
Model Evaluation:
An Adequacy-for-Purpose View
Wendy S. Parker*y

According to an adequacy-for-purpose view, models should be assessed with respect to
their adequacy or fitness for particular purposes. Such a view has been advocated by sci-
entists and philosophers alike. Important details, however, have yet to be spelled out. This
article attempts to make progress by addressing three key questions: What does it mean
for a model to be adequate-for-purpose? What makes a model adequate-for-purpose?
How does assessing a model’s adequacy-for-purpose differ from assessing its representa-
tional accuracy? In addition, responses are given to some objections that might be raised
against an adequacy-for-purpose view.
1. Introduction. Twenty-five years ago, Naomi Oreskes, Kristin Shrader-
Frechette, and Kenneth Belitz (1994) published a landmark paper in Sci-
ence magazine on the topic of model evaluation. Seeking to combat over-
confidence in computer simulation models, they expressed concern about
some commonly used terminology, in particular the language of “verifica-
tion” and “validation.” Models cannot be verified or validated in the sense
of having the truth of their assumptions established with certainty, they re-
minded us, nor does impressive past performance by a model guarantee its
future performance. Scientific models can be “confirmed”when their output
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is found to fit with observational data, they suggested, but the support pro-
vided is “inherently partial.” Highly influential, the Oreskes et al. paper has
now been cited over 1,800 times, across dozens of fields.1

Yet the idea that fit between modeling results and observations “confirms
the model” is also problematic. On some accounts, scientific models are
structures or objects; they are not the sort of thing that can be true or false
and thus are not an appropriate target of confirmation. Even if a model is
viewed as a complex hypothesis about the workings of a target system (per
Oreskes et al. and many others), it is usually misguided to seek to confirm (or
disconfirm or falsify) that hypothesis, since it is usually known from the outset
to be false; some of the model’s assumptions are known to be highly idealized
or simplified, to appeal to fictional entities, and so on (Parker 2010).2 This is
not a merely academic point. If a scientific model is thought to be confirmed
when its results are found tofitwith observations of a target system, and thereby
to accrue credit or tomerit increased confidence in somegeneralway, thenusers
canbe led to trust other results obtained from themodel evenwhen—because of
the model’s idealized and simplified assumptions—this is not warranted. That
is, thinking that one has “confirmed the model” can easily lead to misplaced
confidence too.

What should one seek to test—and thereby to confirm or disconfirm or fal-
sify—in the course of model evaluation, if not the model itself ? There are a
number of reasonable alternatives.3 One might test whether a model is simi-
lar to a target in particular respects and degrees (Giere 1988; Lloyd 2010;
Weisberg 2013). Or one might test particular modeling assumptions whose
(approximate) truth is still in question, for example, that particular quantities
in the target are related according to a certain equation. Or one might test
whether a model is adequate or fit for a purpose of interest. This last option
is associated with what will here be called an adequacy-for-purpose view of
model evaluation. On this view, model quality is to be assessed relative to a
purpose; model evaluation seeks to learn whether a model is adequate or
fit for particular purposes. Such a view can be contrasted with one on which
model quality is ( just) a matter of how accurately and completely a model
represents a target, where the ideal limit is a perfect and complete representation.4
1. According to Scopus (https://www.scopus.com), August 2019.

2. This article is concerned with models of natural or social systems/phenomena; much
of the analysis also applies in the context of data modeling, as discussed in Bokulich and
Parker (2020).

3. These are not mutually exclusive options.

4. See also Teller (2001) on the “Perfect Model Model,” Weisberg (2013) on the repre-
sentational ideal of COMPLETENESS, and Knuuttila (2011, 267) on “the idea that scientific
representation should aim for as accurate a representation as possible.”
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AN ADEQUACY-FOR-PURPOSE VIEW 459
An adequacy-for-purpose view has been advocated by both scientists and
philosophers. For example, a US National Research Council report charac-
terizes model evaluation as “the process of deciding whether and when a
model is suitable for its intended purpose” (NRC 2007, 3; see also Caswell
1976; Rykiel 1996; Jakeman, Letcher, and Norton 2006; Baumberger,
Knutti, and Hadorn 2017). Taper, Staples, and Shepard (2008, 358), discuss-
ing modeling in environmental sciences, note “a growing recognition that
models should be selected based on their ability to answer questions of in-
terest,” rather than on some overall measure of their fit to observational data.
Among philosophers, Parker (2010, 287) recommends thatmodel evaluation
be understood as “an activity that aims to determine whether a model is ad-
equate for one or more purposes of interest.” Currie (2018) adopts a similar
view and points to philosophical work on the evaluation of artifacts as a po-
tential resource (e.g., Hilpinen 2011).

An adequacy-for-purpose view is attractive for a number of reasons. It is
a natural accompaniment to a prominent way of thinking about scientific
models, which emphasizes that models are not just representations but also
tools that are selected and used for particular epistemic and practical purposes
(e.g., Morrison and Morgan 1999; Giere 2004, 2010; Boon and Knuuttila
2009; Parker 2010; Knuuttila 2011; Currie 2018). In addition, it readily ac-
counts for some prima facie puzzling features ofmodeling practice, including
the fact that modelers sometimes misrepresent a target, even when they could
avoid doing so; judicious misrepresentation can promote the achievement
of some epistemic and practical aims (Wimsatt 2007, chap. 6; van Fraassen
2008, chap. 1). For example, a modeler might omit from her computer model
a (representation of a) particular causal process known to be operating in the
target, in order to gain insight into its contribution to the target’s behavior. Fi-
nally, an adequacy-for-purpose view can help to combat overconfidence in
modeling results, just as Oreskes et al. sought to do. This is because, on an
adequacy-for-purpose view, evaluators must consider what evidence there
is that a model is adequate for the particular purpose at hand; past successes
of the model might not be especially relevant.

Despite its attractions, however, an adequacy-for-purpose view of model
evaluation has not been the subject of sustained philosophical analysis. A
number of basic questions remain at best only partly addressed, including
What does it mean for a model to be adequate-for-purpose? What makes a
model adequate-for-purpose? How does assessing a model’s adequacy-for-
purpose differ from assessing its representational accuracy? This article at-
tempts tomake progress in answering these questions. In addition, responses
are given to some objections that might be raised against an adequacy-for-
purpose view. The aim is to further develop, and to defend, a particularly
promising view of model evaluation.
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The discussion proceeds as follows. Section 2 articulates two notions of
adequacy-for-purpose, involving success in an instance of use and reliabil-
ity in a type of use, respectively, and then suggests a way of understanding
the relation between adequacy and fitness. In light of this, section 3 draws
out a key insight: for a model to be adequate-for-purpose, it must stand in a
suitable relationship not just with a representational target but with a target,
user, methodology, and background circumstances jointly. Section 4 out-
lines some basic strategies for assessing adequacy-for-purpose and identi-
fies several ways in which assessing adequacy-for-purpose differs from as-
sessing ( just) a model’s representational accuracy. Section 5 responds to a
number of potential objections to an adequacy-for-purpose view. Finally,
section 6 offers some concluding remarks.

2. Characterizing Adequacy-for-Purpose. Advocates of an adequacy-
for-purpose view have said little about what it means for a model to be
adequate-for-purpose. For instance, Parker (2011, 584) says only: “An ade-
quate model is one that is sufficient for the purposes of interest not just as
a matter of accident (e.g., a one-off accurate prediction) but because the
model has properties that make it suitable for those purposes.” For Currie
(2018, 775), an adequate model is one that has properties that “promote
the kind of model output which is desired.”5 After some brief remarks on
purposes, this section articulates two notions of adequacy-for-purpose and
suggests a way of understanding the relation between adequacy- and fitness-
for-purpose.

2.1. Purposes. As understood here, a purpose is a goal. Very often, the
purposes for which models are used are epistemic—they are used to predict
something, to explain something, to teach something, and so on. In some
cases, purposes have built into them constraints on how an outcome should
be achieved. For example, the goal might be not just to correctly predict
whether X will occur but to do so for roughly the right reasons, that is, be-
cause one has taken account of the main factors that actually determine
whether X will occur.

Sometimes, the stated purposes for which models are used are practical.
The goal might be to increase the profits of a firm or to protect a population
from some natural hazard. Even in these cases, however, the intended con-
tribution of the model is often epistemic: it is expected that the model’s
serving one or more epistemic purposes will, in the context of a more ex-
tended activity, facilitate the achievement of the practical purpose. In a
5. See also Currie’s three criteria for evaluating “the success of an artifact” (2018, 774),
which seem broader, since they include such things as whether the artifact/model matches
the design that its creator had for it.
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AN ADEQUACY-FOR-PURPOSE VIEW 461
study (Haasnoot et al. 2014) that will be revisited at various points below,
for example, the ultimate goal is to ensure efficient flood protection and
a fresh water supply in the Netherlands’ Rhine river delta (a practical pur-
pose), but the model’s role is to predict, in a coarse-grained way, the water-
related consequences of various policy choices for the region (an epistemic
purpose).

As the Haasnoot et al. example illustrates, the purposes for which models
are constructed and used are often rather circumscribed and local (Alexan-
drova 2010). Further examples of such purposes could be (1) to accurately
predict the development of hurricanes in the Atlantic Ocean, (2) to explain
how a drug inhibits neural activity in a particular part of the brain, (3) to
identify the source of an unusual contaminant in a particular river, (4) to in-
crease Illinois high school students’ knowledge of world geography, and
(5) to explore the implications of a new theory of adolescent group dynam-
ics. These examples also illustrate that, while some purposes can be
achieved to a greater or lesser extent (e.g., 1), others can only be achieved
or not (e.g., 3).

Purposes often are stated in ways that permit multiple interpretations.
What counts as successfully explaining how a drug inhibits neural activity in a
particular part of the brain, for example, will depend on one’s views on expla-
nation. In such cases, disambiguation will be an important first step in model
evaluation: in order to judge a model’s adequacy or fitness for a purpose, the
evaluator needs to understand what the purpose is and what would count as
successfully achieving it. This might require significant unpacking and reflection.

2.2. Adequacy-for-Purpose. To ask whether a model is adequate for a
purpose is to ask something like: Can the model be used to do the job? But
this also can be interpreted in various ways, suggesting that a number of dif-
ferent conceptions of adequacy-for-purpose could be articulated. For in-
stance, there could be a very weak notion of adequacy-for-purpose, accord-
ing to which a model is adequate for a purpose P if there is some possible
way of using the model, such that someone could at least sometimes
achieve P. Below, however, two stronger conceptions are articulated, which
seem of greater interest in scientific practice.6

First, there is a notion of adequacy associated with success in a partic-
ular instance of use:
6. Th
els bu
terest
or a l

All 
ADEQUACYI: A tool M is ADEQUATEI-FOR-P if and only if using M in instance
I results in the achievement of purpose P.
ese conceptions are meant to be applicable not just when evaluating scientific mod-
t when evaluating other tools as well. Even in modeling contexts, the tool of in-
is sometimes a set of models (e.g., used for the purpose of quantifying uncertainty)
arger system that incorporates a model (e.g., a forecasting system).
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Any instance of use of a tool involves a user U, a wayW in which the tool is
used, and background circumstances B in which the use occurs; it takes
place somewhere and at some time. Suppose that a climate scientist U uses
a climate model M in an attribution study (following methodology W and
in circumstances B) with the aim of P: discerning whether most of the
global warming observed since 1950 is due to rising anthropogenic green-
house gas concentrations (see, e.g., IPCC 2013, chap. 10). Suppose that she
reaches an affirmative conclusion in light of the study results and that this
conclusion is correct, that is, that anthropogenic greenhouse gases did in fact
cause most of the warming. Then, the model is ADEQUATEI-FOR-P. Even if,
using M in a similar way, the climate scientist would often fail to reach cor-
rect conclusions about the contribution of anthropogenic greenhouse gases
to other observed changes in climate-related variables, in this instance she
succeeded.7

A second notion of adequacy-for-purpose is associated with reliability in
a type of use:
7. Th
the u

8. Ju
depen
this p
series

9. In
e.g.,
curac
the e

se sub
ADEQUACYC: A tool M is ADEQUATEC-FOR-P if and only if, in C-type instances
of use of M, purpose P is very likely to be achieved.8
A type of use—also referred to here as a context of use—can be specified in
terms of one or more users or types of user U, one or more methodologies or
types of methodology W, and some range of circumstances of use B. Con-
sider, for example, a computer modelM designed to simulate the storm surge
(local rise in sea level) that occurs along the US coast when a hurricane is
nearby. The model developers would like M to be ADEQUATEC-FOR-P: predict-
ing whether the surge at particular coastal locations will exceed prespecified
hazardous levels during a 48-hour forecast period.9 The context of interest
(C) involves operational forecasters U at the US National Hurricane Center,
who follow a particular methodology W for generating predictions with M
and in usual background circumstances B (without power cuts to their com-
puters, in a climate like today’s, etc.). IfM is ADEQUATEC-FOR-P, then, whenever
e wording is important: while it is a tool that is ADEQUATE-FOR-P (or not), it is always
ser, not the tool, who achieves or fails to achieve purpose P.

st how likely the achievement of P needs to be can vary somewhat from case to case,
ding on, e.g., the importance of achieving P. There are various ways to understand
robability: as the frequency of success in achieving P in a hypothetical, long-run
of repeated trials of type C, as a propensity, etc. No stand is taken on this here.

reality, such forecasts might be probabilistic, and the goal might be more modest,
to improve on current forecast performance. However, because evaluating the ac-
y and improvement of probabilistic forecasts is a complicated and contested matter,
xample here takes a simpler form.
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AN ADEQUACY-FOR-PURPOSE VIEW 463
the forecasters use M in way W and in B-type circumstances, they are very
likely to predict correctly whether the surge will exceed the hazardous thresh-
olds at those locations.10

As the storm surge example suggests, scientists often will be interested
in whether a model is ADEQUATEC in a context in which it is actually used; we
might call this its adequacy-in-practice for P. Sometimes, however, they
might be interested in whether a model is ADEQUATEC in other contexts of
use—in contexts that they aspire to (e.g., once they have the resources to
implement an improved methodology) or even in ideal contexts (e.g., in
which highly competent and conscientious users follow an ideal methodol-
ogy, in highly favorable circumstances; we might call this its adequacy-in-
principle for P). ADEQUACYC as articulated above can accommodate these dif-
ferent cases. Likewise, evaluators could consider in which contexts of use a
model is ADEQUATEC for a given purpose or for what range of purposes there
is a practically accessible context of use in which the model is ADEQUATEC,
and so on.

Can a model be ADEQUATEC as a matter of luck or coincidence? It seems
unlikely, assuming that contexts of use are not specified so narrowly that
they encompass just a few possible instances of use. It seems more plausible
that, if the use of a model M across a range of instances would almost al-
ways result in the achievement of P, it is because M has properties that fa-
cilitate in some systematic way(s) the achievement of P in that context (rem-
iniscent of the suggestions of Parker and Currie). If the storm surge model is
ADEQUATEC for a predictive purpose P, for example, it might be in part be-
cause it represents accurately enough the physical processes that actually
control storm surge in those locations.

2.3. Fitness-for-Purpose. The concept of fitness-for-purpose is invoked
in discussions of model evaluation at least as often as that of adequacy-for-
purpose, although it too usually goes unanalyzed. Here, fitness-for-purpose
is analyzed in terms of adequacy-for-purpose. Let x stand for either the in-
stance (I) or type (C) variety of adequacy-for-purpose articulated above:
10. E
still b
case,

All 
FITX: A tool M is FITX-FOR-P if and only if it is ADEQUATEX-FOR-P.
Unlike adequacy, however, fitness is a concept that admits of degrees. This
is useful when evaluating models for purposes that can be achieved to a
greater or lesser extent. Consider an example given earlier, P: increasing Il-
linois high school students’ knowledge of world geography. For this pur-
pose, even a small increase in knowledge will count as a success, but larger
ven if the storm surge model is never actually used in a C-type instance, it might
e ADEQUATEC-FOR-P. ADEQUACYC is a modal notion; it is a matter of what would be the
if C-type instances of use were to occur.
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increases are more desirable. We can think of such purposes as having a
more complex structure, consisting of a rank-ordered set of achievements,
{Pmin, ..., Pmax}, where the first (and lowest-rank) member of the set, Pmin,
corresponds to achieving P to the minimally acceptable extent and the last
(and highest-rank) member of the set, Pmax, corresponds to achieving P to
the maximally desired extent. Then:
11. G
the re
simp
speak

12. I
conce
the m
cient
achie

se sub
FITNESSX: A tool M’s FITNESSX-FOR-P is greater to the extent that M is
ADEQUATEX-FOR-P for a higher-ranking member of P 5 fPmin, :::, Pmaxg.
Thus, if the increase in Illinois high school students’ knowledge of world
geography that would result from using a model M1 in a context of use C
would almost always be at least Pm, while the increase resulting from the
use of M2 would almost always be at least Pn, and if Pm > Pn, then M1’s
FITNESSC-FOR-P is greater than M2’s. Claims of relative fitness can be made
even if the context of use of M2 differs from that of M1, as long as the rank-
ing {Pmin, ..., Pmax} is the same.11

3. What Makes a Model Adequate-for-Purpose? We now are better
positioned to address another fundamental question: What makes a model
adequate-for-purpose? That is, in virtue of what is a model adequate for a
purpose P? Clearly, the specific features that make a model adequate-for-
purpose will vary from case to case. Nevertheless, the conceptions of
adequacy-for-purpose articulated in the last section point to an important
general insight about what makes a model adequate-for-purpose.

In particular, for a model to be adequate-for-purpose, it must stand in a
suitable relationship not just with a representational target T but with a tar-
get T, user U, methodology W, circumstances B, and goal P jointly. The
model must have features, including but not limited to how it represents tar-
get T, such that user U, using the model in way W in circumstances B
achieves (or is very likely to achieve) purpose P.12 We can also think of T,
U, W, B, and P as dimensions of a problem space, constituted by a goal
(P) and a set of constraints (T, U,W, B) on how that goal should be achieved;
iven that fitness-for-purpose is analyzed in terms of adequacy-for-purpose, most of
mainder of the discussion will be framed just in terms of adequacy-for-purpose, for
licity. Likewise, where a point applies to both ADEQUACYI and ADEQUACYC, I will just
of “adequacy-for-purpose.”

t is interesting to consider how the two notions of adequacy outlined above relate to
ptions of singular and general causation and whether the use of a model, or even
odel’s relation to its target, might be understood as INUS conditions (an insuffi-
but necessary part of an unnecessary but sufficient set of conditions) for the
vement of the purpose. Space limitations prevent exploring this here.
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AN ADEQUACY-FOR-PURPOSE VIEW 465
modelMneeds to be a “solution”within that problem space.13 A great deal of
philosophical discussion of scientific modeling has focused on whenmodels
represent, or successfully represent, their targets—pointing to relationships
of isomorphism, partial isomorphism, homomorphism, similarity, exempli-
fication, and more (see Frigg and Nguyen [2017] for a critical review). Yet
themodel-target relationship is only part of the story when it comes to achiev-
ing scientific aims; the model’s features must also align with those of U, W,
and B. As table 1 illustrates, a model can fail to be adequate-for-purpose for
reasons that relate to these other dimensions of the problem space as well.

Note that this is not just the simple (but correct) point that pragmatic fea-
tures of a model, such as how long it takes to run on a computer, can matter
in addition to a model’s representational features. There can be interactive
effects, in the sense that how a model should represent a target T, if it is to
be adequate-for-purpose, can depend on features of U, W, and B.14 This is
illustrated in the last two entries of table 1,where amodel fails to be adequate-
for-purpose because its representational features fail to align with features
of the user U and the broader methodology W, respectively.15 In the latter,
TABLE 1. EXAMPLES OF INADEQUACY DUE TO LACK OF FIT WITH USERS, METHODOLOGY,
OR BACKGROUND CONDITIONS

Type of Purpose Type of Model Reason for Inadequacy

Pedagogical Physical M is very sensitive; vibration in environment disrupts
M’s functioning (B)

Explanatory Mathematical Although M’s equations are very accurate, they are
so complex that explanatory information is not
salient to users (U)

Predictive Computational An idealization in M amplifies, rather than compen-
sates for, common errors in initial conditions es-
timated from data (W)
13. Related conce
e.g., Goel and Piro
speaks of statistica
potheses being “co
included among th
using some model
(e.g., hammers), th

14. Various philos
model represents a
(2009), Oberkamp
and Baumberger e
more broadly and
of U, W, and B—

15. As the examp
of a model does n

T
All use subject to U
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a computer model incorporates an idealization that amplifies errors that oc-
cur in the initial conditions from which the model is run, resulting in pre-
dictions that do not display sufficient accuracy; the same model might be
used successfully for that predictive purpose in a problem space that includes
a different methodology for estimating initial conditions.

The Haasnoot et al. (2014) study mentioned earlier provides a real-world
illustration of the relevance of more than how a model represents a target.
The authors evaluate the adequacy of a computational model for the purpose
of (P) screening and ranking different water policy pathways for the Rhine river
delta through the end of the twenty-first century, a period in which climate
is expected to change by an uncertain amount. They emphasize that, for their
purposes, the model not only needs to give sufficiently accurate results for
a range of variables related to floods, droughts, and their impacts but also
needs to be computationally efficient, so that numerous courses of action
can be explored in a limited time period (a 5-year decision-scoping program).
After providing some evidence that their model does meet these basic re-
quirements, Haasnoot et al. also praise the model’s transparency and adapt-
ability (111), citing these as features that will facilitate exploring policy
options in an interactive way with stakeholders. Their evaluation thus con-
siders not just how the model relates to a representational target but also
whether it stands in a suitable relationship with users and with the computa-
tional methodology to be employed.

It is important to recognize, however, that although T, U, W, and B con-
strain the features that a model should have if it is to be adequate-for-
purpose, they rarely uniquely determine them. Often there will be many
possible ways to construct an adequate model. A predictive purpose, for in-
stance, might be achieved by keeping errors in all relevant variables in a
mathematical model small or by allowing larger errors but ensuring that
they mostly cancel out, and so on. In fact, the features that make one model
adequate-for-purpose can be very different from those that make another
model adequate for that same purpose. Suppose two scientists want to learn
whether a new drug will be more effective than an alternative in alleviating
particular symptoms of a disease in a given population. One scientist inves-
tigates this via an experimental study involving animal models, while the
other uses a computational model that simulates the molecular chemistry
of the drug, that is, how it binds and interacts with particular molecules that
are related to the disease. In both cases, the models might be adequate-for-
purpose. Yet the features that make the animal model adequate—which
include biological traits of the animals—are obviously quite different from
the features that make the computational model adequate.
warrant an increase in one’s confidence that the model is adequate-for-purpose. See
also Levins’s (1966) claims about trade-offs among precision, generality, and realism
in modeling.
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AN ADEQUACY-FOR-PURPOSE VIEW 467
Thus, when conceptualized in terms of adequacy-for-purpose, model
quality is even more context dependent than is usually emphasized. It is
not just that the features that will make for an adequate model depend on
the purpose (Teller 2001); even once the purpose is specified, the features that
will facilitate the achievement of that purpose can vary, depending on the
user, methodology, the circumstances of use, and perhaps even the type of
model being employed (e.g., physical vs. mathematical). This does not nec-
essarily mean, however, that nothing useful can be said (about what makes
a model adequate-for-purpose) at a level more general than that of the indi-
vidual case. It is an open question whether some midlevel theory can be de-
veloped that, for different types of purpose, methodology, user, or model, of-
fers some important insights about what makes a model adequate.16

4. Assessing Adequacy-for-Purpose. A third question of interest is: How
does assessing a model’s adequacy-for-purpose differ from evaluating ( just)
its representational accuracy? In practice, model evaluation—however it is
conceptualized—often begins informally as a model is being developed and
only later becomes a more formal activity. At the formal evaluation stage
especially, it can involve a host of subtle issues that depend on fine details
of the case at hand, for example, what sort of calibration or tuning of the
model was performed, differences between the spatial or temporal resolu-
tion of modeling results and observations to which they are compared, spec-
ification of parameters in statistical tests, and so on (see, e.g., NRC 2007,
chap. 4; Oberkampf and Roy 2010). It is impossible to do justice to these
complexities here. Instead, this section provides an overview of some basic
strategies that can be employed in the assessment of adequacy-for-purpose
(sec. 4.1), making it easier to see several significant ways in which assess-
ments of adequacy-for-purpose can differ from assessments of representa-
tional accuracy (sec. 4.2).17

4.1. Basic Strategies. In general terms, to assess adequacy-for-purpose
is to consider what reasons there are for thinking that a model is (or is not)
adequate for a purpose of interest. Both information about how a model is
constructed—that is, about its ingredients or components and how they
are arranged—and information about a model’s performance can be relevant
(see also Baumberger et al. 2017). Ultimately, the evaluator seeks to deter-
mine the appropriate level of confidence to have in (or whether to accept or
16. Weisberg’s (2013) analysis of the kinds of model-target similarities that are impor-
tant for different types of modeling goal could be interpreted as a first step in this direc-
tion (see Parker 2015; Jacquart 2016).

17. Note that model evaluation need not always be stringent or formal. More careful as-
sessment is desirable when erroneously accepting that a model is/is not adequate for a
purpose of interest can be foreseen to have significant negative consequences.

This content downloaded from 129.234.000.075 on June 26, 2020 01:27:01 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



468 WENDY S. PARKER

All u
reject) a hypothesis about the model’s adequacy-for-purpose. For example,
the hypothesis of interest might take the form, H: model M is ADEQUATEC for
purpose P.

Construction. When considering the construction of a model, the eval-
uative task is akin to assessing the design of a tool with respect to an envi-
sioned problem space; the question is whether the model/tool has properties
that will facilitate the achievement of the purpose in a context or instance of
use (see also Currie 2018). It is easy to see how information about model
construction can be relevant. To give an extreme example, if an evaluator
learns that a climate model has a slab ocean—one that does not represent
any internal ocean dynamics—she can be very confident that the model is
not ADEQUATEC for (P) gaining insight into how ocean dynamics will change
as atmospheric greenhouse gas concentrations rise. By contrast, if an eval-
uator learns that an animal model (e.g., a mouse species) has a particular
set of biochemical pathways in common with humans (i.e., a key similarity
with T) and is easy to house and care for in a local laboratory (i.e., aligns with
U,W, B), this might increase her confidence that the model will be ADEQUATEI

for (P) learning whether a new drug is efficacious in treating a particular dis-
ease in humans. This can also be expressed in terms of confirmation: the in-
formation about the animal model confirms (i.e., provides some support for)
the hypothesis that the model is ADEQUATEI for P.18 Likewise, the information
about the climate model strongly disconfirms the hypothesis that the model
is ADEQUATEC for P; indeed, it seems to provide grounds for rejecting the hy-
pothesis altogether.

Performance of Model Components. Evidence for or against a model’s
adequacy-for-purpose can also be obtained by examining the performance
of model components with respect to observational data or other bench-
marks. In some engineering contexts, for instance, component-level testing
of computational models is carried out in a rigorous way, with performance
requirements specified in advance in light of the purpose for which the
model as a whole is to be used (see, e.g., Thacker et al. 2004; Oberkampf
and Roy 2010). It might be specified, for example, that results for variable
X in model component Y should not differ from observed values of X by
more than 5%. Note, however, that whether the performance of a model
component supports the hypothesis that the model is adequate-for-purpose
can depend on how other components of the model are expected to perform
18. The nature and strength of the support depend on the view of confirmation that is
adopted. The error statistician takes a different approach, asking whether the hypothesis
that the model is adequate-for-purpose has passed a severe test with some data e (see,
e.g., Mayo 1996, 2018).
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too. Large errors in results from one component might not be evidence
against the model’s ADEQUACYC for some purpose P, for instance, if those
errors are expected to be systematically compensated for elsewhere in the
model.

Direct Testing of Adequacy. Sometimes it is possible to directly test a hy-
pothesis about a model’s adequacy-for-purpose. When the hypothesis con-
cerns a model’s ADEQUACYC, direct testing involves examining the model’s
performance in a sample of C-type instances of use. For example, to directly
test the hypothesis (H) that model M is ADEQUATEC for (P) predicting with at
least accuracy A, the power output for a particular set of wind turbines, an
evaluator might check whether, in a sample of C-type instances of use, pre-
dictions obtained using M almost always display at least accuracy A; if so,
this can provide some support for H. The strength of the support will depend
on the how large the sample is and whether it can be considered a random
sample of C-type instances of use or a sample in which it would be partic-
ularly easy or difficult to achieve A. Likewise, sometimes an evaluator
can directly test a model’s ADEQUACYI for a purpose P by simply waiting to
see whether P is achieved in that instance. In this way, an evaluator might
obtain very strong evidence regarding the ADEQUACYI of model M for (P) pre-
dicting tomorrow’s wind power output with at least accuracy A.

Often, however, direct testing of a model’s adequacy-for-purpose is un-
desirable or even impossible. Scientists do not want to wait until a breach
occurs at a local nuclear reactor to learn whether their computer model is
adequate for simulating, with a specified level of accuracy, how radioactive
materials would disperse in the case of such a breach. And direct testing is
impossible when models are used—as they frequently are—to investigate
counterfactual situations that will never be realized, for example, when cli-
mate models are used to project changes in climate under multiple future
greenhouse gas emission scenarios; at most one of those scenarios will
be realized.

Indirect Testing of Adequacy. In such cases, an evaluator sometimes can
indirectly test a model’s adequacy-for-purpose by examining its performance
in other instances or contexts of use. Scientists assessing the adequacy of
their model for simulating the dispersal of radioactive materials in the vicin-
ity of a local reactor, for example, might examine how well their model can
simulate the dispersal of other materials in other locations, for which some
observational data are available. When such indirect tests are performed,
however, evaluators need to take account of differences between the test sit-
uations and the instances or contexts of use that are ultimately of interest. In
the case of the dispersal simulations, for example, perhaps the available test
situations involve relatively simple topography, while the topography near
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the local reactor is more complex. In that case, the model’s performing well
in the test situations might provide only weak support for (or weak confirma-
tion of ) its adequacy-for-purpose. Unfortunately, it is sometimes quite chal-
lenging to determine to what extent a model’s performance in one instance
or context of use constitutes evidence for or against its adequacy-for-purpose
in another (Parker 2010, 2011).

Synthesis. In practice, assessments of adequacy-for-purpose usually in-
volve several of the basic strategies just outlined (and sometimes others
too). In the Haasnoot et al. (2014) study, the assessment considered not only
the model’s design—whether it included relevant variables and parameters
in its representation of the water system of the Rhine delta (the target) as well
as its computational efficiency, transparency, and adaptability—but also the
performance of the model and its components when compared to observa-
tional data and to results from more complex models. For example, the
evaluators checked whether, in simulations for past years for which observa-
tions are available, the model’s water distributionmodule (a component) cor-
rectly indicated whether water levels in a key set of lakes were above or be-
low thresholds where significant damage begins to occur. Direct testing of the
model’s adequacy-for-purpose was not possible, since the model was being
used tomake long-term predictions of conditions under a number of different
climate change scenarios, at most one of which will eventually be realized.
Instead, evaluators performed a series of indirect tests, checking whether
the model responded to interventions in ways that experts and stakeholders
considered plausible, for example, whether changing features of dikes in
the model resulted in plausible reductions in flood damages.

Such findings need to be aggregated to reach some conclusion about a
model’s adequacy for a purpose of interest. In practice, this aggregation step
is often left implicit. Haasnoot et al. (2014, 112), for example, conclude that
their model is adequate-for-purpose after reaching affirmative answers to a
series of questions about the model’s design and performance, but they do
not explain why affirmative answers to this set of questions are together taken
to be sufficient. Similarly, Baumberger et al. (2017) articulate a set of general
considerations that can be appealed to when arguing that a model is (or is
not) adequate for a predictive purpose, but they say little about how to weigh
up or combine those considerations; their remarks are suggestive of an in-
formal Bayesian perspective, where confidence in a model’s adequacy-
for-purpose is increased (or decreased) in light of information about a mod-
el’s construction or performance but without formal, quantitative Bayesian
updating (see also Schmidt and Sherwood 2015).19 Further work is needed
to explore how philosophical perspectives on evidence, such as Bayesian
19. Baumberger et al. (2017, 15) also speak of obtaining “premises for a nondeductive
argument for the claim that a model is adequate.”
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and error-statistical perspectives, could be helpful in conceptualizing and
guiding the aggregation of evidence in model evaluation.

4.2. How Assessing Adequacy-for-Purpose Is Different. The strategies
just discussed point to a number of ways in which the assessment of
adequacy-for-purpose differs from assessment that focuses ( just) on a mod-
el’s representational accuracy. Four such differences are identified here;
this is not an exhaustive catalog.

First, and most obviously, while evaluating a model’s representational
accuracy requires that the evaluator consider how a model fits a target, eval-
uating a model’s adequacy-for-purpose requires that the evaluator consider
whether a model stands in a suitable relationship with a problem space,
which encompasses a target T, (type of ) user U, (type of ) methodology W,
(type of ) circumstances B, and goal P. This is a different evaluative task, in-
volving a broader range of considerations. The additional factors to be con-
sidered—such as the properties of the model user—can be another source
of uncertainty in the evaluative process. When considering model-target
fit, the adequacy-for-purpose evaluator will focus on aspects (and degrees
of fit) that are considered most relevant for achieving the purpose of interest,
whereas the evaluator of representational accuracy might well employ gen-
eral or overall measures of model-target fit.

Second, evaluating a model’s adequacy-for-purpose involves a kind of
holism that is absent when evaluating a model’s representational accuracy.
For any given aspect of a target that is represented in a model, one can
ask how accurately the model represents that aspect; in principle, informa-
tion about a model’s representational accuracy can be accumulated one as-
pect at a time. By contrast, when assessing a model’s adequacy-for-purpose,
aspects of the model often cannot be assessed independently (see also Len-
hard and Winsberg [2010] on “fuzzy modularity”). As noted in section 4.1,
whether errors in results from one component of a model speak against
the model’s adequacy-for-purpose can depend on whether those errors are
compensated for elsewhere in the model. It can even depend on the broader
methodology in which the model is embedded, since that methodology
might include corrective steps, for example, as when output from weather-
forecasting models are postprocessed to correct for known biases.20
20. Rice (2019, 196) contends that many highly idealized models “should be character-
ized as holistically distorted representations of their target system(s) that are greater than
the sum of their accurate and inaccurate parts,” but it is unclear whether he means to
deny that information about a model’s representational accuracy can be accumulated
one aspect at a time. He seems more concerned to show that “the explanations and un-
derstanding provided by scientific models are typically the result of a rich and compli-
cated mixture of various modeling assumptions whose contributions cannot be studied
in isolation” (196), which accords well with the current analysis.
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A third and closely related difference stems from the fact that there is of-
ten more than one way to construct a model that is adequate for a purpose of
interest. It is clear how a model should perform with respect to (accurate)
observations of a target if the model is an accurate representation of that tar-
get: there should be a very good fit. This is so for any aspect of the target
represented in the model. By contrast, when testing whether a model is ad-
equate for a purpose, the expected fit between modeling results and accurate
observations of the target is often significantly underdetermined unless a
hypothesis is also made about how the model manages to be adequate for
that purpose. If the purpose is a predictive one, for instance, the model might
be adequate because errors in contributing variables are all small or because
relatively large errors in contributing variables systematically compensate
for one another, and so on. Without assuming one of these to be the case,
it will be unclear how well the model’s results should fit observations of a
given contributing variable, if the model is adequate-for-purpose (Parker
2009). Putting a positive spin on this, when the evaluator compares the
model’s results for the contributing variables to observations, she might ob-
tain evidence not only that the model is adequate-for-purpose but also about
how it manages to be adequate.

Finally, unlike when assessing whether a model is an accurate represen-
tation of a target, differences in the testing context can matter when assess-
ing adequacy-for-purpose. Results from amodel that is an accurate represen-
tation are expected to fit well with (accurate) observations of the target,
whenever and wherever the model is tested. By contrast, the performance
that an evaluator should expect from a model if it is adequate-for-purpose
can vary tremendously with the test situation, because of differences in users,
methodologies, circumstances, or purposes. A weather-forecasting model
that is ADEQUATEC for a predictive purpose P might give forecasts that fit well
with observations in C-type instances of use but might give forecasts that fit
less well with those same observations in a slightly different context of use
C0, which involves a small change in the methodology W that is employed,
such as a reduction in the range of information used to estimate initial condi-
tions for the model. As noted in section 4.1, determining how a model’s per-
formance should be expected to differ across instances or contexts of use if it
is adequate-for-purpose can be challenging.

5. Worries and Replies. There are a number of worries that might be had
about an adequacy-for-purpose view. Those addressed here are that an
adequacy-for-purpose view is so demanding as to be useless, that it is too
narrow, that it wrongly blames models for failures that are not their fault,
and that it obscures the importance of representational accuracy.

Worry.—When assessing adequacy-for-purpose, the evaluator must con-
sider how a model relates to a target, user, methodology, circumstances, and
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goal jointly. This is often difficult, for reasons discussed above. The worry
arises that, despite the best efforts of evaluators, it will very often remain
unclear whether a model is adequate for purposes of interest. This seems
to be the case, for example, when evaluating the adequacy of climate mod-
els for predicting long-term changes in climate to within specified margins
of error (Parker 2009; Katzav 2014). This in turn might lead one to doubt
the usefulness of an adequacy-for-purpose view itself. This is the position
taken by Katzav (2014) for the case of climate modeling. He proposes that,
rather than adopting an adequacy-for-purpose view, the assessment of cli-
mate models should focus on whether results of interest from the models
are “real possibilities” (236). A real possibility is, very roughly, something
that we do not have good reason to think could not be the case (see Katzav
2014 for details).

Reply.—The approach that Katzav recommends seems easily recast in
adequacy-for-purpose terms: climate models should be evaluated with re-
spect to their adequacy for the purpose of revealing real possibilities about
(particular aspects of) future climate change, rather than for the purpose of
giving predictions to within specified margins of error. This is because
we are in a better position to reach confident conclusions about the former
than about the latter (Parker 2009). In fact, the climate modeling example
points to a general strategy available to adequacy-for-purpose evaluators:
if it is unclear whether a model is adequate for one purpose of interest, con-
sider whether there is evidence that the model is adequate for some related,
easier-to-achieve purpose that is also of interest (e.g., revealing something
possible or plausible, rather than showing what will happen). In some cases,
of course, evaluators may remain highly uncertain whether a model is ad-
equate for any purposes that are currently of significant interest. But this
is not a shortcoming of an adequacy-for-purpose view; it is just an unfortu-
nate epistemic reality.

Worry.—The adequacy-for-purpose view is too narrow to serve as a gen-
eral account of model evaluation; it may be apt for applied science contexts,
but not for science in general, since sometimes the aim of modeling is sim-
ply to develop an accurate representation of aspects of a target, not to pre-
dict, explain, teach, and so on.

Reply.—This assumes that accurate representation—and presumably also
the closely related goal of accurate description—cannot be purposes of in-
terest for which the adequacy of a model is evaluated. It is unclear what
would justify this assumption, and rejecting it dissolves the worry. It is also
worth noting here that an adequacy-for-purpose view does not require that
every model evaluation activity be explicitly linked to a particular purpose.
An evaluator might first spend time learning how accurately a model repre-
sents a target in various respects—or, to return again to the discussion of sec-
tion 1, learning how similar the model is to the target in various respects or
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whether particular modeling assumptions are true of the target—in order to
put herself in a better position to reach conclusions later about the range of
purposes for which the model is adequate. An adequacy-for-purpose view
simply says that, ultimately, the aim of model evaluation is to learn about
a model’s adequacy or fitness for purposes of interest.

Worry.—The adequacy-for-purpose view wrongly blames models for
failures that are not their fault. Consider a model M that is a very-high-
fidelity representation of a target. On the analysis given here, M might be
inadequate for P in some instances or contexts of use for reasons that have
to do with the methodology, user, or circumstances—because the methodol-
ogy employed introduces errors into the final results produced, because
the user’s cognitive abilities are too limited to appreciate the explanatory
information that M could provide, and so on. Surely, the worry goes, there
is something wrong with a view that declares high-fidelity model M to be
inadequate in such cases, when the real problem seems to lie elsewhere.

Reply.—A first reply is that an adequacy-for-purpose view would not
declare M to be inadequate tout court or even inadequate for P; it would
merely declare M to be inadequate for P in those instances and contexts of
use. Such a high-fidelity model no doubt would be adequate for P in many
other possible instances and contexts of use (see sec. 2.2). A second reply
points to scientific practice. Sometimes scientists want to know whether a
model does the job in the instance or context of use in which they actually
employ it. Even if, say, their methodology is imperfect in various ways, it
might be the best that they can currently manage, and they want to know
whether they nevertheless will (or can reasonably expect to) succeed in
achieving their goal when using their model in accordance with that method-
ology. In such cases, it seems entirely appropriate that positive and negative
evaluations should be pegged to whether the model facilitates achievement
of the goal in that instance or context of use. Finally, there is nothing in
the adequacy-for-purpose view that says that, when a model is inadequate
in a given instance or context of use, the best way forward is to “blame the
model.” On the contrary, one might have good reason to think that adjusting
other aspects of the problem space—improving the methodology or taking
steps to avoid background interfering factors—would put one in a better po-
sition to achieve the purpose (and others) in the future.

Worry.—An adequacy-for-purpose view obscures the value of accurate
representation. It seems to imply that features like a model’s computational
complexity or whether a model is easy for a user to manipulate are just as
important as how the model represents the target. But, one might think, it is
how a model represents its target that is really most important.21 In the long
run, as various practical constraints are overcome (e.g., as computing power
21. Thanks to an anonymous referee for suggesting an objection along these lines.
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increases), how a model represents a target will be all that matters, and,
moreover, high-fidelity models will be most desirable—they will be ade-
quate for a broad range of scientific purposes.

Reply.—The defender of an adequacy-for-purpose view can readily
agree that, for many scientific purposes, high-fidelity models are desirable,
not just in the long run but today. This does not mean that high-fidelity mod-
els are always the best tool for the job. And while some practical constraints
will be relaxed as technology develops, other reasons for sometimes prefer-
ring lower-fidelity models—such as human cognitive limitations or ease of
use—may well persist even in the long term. In any case, the adequacy-for-
purpose view is meant to be relevant and useful for today’s science, not for
some imagined, future science. In today’s science, a model’s having the
wrong “practical” features can stop scientists from achieving their goals just
as much as the model’s standing in the wrong relation to the target can; in
that limited sense at least, they are equally important. It is a strength of the
adequacy-for-purpose view that it does not render such “practical” consid-
erations a mere afterthought in model evaluation.

6. Conclusion. This article aimed to flesh out and defend an adequacy-for-
purpose view of model evaluation. Three main questions were addressed.
First, what does it mean for a model to be adequate-for-purpose? Two vari-
eties of adequacy were introduced, one concerned with success in a partic-
ular instance of use (ADEQUACYI) and another concerned with reliability in
a type or context of use (ADEQUACYC). Using these basic notions, we can de-
fine further varieties (e.g., adequacy-in-principle) and can also articulate
notions of fitness-for-purpose. Second, what makes a model adequate-for-
purpose? The key insight here was that, while the specific features that make
a model adequate-for-purpose vary from case to case, in general terms what
is required is that the model stands in a suitable relationship with a target,
(type of ) user, (type of ) methodology, (type of ) circumstances, and purpose
jointly. Put differently, the model must constitute a “solution” in a kind of
problem space. Third, how does assessment of a model’s adequacy-for-
purpose differ from assessment of ( just) a model’s representational accu-
racy? We saw that it involves a broader range of considerations and can in-
volve special challenges related to holism, underdetermination, and context
dependence in testing.

Clearly there is room for further development of an adequacy-for-purpose
view. One open question is whether there are varieties of adequacy-for-
purpose, beyond those articulated here, that are particularly important in sci-
entific practice. In addition, it remains to be seen whether a useful midlevel
theory—considering different types of purpose, user, methodology, circum-
stances, and model—can be developed to shed further light on the sorts of
features that make a model adequate in different cases. Finally, it would be
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helpful to have a number of detailed case studies exploring how the evaluation
of adequacy-for-purpose does or could proceed in practice in different sci-
entific contexts, recognizing both formal and informal evaluation practices.
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