Machine
Learning Research Group and the Oxford-Man Institute for Quantitative
Finance, University of Oxford. Previously, he coordinated the Quantum
Optimisation and Machine Learning project, a joined research project of
Oxford University, Nokia Technologies and Lockheed Martin. His background
is in theoretical physics, probability theory and statistics. Stefan’s research
interests include machine learning applied to finance, deep learning for time
series modelling as well as quantum computing and statistical physics.

Dominic Horsman Dominic Horsman is Chair of Excellence in Quantum
Engineering at the University of Grenoble, and previously worked on the
NQIT quantum technologies project in the UK. He has a background in
theoretical physics and computer science, as well as industry experience in
AI. His research focus is developing the foundations of quantum software
(including novel language tools based on the ZX-calculus), error correction,
and compilation. His work is directed towards the development of both
near-term (NISQ) quantum hardware and longer-term full scale quantum
computers.

Nicholas Chancellor is an EPSRC UKRI Innovation fellow at Durham
University (UK). He did his PhD. at the University of Southern California
in 2013 under the supervision of professor Stephan Haas. Prior to becoming
a principle investigator on his own grant in 2018, he was postdoc at University
College London and Durham University. Nicholas has 20 publications either
accepted or published in peer reviewed journals. His main subject of research
is continuous time quantum computing including quantum annealing, in
particular hybrid quantum-classical algorithms, where he helped pioneer the
use of reverse annealing as an algorithmic tool. Nicholas has also helped
to develop the coherent parity check (CPC) formalism for quantum error
correction. Up-to-date information about Nicholas can be found on his
personal webpage http://www.nicholas-chancellor.me.

https://link.aps.org/doi/10.1103/PhysRevX.7.021027
http://www.qcda.eu
http://www.qcda.eu
http://www.roffe.eu
http://www.nicholas-chancellor.me

