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Abstract—Recurrent neural network (RNN) has become pop-
ular for human motion prediction thanks to its ability to capture
temporal dependencies. However, it has limited capacity in
modeling the complex spatial relationship in the human skeletal
structure. In this work, we present a novel diffusion convolutional
recurrent predictor for spatial and temporal movement fore-
casting, with multi-step random walks traversing bidirectionally
along an adaptive graph to model interdependency among body
joints. In the temporal domain, existing methods rely on a single
forward predictor with the produced motion deflecting to the
drift route, which leads to error accumulations over time. We
propose to supplement the forward predictor with a forward
discriminator to alleviate such motion drift in the long term
under adversarial training. The solution is further enhanced by a
backward predictor and a backward discriminator to effectively
reduce the error, such that the system can also look into the
past to improve the prediction at early frames. The two-way
spatial diffusion convolutions and two-way temporal predictors
together form a quadruple network. Furthermore, we train
our framework by modeling the velocity from observed motion
dynamics instead of static poses to predict future movements that
effectively reduces the discontinuity problem at early prediction.
Our method outperforms the state of the arts on both 3D and
2D datasets, including the Human3.6M, CMU Motion Capture
and Penn Action datasets. The results also show that our method
correctly predicts both high-dynamic and low-dynamic moving
trends with less motion drift.

Index Terms—human motion prediction, body joint dynamics,
diffusion convolutions, recurrent neural network, bi-directional
predictor

I. INTRODUCTION

HUMAN motion prediction has attracted much attention
in real-world applications where a precise estimation

of movements in future frames are needed for a fast system
reaction. Examples include predicting pedestrian behaviours
in autonomous driving [1] and controlling virtual characters
in computer graphics [2]. In contrast to action recognition
[3]–[5] with fully observed human movements, anticipating
motion aims at predicting the future moving trend from
partially observed motion seed, and the challenges mainly
come from the highly temporal uncertainties on complex topo-
logical structures formed by body joints. The goal of correctly
predicting motion trend becomes not only spatially estimating
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plausible poses frame by frame, but also maintaining dynamics
between frames.

To deal with the above challenges, classical data-driven
solutions adopt probabilistic models to interpret human mo-
tion using Hidden Markov Model [6] or Gaussian process
priors [7]. Such models depend on strong assumptions in
statistical distributions, which limits the scope of prediction.
The emergence of recurrent neural network (RNN) allows
the prediction of motions with complex dynamics [8]–[11],
as these networks use both motion history and the current
pose to learn the temporal dependencies. Despite the improved
accuracy, it is still challenging for the RNN-based model to
precisely preserve the motion dynamics during prediction.

In this paper, we investigate three problems in existing
motion prediction approaches with an RNN-based structure:
1) Mining the spatial interdependency among body joints;
2) Reducing temporal discontinuity at early prediction; 3)
Preserving motion trend in long-term prediction.

In terms of mining spatial interdependency, we form a bi-
directional diffusion graph on joints with adaptive connectivity
to capture the dependencies within multiple spatial steps.
Vanilla RNN generates unrealistic movements without spatial
modeling [8], it is usually accompanied by a limb-level aggre-
gation [11]–[13] while ignoring the abundant communications
among joints, which ends up with an inaccurate pose estima-
tion. Here, we focus on a more generalized solution to explore
the topology of the graph formed by joints without body part
constraints. By regarding each human joint as a graph node,
we make our graph connectivity to be adaptive with network
training to model flexible joint combinations without skeletal
restrictions. We then perform graph convolutions [14] along
multi-step random walks on the adaptive graph topology with
a forward and backward diffusion process. Unlike the majority
of existing methods that only model graph convolutions with
one-way propagation, we integrate both forward and backward
node information along the random walks, as the movement
of different joints may also affect each other.

Regarding the temporal discontinuity at early prediction, we
solve it by modeling motion velocity to encode continuous
dynamics from the motion seed instead of raw poses. When
synthesizing future movements, the discontinuity problem
describes the irregular jump between the given motion and
prediction. Residual connections [8], [15], [16] attempted to
eliminate this by modeling the static poses to predict the
dynamic velocities, where the discontinuity still exists as the
motion dynamics is indeed not observed by the model. This
motivates us to train the velocity in a consistent way, i.e.
predicting the next velocity from the previous velocity rather
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Fig. 1. Illustration of a high-dynamic motion (top) and a low-dynamic motion
(bottom) in Human3.6M.

than the previous pose, to maintain the moving regularities
inherited from its seed motion dynamics. As a result, it shows a
better continuity than residual connections. We further propose
a velocity-pose reconstruction loss that optimizes the poses
reproduced from the predicted velocity to ensure not to create
unexpected movements.

To preserve the motion trend in long-term prediction,
we propose a bi-directional predictor enhanced by a bi-
discriminator to adversarially revise the generated forward and
backward motion dynamics. From a single forward predictor
[8], [10], [17], prediction errors are rapidly accumulated along
the temporal domain since RNN models fail to keep the
long-term knowledge in recurrent steps, causing the generated
motion drifting to a wrong direction. To this end, we train
a backward predictor to encode the velocity in reversed
timesteps, such that the model recovers the context from
the beginning dynamics that are lost during long sequence
transition. Furthermore, the forward and backward predictors
together with a bi-directional discriminator will guide the
generated velocity sequence to detect and revise its error from
both past and future dynamics through adversarial training. To
reduce the model complexity, we also leverage the similarity
between the predictor and discriminator in the same direction
using a weight sharing structure.

In particular, our predictor is formed by embedding the
multi-step diffusion convolutions in the gated recurrent unit
(GRU) [18] to synchronously learn the spatial-temporal re-
lationship of motion dynamics under a recurrent sequence-
to-sequence (seq2seq) [19] pipeline. With dual directions in
both space and time illustrated above, we achieve a quadruple
diffusion convolutional recurrent network (Q-DCRN) for a
precise motion dynamic prediction.

Comparing with the state of the art, we test on Mean Angle
Error (MAE) as previous motion prediction works [8], [15],
[16]. We also verify the predicted sequence with position-
based metrics, i.e. Mean Per Joint Position Error (MPJPE)
and Percentage of Correct Keyjoints (PCK) [20], to better
tell whether a prediction follows the ground truth in pose
level. Experimental results show that in terms of different
metrics, our Q-DCRN outperforms the state of the arts on
both 2D and 3D human pose datasets. The qualitative study
also shows that the proposed method correctly preserves both
high- and low-dynamic motions in long-term prediction, where
previous work could not handle both cases. Here, a high-

dynamic motion refers to an active motion state with more
movements and a low-dynamic motion is the opposite (see
Fig. 1). We also verify our improvements with ablation studies.

To summarize, the main contributions of this paper are:
• We propose a bi-directional diffusion graph under adap-

tive joint connectivity to mine the spatial interdependency
for human motion prediction;

• We propose to model velocity from the seed motion
dynamics to reduce temporal discontinuity at early pre-
diction meanwhile optimizing the restored poses to avoid
unexpected generations;

• We propose a bi-directional temporal predictor to reduce
error accumulation from both past and future motion
dynamics in an adversarial manner.

The rest of the paper is arranged as follows. Section II
reviews the background research related to our work. Section
III explains the proposed Q-DCRN prediction framework.
Section IV analyses the experiment results and discusses our
system. Lastly, Section V concludes this paper.

II. RELATED WORK

We first review how existing research learns the spatial
structure in sequential-based networks (i.e. Spatial Perception).
We then summarize the background efforts in reducing the ini-
tial discontinuity (i.e. Temporal Discontinuity at Early Predic-
tion), and the long-term errors (i.e. Long-term Motion Drift).
After that, we present different types of parameterizing during
training and their evaluation metrics (i.e. Parameterizations).

A. Spatial Perception

Sequential learning is the common approach to modeling
temporal dynamics of human motion, since body joints are
highly correlated with each other, it is equally important
to consider the inherent spatial structure for generating a
natural pose in the meanwhile. Butepage et al. [12] originally
proposed a hierarchical encoder based on the kinematic tree
using fully-connected layers, which outperforms its exper-
imental counterpart without the structural prior. Similarly,
Wang et al. [11] learned the high-level spatial representations
by encoding hierarchical features extracted from different body
components, and predict batch of frames at once to prevent
the mean pose problem. In contrast to [11] and [12], Aksan
et al. [21] considered skeleton hierarchy at the output stage
for reconstructing controllable poses, and their idea can also
be attached to existing works as extra structure-aware layers
to further promote motion prediction performance. While in
these works, the subdivision of joints into groups is a strong
assumption under the articulated chain, and it overlooks the
characteristic joint-level correlations.

Graph convolutional network (GCN) [22] is an alternative
solution to integrally consider all joints as graph nodes. By
merging the features of a joint with its nearby neighbours,
GCN shows potential in modeling human pose under graph
structures. When combining with the recurrent framework,
GCN shows great advantages in analysing graph-based se-
quential data. For example, Seo et al. [23] modeled natural
language represented by the nearest neighbour graph and
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learned temporal regularities using the RNN pipeline. In pars-
ing motion patterns, Si et al. [24] exploited spatial-temporal
graph convolution on dynamic skeleton sequence to boost the
performance of action recognition. In this paper, we adapt
the method originally for traffic network modeling [25] to
our motion prediction task with multiple spatial and temporal
steps to anticipate future movements. Since motion dynamics
have more complex topology structures and more stochastic
temporal variations, as discussed in [26] and [27], using fixed
graph connection limits the spatial proximity to the prede-
fined configuration (i.e. kinematic chain in skeletal structure).
Therefore, we design our graph connectivity to be adaptive, so
it is capable of learning the underlying dependencies among
joints, and temporally we use a bi-discriminator to rectify the
motion following a realistic moving pattern.

Recent researches also adopt GCN for motion predictions
over innovative graph structures. Li et al. [28] constructed a
multiscale graph structure based on different body components
for motion prediction. While this method provides a compre-
hensive coarse-to-fine modeling, extra knowledge is required
to group the body into skeleton subsets, which makes it deter-
ministic and hard to be transferred to other skeletal structures.
Moreover, the cross fusion of the multi-level structures in [28]
also increases the computational complexity, resulting in a
slower prediction process. Similar to our graph structure, Cui
et al. [29] defined adaptive joint connectivities and achieved
impressive prediction results under a deep GCN framework.
However, their joint information can only be updated from
its neighbour joints one step away. In this work, we conduct
diffusion convolutions on joints by integrating information
several steps away to capture global dependencies, which also
provides more insights on the understanding of graph structure.

B. Temporal Discontinuity at Early Prediction
The temporal discontinuity in the beginning is harmful as it

delivers wrong initial information to its following prediction,
which may derive an unexpected motion sequence with a
large error rate. In heuristic research for motion prediction,
a representative residual network [8] was first proposed to
estimate velocity, which has achieved great success in re-
ducing initial discontinuity of the generated sequence com-
pared with previous attempts [30], [31] predicting only static
poses. This triggers many sequential-based motion prediction
frameworks [13], [16], [32] introducing residual connection
into their baselines. One step of residual connection means
that the system outputs velocity from the pose, and adds the
velocity back to the previous pose to predict the next step.
However, the initial error remains notable during prediction
as these methods only encode pose features while unseen to
the dynamics from the motion seed. This causes inconsistency
in preserving the moving trend for prediction, which violates
the overall coherence of motion dynamics. In our case, we
model the velocity from the given motion and observe a better
continuity property.

C. Long-term Motion Drift
The phenomenon of error accumulation during testing

is originally observed in [30] who proposed an Encoder-

Recurrent-Decoder (ERD) network and a multi-layer Long
Short-Term Memory network (LSTM-3LR) to decode motion
frame by frame. To detect the error, they suggested curriculum
learning [33] to increasingly perturb input to mimic the
distribution of the noisy prediction. The idea of noise schedul-
ing is later absorbed in [31] who introduced Structure-RNN
(SRNN) of mixture units interactions concerning an artificial
spatial-temporal graph. Unlike ERD and SRNN, Martinez
et al. [8] proposed a sampling-based loss to synthesize the
next frame completely from its previous predicted pose. The
method performs less satisfactorily in the long run for its
invisibility of real motions. Later, a convolutional seq2seq
network [15] is defined to identify spatial-temporal motion
correlations. However, their learned temporal dependency is
restricted by a deterministic filter size, causing an intensive
long-term dynamic loss in prediction. Recently, Dong and Xu
[32] attempted to reduce long-term error by looking back at
previous frames with spatial attention. Chen et al. [34] avoided
motion drift by generating early prediction controlled by the
action label, while our model is label-agnostic and is also
feasible for long-term prediction.

With the assistance of generative adversarial network
(GAN), the generative model is able to produce realistic mo-
tions with less motion drift. Gui et al. [35] first incorporated a
fidelity and a continuity discriminator with a residual generator
to fix the prediction process. Later in [16], RNN was equipped
with an extrinsic factor to find the intended probabilistic space
of poses with the assist of a bi-directional discriminator. Note
that their adversarial training aims to predict probabilistic
priors, while we explore the native ability of a bi-discriminator
to correct the predicted motion from two temporal directions
in an effective weight-sharing strategy.

In [28], [29], temporal convolution network (TCN) is
adopted to process motion history. By aggregating high-level
temporal information, TCN shows an advantage over RNN in
short-term prediction by generating smoothed poses. However,
this advantage becomes weak in the long term especially for
high dynamic motions, with the side effect of losing dynamic
details. In this paper, we enhance RNN with a velocity-
based discriminator to correct the generated moving trend,
which eventually performs better in preserving long-term high
dynamics compared with TCN-based methods [28], [29].

D. Parameterizations

The method of parameterizing human motion inevitably
affects the outcome of final prediction, such as exploiting
joint positions is more interpretable than joint angles but may
generate invalid articulations. In most cases, input motion is
parameterized as exponential maps, which obtains satisfactory
results. Pavllo et al. [36] employed quaternion representation
accompanying with the property of orientation interpolation
across frames, and this brings a smooth path in the estimation.
Holden et al. [2], [37] learned latent feature representations by
operating 3D joint positions, which benefits multiple applica-
tion fields like motion generation, recovery, and comparison.
While training on 3D position suffers from skeleton constraints
such as bone stretching, in [17] and [21], they modeled
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joint angles and tested on both angle and position spaces
of their generations for a more comprehensive evaluation
under different parameterizations. Following their work, for
Human3.6M [38] and CMU MoCap datasets [39] we train on
joint angles as they are invariant of bone length constraints and
thus stabilizing the model fitting. In the test phase, we compare
the joint angle as a standard metric used in previous models,
and also joint position to convince of the prediction quality.
The experiment on the Penn Action dataset [40] is carried out
on key joint positions because of its data representation format
in 2D space.

III. THE QUADRUPLE DIFFUSION CONVOLUTIONAL
RECURRENT NETWORK

Our goal is to holistically learn the spatial-temporal joint
correlations to preserve the motion trend. To achieve this, we
propose an innovative approach to modeling joint dynamics
in the velocity field under a graph-based sequential network
architecture, with dual directions in both space and time.

We first explain the problem definition and introduce the
notation that will be used throughout our framework. In
general, a human motion sequence consists of consecutive
poses, and each of them is represented by multiple joints.
We assume that the interaction within two joints is directed
and heterogeneous, i.e. the influence from joint p to joint q
is different from q to p, which better models the effect of the
body hierarchical structure [41]. Taking “arm swing” as an ex-
ample, shoulder dynamics largely determine hand movements,
while the influence will be smaller from hand to shoulder.
However, this diversity cannot be modeled by an undirected
graph where two opposite directions are weighted equally.
Under this observation, a human pose can be constructed under
a directed graph G = (V,E), where V is the vertex set with
K nodes, i.e. |V | = K, and E is the edge set. A ∈ RK×K

is the graph adjacency matrix denoting the spatial proximity
between nodes. Here, A is not symmetric in order to represent
the inequality in the two-way connectivity. Given a prefix of
human poses X1:t = [x1, x2, . . . , xt], where xi ∈ RK is
defined on graph G at time i, the purpose of motion prediction
is to estimate the motion postfix X(t+1):T . Since we operate
on the velocity domain, our task is characterized as estimating
[∇xt+1, . . . ,∇xT ] from [∇x2, . . . ,∇xt] under G, where the
backward difference ∇xi = xi − xi−1 denotes the motion
velocity at time i.

A. Bi-directional Spatial Formation

We construct bi-directional diffusion convolutions on an
adaptive graph structure to discover the spatial interdepen-
dency among joints. Diffusion convolutions [42], [43] ag-
gregate messages passing within high-order neighbours by
formulating the node communication as a diffusion process
with multiple steps, comparing to standard GCN that only
considers local node correlations. Since the joint dynamics
can be influenced by the joints from several spatial steps away
and vice versa, such as the movements of the joints in legs
and arms always affecting each other to maintain the body
balance, we regard the spatial dynamics flow as a divergent and

Fig. 2. An example of the dual directional 3-step diffusion graph concentrated
on the “left shoulder” joint. The arrow between graph nodes represent the
diffusion direction. The nodes in orange are the activated graph nodes that
taking part in the feature fusion at the current step.

convergent diffusion process separately to simulate upstream
and downstream node communications. This is because under
a conventional directed graph, the diffusion will only apply
along a single direction from the root node to the child node
within several steps [44], i.e. a divergence random path. Here,
the extra convergent path is to complement the divergence in
order to model the two-way information delivery, such that the
child node can also influence its root node.

The diffusion processes are conducted on a novel graph
structure with adaptive joint connectivity. In existing graph-
centered networks [43], [45], [46], the topology structure of
graph reflected by the node connectivity A is unweighted and
artificially defined. In diffusion convolution, [43] provided
a general case under an unweighted and undirected graph
for node classification tasks, where the node connections
are with equal importance. Their model is expected to learn
the dominant graph structure that can discriminate against a
certain type of cluster, regardless of the connectivity strengths
between nodes. However, in motion prediction, the unweighted
structure cannot quantify the joint dependency, which may
lead to ambiguous joint movements. Furthermore, the prede-
fined topology in human modeling indicates only the joints
connected by bones are communicative, which ignores the
abundant collaborative information among latent connections
[3]. For example, the connection between two feet is important
as it symbolizes the gait pattern during locomotion, but it
will not be highlighted under the traditional setup. Therefore,
instead of manually defining A that restricting the graph
descriptiveness within the kinematic tree structure, we set A
as learnable during network training to reveal the inherent
connection strengths among joints acquired by the real motion
data. Here, A is randomly initialized following a standard
uniform distribution within the range [0, 1].

With the adaptive graph structure, we then define a two-way
diffusion convolution with polynomial recurrences to mine the
interdependency of joints within multiple spatial steps. More
specifically, in a diffusion process [47] with divergent random
paths, a weighted combination

∑N
n=0 θn(D−1A)n is used to

estimate the graph stationary distribution ξ ∈ RK×K with a
truncation at step N , and θn is the nth factorization. This
polynomial quantifies the effect of root nodes on their child
nodes within N spatial steps spreading from the upstream.
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Fig. 3. The proposed Q-DCRN framework (unrolled version) with the outline of dual directional processes in both space and time. The blue and green boxes
denote the GRU cells with diffusion graphs in forward and backward chronological directions, respectively. The skeleton in red and blue represents the ground
truth posture, and the one in green and purple represents prediction. We attach two skeletons to represent the velocity of two adjacent frames. Inside the
dotted line is the discriminator structure for adversarial training. x̂i and x̃i are used to indicate forward and backward predicted poses. Parameters of boxes
in the same color are shared during training.

D−1A is the normalized adjacency matrix, where D is a
degree matrix with its diagonal elements representing the row
summation of the absolute A. The transpose AT describes the
spatial affinity for downstream diffusion process, which can be
used to capture the impact of child nodes on their ascendant
nodes. The diffusion convolution operation with dual random
walks (denoted as ∗G) is defined by:

Ht∗GΘ =

N∑
n=0

((D−1
u A)nHtΘu,n+(D−1

d AT )nHtΘd,n), (1)

where Ht ∈ RK×F is the input features of the current step t
with F denoting the latent feature dimension, Θ is the weights
of the convolution filter to be trained and Θ:,n ∈ RF×P with
P representing the dimension of output features. Du and Dd

are upstream and downstream diagonal matrices normalizing
divergence and convergence on G, respectively. When n = 0,
the two terms in Eq. (1) are merged and no diffusion is
conducted. The dual directional diffusion procedure of our
spatial structure is illustrated in Fig. 2.

To facilitate the refinement of the diffusion procedure, here
we use an N -step diffusion along the two-way random walks
on the spatial graph of human dynamics. Diffusion with mul-
tiple delivery steps gets access to the combination of different
levels of impact. A lower-order n will only grasp the interac-
tions between a few nodes, which is effective in describing the
movements with a small body scope such as “waving hand”.
A higher-order n could show spatial dependencies among a set
of nodes, which is valuable in characterizing global physical
coordination like “walking” and “jumping”. The choice of total

diffusion step N is empirical (see Fig. 11), as more steps will
refine the diffusion process with the random walks traversing
more often along the joints in a close relationship, on the other
hand, it yields a more complicated model.

B. Bi-directional Temporal Modeling

As observed from the bi-directional computation for time
series [48], modeling temporal sequences in the forward and
backward directions equips the system with rich contextual
information from both past and future conditions. This is
extremely useful for human motion prediction who will also
borrow the information from the future dynamics to revise
promptly in order to keep the long-term motion trend.

Under a seq2seq recurrent architecture, we propose a bi-
directional predictor to encode the forward and backward
motion dynamics. In the traditional single-predictor setup that
only considers the forward direction [8], long-term movements
are not guaranteed because a current pose only has access
to the dynamics in the past and drift itself into a wrong
moving direction. To alleviate this motion drift, we propose a
novel two-way predictor to make the system aware of its own
generated dynamics from the past and the future.

Furthermore, we also propose an adversarial bi-
discriminator to reinforce the predictor such that it can adjust
its own forward and backward generation synchronously
according to the real motion dynamics. From previous work,
when a single directional discriminator is used [35], the
long-term errors are easily accumulated due to the difficulty
in correcting small mistakes at early prediction. This is
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because the recurrent temporal modeling tends to focus
more on the latest inputs. The function of the backward
discriminator is to help the predictor correct the beginning
predicted frames to reduce error accumulation.

We also design a model compression method that could
efficiently communicate between the bi-predictor and the bi-
discriminator since they both need to encode the motion
dynamics, i.e. we share the structures and weights between
them within the same directions. This helps the common
component to quickly converge to the optimal motion manifold
and prevents the complicated GAN training from scratch.

The bi-directions of both spatial diffusion and temporal
predictor together form a quadruple diffusion convolutional
recurrent network (Q-DCRN) as shown in Fig. 3. In the
framework, we consider the sampling-based inference (i.e.
feeding in its generation per step) in the bi-predictor such that
it is bi-directional knowledgeable of its own dynamics, and the
teacher forcing learning (i.e. feeding in the ground truth per
step) in the bi-discriminator such that it revises the predictor
with real dynamics.

Here, we elaborate the details of our bi-predictor and bi-
discriminator constructions. We formalize the forward predic-
tor (i.e. BiS-DCRN) using a diffusion convolutional GRU (de-
noted as GRU∗G

) as the basic recurrent unit. As an alternative
to LSTM [49], GRU [18] has comparable performance with
more portable gate mechanisms. Intuitively, we embed the dual
directional diffusion convolution (Eq. (1)) into the GRU cell
as a substitute for the matrix multiplication inside each gate.
By absorbing current motion velocity ∇xt and the previous
hidden state ht−1 as input, a one-step diffusion convolution
transition based on GRU can then be formatted as

ht = GRU∗G
([∇xt, ht−1]; w), (2)

where w is the convolution kernel set. The diffusion convo-
lution ∗G is conducted on the update gate zt, the reset gate
rt, and the candidate ct of GRU, and we illustrate its detailed
operations in zt as an example in Fig. 4. The same operations
are conducted for rt. In ct, the ht−1 in the structure is replaced
by the dot product rt�ht−1, and f becomes tanh. The hidden
state ht = zt�ht−1 + (1− zt)� ct follows the standard GRU
architecture.

Next, we encode the prefix of motion dynamics frame
by frame. The encoded hidden state along with the last
frame observation is utilized to activate the decoder. The
entire predictor is under a seq2seq backbone. After translating
the input motion velocity into high-dimensional expression
under GRU∗G

, the output will go through a linear projection
converted back to velocity space. The decoder will decode
the predictive velocities under a sampling-based mechanism as
in [8]. We follow the same steps for the backward direction by
predicting the backward velocity. Our discriminator consists
of a forward and a backward diffusion convolutional GRU
layer which is shared from the forward and the backward
predictor, respectively. The bi-discriminator encodes the gen-
erated velocity frame by frame in two directions. The final
forward and backward states are concatenated by a linear
layer (K × P × 2 → 1) with sigmoid activation to output
the probability as shown in the lower part of Fig. 3.

Fig. 4. Illustration of the diffusion convolutional structure in the update
gate of GRU. The operators [, ], ⊗, and ⊕ denote concatenation, matrix
multiplication, and matrix addition, respectively. wz

u,n w
z
d,n are the upstream

and downstream convolution kernels for the diffusion step n. Note that we
only have a single kernel wz

0 when n = 0. The function f denotes activation
(σ for zt).

C. Velocity-informed Training

Given the quadruple prediction system, we now explain how
to train the system with velocity from the observed motion
dynamics to keep continuity at early prediction, and how we
optimize the model to ensure a plausible generated sequence
in terms of the intra-frame poses and the inter-frame dynamics
with the co-operation of two proposed losses.

To reduce the initial frame jump, we propose a training
strategy to uniformly interpret the motion velocity from motion
observation to prediction. The velocity acts as an explicit indi-
cator to measure the body moving trend [50]. Compared with
raw poses, predicting velocity mitigates the loss of temporal
dynamics over time, which prevents changeless poses or so-
called “dying out”. With smaller magnitudes of input values,
velocities also assist to regularize the network regression with
good generalization ability. However, the general operation
to include velocity is to use the residual architecture [8],
[13], [16] that outputs the velocity from its observed pose
sequence, which leads to the inconsistent dynamics between
the prediction and the seed moving trend. To avoid this, we
directly learn our system from the observed velocity to predict
the future velocity, and this preserves the initial continuity in
the generated temporal dynamics.

For the optimization of our framework, we wish the gen-
erated motion produces not only a plausible pose at each
frame but also an overall right moving dynamics. This is
because a generated motion can be intuitively measured under
1) the consecutive pose set and 2) the temporal velocity
variation, where the second measurement is usually overlooked
by existing research [9], [21], [51].

To this end, we propose a velocity-pose reconstruction
loss to penalize the reproduced poses from velocity, together
with a general adversarial loss to regularize the dynamics on
velocity space. The whole network will optimize alternatively
according to these two constraints and search the optimal
solution for the predicted motion.

1) The Velocity-Pose Reconstruction Loss: We propose a
novel velocity-pose reconstruction loss to measure the gener-
ated velocity in pose domain. The “velocity-pose” is defined
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as deriving the current pose based on the velocity over time
and the initial pose. Specifically, for each temporal direction,
we first compute the pose displacement by accumulating the
predicted velocity sequences and then add it to the initial pose
to generate the current pose. The “reconstruction loss” denotes
the mean squared error between the ground-truth poses with
the generated pose sequence. Since similar velocity chains
can derive completely different pose sequences, it is risky
to optimize the predictor on the velocity domain [17] when
the network is blind to the generated poses. Therefore, we
rebuild the poses from the predicted velocity frame by frame,
and minimize the loss in the pose level, so that the generated
motion is controllable.

Practically, the bi-predictor will output the joint velocities,
and we then reduce the cost based on the iteratively derived
pose sequence according to the composed objective function
with two independent terms calculating forward and backward
losses separately:

Lrecons =
1

T − t
(

T∑
i=t+1

‖ xi − x̂i ‖22 +

T−t∑
j=1

‖ xj − x̃j ‖22)

=
1

T − t

(
T∑

i=t+1

∥∥∥xi − (xt +

i∑
i′=t+1

∇x̂i′ )
∥∥∥2
2

+

T−t∑
j=1

∥∥∥xj − (xT−t+1 −
T−t+1∑
j′=j+1

∇x̃j′ )
∥∥∥2
2

)
,

(3)

where Lrecons denotes the reconstruction loss conducted on
the bi-directional pose sequences.

2) The Velocity-based Adversarial Loss: We then show the
details of how we form our adversarial loss in the velocity
domain. With the bi-discriminator encoding the velocity trend,
the adversarial loss will guide the generated velocities in two
directions to follow the ground truth moving dynamics.

After minimizing the velocity-pose reconstruction loss (i.e.
Lrecons), the optimized predictor weights will be reused in
the discriminator (denoted as D) within the same direction to
be further updated with respect to the adversarial loss Ladv ,
which is computed by:

Ladv = EX logD([∇Xt+1:T ,∇XT :t+1]|wf ,wb,w0)

+EX̂ log(1−D([∇X̂t+1:T ,∇X̂T :t+1]|wf ,wb,w0)),
(4)

where w0 represents the kernel parameters for the linear layer,
wf and wb are the shared forward and backward parameters
from the bi-predictor respectively, and ∇XT :t+1 is the reverse
of velocity sequence ∇Xt+1:T in time order. The adversarial
training follows the minimax optimization:

min
wf

max
wf ,w0

Ladv. (5)

By reusing the learned weights wf from D, the forward
predictor can quickly converge to its target distribution. Note
that we do not update wb in this step since we want to regulate
the forward generation as our final prediction rather than the
backward generation. The sharing mechanism will not only
keep the prediction consistent with the ground truth motion
but also help save computational memory.

IV. EXPERIMENTS

In this section, we validate the proposed Q-DCRN on
both short and long-term predictions. The experiments are
conducted on various benchmark datasets commonly used in
motion prediction tasks. We then compare the results with
the state of the arts and justify the effectiveness of different
components of our model.

A. Datasets

1) Human3.6M: We first experiment on Human3.6M [38],
which is a large and canonical 3D human pose dataset for
motion analysis. Human3.6M captures 7 actors performing 15
activities with diverse motion dynamics, such as periodic ac-
tions with moving regularities like “walking” and “eating”, and
aperiodic action with intensive variations like “posing” and
“walking dog”. In each frame, there are 32 joints represented
by 3D angles in the format of the exponential map. As in [8],
global translation and rotation are discarded together with
the joint angles in constant standard deviations. The motion
sequence is downsized to 25 frames per second. We test on
subject #5 while training on the others, and set 50 frames as
motion seeds and 25 frames for inference following previous
experimental setup [8], [15].

2) CMU MoCap: Following [15], we conduct the sec-
ond experiment on the CMU Motion Capture dataset (CMU
MoCap) [39]. The CMU MoCap database captures 5 main
activities produced by 144 actors, which serves over 2000
recordings. This dataset is very challenging with complex
sports actions such as “soccer” and “basketball”. The skeleton
contains 38 joints in each 3D pose. We employ the same
criteria of data cleaning as [15]. Human interactions and
motions with multiple topics are removed as well as the motion
categories with less than 6 trials. The final set contains 8
motion types. We conduct the same pre-processing steps as
Human3.6M.

3) Penn Action Dataset: We also experiment on the Penn
Action dataset [40] to test the robustness of our approach
towards 2D pose forecasting. The Penn Action dataset consists
of 2326 trials of human action annotated by 13 joints in
the 2D pose. It contains 15 different categories with diverse
complexity range as shown in Fig. 5. As in [17], [52], the
dataset is split into 1258 samples for training and 1068 for
testing. Following [17], we input the initial velocity and predict
the next 16 frames of poses.

B. Baselines and Experimental Settings

1) Baselines: In this work, three action-specific models
are used for comparison, which are RNN-based models:
ERD [30], LSTM-3LR [30] and SRNN [31]. The action-
specific model aims to train an individual prediction model
for each action. The more general and more challenging
multi-label algorithm aims to train a universe model for all
action categories. Our approach follows the intention of multi-
label algorithms. We then compare with the state-of-the-art
multi-label algorithms related to our network architecture
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(a) Baseball swing

(b) Jump rope

Fig. 5. Example frames of the Penn Action dataset. The upper rows are
sampled from RGB action videos and the bottoms are the corresponding
extracted 2D joint positions.

under two types of baselines, which are RNN or CNN-
based models: RRNN [8], 3D-PFNet [10], RMA [32], TP-
RNN [17], VGRU [10], QuaterNet [36], BiHMP-GAN [16],
and ConvSeq2seq [15]; GCN-based models: LDR [29] and
DMGNN [28]. To demonstrate the effectiveness of our veloc-
ity modeling method, we also present the prediction results for
modeling velocity consistently (denoted as VRNN) to compare
with RRNN which models posture sequence with residual
connections.

2) Evaluation Metrics: We first evaluate our method on the
standard metric, i.e. the Mean Angle Error (MAE) calculated
on the Euler angle. Besides the common measurement, we
also adopt the positional metrics that cover the Mean Per
Joint Position Error (MPJPE) and the Percentage of Correct
Keypoint (PCK) to validate the predictive ability of models.
Previous literature of motion prediction heavily relies on
measuring the Euler angle distance and sampling the predicted
poses qualitatively. However, merely using the Euler angle
as quantitative criteria is unconvincing due to the non-unique
solutions for a feasible pose [53]. Hence, we also measure the
generated poses using positional metrics as complementary.

Mean Angle Error (MAE) Following the standard evalu-
ation protocol adopted in [8], [15], [16], [32], we first use the
mean error of Euler angle as the evaluation metric for a fair
comparison among the baselines and the proposed method.
The prediction error is calculated from the average of Euler
angle difference per joint between prediction and reference.
Note that the joint angles are represented by local orientations
based on the kinematic chain in the human skeleton.

Mean Per Joint Position Error (MPJPE) As a common
problem in Euler angle representation [53], similar poses
may deduce completely different joint angle sets. To avoid
such biased verification in the MAE metric, we also evaluate

the generated poses on the protocol of MPJPE as suggested
by [38], [52]. The MPJPE is to calculate the deviation of
estimated joint points by converting the relative angles to
absolute joint coordinates using forward kinematics.

Percentage of Correct Keypoint (PCK) To be consistent
with TP-RNN [17] and 3D-PFNet [52], we also test PCK
on Human3.6M and Penn Action datasets. The intention of
PCK is to count the proportion of predicted joints detected
within a radius of predefined threshold ρ (in meters) around
the objective joints, which is commonly employed in 2D or
3D pose estimation [20], [54]–[56].

3) Implementation Details: We express motion velocity
∇xi as a graph signal of RK and utilize 64 units (P = 64)
in the GRU cell under graph convolution. The maximum
step for spatial diffusion N is set to 3 (see detailed analysis
in Section IV-G). To stabilize the optimization process, we
employ a scheduled training strategy to balance the predictor
and discriminator. We optimize two steps of Eq. (3) followed
by one step of adversarial training. The proposed model is
trained using gradient descent optimizer with a regressive
learning rate of 0.05 on Human3.6M and CMU MoCap, and
0.005 on the Penn Action dataset. We set the batch size to
16, and perform gradient clipping under l2-norm. The entire
network is implemented using the Tensorflow backend.

C. Comparisons on the Human3.6M Dataset

We first compare with the state-of-the-art RNN or CNN-
based methods and report their MAE over future timestamps
80ms, 160ms, 320ms, 400ms (for short-term prediction) and
1000ms (for long-term prediction) on Human3.6M. The pre-
diction accuracy comparisons are presented in Table I. We
significantly outperform ERD, LSTM-3LR, and SRNN on four
actions “walking”, “eating”, “smoking”, and “discussion” that
are usually compared in previous works. Generally, VRNN
outperforms RRNN even at the primary prediction (80ms),
which shows the advantage of our velocity modeling manner
over residual connections to improve temporal continuity at
early prediction. The visualization results on keeping the
continuity can be found in our supplementary video. In Table I,
Q-DCRN outperforms the baseline methods on both short and
long-term prediction, and the error accumulates slower com-
pared with the other methods along the sampled timestamps.

We also qualitatively verify RRNN, ConvSeq2seq, and
our Q-DCRN prediction results towards commonly examined
actions on Human3.6M with two high-dynamic actions “walk-
ing” and “eating”, and two low-dynamic actions “smoking”
and “discussion” (see Fig. 6). We observe that Q-DCRN better
simulates the ground truth motion trends compared to the
other two methods. For the high-dynamic “walking” action
in Fig. 6(a), all three methods show reliable movements as
the periodic pattern is easy to capture. We further observe
that Q-DCRN gives a precise prediction of double arms
staying behind the legs while its competitors fail to do so,
which shows the effectiveness of globally modeling joint
dependencies along the spatial graph. For the action “eating”
in Fig. 6(b), there is an interesting investigation that both
RRNN and ConvSeq2seq move the active arm to its opposite
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TABLE I
EVALUATIONS ON THE STATE-OF-THE-ART RNN OR CNN-BASED APPROACHES AT SHORT-TERM AND LONG-TERM MAE OF HUMAN3.6M DATASET.
UNDERLINED VALUES REPRESENT THE LOWER ERROR BETWEEN RRNN AND VRNN. BOLD VALUES REPRESENT THE LOWEST ERROR AMONG ALL

METHODS.

Walking Eating Smoking Discussion
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
ERD [30] 0.93 1.18 1.59 1.78 N/A 1.27 1.45 1.66 1.80 N/A 1.66 1.95 2.35 2.42 N/A 2.27 2.47 2.68 2.76 N/A
LSTM-3LR [30] 0.77 1.00 1.29 1.47 N/A 0.89 1.09 1.35 1.46 N/A 1.34 1.65 2.04 2.16 N/A 1.88 2.12 2.25 2.23 N/A
SRNN [31] 0.81 0.94 1.16 1.30 N/A 0.97 1.14 1.35 1.46 N/A 1.45 1.68 1.94 2.08 N/A 1.22 1.49 1.83 1.93 N/A
RRNN [8] 0.28 0.50 0.74 0.81 1.12 0.24 0.42 0.69 0.85 1.44 0.34 0.62 1.03 1.15 2.01 0.33 0.72 1.04 1.11 1.92
VRNN (Ours) 0.26 0.45 0.63 0.70 0.86 0.21 0.34 0.55 0.69 1.21 0.26 0.48 0.89 0.90 1.67 0.30 0.65 0.98 1.07 1.77
ConvSeq2seq [15] 0.28 0.48 0.68 0.77 1.08 0.21 0.35 0.57 0.72 1.27 0.27 0.49 0.93 0.91 1.68 0.31 0.65 0.91 1.02 2.01
RMA [32] 0.28 0.45 0.62 0.68 0.79 0.21 0.34 0.53 0.68 1.16 0.26 0.50 0.96 0.93 1.71 0.29 0.64 0.90 0.96 1.72
TP-RNN [17] 0.25 0.41 0.58 0.65 0.77 0.20 0.33 0.53 0.67 1.14 0.26 0.47 0.88 0.90 1.66 0.30 0.66 0.96 1.04 1.74
VGRU [10] 0.34 0.47 0.64 0.72 N/A 0.27 0.40 0.64 0.79 N/A 0.36 0.61 0.85 0.92 N/A 0.46 0.82 0.95 1.21 N/A
QuaterNet [36] 0.21 0.34 0.56 0.62 N/A 0.20 0.35 0.58 0.70 N/A 0.25 0.47 0.93 0.90 N/A 0.26 0.60 0.85 0.93 N/A
BiHMP-GAN [16] 0.33 0.52 0.63 0.67 0.85 0.20 0.33 0.54 0.70 1.20 0.26 0.50 0.91 0.86 1.11 0.33 0.65 0.91 0.95 1.77
Q-DCRN (Ours) 0.20 0.36 0.56 0.60 0.69 0.18 0.32 0.56 0.67 1.18 0.22 0.43 0.87 0.84 1.58 0.32 0.69 0.98 1.04 1.56

Directions Greeting Phoning Posing
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.43 0.69 0.84 0.94 1.49 0.53 0.88 1.34 1.53 2.11 0.60 1.14 1.56 1.72 1.98 0.40 0.76 1.41 1.68 2.55
VRNN (Ours) 0.37 0.58 0.77 0.86 1.37 0.50 0.84 1.27 1.45 1.77 0.57 1.11 1.48 1.63 1.71 0.44 0.83 1.41 1.65 2.51
ConvSeq2seq [15] 0.39 0.60 0.80 0.91 1.45 0.51 0.82 1.21 1.38 1.72 0.59 1.13 1.51 1.65 1.81 0.29 0.60 1.12 1.37 2.65
RMA [32] 0.40 0.61 0.77 0.86 1.42 0.52 0.86 1.26 1.43 1.79 0.59 1.11 1.47 1.59 1.73 0.26 0.54 1.14 1.41 2.43
TP-RNN [17] 0.38 0.59 0.75 0.83 1.38 0.51 0.86 1.27 1.44 1.81 0.57 1.08 1.44 1.59 1.68 0.42 0.76 1.29 1.54 2.47
Q-DCRN (Ours) 0.28 0.45 0.62 0.70 1.31 0.38 0.67 1.11 1.32 1.78 0.53 1.00 1.39 1.56 1.60 0.30 0.66 1.28 1.52 2.26

Purchases Sitting Sitting Down Taking Photo
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.59 0.83 1.16 1.24 2.35 0.47 0.77 1.25 1.49 2.15 0.54 1.03 1.58 1.81 2.81 0.33 0.64 0.98 1.10 1.54
VRNN (Ours) 0.60 0.83 1.13 1.21 2.32 0.40 0.64 1.04 1.18 1.68 0.43 0.80 1.17 1.32 1.98 0.27 0.54 0.85 0.98 1.36
ConvSeq2seq [15] 0.63 0.91 1.19 1.29 2.52 0.39 0.61 1.02 1.18 1.67 0.41 0.78 1.16 1.31 2.06 0.23 0.49 0.88 1.06 1.40
RMA [32] 0.59 0.84 1.14 1.19 2.33 0.40 0.64 1.04 1.22 1.71 0.41 0.77 1.14 1.29 2.07 0.27 0.52 0.80 0.92 1.21
TP-RNN [17] 0.59 0.82 1.12 1.18 2.28 0.41 0.66 1.07 1.22 1.74 0.41 0.79 1.13 1.27 1.93 0.26 0.51 0.80 0.95 1.35
Q-DCRN (Ours) 0.46 0.68 1.08 1.13 2.16 0.29 0.51 0.88 1.05 1.63 0.37 0.73 1.03 1.15 1.95 0.18 0.38 0.64 0.78 1.17

Waiting Walking Dog Walking Together Average
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.34 0.67 1.15 1.35 2.27 0.53 0.89 1.21 1.35 1.94 0.28 0.56 0.79 0.84 1.36 0.42 0.74 1.12 1.26 1.94
VRNN (Ours) 0.31 0.61 1.11 1.32 2.46 0.54 0.95 1.29 1.45 2.03 0.24 0.51 0.72 0.75 1.29 0.38 0.68 1.02 1.14 1.73
ConvSeq2seq [15] 0.30 0.62 1.09 1.30 2.50 0.59 1.00 1.32 1.44 1.92 0.27 0.52 0.71 0.74 1.28 0.38 0.68 1.01 1.13 1.77
RMA [32] 0.33 0.65 1.12 1.30 2.28 0.53 0.87 1.16 1.33 2.00 0.28 0.52 0.68 0.71 1.31 0.37 0.66 0.98 1.10 1.71
TP-RNN [17] 0.30 0.60 1.09 1.31 2.46 0.53 0.93 1.24 1.38 1.98 0.23 0.47 0.67 0.71 1.28 0.37 0.66 0.99 1.11 1.71
Q-DCRN (Ours) 0.26 0.56 0.99 1.18 2.33 0.46 0.79 1.10 1.20 1.82 0.20 0.40 0.57 0.62 1.20 0.31 0.57 0.90 1.02 1.60

direction compared with ground truth. This is because the error
propagation issues resulted in large posture deviation in long-
term motion prediction. We can see that through narrowing
the deviation at the early phase, Q-DCRN is able to maintain
the right motion trend inherited from its seed sequence.

Other than preserving the high-dynamic trend, we also show
a better prediction in low-dynamic motions. For “smoking” in
Fig. 6(c), RRNN performs an unexpected action of putting
down the leg. This is because the residual connections in
RRNN force the decoded prediction to move, which makes it
difficult to synthesize low-dynamic or motionless sequences.
While Q-DCRN could keep the static trend with the input
velocity closes to zero. For “discussion” in Fig. 6(d), both
RRNN and ConvSeq2seq fail to catch the pace of the arm
movements, which results in wrong predictions for the arm
direction detected in the long term. Such observations suggest
that Q-DCRN can handle both high-dynamic and low-dynamic
motions precisely following the real poses. Please refer to
the supplementary video for more qualitative comparisons on
high-dynamic and low-dynamic predictions.

In “discussion”, we also notice a better visualization result
(Fig. 6(d)) but a worse MAE (“discussion” in Table I). To
further investigate the inconsistency between the visualization
and quantitative results, we test the MPJPE on the four actions
and their average in Fig. 7(a). For all methods, “walking”
and “eating” on average have lower MPJPE than “smoking”
and “discussion” because these actions contain more repetitive

patterns that are easily captured. We also report the long-term
PCK accuracy in Fig. 7(b), and Q-DCRN already succeeds
under a small threshold (0.025), which means more predicted
joints are falling within the neighbour region of real joints in
long-term prediction. Note that comparing with other methods,
we achieve the best performance (the lowest MPJPE and the
highest PCK accuracies) on these actions. This aligns with the
visualization in Fig. 6 that we are the closest to the ground
truth poses, which also indicates that positional evaluation is
more reliable than Euler angle-based metric.

We also compare with the recent GCN-based prediction
methods in Table II with 320ms, 400ms (short term) and
more timesteps 520ms, 640ms, 760ms, 880ms, 1000ms (long
term). In the short term, both LDR and DMGNN produce
better numerical results as their employing of TCN generates
smoothed movements from motion history with lower errors
at the beginning of prediction. However, the smoothness may
somehow degrade long-term high dynamic motions such as
“walking” and “walking together”. We found that Q-DCRN
performs better in such motions by preserving the long-term
dynamic trend. When comparing with DMGNN, this advan-
tage is more obvious with over half of the lower errors laying
in our approach. In practice, those high-dynamic motions are
very common in our daily life and may also indicate some
dangerous situations such as walking across the road, thus are
highly valued in motion prediction tasks [2], [11], [57].

We further give two examples in Fig. 8 to show the differ-
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(a) Walking (b) Eating

(c) Smoking (d) Discussion

Fig. 6. Qualitative comparisons with the state-of-the-art RNN or CNN-based approaches on the Human3.6M dataset. For each action, the top sequence refers
to the ground truth. The second, third and bottom sequences correspond to RRNN, ConvSeq2seq, and our Q-DCRN, respectively. The initial four poses are
the seed frames, followed by one second of prediction.

(a)

(b)

Fig. 7. Evaluations on the two positional metrics of Human3.6M with (a) MPJPE ↓ curves along the prediction timeline and (b) PCK ↑ curves at 1000ms
under different thresholds ρ. ↓ the lower the better, ↑ the higher the better.

ences in the generated high-dynamic sequences. In Fig. 8(a),
we observe that DMGNN tends to lose the active walking trend
with an over-smoothed prediction. While our result still keeps
the long-term walking cycle with relatively large steps similar
to the ground truth. Figure 8(b) is a “walking dog” action
with lots of movements in arms and legs. For DMGNN, their
prediction is losing the moving dynamics by generating mean
poses and eventually results in unnatural poses. In contrast,
our prediction still preserves the active movements such as
raising the right hand to keep balance.

D. Comparisons on the CMU MoCap Dataset

The MAE results on CMU MoCap are shown in Table III
and the average comparisons across all 8 motion categories
are given in Table IV. We achieve a comparable result on
CMU MoCap with most of the best predictions falling in our
approaches. We observe from the angular result that Q-DCRN
works well especially on actions with legible intentions or
consistent changes such as “sitting” or “basketball signals”,
but shows higher errors on the actions with large accelerations
like “jumping” or “running”. From the average performance in
Table IV, our method has closer predictions overall to ground
truth than the baselines towards the frequently compared angle
distance.
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TABLE II
EVALUATIONS ON THE STATE-OF-THE-ART GCN-BASED APPROACHES AT SHORT-TERM AND LONG-TERM MAE OF HUMAN3.6M DATASET.

Walking Eating Smoking Discussion
Time (milliseconds) 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000
LDR [29] 0.46 0.57 N/A N/A N/A N/A 0.71 0.49 0.64 N/A N/A N/A N/A 0.97 0.79 0.82 N/A N/A N/A N/A 1.08 0.72 0.81 N/A N/A N/A N/A 0.84
DMGNN [28] 0.49 0.58 0.67 0.71 0.74 0.70 0.78 0.49 0.59 0.77 0.91 0.99 1.06 1.14 0.81 0.77 0.78 0.82 0.96 1.24 1.48 0.92 0.99 1.20 1.34 1.39 1.35 1.40
Q-DCRN (Ours) 0.56 0.60 0.66 0.70 0.69 0.67 0.69 0.56 0.67 0.79 0.85 0.89 1.05 1.18 0.87 0.84 0.89 0.95 1.10 1.35 1.58 0.98 1.04 1.25 1.41 1.51 1.58 1.56

Directions Greeting Phoning Posing
Time (milliseconds) 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000
LDR [29] 0.59 0.68 N/A N/A N/A N/A 0.95 0.87 0.98 N/A N/A N/A N/A 1.33 0.63 0.78 N/A N/A N/A N/A 1.33 0.91 1.07 N/A N/A N/A N/A 1.34
DMGNN [28] 0.65 0.71 1.00 1.09 1.23 1.34 1.40 0.94 1.12 1.57 1.51 1.64 1.82 1.80 1.29 1.43 1.22 1.39 1.52 1.61 1.62 1.06 1.34 1.46 1.38 1.52 1.76 1.96
Q-DCRN (Ours) 0.62 0.70 0.80 0.94 1.14 1.28 1.31 1.11 1.32 1.69 1.63 1.69 1.79 1.78 1.39 1.56 1.27 1.34 1.47 1.55 1.60 1.28 1.52 1.71 1.64 1.78 2.07 2.26

Purchases Sitting Sitting Down Taking Photo
Time (milliseconds) 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000
LDR [29] 0.88 1.08 N/A N/A N/A N/A 1.49 0.69 1.01 N/A N/A N/A N/A 1.38 0.87 0.93 N/A N/A N/A N/A 1.42 0.54 0.71 N/A N/A N/A N/A 1.20
DMGNN [28] 1.05 1.14 1.57 1.71 1.86 2.20 2.42 0.76 0.97 1.21 1.29 1.46 1.59 1.63 0.93 1.05 1.18 1.37 1.51 1.59 1.68 0.58 0.71 0.91 0.99 1.10 1.21 1.32
Q-DCRN (Ours) 1.08 1.13 1.34 1.41 1.56 1.93 2.16 0.88 1.05 1.19 1.27 1.44 1.56 1.63 1.03 1.15 1.29 1.52 1.69 1.83 1.95 0.64 0.78 0.89 0.96 1.05 1.10 1.17

Waiting Walking Dog Walking Together
Time (milliseconds) 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000 320 400 520 640 760 880 1000
LDR [29] 0.84 1.15 N/A N/A N/A N/A 1.21 0.93 1.14 N/A N/A N/A N/A 1.38 0.49 0.54 N/A N/A N/A N/A 1.38
DMGNN [28] 0.88 1.10 1.33 1.58 1.88 2.11 2.17 1.16 1.34 1.85 1.97 2.16 2.18 2.22 0.50 0.57 0.82 0.96 1.07 1.14 1.47
Q-DCRN (Ours) 0.99 1.18 1.46 1.73 2.02 2.25 2.33 1.10 1.20 1.45 1.50 1.71 1.77 1.82 0.57 0.62 0.67 0.75 0.80 0.83 1.20

TABLE III
EVALUATIONS ON MAE OF CMU MOCAP DATASET.

Basketball Basketball Signal Directing Traffic Jumping
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.50 0.80 1.27 1.45 1.78 0.41 0.76 1.32 1.54 2.15 0.33 0.59 0.93 1.10 2.05 0.56 0.88 1.77 2.02 2.40
VRNN (Ours) 0.44 0.69 1.10 1.23 1.77 0.17 0.33 0.62 0.75 1.37 0.30 0.60 0.98 1.12 2.27 0.38 0.66 1.50 1.73 2.11
ConvSeq2seq [15] 0.39 0.66 1.14 1.31 2.18 0.34 0.64 1.15 1.35 1.91 0.25 0.60 0.92 1.01 2.05 0.41 0.67 1.45 1.64 2.08
BiHMP-GAN [16] 0.37 0.62 1.01 1.11 1.83 0.32 0.56 1.01 1.18 1.88 0.25 0.51 0.85 0.96 1.95 0.39 0.57 1.31 1.50 1.93
Q-DCRN (Ours) 0.34 0.55 1.00 1.19 2.34 0.09 0.18 0.35 0.44 0.92 0.26 0.41 0.76 0.92 2.07 0.39 0.68 1.45 1.59 1.72

Running Soccer Walking Wash Window
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.33 0.50 0.66 0.75 1.00 0.29 0.51 0.88 0.99 1.72 0.35 0.47 0.60 0.65 0.88 0.30 0.46 0.72 0.91 1.36
VRNN (Ours) 0.35 0.66 1.08 1.20 0.89 0.21 0.35 0.70 0.83 1.41 0.34 0.46 0.61 0.70 1.06 0.27 0.41 0.75 0.98 1.35
ConvSeq2seq [15] 0.29 0.46 0.59 0.60 0.68 0.24 0.44 0.78 0.91 1.53 0.34 0.44 0.48 0.50 0.76 0.31 0.49 0.78 0.96 1.36
BiHMP-GAN [16] 0.28 0.40 0.50 0.53 0.62 0.26 0.44 0.72 0.82 1.51 0.35 0.45 0.44 0.46 0.72 0.31 0.46 0.77 0.92 1.31
Q-DCRN (Ours) 0.34 0.58 0.83 0.87 0.70 0.20 0.33 0.73 0.89 1.51 0.32 0.43 0.55 0.63 0.80 0.22 0.38 0.84 1.09 1.48

(a)

observed 

frames

80ms 400ms 1000ms

(b)

Fig. 8. Qualitative comparisons with DMGNN on high-dynamic motions.
The three sequences refer to the ground truth, DMGNN, and Q-DCRN from
top to bottom.

TABLE IV
THE AVERAGE MAE OF CMU MOCAP DATASET.

Time (milliseconds) 80 160 320 400 1000
RRNN [8] 0.38 0.62 1.02 1.18 1.67
VRNN (Ours) 0.31 0.52 0.92 1.07 1.53
ConvSeq2seq [15] 0.32 0.52 0.86 0.99 1.55
BiHMP-GAN [16] 0.32 0.50 0.83 0.94 1.47
Q-DCRN (Ours) 0.27 0.44 0.81 0.95 1.44

We further visualize “running” on CMU MoCap in Fig. 9
to qualitatively evaluate the performance of our method. In
the running sequence generated by Q-DCRN, we find that

Fig. 9. Visualization of “running” on the CMU MoCap dataset. The three
sequences refer to the ground truth, ConvSeq2seq, and Q-DCRN from top
to bottom. ConvSeq2seq traps in mean poses with movement decay on legs
while we still keep the active running mode as the ground truth.

from the 3rd to the 11th predicted frame (highlighted with red
boxes), the torso slightly leans forward compared to the ground
truth and ConvSeq2seq, which concurs with Table III that a
relatively higher numerical error of running between 160ms
and 400ms is observed. However, the frames generated by
ConvSeq2seq tend to have more averaged poses and result in
losing the terminal swing phase toward the end of the motion.
Compared to ConvSeq2seq, the running poses of our Q-DCRN
can clearly show the trend of raising or putting down legs
in turn, which ensures a better prediction. This again, shows
that a higher angle error rate does not necessarily indicate the
generated motion is in bad quality.

To validate the generated poses, we also report the MPJPE
results in Table V. In terms of the 3D position, our approach
reduces the error rate substantially in most cases. Comparing
with higher MAE of “running” and “walking” after 400ms,
Q-DCRN performs lower MPJPE on these two actions which



JOURNAL OF LATEX CLASS FILES 12

TABLE V
EVALUATIONS ON MPJPE OF CMU MOCAP DATASET.

Basketball Basketball Signal Directing Traffic Jumping
Time (milliseconds) 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000
ConvSeq2seq [15] 22.1 41.0 78.4 130.9 172.8 15.6 30.6 60.0 99.7 129.4 63.1 112.6 222.8 263.4 262.0 27.3 55.4 111.7 171.9 228.4
Q-DCRN (Ours) 21.2 37.1 70.3 117.3 147.9 3.5 8.1 18.0 31.5 61.8 16.8 24.9 49.9 97.8 170.5 28.1 57.8 110.6 144.8 166.6

Running Soccer Walking Wash Window
Time (milliseconds) 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000
ConvSeq2seq [15] 23.9 28.7 37.8 55.7 70.8 37.0 76.5 183.1 178.4 203.7 14.5 28.7 54.9 71.9 97.2 21.6 44.5 84.5 113.0 144.8
Q-DCRN (Ours) 27.3 38.2 55.7 48.4 62.4 18.4 40.0 77.7 113.8 152.9 15.8 26.2 51.2 68.9 77.1 10.2 21.6 49.8 78.7 109.1

TABLE VI
EVALUATIONS ON PCK@0.05 (%) OF PENN ACTION DATASET.

Predicted frame
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RRNN [8] 82.4 68.3 58.5 50.9 44.7 40.0 36.4 33.4 31.3 29.5 28.3 27.3 26.4 25.7 25.0 24.5
3D-PFNet [52] 79.2 60.0 49.0 43.9 41.5 40.3 39.8 39.7 40.1 40.5 41.1 41.6 42.3 42.9 43.2 43.3
TP-RNN [17] 84.5 72.0 64.8 60.3 57.2 55.0 53.4 52.1 50.9 50.0 49.3 48.7 48.3 47.9 47.6 47.3
Q-DCRN 85.2 72.6 65.1 60.5 57.5 55.4 53.9 52.6 51.5 50.6 50.0 49.4 49.1 48.8 48.6 48.4

echos with Fig. 9 that for such active motions, we can
better keep the real dynamics in long-term prediction. We
further argue that MPJPE is more discriminative than MAE
as observed in “directing traffic” and “soccer”, where both
methods yield similar quantitative results in angle space but
Q-DCRN has much lower error than ConvSeq2seq in position
space.

E. Comparisons on the Penn Action Dataset

To make a fair comparison with the methods [8], [17], [52]
conducted on the Penn Action dataset, the experiments are
evaluated on PCK at ρ = 0.05 (PCK@0.05), and the results
are provided in Table VI. We achieve the state of the art at all
predicted steps by a large margin with RRNN and 3D-PFNet,
and superior to TP-RNN notably at longer prediction. The
other three methods fail to preserve the prediction accuracy
in the long term especially for RRNN, which suffers a drastic
drop along with the predicted frames. This is because when
the observed motion prefix is short (one frame for Penn Action
dataset), the residual connection in RRNN may cause a large
error accumulation with less information directing the decoder.
3D-PFNet is constructed under a plain RNN architecture, and
TP-RNN improves it by designing multi-scale hierarchical
RNNs to better learn the motion dynamics. However, these
methods do not consider the latent relationship between the
joints. For our case, we outperform them with the help of
spatial modeling using graph convolutions. We also sustain the
ground truth with a gentle accuracy decay by incorporating
adversarial training to keep the long-term performance. The
success on Penn Action dataset also highlights the generality
of our proposed prediction method across different types of
data modalities.

F. Ablation Studies

1) Network Structure: We then evaluate the effectiveness
of our bi-directional spatial-temporal configurations. Starting
from VRNN, we gradually add the key components back to
Q-DCRN and test the performance at each step. We show the
results of single direction in both space (divergence only) and

TABLE VII
PREDICTION ERROR COMPARISONS UNDER DIFFERENT SPATIAL AND

TEMPORAL CONFIGURATIONS.

Time (milliseconds) 80 160 320 400 1000

MAE

VRNN 0.38 0.68 1.02 1.14 1.73
DCRN 0.31 0.59 0.95 1.07 1.66
BiS-DCRN 0.31 0.58 0.94 1.06 1.66
BiS-DCRN fwd dis. 0.32 0.58 0.92 1.04 1.64
BiS-DCRN bwd dis. 0.30 0.57 0.92 1.06 1.65
Q-DCRN 0.31 0.57 0.90 1.02 1.60

MPJPE

VRNN 22.6 43.0 77.8 91.5 145.9
DCRN 19.1 39.0 72.0 84.4 131.8
BiS-DCRN 18.9 37.2 68.2 81.0 129.9
BiS-DCRN fwd dis. 19.2 37.5 67.9 80.1 128.9
BiS-DCRN bwd dis. 18.5 37.0 70.7 83.2 131.2
Q-DCRN 18.7 36.9 67.9 79.7 127.3

time (forward only) which is denoted as DCRN, the perfor-
mance of BiS-DCRN with bi-directional convolutions in space,
BiS-DCRN with the forward discriminator only (denoted as
BiS-DCRN fwd dis.) or with the backward discriminator only
(denoted as BiS-DCRN bwd dis.), together with Q-DCRN by
including the bi-directional discriminator. The error compar-
isons under MAE and MPJPE metrics are shown in Table VII
of the average performance on Human3.6M. We found that
compared with VRNN, there is a significant improvement of
DCRN in both MAE and MPJPE, which yields that replacing
fully connectivity with graph convolution gives potentials in
identifying inner spatial dependencies during temporal propa-
gation, thus outperforming individual RNN-based model.

In addition, we observe that BiS-DCRN has comparable
MAE but lower MPJPE compared with DCRN. This shows
that BiS-DCRN is overall superior to DCRN by including the
convergence process in diffusion convolutions. This is because
the speed of a child node will more or less influence its root
node(s) in terms of the correlations on the graph G. With
both divergence and convergence convolution processes, the
joints are aware of the dynamics of its neighbour joints from
upstream and downstream random walks on the graph for a
more perceptive and accurate spatial prediction.

Lastly, the improvement from BiS-DCRN to Q-DCRN
shows the effectiveness of bi-directional temporal modeling.
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From both metrics, Q-DCRN demonstrates a better prediction
especially in generating longer motions (320-1000ms), which
illustrates the benefits of using adversarial training to reduce
the error accumulation by amending the forward and backward
dynamics. From the result of BiS-DCRN fwd dis., we find that
the single directional discriminator improves the prediction in
the long term but may corrupt the short term compared with
BiS-DCRN. This is because the forward discriminator may
forget the information from the past dynamics, which makes
it hard to revise the beginning velocities. On the contrary,
we observe a better prediction at 80ms for BiS-DCRN bwd
dis. but a large error in the long term, since the backward
discriminator focuses more on the initial dynamics while los-
ing the long-term information. By balancing the bi-directional
discriminator, the final Q-DCRN is able to improve both short
and long-term predictions compared with BiS-DCRN. We also
observe that at the beginning of prediction (80ms), BiS-DCRN
and Q-DCRN present similar angle results in MAE, while they
show differently in position space from MPJPE. This further
confirms our assumption that MPJPE is a more discriminative
tool in measuring the generated movements compared with
MAE.

2) Graph Structure: We also evaluate Q-DCRN under
different adjacency matrices and graph types. The result in
Table VIII shows that our system performs the best under the
adaptive, directed graph structure.

Fixed vs. Adaptive We compare the performance of the
unweighted graph structure defined by the fixed adjacency
matrix A, and our weighted graph structure defined by the
adaptive A in the 1st and the 2nd rows of Table VIII. The
fixed A is represented by a binary matrix, where the joints
connected by bones are fixed at 1 with the others at 0. Note
that since the joints under fixed A is an undirected graph,
i.e. bone connections are undirected, we do not have the
option for a directed graph under fixed A. Therefore, the
effectiveness of the adaptive A is evaluated on the baseline of
the undirected graph. From the results, we observe a significant
improvement when A is adaptive. This is because the original
fixed A restricts the information transitions only within the
edges of bone connections, which neglects the useful implicit
connections. Furthermore, all the connections take the same
importance in fixed A, which contradicts the fact that different
connections may contribute differently to the motion, such
as the connection of knee and foot is more informative than
the connection of spine and neck in a “running” action. By
softening these two conditions on A, all nodes are flexibly
connected with the trainable edge weights, which presents
better performance than the fixed A.

Undirected vs. Directed We verify the effectiveness of our
directed graph by comparing it with its undirected counterpart,
where the adjacency matrix A and its transpose are reduced
to one symmetric matrix denoting the equivalent information
transfer between a pair of nodes. The comparison results in the
2nd and the 3rd rows of Table VIII show that using a directed
graph structure is more beneficial for a precise prediction.

Visualization We further visualize the adaptive A to show
the learned spatial correlations comparing with the fixed
undirected connections in Fig. 10. Since the adaptive A is

TABLE VIII
PREDICTION ERROR COMPARISONS (MPJPE) UNDER DIFFERENT GRAPH

STRUCTURES.

A Type 80 160 320 400 1000
fixed undirected 20.1 42.1 77.3 90.1 134.4

adaptive undirected 19.8 36.9 68.6 80.6 129.1
adaptive directed 18.7 36.9 67.9 79.7 127.3

(a) (b)

Fig. 10. Visualization of (a) the undirected joint connections of the fixed
adjacency matrix, and (b) the top 40 joint connections of the learned adjacency
matrix on Human3.6M. The arrow denotes the direction of the connection.
The weight of the connection is visualized from a red to yellow scale, with
the red color representing larger weights.

not constrained to be positive, we select the top 40 absolute
values of A representing the most significant connections in
the information delivery between joints. The position of the
value in A indicates the direction of the connection, e.g. Apq is
pointing from joint p to joint q. From Fig. 10(b), we observe
that many selected edges between joints are not connected
by bones, which highlights the importance of the implicit
connections. We also find many connections between legs are
selected. This makes sense as many of the learned motions are
walking-related, where the movements of legs are dominant.
Another interesting observation is that the connections are not
necessarily symmetric for the left and right body—more edges
are associated with the right arm than the left arm, which may
be due to some natural habits that most actors are likely right-
handed.

3) Loss Functions: First, we test the effectiveness of the
proposed velocity-pose reconstruction loss. We compare it
with directly calculating the mean squared error based on
the velocity between ground truth and prediction. Second, the
ablation for our velocity-based adversarial loss is conducted
on training the discriminator with the generated pose rather
than velocity, where the predictor and the discriminator do
not share the weights and structures since they are modeling
different motion features.

The comparison results are shown in Table IX. In the top
row when only the velocity is considered in the optimization,
the prediction error is fast accumulated as the system cannot
guarantee the quality of the generated poses. In the middle
row when only the static pose is considered, no penalization
is added on the motion dynamics, which leads to a biased
prediction with large error rates in both the short and long
term. In the bottom row, the system improves the prediction
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TABLE IX
PREDICTION ERROR COMPARISONS (MPJPE) UNDER DIFFERENT LOSS

FUNCTIONS.

Lrecons Ladv 80 160 320 400 1000
velocity-based velocity-based 18.7 37.2 69.7 81.8 130.1
velocity-pose pose-based 19.7 39.3 68.2 80.7 129.5
velocity-pose velocity-based 18.7 36.9 67.9 79.7 127.3

Fig. 11. Prediction error comparisons under different maximum diffusion
steps, N , in the dual random walks.

with the optimal solution by synchronously considering the
static pose from the reconstruction loss and the velocity
dynamics from the adversarial loss.

G. Parameters and Model Efficiency

As mentioned in Section III-A, the value of maximum
diffusion step N controls the approximation of the global
graph distributions that the diffusion process would converge
to. A biased N may lead to either inadequate or redundant
graph description. From Fig. 11, we found that using only
one diffusion step will lose information spread along multiple
nodes, causing a large error rate. A maximum of five steps
gives a plausible result with the price of more filters to deduce
higher-order diffusions. Hence, we employ three diffusion
steps which can sufficiently and efficiently describe the spatial
dependency.

We also compare the number of parameters and the predic-
tion time for each method in Table X. Q-DCRN uses the least
parameters with relatively lower time cost, especially among
the graph-based methods. We adopt graph embedding that is
shared among all nodes under a recurrent network, which
reduces the proportion of the learnable weights in contrast
to [8], [15]. When comparing with [28] and [29], Q-DCRN

TABLE X
TRAINING PARAMETERS AND PREDICTION TIME (25 FRAMES) USED IN

EACH METHOD.

Method # parameters Testing time (ms)

Non-graph RRNN [8] ∼ 3.4m 1.7
ConvSeq2seq [15] ∼ 16.6m 1.9

Graph-based
DMGNN [28] ∼ 62.6m 11.6
LDR [29] ∼ 2.1m 2.4
Q-DCRN ∼ 0.2m 2.2

avoids artificially crafting deep graph convolutions to extract
features of different receptive fields, which yields a more
efficient model.

H. Discussion

In our adaptive graph connectivity, A can be regarded as an
attention map that represents the significance of joint pairs,
which can be even extended to multi-head attentions [58]
with different attention combinations to further improve the
fitting ability of our model. It is also beneficial to adopt other
attention mechanisms, such as considering temporal attention
[59] to strengthen the network with the important memories
from the past and future dynamics, if under bi-directional
settings.

One of the main challenges for RNN to process long
sequences is losing long-term dependency. In this work, we
adopt adversarial training to enhance its prediction results.
Many other techniques that are orthogonal to our work, such
as adaptively skipping the state update to reduce sequential
operations [60], hierarchically integrating the temporal infor-
mation several steps away [61], or efficiently reusing gate
matrices with sparse representations [62] in RNN can also
be well employed to further boost the performance in terms
of prediction accuracy and computational cost.

We also find that the proposed Q-DCRN is effective in
predicting the possible movements tracked from 2D videos,
which sheds light on two potential future works: One is that
we can realize 3D pose prediction from RGB videos [63] by
integrating our framework with any 2D to 3D recovery algo-
rithms; Another is directly predicting image outputs without
the middle step of extracting joint features [64]. As we do
not consider any specific bone constraints or body hierarchy,
our proposed framework is not limited to the human skeleton
but also compatible with any forms of data under graph
structure, but we do rely on other designs like CNN to learn
the representative local features from images in the first hand.

Since current motion predictions heavily depend on the
precision of the detected pose, which is technically hard to
achieve especially in crowded scenes [57], [65] or under a
depth camera [34], [66], how to develop a robust system under
noisy supervision may also benefit the prediction community.
There are already some successful attempts, such as recon-
structing the motion history for denoising [11] or estimating
distributions with multiple future possibilities [67]. Pairing
these methods with Q-DCRN to reduce the impact of noisy
input will be another potential direction to explore.

V. CONCLUSION

We propose a quadruple diffusion convolutional recurrent
network to preserve motion trend for human dynamic predic-
tion. We encode spatial structure as an adaptive diffusion graph
with bi-directional random walks in multiple spatial steps, and
perform graph convolution on the recurrent seq2seq network
to decode temporal dependencies. A bi-directional temporal
predictor together with a bi-discriminator is designed in an
efficient weight-sharing manner to fit and revise the short and
long-term motion trends. The network is constructed directly
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on the velocity with a reconstruction loss on poses, which
has proved to be more powerful at reducing discontinuity
at early prediction than residual connections in RNN-based
architecture. Experimental results on both angular and po-
sitional metrics suggest that the proposed Q-DCRN is able
to preserve the motion trend with lower prediction errors to
generate realistic moving dynamics.
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