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ABSTRACT: The reaction of nitrous oxide (N2O) with N-
heterocyclic olefins (NHOs) results in cleavage of the 
N-O bond and formation of azo-bridged NHO dimers. 
The latter represent very electron-rich compounds with a 
low ionization energy. Cyclic voltammetry studies show 
that the dimers classify as a new organic super-electron-
donors, with a reducing power similar to what is found 
for tetraazafulvalene derivatives. Mild oxidants are able 
to convert the neutral dimers into radical cations, which 
can be isolated. Further oxidation gives stable dications.  

N-Heterocyclic carbenes (NHCs) are able to form cova-
lent adducts with CO2 (Scheme 1a).1,2 The resulting im-
idazolium-2-carboxylates have been used as organocata-
lysts for different reactions,3 and they represent easy-to-
handle NHC transfer reagents for the synthesis of metal 
carbene complexes.4  

 

Scheme 1. Reactions of NHCs and NHOs with CO2 or N2O. 

N-Heterocyclic olefins (NHOs) are alkylidene deriva-
tives of NHCs.5 The exocyclic C=C double bond is 
strongly polarized, and the high charge density at the Ca 
atom makes NHOs strongly Lewis-basic compounds. 
Similar to NHCs, NHOs react with CO2 to give zwitteri-
onic covalent adducts (Scheme 1b). These adducts are of 
key importance in CO2 sequestration reactions with 
NHOs.6 

Nitrous oxide (N2O) is isoelectronic to CO2, and like-
wise a chemically inert compound.7 Despite its inert char-
acter, N2O is able to form stable covalent adducts with 
NHCs under ambient conditions (Scheme 1c).8 So far, 
NHC-N2O adducts have not been used in the context of 
catalytic reactions, but they were shown to act as mild and 
selective oxidants for metal complexes,9 and as precur-
sors for azo dyes.10  

The results summarized above prompted us to explore 
if NHOs would also react with N2O. A chemical activa-
tion of N2O with an NHO can indeed be achieved under 
mild conditions. Instead of a simple 1:1 adduct, we ob-
served the formation of an azo-bridged NHO dimers 
(Scheme 1d). These dimers represent new super-electron-
donors, as evidenced by cyclic voltammetry and reactions 
with aryl iodides. Details of these investigations are given 
below. 

For our investigations, we have used NHOs with 2,6-
iPr2C6H3 (Dipp), 2,4,6-Me3C6H2 (Mes), and 2,6-
Me2C6H3 (Xyl) substituents.11 When concentrated solu-
tions of these compounds in CH3CN were exposed to an 
atmosphere of N2O at room temperature, a gradual color 
change to orange/red was observed. After 48 h, strongly 
colored precipitates had formed (1–3, Scheme 2), which 
were isolated and washed with CH3CN. 

The products displayed a reduced symmetry when com-
pared to the starting NHOs, as evidenced by the presence 
of a double set of NMR signals for the N-aryl groups. This 
observation indicated that 1–3 are not simple NHO-N2O 
adducts. 

Analysis of 1 and 3 by single crystal X-ray crystallog-
raphy showed that azo-bridged NHO dimers had formed 
(for details, see the Supporting Information, SI). The for-
mation of these dimers can be rationalized by assuming 
that the reactions proceed via zwitterionic NHO-N2O ad-
ducts of type A (Scheme 2), which can tautomerize to the 
diazohydroxides B. A condensation reaction with remain-
ing NHO then provides the dimers 1–3. Presumably, the 
condensation reaction is initiated by N–O bond rupture of 
the diazohydroxide B,12 forming either a vinyl diazonium 
compound or a diazoalkene.13 



 

 
Scheme 2. Reaction of NHOs with N2O. 

Solutions of 1–3 in THF appear dark orange. The ab-
sorption in the visible range is in line with the solid state 
structures of 1 and 3, which both show a co-planar ar-
rangement of the two heterocycles and the divinyldiazene 
bridge, allowing for efficient p-conjugation. Linear-re-
sponse time-dependent density functional calculations 
further confirm this observation, indicating for the main 
band of 1 a pp* character located over the heterocycles 
and the divinyldiazene bridge (see SI for computational 
details). 

The reducing power of 1 was assessed by cyclic volt-
ammetry (CH3CN, 0.1 M NBu4PF6). Two well-separated, 
reversible redox transitions were observed at E1/2 =             
– 1.34 and – 0.73 V, referenced versus an external Fc/Fc+ 
redox couple. Similar values were obtained for the azo 
compounds 2 and 3 (see SI). The first oxidation potential 
is comparable to what has been observed for some 
tetraazafulvalene derivatives, for example C and D (Fig-
ure 1), which are referred to as organic super-reducing-
agents.14–17 

Density functional theory (DFT) calculations using the 
exchange/correlation functional wB97X-D18 were per-
formed to gain further insight into the electronic structure 
of the new compounds, using 1 as representative example 
(for details, see SI). The calculations revealed a gas phase 
vertical ionization energy (vIE) of 4.49 eV, and an adia-
batic ionization energy (aIE) of 4.16 eV. Upon inclusion 
of an implicit solvent model for CH3CN in the calcula-
tion, the ionization energies are lowered to values of 
4.19 eV (vIE) and 3.24 eV (aIE), respectively. Calculat-
ing the aIE of the tetraazafulvalene derivative C using the 
same computational protocol (DFT/wB97X-D/IEFPCM), 
gives a value of 3.34 eV, close to the one obtained for 1. 

It is worth discussing the structurally related compound 
E2+, F and G (Figure 1). E2+ was described by Hünig and 
co-workers.19 Electrochemical investigations showed that 
the corresponding neutral form E is formed at E1/2 = –
1.00 V,18 but isolation of the neutral compound was not 
attempted. The lower reducing power of E compared to 1 
is likely related to the presence of annulated benzene 
rings.15 The dipnictenes F and G were recently reported 
by Ghadwal and co-workers.20 These compounds were 
obtained by reaction of phenyl-substituted NHOs with 
ECl3 (E = P, As), followed by reduction. Electrochemical 

investigations for F indicated that the first oxidation oc-
curs at E1/2 = –1.36 V.20a 

 
Figure 1. The redox potential for the first oxidation of 1 in 
comparison to the values of structurally related compounds 
reported in the literature. The values are based on CV meas-
urements in CH3CN (for F: CH2Cl2) with respect to the 
Fc/Fc+ redox couple.17 

The chemical reactivity if the new azo-bridged NHOs 
was investigated using again compound 1 as representa-
tive example. The large difference between the first and 
the second oxidation potential allows for a selective one-
electron oxidation of 1. The oxidation can be accom-
plished using chloroform, benzyl bromide, or silver tri-
flimide as oxidants (Scheme 3). The resulting salts 4a–c 
were isolated in yields between 40 and 72%. 

In the absence of air, the salts are stable in solution 
(THF) and in the solid state.21 Crystallographic analyses 
of 4a–c revealed that the single-electron oxidation had re-
sulted in a lengthening of the C1-C2 and the N1-N1’ 
bonds, and a shortening of the C2-N1 bond (Table 1). 

 
Scheme 3. Reaction of 1 with different oxidants. 

  



 

Table 1. Selected bond lengths for 1, 3, 4a-c, and 5b as de-
termined by X-ray crystallography.a 

 
Compound C1-C2 C2-N1 N1-N1’ 
1 1.3692(14) 1.3703(14) 1.2907(16) 
3 1.3685(14) 1.3713(13) 1.2902(16) 
4a 1.408(3) 1.324(2) 1.327(3) 
4b 1.4108(18) 1.3214(17) 1.333(2) 
4c 1.4109(15) 1.3237(14) 1.3300(18) 
5b 1.450(3) 1.271(3) 1.400(3) 

 
a All structures show a crystallographic inversion center. 
 

The presence of a radical cation in 4 was confirmed by 
EPR spectroscopy (Figure 3a). The complex hyperfine 
coupling indicates that the radical is delocalized over the 
planar p-system. Such a delocalization is in accordance 
with the results of DFT calculations, which show that the 
spin density is distributed over the two heterocycles and 
the divinyldiazene bridge (Figure 3b). 

 

Figure 3. EPR spectrum of 4a (a), and calculated spin den-
sity of the radical cation (b).  

Solutions of 4 are strongly colored, and the UV-Vis 
spectrum (THF) shows absorption bands at 661 nm and 
736 nm in addition to a main band at lmax = 516 nm. The 
occurrence of low-energy bands is typical for p-conju-
gated radicals.22 

The addition of two equivalents of AgBF4, an excess of 
bromine, or 2,2,3,3-tetrachlorohexafluorobutane to a so-
lution of 1 resulted in the formation of imidazolium salts 
5a–c, which could be isolated in high yield (Scheme 3). 
A crystallographic analysis of 5b showed that the double 
oxidation had led to further lengthening of the C1-C2 and 
the N1-N1’ bonds, and shortening of the C2-N1 bond (Ta-
ble 1). 

When a solution of 1 in a mixture of diethyl ether and 
hexane (2:1) was exposed to dioxygen, we observed the 
formation of a brown-yellow oily solid. Work-up allowed 
isolation of the salt 6 in 69% yield (Scheme 3). As evi-
denced by mass spectrometry and single crystal X-ray 
crystallography (see SI), the reaction with O2 had resulted 

in oxidation of one of the Ca atoms of the azo-bridged 
dimer.23 

To qualify as an organic super-reducing-agent, a com-
pound should be able to reduce aryl iodides.14 We have 
examined the reaction of 1 with the aryl iodides 7 and 9 
(Scheme 4).24 When a solution of 7 and 1 in a mixture of 
DMF and toluene (1:1) was heated to 100°C, cyclization 
to the indoline 8 was observed. The latter could be iso-
lated in 89% yield. The more challenging substrate 9 
could also be reduced. However, (benzyloxy)benzene 
(10) was only formed in 43% yield, and incomplete con-
version was observed. 

 
Scheme 4. Reactions of aryliodides with 1. 

In summary, we have examined the reaction of N-heter-
ocyclic olefins with nitrous oxide. Instead of simple N2O 
adducts, we observed N-O bond cleavage and formation 
of azo-bridged NHO dimers (1–3). These dimers are very 
strong electron donors, which can be converted into a sta-
ble radical cations or a dicationic imidazolium salts. The 
first oxidation potentials are similar to what is observed 
for some tetraazafulvalenes, allowing the reduction of 
aryl iodides. Consequently, 1–3 classify as new super-
electron-donors. Tetraazafulvalenes have been used as 
potent reducing agents in synthetic chemistry,14 and sim-
ilar applications can be envisioned for the new diazenes. 
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