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ABSTRACT16

The development and evaluation of a computational approach for optimal design of a smart17

material shape changing building skin is presented and numerically evaluated. Specifically, a18

unique shape-based approach is utilized to create an optimization approach to identify the activation19

and actuation mechanisms to minimize the difference between a desired shape and the estimated20

morphed shape. Three potential metrics of shape difference are considered and their capability to21

facilitate an efficient optimization process leading to accurate shape matching is evaluated. Details22

of the optimal design framework are presented, particularly focusing on the shape difference23
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metrics as well as the strategy to parameterize the activation of the smart material. In particular, the24

parameterization strategy is a unique approach to easily integrate controllable localized activation25

within a smart material structure in a generally applicable way that does not limit the design search26

space. A series of numerical design examples are presented based on the concept of a smart27

material (e.g., shape memory polymer) shape changing tile that can be activated and actuated in28

a variety of ways to achieve desirable surface wrinkle patterns. These numerical design examples29

are applied to both 2D and 3D problems and consider a variety of parameterizations and target30

shapes. Results indicate that the shape-based approach can consistently determine the mechanisms31

of morphing needed to accurately match a target shape. Furthermore, it is shown that localized32

material activation can lead to not only a more accurate shape but also requires less energy and33

actuation devices to do so.34

Keywords: Self-shading, Smart Material, Optimization, Objective Function, Hausdorff, Com-35

putational Mechanics36

INTRODUCTION37

Responsive building skins have been shown to have effects on all the main energy consumers38

of commercial buildings: lighting, ventilation, and heating and cooling (Shameri et al. 2011).39

Examples include the skin used on the Media-TIC building (Dewidar et al. 2013), which uses a40

light sensor to measure thermal loads on a building and inflates portions of the skin in order to41

increase insulation during times of high thermal loading, and the Heliotrace system (Dewidar et al.42

2013) and the responsive skin of the Al Bahar towers (Cilento 2012), which both utilize a series of43

mechanical apertures that open or close portions of the skin, allowing different amounts of light to44

enter the building. In most cases the current technologies are binary, either activated or inactivated45

based on a stimulus threshold, or have a limited number of configurations. Thus, significant work46

still remains to achieve technologies that can adapt to multiple environmental states and have a47

higher level of customization. One possibility proposed to increase functionality of responsive48

building façade is the integration of smart materials (Jani et al. 2014; Mather et al. 2009; Lampert49

2004; Otsuka and Wayman 1999).50
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The technologies being developed for shape changing building skins that use smart materials51

have primarily relied upon passive mechanisms, in that the shape change that occurs is caused52

by the material being activated by changes in the surrounding environmental conditions (e.g.,53

moisture change (Holstov et al. 2015) or temperature change (Barrett and Barrett 2016)). Passive54

use of the smart material has the benefit of not requiring any additional intervention or energy55

costs to the user beyond maintenance requirements. Yet, passive use of the material may limit56

the extent that the behavior of the structure can be customized and may limit feasibility of certain57

applications or material types if the activating environmental condition does not correlate with the58

desired material change. Alternatively, active use of smart materials for shape changing structures59

that include a mechanism to apply activation energy and/or actuation to the structure have the60

obvious disadvantage of energy consumption, but can substantially increase the range of potential61

shape changes and the potential applications of the technology overall. There have been several62

application areas of smart material structures where this benefit of active use has outweighed the63

additional energy costs, such as morphing aircraft applications (Liu et al. 2014; Yu et al. 2009; Sun64

et al. 2015). Although active use of smart materials for shape changing structures can significantly65

expand the potential functions of the structure, this expansion can also substantially increase the66

initial challenge of designing the smart material structure.67

With any degree of complexity in the desired behavior, the active use of smart materials for68

shape changing structures can include nearly infinite non-trivial potential design solutions, when69

potentially seeking to define localized stimulation/activation, a multitude of mechanical actuation70

methods, or even the use of multiple smart materials together. Such design problems are often71

best handled through a computational optimal design approach, which have already been used for72

several smart material structure design applications (Molinari et al. 2015; Woods and Friswell 2016;73

Liu et al. 2014; Yu et al. 2009; Sun et al. 2015; Lu and Kota 2003; Prock et al. 2002; Namgoong74

et al. 2006; Mohaghegh Motlagh 2014; Wang and Brigham 2012). Computational approaches are75

particularly beneficial for problems that have non-trivial and/or non-intuitive solutions, and complex76

objectives and constraints. Although substantial work has been done developing computational77
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design methods for various applications, with any new application there are new and unique78

challenges, ranging from the definition of the forward model and its parameterization to the79

quantification of the design objective and constraints.80

The current study presents a computational framework for the design of the active mechanisms81

for a smart material building skin tile to optimally achieve a desired shape change. The target of82

shape change is chosen as it aligns with the prior work using hygromorphic structures (Bridgens83

2018), which was noted to be largely for aesthetic reasons thus far, while also allowing for inclusion84

of other more functional objectives, such as increasing shading similar to the work in (Barrett85

and Barrett 2016). In other words, it is assumed that some prior analysis to define the desired86

combination of appearance and function has been performed to provide the target shape change to87

be designed toward. As such, one particular focus of the study is on determining an appropriate88

objective function for the design approach that quantifies the difference between the desired shape89

change and the shape change predicted by the forward model for the optimization procedure. In90

addition, focus is also placed on the strategy to define the unknown design parameters, particularly91

to ensure the localized activation is feasible to implement without sacrificing the shape change92

capability. Although more generally applicable, the design strategy is presented in the context of93

an example design of the mechanical actuation and material activation of tile entirely comprised of94

a homogeneous smart material. In the following section, the details of this exemplar smart material95

shape changing building skin tile are provided. In Section 3 the general computational inverse96

problem for the design of a smart material building skin tile is presented. Numerical examples,97

their results, and discussion are then given in Section 4, which is followed by concluding remarks98

in Section 5.99

DESIGN CONCEPT100

The design concept considered herein is an adaptive shape changing “wrinkled" surface tile101

based upon the priorwork developing building surface “cactus tiles" byClifford (Clifford 2019). The102

original cactus tile objective was to have static “wrinkled" surface tiles that were both aesthetically103

pleasing and had functional benefits in terms of self-shading. However, it is envisioned that adding104
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the capability of such tiles to change between wrinkle patterns, would further enhance the original105

benefits and potentially include many other functional behaviors (Clifford 2019; Zupan et al. 2017;106

Zupan et al. 2018). As shown in Figure 1, the proposed mechanism to produce a tile that can morph107

between different wrinkle patterns (i.e., shape changing cactus tile) is envisioned to be controllable108

activation of the smart material comprising the tile (e.g., softening) and mechanical actuation to109

deform the tile into a desired shape. For the sake of simplicity, this work does not consider the110

activation process (e.g., heat transfer process if thermal activation was used) and assumes that the111

deformed shape could be perfectly “locked in" once activation is removed. However, these behaviors112

could be included in the forward modeling in subsequent work without significant change to the113

computational design strategy. Similarly, the overall dimensions of the tile were assumed to be114

given/fixed. Thus, the remaining unknown variables to determine for the design of this tile concept115

are the locations and magnitude of mechanical actuation (i.e., applied force and/or displacement)116

and the location and size of the regions of the material to be activated.117

DESIGN SOLUTION STRATEGY118

The design strategy considered herein is based on utilizing non-linear optimization in combi-119

nation with a numerical representation of the shape changing tile to be designed. As noted, the120

primary objective of the optimal design is to achieve a given desired shape change. In this work, the121

target shape was assumed to be defined as the desired outer surface shape of the tile. However, as is122

often the case with smart material applications, minimizing the energy cost of the shape changing123

process was also considered as an objective of the design. Thus, the design problem can be written124

in the general form of the following constrained optimization problem:125

minimize:
®γ

{C (ST, SF(®u)) , E(®u, ®γ)}

subject to: F(®u, ®γ) = 0

®bl ≤ A(®γ) ≤ ®bu,

(1)126

where ST is the target surface shape, SF is the predicted morphed shape of tile as defined by127
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the deformation of the tile, ®u, estimated by the solution of the forward problem, F(®u, ®γ) = 0128

(i.e., the partial differential equation constraint), for a given set of actuation and activation design129

parameters, ®γ, C(·, ·) is the metric that quantifies the difference between two shapes, E(®u, ®γ) is the130

estimated energy consumption required to complete the shape change process, ®bl and ®bu are the131

lower and upper bound constraint vectors, respectively, and A(®γ) is the operator that forms the132

necessary constraint equations involving the design parameters. Note that this is the general form133

of the optimization problem considered herein, and the examples will more specifically state the134

respective components, including the example-specific objective functions, design parameters, and135

constraints utilized.136

An estimate of the optimal design solution can be found through any preferred optimization137

strategy applied to Equation 1 to determine the actuation and activation parameters (within the138

physical bounds) that minimizes the difference between the deformed tile shape predicted by139

the forward problem and the target shape. Both standard gradient-based and non-gradient-based140

optimization strategies were utilized in the present study, with specific details provided in the141

Examples Section. As noted, specific focuses of the development were the shape difference metric142

and the parameterization strategy, which are discussed in more detail in the following.143

Shape Difference Metric144

There are multiple methods of shape description that can be used to quantify the difference145

between two shapes. In general, shape descriptors are separated into two categories: region-146

based shape descriptors (Lu and Sajjanhar 1999; Zhang and Lu 2004; Veltkamp 2001), which147

calculate the descriptor based on the entire volume of a shape, and contour-based shape descriptors148

(Veltkamp 2001), which calculate the descriptor based solely on the contour (or boundary) of the149

shape. Generally, region-based shape descriptors are not well suited for this type of application and150

so only contour-based descriptors were considered. Specifically, a sub-category of contour-based151

shape descriptors, correspondence-based shape descriptors, were considered.152

One relatively intuitive correspondence-based approach is to project the target shape onto the153

initial tile shape (i.e., flat tile) to establish a point-to-point correspondence, and then measure the154
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difference between the location of the surface points on the target shape and the deformed location155

of the surface points estimated for a given design solution for all of these now corresponding points.156

Specifically for this work, a projection-based metric for a discretized tile surface was defined as:157

PMd =

NC∑
i=1
‖ ®xSi − ®xFi ‖, (2)158

where ®xSi and ®xFi are the spatial coordinates on the target shape and deformed tile shape from the159

design estimate, respectively, for the ith point in the correspondence set, NC is the number of points160

in the point-to-point correspondence, and ‖ · ‖ is the Euclidean distance. Other similar approaches161

that first form a set of corresponding points between a target shape and an estimated morphed162

structure shape have been used in similar design applications (Lu and Kota 2003). However, these163

approaches can potentially limit the design space as they conceptually change the design problem to164

matching a desired displacement of certain points rather than a more general shape. Furthermore,165

the projection strategy considered here to form the correspondence is only applicable to target166

shapes with non-overlapping regions so that a one-to-one correspondence is formed. Alternatively,167

the Hausdorff distance and similar variants have been developed to quantify the difference between168

two shapes in a more general sense and with no limitation on the type of shapes being compared169

(Veltkamp 2001; Huttenlocher et al. 1993).170

Assuming the shapes are discretized, the Hausdorff distance is a point-to-point matching that171

finds the maximum closest pairing between all the points on each shape. The Hausdorff distance172

between two shapes discretized into two collections of points S1 and S2 is defined as:173

Hd(S1, S2) = max(D(S1, S2),D(S2, S1)), (3)174

175

where: D(S1, S2) = max
®x1∈S1

min
®x2∈S2
‖ ®x1 − ®x2 ‖, (4)176

®x1 is the collection of points in shape S1, ®x2 is the collection of point in shape S2, and again ‖ · ‖177

is the Euclidean distance. A visual representation of D(S1, S2) and D(S1, S2) can be seen in Figure178
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2. An important note is that this Standard Hausdorff distance defined by Equation 3 can suffer179

from over-sensitivity to outliers, which can be expected as the Hausdorff distance is analogous to180

a L∞ norm. To address these issues with the Hausdorff distance several modified versions have181

been developed and explored (Dubuisson and Jain 1994). For the present study the best performing182

modification in (Dubuisson and Jain 1994) was also considered alongside the Standard Hausdorff183

distance and the projection-based distance which can be defined as:184

MHd(S1, S2) = max(M(S1, S2), M(S2, S1)) (5)185

186

where: M(S1, S2) =
1

N1

N1∑
i=1

min
®x2∈S2
‖ ®x1i − ®x2 ‖, (6)187

N1 is the number of points on shape S1, ®x1i is the ith point in ®x1, and N2 is the number of points188

on shape S2. This Modified Hausdorff distance is analogous to an L1 norm and ensures that every189

point on each shape contributes to the distance metric.190

Actuation and Activation Parameterization191

When considering the computational design of a smart material structure such as the proposed192

SMP building tile, there are many methods available to activate and actuate the structure to achieve193

the desired behavior. Generally, in similar applications the entirety of the smartmaterial is activated.194

However, additional functionality can be achieved through a mixture of smart material and a passive195

material, such as in (Peraza-Hernandez et al. 2013)which considered a ShapeMemoryAlloy (SMA)196

mesh binded to a passive material to achieve a self-folding structure. Alternatively, others have197

considered partial (or localized) smart material activation to increase functionality (Wang and198

Brigham 2012). As the activation process was not included in the system model for the work199

herein, there is no difference conceptually in the optimal design procedure whether the intention is200

to use localized activation or to combine active and passive materials. In both cases, the objective201

of the activation portion of the optimal design are the same, which is to define the distribution (i.e.,202

size and location) of the regions of the structure that would have the activated (i.e., soft) material203

properties.204
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For any inverse problemwhere the objective is to obtain the material property distribution, there205

aremany different ways to parameterize the unknowns. Themain concernwith the parameterization206

is often the trade-off between generality (i.e., being able to capture any possible distribution) and207

computational expense. The more general the parameterization the higher the computational208

expense of the problem. For example, finite element-type discretizations of a material property209

distribution (Wang et al. 2015), for which every node or element of a mesh can have a different210

property, have a high degree of general applicability. However, the large number of unknowns in211

a mesh description can substantially increase computational expense and may require some kind212

of regularization or other additional consideration to address ill-posedness. Alternatively, many213

lower-dimensional parameterizations have been considered to reduce computational expense and214

avoid ill-posedness, such as the use of radial basis functions (Ahmadpoor et al. 2016). The challenge215

with lowering the dimension of the parameterization is that it is often problem-dependent and best216

used when some a priori information is available or can be estimated regarding the expected type217

of spatial distribution.218

In order to balance computational cost with generality for this specific application, the distribu-219

tion of activated material was parameterized into a fixed number of activated regions, assuming the220

material would be activated uniformly through the thickness. The number of regions was chosen221

to be sufficiently large to allow for complex solutions (e.g., many disconnected activated regions),222

but the regions could overlap to allow for simple solutions as well (e.g., a single local activated223

region). Furthermore, a threshold was set so that any small gaps between activated or inactivated224

material regions would be removed to improve practicality of the design solutions. Thus, the ma-225

terial distribution was defined by m discrete activated material sections centered at variable planar226

locations, {d j}
m
j=1, along the tile with variable widths/diameters, {l j}

m
j=1. An important note is that227

this parameterization of the material activation is expected to lead to non-unique solutions in terms228

of the parameters, even for cases where there is one optimal distribution of material properties.229

However, this non-uniqueness was not a concern, since the distribution and not the parameters230

themselves is the important outcome, and uniqueness in optimal design problems is generally not231
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critical. The actuation was chosen to be implemented through variable applied pressure and a series232

of n discrete actuators at variable planar locations, {ci}
n
i=1, and with variable horizontal and vertical233

prescribed displacements, {ui}
n
i=1 and {wi}

n
i=1, respectively. Figure 3 shows a two-dimensional234

(2D) schematic of the tile with an applied pressure P, n discrete actuators, and m discrete activated235

zones for a maximum of 3n + 2m + 1 potential design variables to be determined.236

RESULTS AND DISCUSSION237

Several numerical case studies of the design of a smart material shape changing tile were238

considered to evaluate the capability of the shape-based optimal design strategy presented to239

achieve nontrivial design solutions and examine any potential benefits or limitations for the various240

component options discussed. In all examples the conceptual shape-changing tile was taken to be241

10.16 cm-by-10.16 cm (4 in-by-4 in) with a thickness of 0.25 cm (0.1 in) and the activated and242

inactivated mechanical material properties were based upon those for a standard shape memory243

polymer (SMP) (Beblo et al. 2010). Although it is not expected that such a material would be244

suitable for architectural applications without further development/modification, the shape memory245

and large recoverable strain capabilities of SMP (Leng et al. 2011) would be significantly beneficial246

for the proposed concept of a shape changing building skin tile. Therefore, SMP was chosen as the247

exemplar smart material for the development of this concept. The material was assumed to be an248

isotropic Neo-Hookean hyperelastic material model with activated and inactivated Young’s moduli249

of 2.4 MPa and 1034 MPa, respectively, and a constant Poisson’s ratio of 0.45. The process to250

change the shape (i.e., deform) the tile was assumed to be quasi-static. As previously noted, the251

material was assumed to be activated instantaneously so that regions of the tile were either activated252

or inactivated completely, and it was further assumed that all activation of material occurred prior253

to the application of any actuation. A final important consideration not yet mentioned for the design254

of this type of smart material shape-changing structure is to ensure that the design solution does not255

damage the structure. Although a constraint could be included in the design optimization problem256

to prevent solutions that damage the material (Wang and Brigham 2012), preliminary tests showed257

this to be unnecessary for the case studies considered. However, the final design solutions were still258
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checked to ensure no damage of the material would occur by confirming the maximum principal259

strain did not exceed damage limits anywhere of 30% for inactivated material or 400% for activated260

material.261

In addition to the capability to identify nontrivial design solutions to complex problems, a262

primary benefit of a computational design approach such as that proposed is the generalisability in263

contrast to more traditional design strategies. Therefore, the focus of the test cases used to evaluate264

the capability of this approach was not just to show that the approach could be successfully applied265

to the morphing façade tile concept, but to also show the range of applicability without the need266

to fundamentally change the solution strategy. In particular, the examples chosen focused on the267

capability to identify relatively high-quality design solution regardless of the fundamental nature268

of the topology (assuming a continuous surface) and the degree of spatial variability of the desired269

surface shape, while also including a range of actuation and activation types and constraints, and270

being able to incorporate additional design objectives (not just a target shape).271

To explore variations in the fundamental topology of the target shape for the morphing structure,272

two classes of target shapes were considered: (1) convex surfaces (for which the projection strategy273

for the design objective would be applicable) and (2) non-convex surfaces. In addition, within each274

of these classes one target shape was considered with a “smooth” spatial variation and another275

non-smooth target shape with “sharp” changes in the surface was considered to see if this aspect276

also had an effect on the solution capability. The majority of the test cases considered one direction277

of spatial variability for the target shape (i.e., two-dimensional target shapes). However, to also278

show that the design approach generalizes to a higher degree of spatial variability, one additional279

test case was considered for a target shape with two directions of spatial variability (i.e., a three280

dimensional target shape).281

Throughout the test cases, the independence of the solution strategy with respect to the design282

parameters (i.e., activation and actuation) is shown by changing both the number of discrete283

design parameters and the physical property these parameters define. Initially, the actuation of the284

morphing structure is fixed and the design parameters only relate to the number and location of285
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actuators. Then, the capability of the morphing structure to have variable actuation was included,286

and these new design parameters defined the location and size of the activated material. The case287

of variable actuation also facilitated the consideration of additional design problem objectives (in288

addition to the target shape), as energy cost would be a potentially important design component for289

a morphing structure and amount of material activated can often represent the largest energy cost.290

Thus, the design approach was modified to account for multiple objectives, the target shape and291

the energy cost, and the capability of the computational approach to elucidate the range of design292

solutions with respect to multiple objectives and their corresponding trade-off is shown.293

Table 1 shows the design cases considered in the order they appear and their corresponding294

topology classification, the design parameters to be determined, and the design objectives consid-295

ered (as well as whether single or multi-objective design). More details of the case studies will be296

given in their respective sections.297

Capability of a Shape-Based Objectives for Optimal Design298

InCases 1 and 2 the capability of the correspondence-based shape differencemetrics as objective299

functions to accurately match a target shape were investigated. For both of these cases, the tile300

was assumed to be fully activated (i.e., the only optimization parameters to be considered were301

the mechanical actuation variables) to simplify the design solution space, so that the capability of302

the various objective functions could be more easily compared. Full activation was considered to303

focus on the design objective functions, rather than comparing the capabilities of local to global304

activation. Furthermore, energy cost was ignored for these first tests (i.e., not included in the305

optimization), since the activation energy is typically the primary energy cost and was not varying306

for these tests.307

For both Cases 1 and 2, a constrained gradient-based interior point algorithm was used to solve308

Equation 1 by minimizing C (ST, SF(®u)) (removing the energy term from Equation 1). For each309

numerical example, the gradient-based optimization was repeated with 10 randomly generated310

initial guesses and the solution was taken to be the result with the lowest respective objective311

function value. The optimization stopping criteria was set to be when the change in objective312
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function between iterations fell below the tolerance value of 10−6. Starting with one actuator, the313

number of actuators for the design was increased by one and the optimization repeated until the314

shape matching capability did not noticeably improve (i.e., convergence was achieved in terms of315

the number of actuators). This type of optimization was done for simplicity since the parameter316

for the number of actuators is an integer, while the remaining design parameters are continuous317

real numbers. Each of the correspondence-based objective functions defined in Section 3, the318

Standard Hausdorff distance, the Modified Hausdorff distance, and the projection-based distance,319

were used in turn as the objective function for the optimization process. In order to have a fair320

comparison between each of the potential design solutions, regardless of the objective function321

used in the optimization process, the Standard Hausdorff distance and Modified Hausdorff distance322

were calculated for the final designed tile shapes in comparison to the target shapes. The design323

problem was constrained to be two-dimensional by assuming both the activation and actuation324

would be constant in one planar direction. Additionally, for Cases 1 and 2 the two end faces of the325

tile that were parallel to the direction of constant activation and actuation were taken to be fixed326

with zero displacement in all directions (as shown in Figure 3), while all other faces were free to327

deform due to the actuation detailed in Section 3.328

Convex Target Shapes329

Figure 4 shows the two target shapes considered in this case, an “overhang" shape (Target330

Shape 1) and a unidirectional sin-wave (Target Shape 2) for this case. Both shapes were based331

upon work in (Zupan et al. 2018), which detailed the self-shading performance of these shapes in a332

similar application for a building skin. Both target shapes are convex with one direction of spatial333

variability. Target Shape 1 had a flat (i.e., undeformed) cross-section for half of the tile, and the334

other half had a cross-section defined by a single sin wave with amplitude 4.57 cm and a period335

of 5.08 cm, due to the discontinuity this shape is considered “non-smooth". Target Shape 2 was336

defined by a sin wave cross-section with amplitude 2.74 cm and a period of 5.08 cm, this shape is337

considered “smooth".338

Figure 5 shows the Standard and Modified Hausdorff distances for the final design shapes339

13 Zupan, August 26, 2019



obtained from optimizing with respect to each of the correspondence-based objective functions340

with one through five discrete actuators for Target Shapes 1. No sufficiently accurate solution could341

be found for a one actuator design, which is consistent with intuition. However, all design solutions342

that utilized two or more actuators for Target Shape 1 resulted in Standard and Modified Hausdorff343

distances less than 10% the length increase (2.08 cm) of the tile, with only the exception of the four344

actuator case using the Standard Hausdorff objective function that had a slightly higher error. In345

other words, the design solution converged at two actuators for Target Shape 1. The shape matching346

for Target Shape 1 when minimizing with respect to all three objective functions can be seen in347

Figure 6, which shows the final deformed shape and the design solution (i.e., actuator placement348

and pressure) corresponding to each objective function. Clearly, designs that can accurately match349

the target shape were able to be obtained when they existed, regardless of the specific shape-based350

objective function utilized in this case. The convergence at two actuators is expected based on351

the key features of the shape (i.e., one actuator to hold the first half of the tile in place and a352

second actuator to define the height of the “overhang"). Also of note, there are fluctuations in353

the Standard and Modified Hausdorff distances for the final design shapes, most notably for the354

solutions obtained by minimizing the Standard Hausdorff distance. The larger fluctuations in the355

solutions, imply that the Standard Hausdorff Distance creates a more complex solution space that is356

more difficult for an optimization algorithm to traverse (i.e., more local minima exist in comparison357

to the other objective functions).358

The results for Target Shape 2 were similar to those for Target Shape 1, but accurate design359

solutions were not able to be obtained until at least 3 actuators were utilized (Figure 7). The shape360

matching for Target Shape 2 when minimizing with respect to all three objective functions can be361

seen in Figure 8, which shows the final deformed shape and the design solution corresponding to362

each objective function. A main difference in the results for Target Shape 2 is that an odd number363

of actuators were necessary to accurately match the desired shape, with even numbers of actuators364

resulting in errors as high as 300% more than when using an odd number of actuators. This is due365

to the need for an odd number of actuators to be able to match the key features of a symmetric366
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shape, by placing one actuator at the line of symmetry and an equal number on each side of the367

line of symmetry. Consistent with the results from Target Shape 1, the Standard Hausdorff distance368

objective function resulted in a more challenging optimization problem and led to the identification369

of inaccurate design solutions in terms of the shape matching for some cases of Target Shape 2.370

An important note is there are design solutions that have nearly identical actuator placements371

and deformations, but substantially different applied pressure values for both Target Shapes 1 and372

2, as seen in Figures 6 and 8. This could be interpreted as the pressure variable being a superfluous373

variable in the design of the shape changing mechanisms and should likely be removed from the374

system if implemented for these cases. However, as will be shown in the following, the ability375

to control an applied pressure became significant for more complicated target shapes and when376

utilizing localized activation.377

Non-Convex Target Shapes378

Figure 9 shows the two target shapes considered in this case, a boxcar function (Target Shape379

3) and a distorted sin-wave (Target Shape 4), for this case. Both target shapes are non-convex380

with one direction of spatial variability. Target Shape 3 was a centered boxcar function with a381

width of 5.08 cm and a height of 2.54 cm, due to the discontinuities in the shape it is considered382

“non-smooth". Target Shape 4 was a centered sin-wave with an amplitude of 2.62 cm and a383

period of 10.16 cm, which was rotated 75◦ about the out-of-plane axis, this shape is considered384

“smooth". As projection is not applicable for these shapes, only the Standard and Modified385

Hausdorff distances were used as objective functions within the design optimization procedure for386

this case. Additionally, in these examples the number of actuators was incremented from one to387

seven, due to the increased target shape complexity.388

Figures 10 and 11 show the Standard and Modified Hausdorff distances for the final design389

shapes obtained from optimizing with respect to those same two applicable correspondence-based390

objective functions with one through seven discrete actuators for Target Shapes 3 and 4, respectively.391

Even with the substantial increase in target shape complexity, solutions that clearly matched Target392

Shapes 3 and 4 could be found. The sufficiency of the design solutions can be visually confirmed393
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through Figures 12 and 13, which show the final deformed shapes and design solutions correspond-394

ing to each objective function. Even though the optimization process typically converged to a design395

solution with a higher error than the prior set of examples (e.g., error values of approximately 10%396

of the length change of the tile), the optimization process using the Modified Hausdorff distance397

led to design solutions that matched both of the complex target shapes accurately. Alternatively,398

the limitation of the Standard Hausdorff distance that resulted in less consistent optimization was399

even more significant, with the corresponding design solutions for Target Shapes 3 and 4 being400

substantially less accurate, both quantitatively and visually.401

Regarding the design variables, as expected the optimal design process revealed that this more402

complex second set of target shapes required more actuators (four or five) in comparison to the403

prior example set (two or three actuators) to accurately match the desired shapes. Additionally, in404

contrast to the previous set of examples, the pressure design variable was an important variable to405

the design, and consistent pressure values were identified for the design solutions that accurately406

matched the target shapes.407

Locally Activated Shape Changing Tile408

After establishing the capabilities of the shape difference metrics, Case 3 focused on the use409

of localized material activation for the design of a smart material shape-changing structure. To410

investigate the optimal design problem now with localized material activation rather than full411

activation, a subset of the target shapes from both of the prior test sets were considered: Target412

Shape 2 (unidirectional sin-wave, Figure 4(b)) and Target Shape 4 (distorted sin-wave, Figure 9(b)).413

To contrast with the previous results with full activation in terms of shape matching accuracy,414

an optimization process similar to the previous two cases (a constrained gradient-based interior415

point algorithm) was utilized to find design solutions. The localized activation was implemented416

as described in Section 3. Due to prior results shower higher accuracy, the Modified Hausdorff417

distance was the only shape metric considered in this case.418

Figures 14(a) and 14(b) show the value of the Modified Hausdorff distance for the final design419

shapes obtained from optimizing with respect to the Modified Hausdorff distance with one through420
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four discrete actuators for Target Shapes 2 and 4 for both localized activation and full activation421

(i.e., the same as those shown in Figures 7 and 11). Specifically, in Figure 14(a) it can be seen that,422

with the exception of one actuator, the optimization procedure that included localized activation423

found design solutions that resulted in lower Modified Hausdorff distance values (i.e., better shape424

matching) for Target Shape 2 than when using full activation. Similarly considering Target Shape 4425

(Figure 14(b)), the optimal designs utilizing localizedmaterial activation resulted in lowerModified426

Hausdorff distance values for every design case. The design solutions using localized activation427

were even capable of improving the shape matching for Target Shape 4 using less actuators (e.g.,428

one actuator with localized activation was more accurate than four actuators with full activation).429

This shows that the design strategy was able to determine these non-intuitive (based on previous430

results) solutions when including localized activation. Thus, there is clear benefit to the use of431

localized activation to achieve improved shape matching of a smart material morphing structure.432

Moreover, the use of less actuators to achieve a more accurate shape indicates that the use of433

localized activation is not only beneficial for shape matching purposes but also does so with a lower434

energy cost in terms of both thermal activation and mechanical actuation.435

Target Shape with Two Directions of Spatial Variability436

For this group of numerical case studies, the same approach for the design optimization as the437

first group of testswas used (interior point algorithmminimizing shape difference)with theModified438

Hausdorff distance used as the objective function. The same concept of variable parameterization439

was used as for the previous examples, however the discrete actuators were removed from the design440

space in order to reduce the complexity of the design space (i.e., the only actuation was the applied441

pressure). The activation was defined by a set of circular regions on the 3D tile, activating uniformly442

through the thickness as before, with controllable center locations and diameters. Differing from443

the previous three groups of tests (which had 2 fixed edge faces and 2 free edge faces), all four outer444

edge faces were fixed to have zero displacement in all directions and the target shape considered445

has two directions of spatial variability.446

Figure 15 shows the target shape, a boxcar function extended to three dimensions. The boxcar447
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portion of the target shape had a height of 1.27 cm and was centered on the lines x = 1.27 cm and448

y = 0 cm with a width of 2.54 cm and a length of 7.62 cm. This target shape was chosen to be449

similar to an overhang shape (a common shading device).450

Figure 15 shows the location of the activated material for the final design solution. These451

activated regions are concentrated over the location of the boxcar portion of the target shape,452

which is consistent with what would be expected given the constraints on the design problem. The453

Modified Hausdorff distance between the deformed model surface and the 3D target shape for this454

design solution was 0.20 cm. A plot of a cross-section (taken at y = 0 cm) of the target shape and455

the deformed model surface of the design solution is shown in Figure 17. In this case the design456

optimization was not able to reach a solution with the sharp features of the 3D target shape. This457

is due to only using a uniform pressure which will always result in a smooth, continuous solution.458

However, the Modified Hausdorff distance of 0.20 cm can be considered a small value, particularly459

in comparison to the prior examples in Section 4, which has Modified Hausdorff distance values of460

0.20 cm for two or more actuators. Furthermore, although the deformed tile is observably different461

than the 3D target shape, this design solution still resembles an overhang, which was the goal of462

choosing the target shape in the first place.463

Multi-Objective Design - Shape Difference and Energy Cost464

When utilizing local activation, the energy cost to change the structure’s shape varies far more465

significantly depending upon the design than for the previous cases. Therefore, to explore the466

capability to design utilizing additional objectives (in addition to the shape targeting) energy was467

included as an objective in Case 5.468

For this multi-objective case a controlled, elitist genetic algorithm (Guide 1998) was used469

to solve Equation 1 by simultaneously minimizing both C (ST, SF(®u)) and E(®u, ®γ) to determine470

potential design solutions. The initial population was set to be 200 and the stopping criteria was471

set as either a maximum number of generations of 200 ∗ ND (where ND is the number of design472

variables) or when the objective function difference between iterations fell below a tolerance of473

10−4). The result of the multi-objective optimization for each trial was the Pareto front set of474
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solutions. The Pareto front includes all of the “best" potential design solutions within the limit of475

the population size that have a lower value for at least one of the separate objective functions in476

comparison to any other solution estimate seen throughout the optimization process. This Pareto477

front is particularly useful to analyze the trade-off between the two objectives, shape matching478

accuracy and energy cost. Similar to the first three cases of numerical tests the design problem was479

again constrained to be two dimensional and have the same boundary conditions.480

As the Modified Hausdorff distance was universally applicable and led to substantially more481

consistent design solutions compared to the other objectives considered, this was the only shape-482

based objective function used for the following case. Based on the example of a thermally activated483

SMP, the energy required to morph the smart material tile in this application could be quantified484

from the design pressure, mechanical actuation, and material activation as follows:485

E =
∫
Γ

P(−®n · ®u)dΓ +
n∑

i=1

®Fi ®ui + cpρVa∆T, (7)486

®n is the unit outward normal to the tile surface where pressure was applied, Γ, ®u is the displacement487

vector, ®Fi is the resultant force vector needed to displace the ith mechanical actuator by ®ui, cp is488

the specific heat of the SMP (taken as cp = 2009 J
kg−K ), ρ is the density of the SMP (taken as489

ρ = 35.98 kg
m3 ), ∆T is the temperature change required to activate the material, and Va is the volume490

of the tile that is activated (determined based on the activated zone parameterization defined in491

Section 3). As noted previously, the activation process was not considered within this study.492

Therefore, to quantify the energy to activate the material, it was assumed that the activated zones493

would have to be heated from room temperature (18◦C) to the SMP activation temperature of 25◦C,494

resulting in a fixed temperature change for the activated zones of ∆T = 7◦C.495

The target shapes considered for Case 5 were again a subset of the previous shapes considered,496

specifically Taget Shapes 2 (Figure 4b) and 4 (Figure 9b). The design strategy was capable of497

finding Pareto fronts for both of the target shapes considered in Case 5. Figure 18 shows the498

composite Pareto fronts in terms of the total energy cost and final Modified Hausdorff distance499
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for the potential designs obtained from the multi-objective optimization for Target Shapes 2 and500

4. These composite Pareto fronts were constructed from the final populations of potential design501

solutions for each case of one through five actuators. One method for choosing the preferred502

solution (i.e., single optimal solution) from a Pareto front is to select the solution that is nearest to503

the origin along the front. The two optimal design solutions (one for each Target Shape) that were504

nearest to the Pareto front origin are shown in terms of the deformed shapes, actuator placements,505

and activated zones in Figures 19 and 20.506

Both Pareto fronts determined from the design strategy corresponding to Target Shape 2 and507

4 show a distinct point of diminishing returns in terms of both objectives, with each Pareto front508

having a clear L-shape. For example, for Target 2 in order to reduce the energy cost by 30%509

from the optimal solution on the L-shaped curve the accuracy of the shape matching must be510

reduced by 173%. Similarly, in order to improve the shape matching accuracy by 4% from the511

optimal solution, the energy cost increases by 17%. To examine the design solutions further,512

the relative contribution of the mechanical actuation and the material activation to the morphing513

energy cost was examined for each case. It was found that the material activation energy cost was514

significantly greater than the mechanical actuation energy cost in all cases, but the extent of which515

was dependent on the number of actuators utilized for the design. Specifically, when one actuator516

was utilized the thermal energy cost was greater than 90% of the total energy cost while it was as517

low as 60% of the total energy cost while utilizing five actuators. Thus, there were at times highly518

non-intuitive outcomes in balancing the number of actuators, total energy cost, and shape accuracy519

that the design strategy was able to determine. Further related to energy efficiency, Figures 19520

and 20 show that even though 20 separate activated zones (m = 20) could be utilized, the push for521

efficiency naturally led to smooth (i.e., a small number of continuous activated regions rather than522

a large number of small activated zones) results, and in affect, regularized the solution (eliminating523

the need for regularization of the parameterization). Looking more closely at the Pareto front524

corresponding to Target Shape 2 (Figure 18(a)), the solutions clustered around the point nearest525

the Pareto front origin generally utilized three or five actuators, while the solutions with higher526
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Modified Hausdorff distance values and lower energy cost utilized a mixture of one, two, and four527

actuators. Considering the Pareto front corresponding to Target Shape 4 (Figure 18(b)), it was528

found that all solutions with a Modified Hausdorff distance below 0.19 cm utilized four actuators,529

while the remainder utilized two actuators. Again, the fluctuations in the solutions are non-intuitive530

in comparison to the previous single objective optimization and indicate the necessity of a design531

approach, such as that presented, for maximum shape matching and energy cost benefits.532

CONCLUSIONS533

The development and evaluation of a computational approach for optimal design of a smart534

material shape changing building skin tile was presented. This approach was evaluated through535

numerical examples that considered the capability of the computational procedure while utilizing536

various shape-based objectives and design variable parameterizations to accurately match target537

shapes with a variety of features (convex/non-convex, smooth/non-smooth, and one/two directions538

of spatial variability). The results from the design approach indicated that the computational539

approach utilizing the shape-based objective functions can result in mechanisms of morphing that540

lead to accurate deformed shapes in comparison to various target shapes. Of the shape metrics541

considered, the Modified Hausdorff distance was shown to be preferable because the computational542

approach utilizing the Modified Hausdorff distance resulted in the most consistently accurate shape543

matching. Additionally, the computational approach utilizing the Modified Hausdorff distance was544

applicable to any shape, even non-convex target shapes, while retaining acceptable deformed shape545

accuracy. The results from the design approach also indicated that the use of localized material546

activation for the design of a smart material shape changing structure of the type considered here547

can lead to higher accuracy in matching target shapes (i.e., better functionality) than a design548

that only has the capability to activate the entire structure. However, the design space for the549

system considered had a significant trade-off between shape matching accuracy and energy cost.550

Yet, the ability to use localized activation for the design was shown to require considerably less551

energy to perform the shape change and to require less actuation devices, potentially benefiting552

implementation considerably.553
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One limitation of this approach is the computational expense of using the Hausdorff distance554

or its variants for the optimization objective function. This computational expense could become555

particularly prohibitive if considering a more complex structure that required a more time consum-556

ing forward analysis and/or if the number of design parameters increased significantly. However,557

there are several possibilities to improve the computational efficiency of the solution strategy. One558

approach is to develop and use differentiable forms of the Hausdorff metrics so that direct differ-559

entiation, or even an adjoint approach could be used for gradient calculation during optimization560

rather than finite difference. Additionally, reduced-order or surrogate modelling approaches could561

be used to complement or replace the standard finite element analysis utilized in this study to562

substantially reduce the computational expense of forward analysis.563
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List of Tables648

1 The design cases considered (in order) to evaluate the computational approach,649

includingwhether the target shape was topologically convex and smooth, the degree650

of spatial variations of the target shape, the mechanisms used for actuating the651

morphing tile, whether the activation of the morphing tile smart material was652

localized, and the objective(s) of the optimal design. . . . . . . . . . . . . . . . . . 27653
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Case Topology Smoothness
Directions
of Spatial
Variability

Actuation Activation Objective(s)

1 Convex Smooth and
Non-smooth One Actuators and

Pressure Full Shape
Difference

2 Non-Convex Smooth and
Non-smooth One Actuators and

Pressure Full Shape
Difference

3 Convex and
Non-convex Smooth One Actuators and

Pressure Localized Shape
Difference

4 Non-convex Non-smooth Two Pressure Localized Shape
Difference

5 Convex and
Non-convex Smooth One Actuators and

Pressure Localized
Shape

Difference
and Energy

TABLE1. The design cases considered (in order) to evaluate the computational approach, including
whether the target shape was topologically convex and smooth, the degree of spatial variations of
the target shape, the mechanisms used for actuating the morphing tile, whether the activation of the
morphing tile smart material was localized, and the objective(s) of the optimal design.
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Fig. 1. Concept of a smart material being activated and mechanically actuated.
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Fig. 2. Representation of the distances D(S1, S2) and D(S2, S1) used in Equation 4 for shapes S1
and S2
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Fig. 3. Schematic of the tile concept in which applied pressure (P), a series of n discrete actuators
at variable locations, and a set of m activation patches (red) at variable locations are used to deform
the tile to achieve a given target shape.
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Fig. 4. The two target shapes considered in the convex group. (a) An “overhang" shape (Target
Shape 1) and (b) a unidirectional sin-wave (Target Shape 2).
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Fig. 5. (a) Standard Hausdorff distance value and (b) Modified Hausdorff distance for optimal
designs using various numbers of actuators for design solutions minimizing with respect to the
Standard Hausdorff, Modified Hausdorff, and projection-based distances for Target Shape 1.
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Fig. 6. The morphed tile shape for the “best" design solution, target shape, and actuator placement
for the optimization using (a) the Standard Hausdorff distance, (b) the Modified Hausdorff distance,
and (c) the projection-based distance for Target Shape 1.
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Fig. 7. (a) Standard Hausdorff distance value and (b) Modified Hausdorff distance for optimal
designs using various numbers of actuators for design solutions minimizing with respect to the
Standard Hausdorff, Modified Hausdorff, and projection-based distances for Target Shape 2.
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Fig. 8. The morphed tile shape for the “best" design solution, target shape, and actuator placement
for the optimization using (a) the Standard Hausdorff distance, (b) the Modified Hausdorff distance,
and (c) the projection-based distance for Target Shape 2.
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Fig. 9. The two target shapes considered in the non-convex group. (a) A boxcar function (Target
Shape 3) and (b) a distorted sin-wave (Target Shape 4).
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Fig. 10. (a) Standard Hausdorff distance value and (b) Modified Hausdorff distance for optimal
designs using various numbers of actuators for design solutions minimizing with respect to the
Standard Hausdorff and Modified Hausdorff distances for Target Shape 3.
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Fig. 11. (a) Standard Hausdorff distance value and (b) Modified Hausdorff distance for optimal
designs using various numbers of actuators for design solutions minimizing with respect to the
Standard Hausdorff and Modified Hausdorff distances for Target Shape 4.
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Fig. 12. The morphed tile shape for the “best" design solution, target shape, and actuator placement
for the optimization using (a) the Standard Hausdorff distance and (b) the Modified Hausdorff
distance for target shape 3.
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Fig. 13. The morphed tile shape for the “best" design solution, target shape, and actuator placement
for the optimization using (a) the Standard Hausdorff distance and (b) the Modified Hausdorff
distance for Target Shape 4.
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Fig. 14. Modified Hausdorff distance values for optimal designs for Target Shape 2 (a) and Target
Shape 4 (b) using various numbers of actuators with both localized activation (black) and full
activation (gray).
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Fig. 15. (a) A cross-sectional view and (b) a top view for the target shape with two directions of
spatial variation (a boxcar function), with the hatched section being the raised portion of the target
shape.
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Fig. 16. The activated (gray) and unactivated (white) portions of the tile for the final design solution
for the 3D target shape.
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Fig. 17. The morphed tile shape for the design solution and 3D target shape.
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Fig. 18. Trade-off between the two objective functions, the Modified Hausdorff distance (x-axis)
and morphing energy cost (y-axis) for Target Shape 2 (a) and Target Shape 4 (b).
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Fig. 19. The morphed tile shape for the “best" design solution, target shape, and actuator placement
(a) as well as the thermally activated zones (b) for Target Shape 2.
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Fig. 20. The morphed tile shape for the “best" design solution, target shape, and actuator placement
(a) as well as the thermally activated zones (b) for Target Shape 4.
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