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1 Introduction

The study of string theory on manifolds with the exceptional holonomy groups G2 and

Spin(7) from the worldsheet perspective goes back to [1]. In particular, [1] (see also [2])

determined the extension of the worldsheet superconformal algebra for strings propagating

on manifolds of exceptional holonomy and pointed out that type II string theories propa-

gating on different G2 (or Spin(7) manifolds) manifolds may result in equivalent physical

theories in a phenomenon called G2 (or Spin(7)) mirror symmetry. A necessary condition

for any pair of manifolds M and M∨ to be mirror is that the dimensions of the spaces of
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exactly marginal operators of the extended N = (1, 1) worldsheet CFTs agree. As shown

in [1], the number of exactly marginal operators simply equals the number of geometric

moduli together with the degrees of freedom associated with the B-field. In the G2 context,

this implies the equality of the sum of the second and third Betti numbers for mirrors:

b2(M) + b3(M) = b2(M∨) + b3(M∨) . (1.1)

Likewise, a pair of Spin(7) mirrors M , M∨ must satisfy

b2(M) + b4−(M) + 1 = b2(M∨) + b4−(M∨) + 1 , (1.2)

where b4−(M) denotes the dimension of the space of anti self-dual four-forms.

This was made explicit for the first time in the context of Joyce orbifolds [3–5] in [6, 7].

In parallel to the well-studied case of mirror symmetry for type II strings on Calabi-Yau

manifolds, where the mirror map can be understood from T-dualities along a calibrated

T 3 fibration [8], mirror maps for type II strings on G2 and Spin(7) manifolds were shown

to arise from T-dualities along calibrated T 3 or T 4 fibrations for some of Joyce’s examples

in [6, 7, 9, 10], see also [11].

More recently, [12–14] have given a construction of G2 manifolds as twisted connected

sums (TCS) by gluing appropriate pairs of asymptotically cylindrical (acyl) Calabi-Yau

threefolds X± (times a circle S1
± on each side). Mirror maps for TCS G2 manifolds were

found in [15, 16], where it was shown that applying a mirror map to both of the acyl

Calabi-Yau threefolds, together with T-dualities on the product circles, leads to another

TCS G2 manifold which satisfies (1.1). This map can be described as being the result of

performing four T-dualities along a calibrated T 4 fibration, so that it maps type IIA (IIB)

strings to IIA (IIB) strings. The T 4 fibre in question is understood as the product of the

Strominger-Yau-Zaslow (SYZ) fibres of the acyl Calabi-Yau threefolds times the circles S1
±.

Interestingly, TCS G2 manifolds allow a second class of mirror maps satisfying (1.1), in

which only one of the two acyl Calabi-Yau threefolds X± is exchanged for its mirror [16]. In

case one of the acyl Calabi-Yau threefolds carries an elliptic fibration, this mirror map can

likewise be understood from three T-dualities along a T 3 fibre,1 i.e. this duality must map

type IIA strings to type IIB or vice versa. For compact Calabi-Yau manifolds which are

hypersurfaces or complete intersections in toric varieties, mirror families have an elegant

combinatorial construction using pairs of reflexive polytopes [18]. As shown in [15, 19], a

completely analogous construction exists for acyl Calabi-Yau threefolds in terms of pairs

of dual tops, which makes it possible to give large numbers of concrete examples of G2

mirrors. An intriguing feature of both classes of mirror maps is that they sometimes map

smooth geometries to singular ones [16]. This is analogous to mirror symmetry in the

context of K3 surfaces [20], where the presence of the B-field prevents the occurrence of

extra massless states.

Calibrated torus fibrations are not just interesting in the study of mirror symmetry

of Calabi-Yau, G2 or Spin(7) manifolds, but also feature in the duality between M-Theory

1As discussed in [17], it is not expected on general grounds for G2 manifolds to have such fibrations, so

it might be better to speak of such G2 manifolds as admitting a limit in their moduli space in which an

associative T 3 collapses.
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and heterotic string theory. The duality in seven dimensions between M-Theory on K3

surfaces and heterotic string theory on a three-torus T 3 with a flat connection can be

used fibrewise to find examples of lower-dimensional dualities. This was exploited for the

SYZ fibration of Calabi-Yau threefolds to find examples of heterotic duals of M-Theory

on TCS G2 manifolds in [21] (see also [22–24] for explorations of M-Theory on TCS G2

manifolds). Furthermore, T 4 fibrations also play a crucial role for the determination of the

superpotential of M-Theory on TCS G2 manifolds. As argued in [25, 26], there is a large

class of associative submanifolds of TCS G2 manifolds which appear as sections of precisely

the coassociative T 4 fibration relevant for mirror maps.

Applying the M-Theory duality map to heterotic strings on TCS G2 manifolds yields

M-Theory duals on Spin(7) manifolds with a decomposition similar to TCS, called general-

ized connected sum (GCS) in [27]. GCS Spin(7) manifolds are glued from two non-compact

manifolds with the holonomy groups SU(4) and G2, so that it is tempting to exploit this

structure to construct candidates of mirror manifolds by using mirrors for the building

blocks. This is an analogue of the strategy used in [15, 16] for TCS G2 manifolds and we

will follow a similar path to define Spin(7) mirrors in the present work, and show that they

indeed satisfy (1.2).

Given geometric constructions for mirrors of G2 and Spin(7) manifolds, it becomes an

interesting question if these can be recovered using worldsheet methods. This has been

accomplished for a few of the examples of Joyce. These are resolutions of orbifolds, so

that they can be treated from first principles in string theory [6, 9]. Furthermore, these

geometries can also be decomposed as twisted connected sums. As shown in [16], the two

complimentary approaches result in the same mirror maps and identify the same T 3 and

T 4 fibrations. Furthermore, it has subsequently been shown [28] that the G2 mirror maps

of [15, 16] are associated with non-trivial automorphisms of the extended superconformal

algebra of the worldsheet theory for TCS G2 manifolds.

It is a central motivation of the present work to enlarge the class of models where a

geometrical construction of mirrors for G2 and Spin(7) manifolds can be compared with

results obtained from the worldsheet, and we complete this task for several new examples.

Treating new examples of orbifolds, and linking the associated mirror maps with a

geometry requires several steps to be completed. Crucially, the definition of string theory

on the orbifolds we are considering involves an assignment of discrete torsion phases [29].

Possible assignments of discrete torsion phases can be constrained by the requirement of

modular invariance for the partition function. A short introduction to how such constraints

arise and can be analysed is presented in appendix A. Different assignments of discrete

torsion will in turn lead to a different spectrum of RR ground states, which via the map

to cohomology [30] signals the correspondence to topologically different smoothings of the

orbifold geometry. Mirror symmetry can change the discrete torsion phases, so that it also

associates CFTs on different smooth geometries. The action of mirror maps can be found

by providing a free-field realization of the extended superconformal algebra, and finding

automorphisms of this algebra which are induced by a sequence of T-dualities. Finally, to

establish a link to the TCS mirror maps the orbifolds in question must be described as

twisted connected sums.
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In the G2 examples studied in [9], the possible assignments of discrete torsion precisely

match the different resolutions found in [4] (‘example 4’). Furthermore, the description

of such models as TCS G2 manifolds in [16] allowed for a straightforward determination

of torsion in the homology group H3(Mk,Z), which precisely matches with the discrete

torsion phases in the orbifold string theory, as expected from [31, 32].

In section 2, we will complete these tasks for a set of models which are free quotients

of the orbifolds considered in [9, 16], they have been first presented as ‘example 5’ in [4].

As we will see, these orbifolds are an example the ‘extra-twisted’ connected sums described

in [33]. Curiously, not all resolutions which have been constructed in [4] are realized by

the set of consistent assignments of discrete torsion phases.

In section 3, we consider Joyce orbifolds which can be smoothed to manifolds with

holonomy Spin(7). Some Joyce orbifolds and their mirror maps have been previously from

the worldsheet perspective in [6, 10]. As only submanifolds of real dimension four can

be calibrated for Spin(7) manifolds, such mirror maps must be associated with four T-

dualities along a calibrated T 4 fibration. In section 3 of the present work we study two

such examples, which first appeared as ‘example 1’ and ‘example 2’ in [5], as well the action

of mirror symmetry on such geometries.

Finally, section 4 presents a general exposition of how the GCS construction can be

used to define mirror maps for Spin(7) manifolds. While our construction is motivated by

the identification of a fibration by T 4, the resulting check of (1.2) for the mirror geometries

holds independently. We then proceed to describe how the examples studied in section 3 are

decomposed as a GCS and verify that our geometric construction of GCS Spin(7) mirrors

precisely agrees with the worldsheet results.

The appendices contain a brief introduction to discrete torsion phases and modular

invariance for strings on orbifolds, as well technical details of the examples we are treating.

2 A G2 example

In this section we consider the following example from [4] (‘example 5’). It is based on a

quotient of T 7 under the group Γ = Z4
2, with an action on the coordinates

X1 X2 X3 X4 X5 X6 X7

α + + + − − − −
β + − − + + −1

2 −
γ − + − + − + −1

2

σ2 + 1
2 + 1

2 + + +

. (2.1)

Here Xi ∼ Xi + 1 giving T 7, and − indicates that the corresponding coordinate is sent to

minus itself, while 1
2 indicates a shift X → X+ 1

2 , and −1
2 is a shorthand for X → −X+ 1

2 .

2.1 Smoothing of the orbifold

Let us first analyse the topological properties of the smooth limit(s) obtained from this

orbifold by resolving the singularities as in [4] (see also [17]). In order to do that, we need

to first evaluate the fixed point set under the action of the orbifold group.
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The only group elements of Γ which act non-freely and hence give rise to singularities

are α, β, and γ. Each of these three elements fixes 16 T3s, which are then further identified

under the action of the rest of the orbifold group. In case of the α sector, the action of

〈β, γ, σ2〉 is free, resulting in two orbits of 8 T3 each. For the β sector, we have the same

result as the α sector as these two sectors are isomorphic, up to the permutation of indices

and fixed point labels. The analysis is a bit different for the γ case. Here we have a further

Z2 identification under the action of αβ. This leads to 8 orbits consisting of 2 T3/Z2 each.

The action of σ2 just reduces the fundamental domain for X2 and X4 (two of the extended

directions in the γ fixed T3s). Hence, the γ action has a singular set consisting of 8 T3/Z2.

singular set elements in orbit under Γ singular set in quotient

α 16 T 3 8T 3 2 T 3

β 16 T 3 8T 3 2 T 3

γ 16 T 3 2T 3/Z2 8 T 3/Z2

The net contribution to the singular set is obtained by adding up the separate contri-

butions from the different orbifold actions, giving us a total of 4 T3, and 8 T3/Z2. With

the singular set at hand, we are now ready to compute the Betti numbers for the different

smooth limits obtained by resolving the singularities present in our orbifold. First of all,

the Betti numbers for the orbifold are given by (b2, b3)(T 7/Γ) = (0, 7). Each of the singu-

larities is locally modelled on T3 × C2/{±1} or (T3 × C2/{±1})/〈αβ〉. The contribution

to the Betti numbers from resolving these singularities is:

δ(b2, b3)(T 3) = (1, 3)

δ(b2, b3)(T 3/Z2) = (1, 1) or (0, 2)
(2.2)

The two choices for the latter case come from different possible smoothings. Denoting the

compact smooth G2 manifold obtained by making the first choice k times by M̂k we find

b2(M̂k) = 4 + k

b3(M̂k) = 35− k
(2.3)

for k = 0 . . . 8.

2.2 Constraints on discrete torsion

Let us redo the analysis by studying the string theory living on the orbifold T 7/Z4
2. For such

string theories, we have the additional degree of freedom to switch on discrete torsion phases

consistent with modular invariance constraints [29]. We then exploit the isomorphism

between the Ramond-Ramond sector ground states and the target space cohomology to

find the Betti numbers for the resulting resolution(s).

We shall begin by studying the twisted sectors corresponding to various elements of the

orbifold group. If the orbifold element has fixed points in its action on the parent manifold,

the corresponding sector can then be further decomposed into sub-sectors localised at those

fixed points. In general, one would start by figuring out which of the sectors can actually

have discrete torsion signs. For this, we need to write down the representation matrices for

the orbifold elements in a basis of highest weight states in a particular sector. However,
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as our main aim is to obtain the cohomology of the resulting orbifold smoothings, we can

get away by working with a few of the twisted sectors only: ones that contribute to the

ground state spectrum (and hence the cohomology), and ones that are needed to constrain

the discrete torsion signs for the ground state contributing sectors.

In our case, the ground state contributions come from the α, β, and γ sectors, as all the

remaining group elements act on at least one direction as + 1
2 , implying that the oscillator

modes are half-integer in that direction. Aside from these sectors, we need to consider αβ,

σ2, and σ2αβ sectors in order to figure out the modular trace constraints in the α, β, and γ

sectors. Let us then find which of the above mentioned sectors have discrete torsion signs.

The details of this analysis can be found in appendix B.

α- and β-sector: there are no discrete torsion choices in these sectors.

γ-sector: in the γ sector, we have the first instance of discrete torsion. We find that

there are two orbifold generators with possible discrete torsion signs in their irreducible

representations: αβ and σ2. The corresponding phases are denoted by εfγ (αβ), εfγ (σ2)

respectively, where fγ = 1, 2, . . . , 8 labels the different irreducible representations/orbits.

As reviewed in appendix A, one can constrain the discrete torsion signs by imple-

menting modular invariance of the partition functions. For that, we utilize the orbifold

elements with non-zero traces in the above representations and probe the twisted sector

corresponding to those elements. These are given by the group elements αβ, σ2, and σ2αβ.

αβ-sector: in this sector, we have discrete torsion signs appearing in the representation

matrix corresponding to the γ generator:

γ|
H
fαβ
αβ

=

(
ε1fαβ (γ)I4×4 0

0 ε2fαβ (γ)I4×4

)
(2.4)

Invariance of the partition function under the S transformation implies∑
fαβ ,i

εifαβ (γ) =
8∑

fγ=1

εfγ (αβ) (2.5)

where fαβ = 1, 2, 3, 4 labels the irreducible representations, and i=1,2 labels the two signs

in a given irreducible representation.

σ2-sector: as shown in appendix B, discrete torsion arises in the representation of the

element γ, γ|Hσ2 = εσ2(γ)I4×4. We can now use the S transform relations to connect this

discrete torsion sign with εfγ (σ2) from the γ twisted sector as follows:

8εσ2(γ) =

8∑
fγ=1

εfγ (σ2) (2.6)

σ2αβ-sector: analogous to the σ2 sector, discrete torsion arises in the representation of

the element γ|
H
fσ2αβ
σ2αβ

= εfσ2αβ (γ)I8×8, as is expected from modular constraint requirements.

Using modular invariance of partition function under the S-transformation gives

2
4∑

f=1

εfσ2αβ (γ) =
8∑

f=1

εfγ (σ2)εfγ (αβ) (2.7)
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2.3 Cohomology of smoothings

We are ready to derive the cohomology of the possible resolutions of the orbifold by exploit-

ing its isomorphism with the RR ground states. Let us first consider the untwisted sector,

He. We have Majorana-Weyl spinors ψi corresponding to the 7 bosonic coordinates Xi,

i = 1, . . . , 7. We can generate the RR ground states by acting on the vacuum |0〉 with the

creation operators built out of the zero modes, ψi+ = (ψi0 + iψ̃i0)/2. The orbifold invariant

set of RR ground states is given by:

|0〉 ; ψi+ψ
j
+ψ

k
+ |0〉 ; ψa+ψ

b
+ψ

c
+ψ

d
+ |0〉 ; ψ1

+ . . . ψ
7
+ |0〉 (2.8)

with the following the triples and the 4-tuples of indices:

(i, j, k) ∈ {(1, 2, 3), (1, 4, 5), (1, 6, 7), (2, 4, 6), (2, 5, 7), (3, 5, 7), (3, 4, 6)} (2.9)

(a, b, c, d) ∈ {(4, 5, 6, 7), (2, 3, 6, 7), (2, 3, 4, 5), (1, 3, 5, 7), (1, 3, 4, 6), (1, 2, 4, 6), (1, 2, 5, 7)}
(2.10)

Now the isomorphism between RR ground states and the target space cohomology allows

us to use the following identification:

ψi1+ . . . ψin+ |0〉 ' dX i1 ∧ . . . ∧ dX in (2.11)

As such, we can use the list of invariant states from (2.8) to get the Betti number contri-

bution from the untwisted sector:

b0u = b7u = 1

b3u = b4u = 7
(2.12)

For G2 manifolds, the only unfixed, non-trivial Betti numbers are the second and third

ones. Now on, we will only mention contributions to those.

Aside from the untwisted sector, the smoothings for the orbifold will also get contri-

bution to the Betti numbers from the twisted sectors with RR ground states, i.e. α, β, and

γ. Now, we shall evaluate such twisted sector contributions.

Let us look at the contribution from α sector. Firstly, following in the same line of

argument as in [9], we should identify the vacuum state in this sector with the exceptional

divisor Σ resolving the particular singularity (a 2-form in this case). Then, we list the

invariant states in the α sector and use a similar isomorphism statement as in the untwisted

sector case (in (2.11)) to get the Betti numbers contribution.

The list of Γ invariant RR ground states in the α twisted sector is built on the highest

weight states |0〉fαα with vanishing momentum and winding modes, by acting with the

creation operators built from the Majorana Weyl fermions as in the untwisted sector. The

only difference is that we only have zero modes along X1, X2, and X3. Here the label

fα = 1, 2 enumerates the two irreducible representations corresponding to X5 = 0, 1/2 as

in appendix B. They are given by:

|0〉fαα ; ψi+ |0〉
fα
α ; ψi1+ψ

i2
+ |0〉

fα
α : ψk1+ ψ

k2
+ ψ

k3
+ |0〉

fα
α (2.13)

– 7 –
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where i∈{1,2,3}; (i1,i2)∈ {(1,2),(1,3),(2,3)}; (k1,k2,k3)∈{(1,2,3)}. The isomorphism state-

ment can be again used to get the following identification:

ψi1+ . . . ψin+ |0〉
fα
α ' dX

i1 ∧ . . . ∧ dX in ∧ Σfα (2.14)

where Σfα represents the exceptional divisor arising due to the resolution of the singularity

corresponding to the orbit (∼ irreducible representation) labelled by fα. Now, we can read

off the Betti numbers δbiα from the above list as:

δb2α = 2 · 1 = 2

δb3α = 2 · 3 = 6
(2.15)

where the factor of 2 comes from the index fα. As the β sector is isomorphic to the α

sector, we find the same contributions there.

For the γ-sector, things are different as there are discrete torsion signs present. Firstly,

we need to solve for the trace relations in (2.5), (2.6), (2.7), that constrain the discrete

torsion phases arising in this sector. There are two distinct cases corresponding to the sign

of εσ2 . For εσ2 = 1, (2.6) implies that the only possible solution is εfγ (σ2) = 1 for all fγ .

Also from (2.7) we get:

2
4∑

fσ2αβ=1

εfσ2αβ (γ) =
8∑

fγ=1

εfγ (αβ) . (2.16)

Note that we are forced by this relation to have an even number of positive discrete torsion

signs εfγ (αβ). Thus, we can re-label the fixed point indices such that:

εfγ (αβ) = ε8−fγ (αβ), fγ = 1, 2, 3, 4 (2.17)

Now let us list the orbifold invariant states as before. For εfγ (αβ) = εfγ = 1, they are:

|0〉fγγ ; ψ6
+ |0〉

fγ
γ ; ψ2

+ψ
4
+ |0〉

fγ
γ ; ψ2

+ψ
4
+ψ

6
+ |0〉

fγ
γ (2.18)

where |0〉fγγ is the highest weight state representing the irreducible basis for the different

orbits indexed by fγ . On the other hand, for εfγ (αβ) = −εfγ = −1, the orbifold invariant

states are:

ψ2
+ |0〉

fγ
γ ; ψ4

+ |0〉
fγ
γ ; ψ2

+ψ
6
+ |0〉

fγ
γ ; ψ4

+ψ
6
+ |0〉

fγ
γ ; (2.19)

For the Betti number contributions, we need the state-cohomology identification statement

as before. In this case, the highest weight state is again mapped to a 2-form for either

case of the discrete torsion sign of εfγ (αβ). This is because the exceptional divisor in both

cases corresponds to a 2-form. Using the same identification as in the α and β sectors, we

can read off the Betti numbers from the list of invariant states in (2.18), and (2.19) as:

δb2γ = 1; δb3γ = 1, iff εfγ (αβ) = 1

δb2γ = 0; δb3γ = 2, iff εfγ (αβ) = −1
(2.20)

Thus, the resulting Betti number contribution for 2l positive signs of εfγ (αβ) is:

δb2γ = 2l · 1 + (8− 2l) · 0 = 2l

δb3γ = 2l · 1 + (8− 2l) · 2 = 16− 2l
(2.21)

– 8 –
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for l = 0 . . . 4. These are all the contributions from the twisted sectors as the rest of the

sectors all have at least one extended direction with half-integer modes. Let the resultant

smoothing for 2l positive signs of εfγ (αβ) be called M̂2l. The net Betti number for M̂2l

can be obtained by adding up the contributions from the three twisted sectors α, β, γ along

with that coming from the untwisted sector. Using (2.12), (2.15) and (2.21), we get:

b2(M̂2l) = b2u + δb2α + δb2β + δb2γ = 0 + 2 + 2 + 2l = 4 + 2l

b3(M̂2l) = b3u + δb3α + δb3β + δb3γ = 7 + 6 + 6 + (16− 2l) = 35− 2l
(2.22)

for l = 0 . . . 4. Although every single one of these models corresponds to one of the resolu-

tions discussed in section 2.1, not all of the possible geometries are realized. This ultimately

stems from the constraint that the number of discrete torsion sign in (2.17) must be even.

It would be interesting to understand this mismatch better, but as our main interest is in

the action of mirror maps on these models we leave such an investigation to future work.

Now let us move onto the other case where we have εσ2 = −1. Here, we don’t get any

states from the γ-twisted sector as no invariant states can be constructed with εfγ (σ2) = −1.

The Betti numbers for the partially smoothed solution, say N̂ , is then obtained by omitting

the contribution from the γ sector in our previous computation in (2.22):

b2(N̂) = b2u + δb2α + δb2β = 0 + 2 + 2 = 4

b3(N̂) = b3u + δb3α + δb3β = 7 + 6 + 6 = 19
(2.23)

What we have here is a scenario where the orbifold singularities could only partially be

smoothed, but some are frozen. In particular, all of the singularities located at the γ

fixed points must be left intact. The freezing of singularities is a well-known phenomenon

for strings on orbifolds in the presence of discrete torsion [34], but it is, to the authors

knowledge, the first time it has been observed for G2 orbifolds.

2.4 Mirror symmetry

Let us now have a look at the realisation of mirror symmetry in our G2 example through

T-duality transformations on multiple suitably chosen coordinates.

The extended chiral algebra for a string moving on a compact G2 manifold con-

sists of a N = 1 superconformal algebra generated by the bosonic stress tensor T along

with its fermionic counterpart G, extended by currents (φ,X) of conformal dimensions

(hφ, hX)=(3/2,2) and their superpartners K,M. Their free field representation is

TG2 = 1/2

7∑
j=1

: ∂Xj∂Xj : −1/2

7∑
j=1

: ψj∂ψj :

GG2 =

7∑
j=1

ψj∂Xj

XG2 = −ψ4ψ5ψ6ψ7 − ψ2ψ3ψ6ψ7 − ψ2ψ3ψ4ψ5

− ψ1ψ3ψ5ψ7 + ψ1ψ3ψ4ψ6 + ψ1ψ2ψ5ψ6 + ψ1ψ2ψ4ψ7

ΦG2 = ψ1ψ2ψ3 + ψ1ψ4ψ5 + ψ1ψ6ψ7 + ψ2ψ4ψ6 − ψ2ψ5ψ7 − ψ3ψ4ψ7 − ψ3ψ5ψ6

MG2 = [G,X]

KG2 = {G,Φ}

(2.24)

– 9 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
4

A mirror automorphism of this algebra is given by:

TG2 GG2 ΦG2 XG2 KG2 MG2

mirrorG2 + + − + − +
(2.25)

Defining two sets of triples of coordinate indices as follows:

I+
3 = {(1, 6, 7), (2, 4, 6), (3, 5, 6)}
I−3 = {(1, 2, 3), (1, 4, 5), (2, 5, 7), (3, 4, 7)}

, (2.26)

one can check that the elements I±3 are precisely those T-duality triples that generate the

mirror automorphism of eq. (2.25) on the right-movers (left chiral algebra stays invariant).

As the present model is a quotient of the one considered in [9], it should come as no surprise

that these are the same triples which were found there (after an appropriate relabelling of

coordinates).

The resultant action of these composite T-dualities on the discrete torsion phases can

be understood through the following line of argument. If we focus on the representation

of the αβ generator in the γ-twisted sector (knowing that it has discrete torsion phases

εfγ (αβ) arising in its representation), we observe a need for flipping all or none of the

discrete torsion signs upon action of these transformations. On the other hand, the signs

corresponding to the σ2 generator, i.e. εfγ (σ2) do not change. In the γ-twisted sector,

the RR zero modes surviving are labelled the indices (2,4,6). Now αβ flips the signs of

coordinate labels (2,4) while σ2 does not flip any of the three labels. As a result, we can

write the elements in terms of the RR zero modes:

αβ = ψ2
0ψ

4
0ψ̃

2
0ψ̃

4
0εfγ (αβ)

σ2 = εfγ (σ2)
. (2.27)

The above expressions imply that under the set of T-transformations in I+
3 , εfγ (αβ) should

remain the same; while for I−3 , εfγ (αβ) should flip signs irrespective of the fixed point label

f. On the other hand, the σ2 representation matrix remaining invariant under the triples

of T-dualities implies that εfγ (σ2) has to remain invariant as well. This implies that

I+
3 :M̂2l → M̂2l

I−3 :M̂2l → M̂8−2l

. (2.28)

Furthermore, the case with frozen singularities, represented by (2.23), should be considered

self-mirror. Note that all of these maps take type IIA strings to type IIB strings and vice

versa because of the odd number of fermionic modes being T-dualized.

We can combine any two of the above transformations to get a new transformation

which T-dualizes along 4 of the 7 coordinates. These transformations split into I+
4 , and

I−4 , with I+
4 keeping the discrete torsion signs εfγ (αβ) intact and I−4 inverting all of them

I+
4 = {(1, 2, 4, 7), (1, 3, 5, 7), (2, 3, 4, 5)}
I−4 = {(2, 3, 6, 7), (4, 5, 6, 7), (1, 2, 5, 6), (1, 3, 4, 6)}

. (2.29)

– 10 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
4

In particular, these act as
I+

4 :M̂2l → M̂2l

I−4 :M̂2l → M̂8−2l

. (2.30)

Now as there are even number of fermionic modes, the mirror maps corresponding to these

transformations do not alter the sign of GSO projection, mapping type IIA and IIB strings

to IIA and IIB respectively.

2.5 Realization as a TCS

Let us now discuss how the orbifold treated above and its smoothings M̂k can be described

as a extra twisted connected sum. Twisted connected sum G2 manifolds are constructed

as [12, 14]

M =
(
X+ × S1

+

)
#
(
X− × S1

−
)
, (2.31)

for a pair of asymptotically cylindrical Calabi-Yau threefolds X± which enjoy fibration

by K3 surfaces S±. In their asymptotic regions X± are approximated (metrically) by the

product of S± and a cylinder, i.e. S± × S1
∓ × I for an interval I. The gluing to M is

then done by identifying those asymptotic regions by a diffeomorphism which induces am

appropriate hyper-Kähler rotation on the K3 surfaces S±.

The example M̂k discussed above is not a TCS G2 manifold. However, it can be

constructed as a quotient of another G2 manifold Mk by the free involution generated by

σ2. The realization of Mk as a TCS has been discussed in detail in [16]. The upshot of

this analysis is that the K3 fibres S± of both acyl Calabi-Yau threefolds X± are given as a

(smoothing) of T 4/γ with the coordinates (X1, X3, X5, X7). The acyl Calabi-Yau threefold

X+ can be described as T 5 × R/〈γ, α〉, with X6 parametrizing the non-compact direction

and (X1, X3, X5, X7, X4) parametrizing the T 5. Hence the base of the K3 fibration on

X+ has coordinates (X4, X6) and the coordinate along S1
+ is X2. Likewise, X− can be

described as T 5 × R/〈γ, β〉, also with X6 parametrizing the non-compact direction. Now,

however the base of the K3 fibration on X− has coordinates (X2, X6) and the coordinate

along S1
− is X4, as appropriate for gluing these two acyl CYs to a TCS G2 manifold.

The freely acting involution σ2 hence only acts on the coordinates X2, X4, X6 along

the base S3 of the K3 fibration apparent in the TCS decomposition of Mk. In particular,

it acts by shifting the coordinates on both of the S1 factors in the decomposition of S3

appearing in the TCS construction, where it is glued from two solid tori.2 The further

quotient by σ2 turns this into an example of an extra-twisted connected sum as defined

2This is in fact the same freely-acting involution of S3 which is naturally found by representing S3 as

|z1|2 + |z2|2 = 1 (2.32)

and acting with

σ2 :
z1 → −z1
z2 → −z2

(2.33)

In this presentation, the decomposition into two solid tori can be seen by solving (2.32) using the

parametrization
z1 = eiφ cos(η)

z2 = eiψ sin(η)
(2.34)
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in [33]. This construction differs from the usual TCS construction [12] in two regards: first

of all, the G2 manifold M is glued from two pieces

M = V+ #ϑ V− , (2.36)

where V± are free quotients of X± × S1
± by Zs2 for acyl Calabi-Yau threefolds X±. In the

neck region in which X± asymptote to S± × S1
∓ × I for K3 surfaces S±, the quotient must

purely act by shifts on the S1 factors, so that

V± \ κ± = S± × I ×
(
S1

+ × S1
−
)
/Zs2 (2.37)

for compact subsets κ±. Note that
(
S1

+ × S1
−
)
/Zs2 is still a two-torus. The second difference

is that the gluing now involves an angle ϑ with which these tori are identified, together

with an appropriate altering of the hyper-Kähler rotation acting on the K3 surfaces S± to

keep the canonically defined G2 forms Φ± invariant. In the example discussed here, the

‘trivial’ choice ϑ = π/2 appears, which means that the two S1s are simply swapped, as in

the standard TCS construction.

2.6 TCS mirror map

We can now describe a mirror map in this context, which is found by a slight generalization

of the approach of [15, 16]. There, the central idea was to construct a mirror of a TCS G2

manifold by applying mirror symmetry to either both, or to one of the two acyl Calabi-

Yau threefolds in the TCS decomposition (2.31). The present example of a extra-twisted

connected sum is constructed as a free quotient M̂k of the TCS G2 manifolds Mk, which

can also be described as acting separately on the acyl Calabi-Yau threefold X±.

Omitting the action of σ2 in (2.1), the TCS decomposition and the action of the TCS

mirror map on the resulting G2 manifolds Mk was described in [16]. The result is that

both X± are such that

|K±| = 4

h2,1(Z±) = 4

|N±| = 10

|N+ ∩N−| = k

, (2.38)

where K = ker
(
H1,1(X±)→ H1,1(S±)

)
, N± = Im

(
H1,1(X±)→ H1,1(S±)

)
and Z± is the

compactification of X± found by gluing in a single K3 fibre (see [13] for more details). The

topology of the resulting G2 manifold is then determined from

b2 = |K+|+ |K−|+ |N+ ∩N−|
b2 + b3 = 23 + 2(|K+|+ |K−|) + 2(h2,1(Z+) + h2,1(Z−))

. (2.39)

Here, φ and ψ have the range 0 . . . 2π and η parametrizes the interval 0 . . . π, so that we can see S3

decomposed as a being glued from the two solid tori described by the above for 0 ≤ η ≤ π/2 and π/2 ≤ η ≤ π.

In this parametrization, (2.33) is simply the map

σ2 :
φ → φ+ π

ψ → ψ + π
(2.35)

which is nothing but the half-shift induced by σ2 in (2.1) again.
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Orbifolding X±×S1
± by the freely acting Zs2 produces a 7-manifold V± with the holon-

omy group SU(3) o Zs2 (‘barely G2’). In the present case, both the elliptic fibrations on

X± and the SYZ fibrations on X± become fibrations by T 2 and T 3 on V±. Repeating the

analysis of [16] then motivates to consider two types of mirrors of M̂k:

M̂∨ = V ∨+ # V ∨− (2.40)

associated with applying four T-dualities, as well as

M̂∧ = V+ # V ∨− (2.41)

associated with applying three T-dualities.

Given the data of X±, the Betti numbers of the free quotients Mk/Zs2 are given by

b2 = |Ke
+|+ |Ke

−|+ |N+ ∩N−|
b2 + b3 = 23 + 2(|Ke

+|+ |Ke
−|) + 2(h2,1

e (Z+) + h2,1
e (Z−))

. (2.42)

where e and e indicates taking the even subspace under the involution Zs2. Note that the

group Zs2 does not act on the K3 fibres of X±, so that N± are unchanged. In the present

case, we have that

|Ke
±| = 2

h2,1
e (Z±) = 2

|N±| = 10

|N+ ∩N−| = k

, (2.43)

so that we recover

b2(M̂) = 4 + k

b3(M̂) = 35− k
. (2.44)

We are now ready to discuss the action of the TCS mirror maps. The fact that X± are

self-mirror indicates that the same is true for V±. As in the analysis of the Joyce orbifold

in [16], the only non-trivial ingredient in the mirror construction is given by N+ ∩N−. As

σ2 does not act on the K3 fibres at all, we can just quote the result of the analysis of [16]:

whereas |N+ ∩N−| = k for M̂∨, |N+ ∩N−| = 8− k for M̂∧. We hence find that

b2(M̂∨k ) = 4 + k

b3(M̂∨k ) = 35− k
(2.45)

whereas

b2(M̂∧k ) = 12− k
b3(M̂∧k ) = 27 + k

. (2.46)

As in [16], we can associate M̂∨ with the image under I+
4 and M̂∧ with the image under I−3 .
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3 Spin(7) examples

In this section we will analyse two T 8/Z4
2 orbifolds in which the generators α, β, γ and δ

of Γ = Z4
2 act on the T 8 coordinates as [5]:

X1 X2 X3 X4 X5 X6 X7 X8

α − − − − + + + +

β + + + + − − − −
γ − c1

2 − c2
2 + + − c5

2 − c6
2 + +

δ −d1
2 + −d3

2 + −d5
2 + −d7

2 +

. (3.1)

where ci, di ∈ {0, 1}. The two cases we will study have ci = (1, 1, 1, 1) and di = (0, 1, 1, 1)

(‘Example 1’), and ci = (1, 0, 1, 0) and di = (0, 1, 1, 1) (‘Example 2’). Once again, −1/2 is

shorthand for Xi → 1/2−Xi

3.1 Smoothing of the orbifold

First, let us review the resolution of the T 8/Z4
2 orbifolds above into a family of compact

Spin(7) manifolds as described in [5]. In total, the Betti numbers will receive a contribution

from the orbifold itself, as well as contributions form the resolutions of the singularities at

the fixed points. Before resolution, the cohomology consists of the classes of T 8 which are

invariant under the group Z4
2. In either example, a simple calculation shows b0 = b8 = 1

and b4 = 14. For example, dX1∧dX2∧dX3 is not invariant, while dX1∧dX2∧dX3∧dX4

is. In particular, the 14 4-forms are precisely the 14 elementary ones appearing in the

4-form on R8 that Spin(7) is defined to leave invariant (see e.g. equation (1) of [5]).

Now consider example 1, we would like to understand its resolutions and so must first

understand its singular set. In this case, it is clear that only α, β, γ, δ and αβ have fixed

points, as all other combinations involve Xi → Xi + 1/2 for some i, which has no fixed

points. So, the singular set consists of 5 sectors, Sα, Sβ , Sγ , Sδ and Sαβ .

For each single generator, the fixed points correspond to 16 T 4’s for the directions

unchanged by the group action (For example, α has fixed points Xi ∈ {0, 1/2} for i = 1 . . . 4

and Xi free for i = 5 . . . 8). For αβ, the only composite element with fixed points, they are

the 256 points Xi ∈ {0, 1/2} for i = 1 . . . 8. However, we must also consider the action of

the other group generators on a given set of fixed points. For the case of α, β acts on the

fixed T 4’s by −1, giving 16 T 4/{±1}’s. The subgroup 〈γ, δ〉 acts freely, and so groups Sα
into 4 orbits of T 4/{±1}’s. In a similar way, we see that the set Sβ also consists of 4 copies

of T 4/{±1}. For the γ-fixed points, 〈α, β, δ〉 acts freely and so we find that the singular

set gets reduced to 2 T 4’s, and we apply the same reasoning to find that Sδ is also 2 sets

of T 4’s. Lastly, 〈γ, δ〉 acts freely on the αβ fixed points, grouping the 256 points into 64
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(here, 〈αβ〉 acts freely). In summary, the fixed set for example 1 looks like:

singular set elements in orbit under Γ singular set in quotient

α 16 T 4’s 4 T 4/{±1}’s 4 T 4/{±1}’s
β 16 T 4’s 4 T 4/{±1}’s 4 T 4/{±1}’s
γ 16 T 4’s 8 T 4’s 2 T 4’s

δ 16 T 4’s 8 T 4’s 2 T 4’s

αβ 256 points 4 points 64 points

Lastly, we consider the neighbourhood of each singular point. For Sα and Sβ , the

neighbourhoods of the fixed loci are a total of 8 copies of (T 4/{±1})× (B4
ζ/{±1}) for a 4-

ball B4
ζ . In the language of Proposition 3.1.1 in [5], these come from type (ii) singularities,

which upon resolution increases b1 by 1 and b4 by 6. For Sγ and Sδ, the neighbourhoods

consist of 4 T 4×(B4
ζ/{±1})’s, which arise from type (i) singularities, and increase b2 by 1, b3

by 4 and b4 by 6. Lastly, the neighbourhoods of Sαβ consist of 64 (B4
ζ/{±1})×(B4

ζ/{±1})’s,
which are of type (iii) and increase b4 by 1. In total, we find that upon resolution the non-

trivial Betti numbers of the manifold are:

(b2, b3, b4) = (12, 16, 150) . (3.2)

Let us now consider example 2. In this case, all sectors except the γ-fixed points

contribute the same singularities, and thus Betti numbers, as example 1. However, for γ,

αδ now acts trivially. Starting from a neighbourhood T 4 × B4
ζ , the γ action converts this

to T 4 × (B4
ζ/{±1}), but in fact the action of αδ turns this into the neighbourhood of a

singularity of type (iv) [5]. The action of the rest of the group then orders these 16 type

(iv) singularities into 4 orbits. In summary, the singular set of example 2 is given by

singular set elements in orbit under Γ singular set in quotient

α 16 T 4’s 4 T 4/{±1}’s 4 T 4/{±1}’s
β 16 T 4’s 4 T 4/{±1}’s 4 T 4/{±1}’s
γ 16 T 4’s 4 T 4’s 4 T 4’s

δ 16 T 4’s 8 T 4’s 2 T 4’s

αβ 256 points 4 points 64 points

In this case, the singularities induced by the action of γ may be resolved in two inequivalent

ways, one increasing b2 by 1, b3 by 2 and b4 by 2, and the other increasing b3 by 2 and

b4 by 4. As a result, including the contribution from the unresolved orbifold and letting

j ∈ {0 . . . 4} be the number of type (iv)’s we resolve in the first way, we find a family of 5

Spin(7) manifolds with Betti numbers given by:

(b2, b3, b4) = (10 + j, 16, 154− 2j) , j ∈ {0 . . . 4} .

3.2 Discrete torsion and cohomology

In this section we will recover the resolution of the orbifold by studying the associated

CFT. Once again, following a similar analysis used in [9] we will relate the distribution

of the allowed discrete torsion signs (which will mostly be derived in the appendix) to the

cohomology of the orbifold resolutions.
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3.2.1 Example 1

We begin with Example 1, where ci = (1, 1, 1, 1) and di = (0, 1, 1, 1). The cohomology of

the smooth limit of the orbifold must be related to the ground states of RR ground states

in each twisted sector. In particular, this means we are studying zero momentum states,

which only arise in twisted sectors associated with group elements acting non-freely. Thus

we only need to consider contributions from the generators α, β, γ, δ, as well as αβ. Using

the analysis in appendix C, we find the following results for the discrete torsion phases:

α and β sectors: in each case the 16 twisted sectors get ordered into 4 sets of 4 labelled

by numbers fα and fβ , both running from 1 to 4 and thus contributing 4 ground states

each. In each sector, we have a discrete torsion sign εfα(β) for the action of β on the α

states and a sign εfβ (α) in the other direction. In this case modular invariance requires

the distribution of these signs within the α and β sectors to be the same:

4∑
fα=1

εfα(β) =
4∑

fβ=1

εfβ (α) . (3.3)

γ and δ sectors: in these sectors, the 16 fixed points get organized into 2 sets of 8,

however there is no discrete torsion sign available and so we only have 2 ground states to

work with.

αβ sector: in this sector, we have 256 fixed points organized into 64 sets of 4 labelled

by a number fαβ running from 1 to 64. We have a discrete torsion degree of freedom for

both the action of α and β on these states, which in fact must be equal and we call it

εfαβ (α, β). We can then label the fixed points such that fαβ = fα + 4k for k = 0, . . . , 15

and get εfα+4k(α, β) = εfα . In other words, the 64 possible signs get grouped into 4 sets of

16 signs which must all be equal, and how we distribute such signs across these sets of 16

must correspond to how we distribute the signs in the α and β sectors:

64∑
fαβ=1

εfαβ (β) = 16

4∑
fα=1

εfα (3.4)

With this in mind, we can now determine the contribution to the cohomology from

the different twisted sectors. We begin first with the γ and δ sectors, for which there are

no discrete torsion phases. In either case, the 16 fixed point/twist fields get grouped into 2

sets of 8 states. Following the methods in [9], we need to find linear combinations of these

8 states in each of the two sectors (we call such a combination |0, 0; fg〉g, for fg = 1, 2 and

g = γ or δ) such that when acted on by the raising operators ψi+ (where i ∈ Iγ = {3, 4, 7, 8}
for γ and i ∈ Iδ = {2, 4, 6, 8} for δ) we obtain Z4

2 invariant states. In doing so we find

states of the following form:

|0, 0; fg〉g , ψi+ |0, 0; fg〉g , ψi+ψ
j
+ |0, 0; fg〉g ,

ψi+ψ
j
+ψ

k
+ |0, 0; fg〉g , ψi+ψ

j
+ψ

k
+ψ

l
+ |0, 0; fg〉g .
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Where i, j, k, l ∈ Ig and g = γ or δ. In total, there is one state of the first form, 4 of the

second, 6 of the 3rd, 4 of the 4th and one of the 5th for each of g = γ, δ. Thus, identifying

|0, 0; f〉g ' a 2 form as in [9] and ψi+ ' dX i we find the contribution (recalling that the

distribution of signs within each sector must be the same):

δb2g = 2

δb3g = 8

δb4g = 12

(3.5)

for g = γ or δ.

The α, β and αβ sectors are more interesting, as they involve the choice of a discrete

torsion sign. Beginning with α (the β sector is identical), we recall that our 16 twist fields

were grouped into 4 sets of 4 and follow a similar procedure to above. Provided we choose

the appropriate signs between states in one orbit, we find that when we choose εfα(β) or

εfβ (α) to be +1 we get states:

|0, 0; fg〉g , ψi+ψ
j
+ |0, 0; fg〉g , ψi+ψ

j
+ψ

k
+ψ

l
+ |0, 0; fg〉g ,

Where i, j, k, l ∈ Iα = {5, 6, 7, 8} or Iβ = {1, 2, 3, 4} and g = α or β. So, we have 1 state

with no oscillators, 6 with 2, and 1 with 4. When we take it to be −1, we get states with

1 and 3 ψi+’s with i taking values in the same possible index set. So, we would find 1 state

with no oscillators, 4 with 1, and 4 with 3. If k is the number of signs we take to be +1, and

we make the same identifications of states with forms as before, we find the contribution:

δb2g = k

δb3g = 16− 4k

δb4g = 6k

(3.6)

for g = α or β and k = 0, . . . , 4.

For αβ, the 256 fixed points were organized into 64 sets of 4. There are no oscillators

to use as raising operators, so we only have states |0, 0; fαβ〉αβ . However, there are 2

interesting things to note here. Firstly, this state should not be interpreted as a 2 form,

but rather a 4 form (loosely, we can think of these as products of α and β singularities,

and so the associated form as a product of 2 forms, giving a 4 form). Secondly, recall

that choosing one of the α or β discrete torsion phases to be -1 meant choosing 16 of the

εfαβ (α, β)’s to be -1 for consistency. When we do so, because α and β act diagonally on

the states within the 64 orbits, we find we cannot create any invariant linear combination.

Thus, if k is again the number of positive signs we find that this sector contributes:

δb4αβ = 16k (3.7)

We must also include the contribution from the untwisted sectors, which arises from the

states
∏
i(ψ

i
+)li |0〉 where |0〉 is the untwisted ground state and each li ∈ {0, 1}. In partic-

ular, we identify |0〉 with the constant 0-form, each ψi+ with dX i, and take Z4
2 invariant

states. As expected, we find that they are in one to one correspondence with the invariant
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classes in H i(T 8/Z4
2), and so the total Betti numbers are, after adding up each δpg for g = α,

β, γ, δ and αβ:

(b2, b3, b4)(Mk) = (10, 2k + 4, 48− 8k) , k ∈ {0 . . . 4} . (3.8)

Rather interestingly, this does not actually completely agree with the result in [5]!

Rather, it only reduces to the expected result when k = 4. At first, we may naively believe

we have found a set of other new resolutions, but on returning to the previous analysis we

find that this is not quite the case. Recall that when k < 4, some of the 64 αβ-twisted

sectors could not provide us with states, as they were not invariant. We then interpret this

as saying we are not resolving 16 of the associated αβ singularities. Thus, when k < 4, we

do not actually have a complete resolution — rather, we have only a partial resolution of the

orbifold and the remaining singularities are frozen due to the presence of discrete torsion.

3.2.2 Example 2

Now we analyze example 2, where ci = (1, 0, 1, 0) and di = (0, 1, 1, 1). This model is very

similar to example 1, the full analysis for this sector is done in appendix C. The only

crucial difference being that the γ, αδ and αδγ sectors all receive a discrete torsion sign —

however, modular invariance constrains them so that we may set the distribution of these

signs must be the same within each sector:

4

4∑
fγ=1

εfγ (δ) = 4

4∑
fαδγ=1

εfαδγ (δ) = 2

8∑
fαδ=1

εfαδ(γ) . (3.9)

Once again, of these 3 only the γ sector will have zero momentum states to contribute

to the cohomology, and the contributions δbpg for g = α, β, δ and αβ are the same as in

example 1.

The 16 fixed points of the γ sector are organized into 4 sets of 4 labelled by a number

fγ ∈ {1, . . . , 4}, and so we build states from linear combinations of states within the orbits,

which we call |0, 0; fγ〉γ . We then fill out the ground states with ψi+ for i = 3, 4, 7, 8. The

discrete torsion phases come from the actions of δ, αδ and αδγ , but consistency of the

representation requires εfγ (δ) = εfγ (αδ) = εfγ (αδγ) ≡ εfγ . When we choose εfγ = +1, we

find that the only invariant states are:

|0, 0; fγ〉γ , ψ3
+ |0, 0; fγ〉γ , ψ8

+ |0, 0; fγ〉γ , ψ3
+ψ

8
+ |0, 0; fγ〉γ , ψ4

+ψ
7
+ |0, 0; fγ〉γ ,

whereas when εfγ = −1 we find the states:

ψ4
+ |0, 0; fγ〉γ , ψ7

+ |0, 0; fγ〉γ , ψ3
+ψ

4
+ |0, 0; fγ〉γ , ψ3

+ψ
7
+ |0, 0; fγ〉γ ,

ψ4
+ψ

8
+ |0, 0; fγ〉γ , ψ7

+ψ
8
+ |0, 0; fγ〉γ .

Letting j be the number of εfγ which are equal to 1, we find that the contribution from

this sector to the cohomology of the associated resolution is:

δb2γ = j

δb3γ = 8

δb4γ = 16− 2j

(3.10)
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and thus the total cohomology is given by:

(b2, b3, b4)(Mj,k) = (2 + 2k + j, 48− 8k, 42 + 28k − 2j) , (3.11)

where Mj,k represents the space we obtain after the different resolutions of the orbifold,

parametrized by j and k. When k = 4 we get:

(b2, b3, b4)(Mj,4) = (10 + j, 16, 154− 2j) . (3.12)

which are the Betti numbers found in [5]. Once again, a choice of k < 4 means we

cannot create certain states in the αβ sector and some of the singularities are frozen by

discrete torsion.

3.3 Mirror symmetry

In this section, we will briefly discuss mirror symmetry for the smooth Spin(7) manifolds

obtained in example 2. Example 1 can be treated analogously, with the result that all of

the (partially or fully resolved) models obtained there are self-mirror.

The starting point is the Spin(7) superconformal algebra, the generators of which can

be obtained from the generators (TG2 , GG2 ,ΦG2 , XG2 ,KG2 ,MG2), (2.24), of the G2 algebra

as follows:

T = TG2 +
1

2
: ∂X8∂X8 : −1

2
: ψ8∂ψ8 : ,

G = GG2+ : ψ8∂X8 : ,

X = XG2 + ΦG2ψ
8 +

1

2
ψ8∂ψ8 ,

M = [G,X] = ∂X8ΦG2 −KG2 −MG2 +
1

2
∂2X8ψ8 − 1

2
∂X8∂ψ8 .

The algebra these operators satisfy is worked out in [1]. Written this way, it is easy to

work out the analogue of the G2 mirror automorphism by combining the G2 map:

(TG2 , GG2 ,ΦG2 , XG2 ,KG2 ,MG2)→ (TG2 , GG2 ,−ΦG2 , XG2 ,−KG2 ,MG2) (3.13)

together with a T-duality along X8. Doing so, we see that this combination maps the

algebra directly back on to itself. Using combinations of the 3-direction T-dualities found

in [9] combined with T-duality along X8, we can then explicitly realize this automor-

phism as such a duality. We find that the following 7 combinations generate our Spin(7)

automorphism:

{(2, 4, 6, 8), (2, 3, 5, 8), (1, 2, 7, 8), (1, 3, 6, 8), (1, 4, 5, 8), (3, 4, 7, 8), (5, 6, 7, 8)} .

Another option is to use an automorphism that leaves the G2 algebra invariant, without

affecting the terms involving X8 or ψ8. This can be done using the combinations of 4 T -

dualities found in [9], which leave the G2 algebra invariant and so map the Spin(7) algebra
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on to itself once again. The following 7 index sets generate an automorphism of the Spin(7)

algebra in this way:

{(1, 2, 5, 7), (1, 4, 6, 7), (3, 4, 5, 6), (2, 4, 5, 7), (2, 3, 6, 7), (1, 2, 5, 6), (1, 2, 3, 4)} .

We would now like to see how these maps act on any discrete torsion signs. To do

so, we construct representations of the operators in terms of the ψi0 and ψ̃i0’s. Our first

focus is on the γ sector, for which it is the αδ parity that we are interested in. A quick

calculation gives:

αδ|Hfγγ =
1

4
ψ4

0ψ
7
0ψ̃

4
0ψ̃

7
0εfγ (δ) .

Next, we want to consider the representation of α in the β sector, β in the α sector, and

α and β in the αβ sector. We find, for β in the α sector:

β|Hfαα =
1

16
ψ5

0ψ
6
0ψ

7
0ψ

8
0ψ̃

5
0ψ̃

6
0ψ̃

7
0ψ̃

7
0 · εfα(β) . (3.14)

and for α acting in the β sector:

α|
H
fβ
β

=
1

16
ψ1

0ψ
2
0ψ

3
0ψ

4
0ψ̃

1
0ψ̃

2
0ψ̃

3
0ψ̃

4
0 · εfβ (α) . (3.15)

In the αβ sector we have no zero modes, and so there is no representation of α or β in

terms of the ψ’s (i.e. it can be represented by α|
H
fαβ
αβ

= β|Hfαα = εfαβ (α, β)). Applying the

T-dualities, we find that the 14 possible combinations group into two sets:

I+ = {(2, 3, 5, 8), (1, 3, 6, 8), (3, 4, 7, 8), (1, 4, 6, 7), (2, 4, 5, 7), (1, 2, 5, 6)} .
I− = {(2, 4, 6, 8), (1, 2, 7, 8), (1, 4, 5, 8), (5, 6, 7, 8), (1, 2, 5, 7), (3, 4, 5, 6),

(2, 3, 6, 7), (1, 2, 3, 4)} .

Those in I− effectively swap the discrete torsion signs εfγ (δ), while those in I+ leave them

alone. Interestingly, none of these 14 combinations change the signs in the α, β or αβ

sectors. Thus we have the set of dualities:

I− :Mj,k →M4−j,k

I+ :Mj,k →Mj,k

. (3.16)

Both of these maps take type IIA string theory to type IIA and IIB to IIB. When k = 4,

these are the dualities found in [10]. However, for k = 0, 1, 2, 3 these are dualities between

singular manifolds, which were not found in their analysis. Note there is no combination

of T-dualities which change k.

4 Spin(7) mirror maps for connected sums

In this section we consider mirror maps for Spin(7) manifolds realized as generalized con-

nected sums (GCS) [27] and show that these agree with our results obtained above.
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4.1 Constructing Spin(7) manifolds as generalized connected sums

As a preparation, let us briefly review the construction of GCS Spin(7) manifolds of [27].

The building blocks from which such Spin(7) are formed are a asymptotically cylindrical

Calabi-Yau fourfold Z+ with asymptotic neck region X3×S1×I for a Calabi-Yau threefold

X3 and an interval I, and an asymptotically cylindrical G2 manifold Z− with neck region

X3 × I. Taking Z− × S1 and identifying the isomorphic neck regions X3 × S1 × I, we may

then form a compact eight-dimensional manifold Z as the generalized connected sum

Z = Z+ #
[
Z− × S1

]
. (4.1)

Based on a number of observations, it has been conjectured in [27] that there exists a Ricci

flat metric of holonomy Spin(7) on such manifolds. The evidence for this is as follows.

First of all, the examples of Spin(7) manifolds realized as resolutions of T 8/Γ for Γ a finite

subgroup of Spin(7) given in [5] allow precisely such a decomposition. We reviewed a

decomposition such as (4.1) below in section 4.3. Second, compactifications of heterotic

string theory on TCS G2 manifolds should have a lift to M-Theory on a Spin(7) manifold

which can also be decomposed into two pieces. By applying an appropriate fibrewise duality

map to a TCS G2 manifold, the authors of [27] argued that one finds a decomposition such

as (4.1) on the M-Theory side and checked the equivalence of the spectra of light fields in a

few examples. Finally, acyl G2 manifolds Z− can be realized as (a resolution of) a quotient

(X3 × R) /Z2 in which the Z2 acts as an anti-holomorphic quotient on X3 and as t → −t
on R. In this case, Z can be globally described as a resolution of an anti-holomorphic

quotient of a suitably chosen Calabi-Yau fourfold Y , recovering the construction of [35].

For an acyl Calabi-Yau fourfold Z+ and an acyl G2 manifold Z− given as a resolution

of (X3 × R) /Z2, the Betti numbers of Z are found to be [27]

b1(Z) = 0

b2(Z) = n2
+ + n2

− + b2e

b3(Z) = n2
− + n3

− + n3
+

b4(Z) = n3
− + n4

− + n4
+ + b2o + b3o + b3e + b4e

(4.2)

Here ni± are the kernels of the restriction maps

βi+ : H i(Z+,Z)→ H i(X3 × S1,Z)

βi− : H i(Z−,Z)→ H i(X3,Z) .
(4.3)

and bio and bie are the dimensions of the odd/even subspaces of the i-th cohomology group

of X3 under the action Z2. Furthermore, we have assumed that the images of β2
+ and β4

+

are surjective and that H3(Z+) = kerβ3
+ holds.3

By using the fact that there exists a single covariantly constant spinor on Z, it fol-

lows that

b4−(Z) + 1 = −8 +
1

3

(
2− b2(Z) + b3(Z) + b4(Z)

)
, (4.4)

3This last assumptions is slightly weaker than the assumptions made for technical simplicity in [27]. By

following the same analysis presented there, it is straightforward to see that (4.2) holds in the present case.
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and we can compute

b2(Z)+b4−(Z)+1 =
2

3
−8+

1

3

(
n4

+ + 2n2
+ + n3

+

)
+

1

3

(
3n2
− + 3n3

− + 2(b2o + b2e) + 2b3o
)
. (4.5)

Here, we have used that for anti-holomorphic involutions b3o = b3e and b4e = b2o holds.

4.2 A mirror map for GCS Spin(7) manifolds

As shown in [1], exactly marginal deformations of Spin(7) sigma models are counted

by (4.5), so a mirror map for a Spin(7) manifold Z must produce another manifold Z∨

such that

b2(Z) + b4−(Z) + 1 = b2(Z∨) + b4−(Z∨) + 1 . (4.6)

Furthermore, such a map can be the result of an application of four T-dualities along a

calibrated T 4 fibration [6].4 The GCS decomposition (4.1) suggests how such a structure

might be realized. The acyl Calabi-Yau fourfold Z+ has a SYZ fibration by T 4 which

becomes the T 3 SYZ fibre of X3 times a circle S1 in the neck region. On Z−×S1, the circle

simply becomes the product S1 while the T 3 SYZ fibre of X3 sits inside Z− = (X3 × R) /Z2.

We hence expect to find a Spin(7) mirror by performing four T-dualities along this T 4.

This motivates the following construction: for a Spin(7) manifold realized as a GCS

as in (4.1), a mirror is given by5

Z∨ = Z∨+ #
[
Z∨− × S1

]
. (4.7)

which are glued along a neck region with is isomorphic to X∨3 × S1 × I. In particular, Z∨−
is constructed from an antiholomorphic involution of X∨3 as Z∨− = (X∨3 × R)Z2.

In the following, we will collect some evidence for this proposal by showing that (4.6)

indeed holds for this construction. In order to prove this, we will stick to the same simpli-

fying assumptions under which (4.2) holds. Our main task is to work out how the topology

of Z∨± is related to that of Z±. This can be done as follows. There is a compact Calabi-Yau

fourfold Y realized

Y = Z+#Z+ (4.8)

realized by gluing two copies of Z+ along X3 × S1 × I, and a G2 manifold M realized as

M = Z−#Z− =
(
X3 × S1

)
/Z2 (4.9)

by gluing two copies of Z− along X3 × I. For both of these compact geometries, there are

mirror maps which act in the usual way, i.e.

h1,1(Y ) = h3,1(Y ∨)

h2,1(Y ) = h2,1(Y ∨)

h3,1(Y ) = h1,1(Y ∨)

(4.10)

4The moduli space of a Cayley (calibrated) four-cycle N inside a Spin(7) manifold has dimension − 1
2
N ·N ,

so that we can at best hope to approximate such a fibration in a collapsed limit.
5We would like to thank Michele del Zotto for suggesting this construction.
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and

b2(M) + b3(M) = b2(M∨) + b3(M∨) . (4.11)

Furthermore, Y ∨ and M∨ now have the decompositions

Y ∨ = Z∨+#Z∨+ (4.12)

glued along X∨3 × S1 × I, and

M∨ = Z∨−#Z∨− =
(
X∨3 × S1

)
/Z2 . (4.13)

glued along X∨3 × I. Using these relations is the key to find the topology of Z∨± in terms

of Z±.

Let us now work out the resulting relations in detail. Starting with Y , the Mayer-

Vietoris sequence for the decomposition (4.8) gives

b2(Y ) = 2n2
+ + h1,1(X3) + 1

b3(Y ) = 2n3
+

b4(Y ) = 2n4
+ + 2h1,1(X3) + 4h2,1(X3) + 4

. (4.14)

As Y is a Calabi-Yau fourfold and h2,1(Y ) = 0 there is the relation

h3,1(Y ) =
1

6
b4(Y )− 2

3
b2(Y )− 23

3
(4.15)

so that

h1,1(Y ∨) + h3,1(Y ∨) =
1

3

(
n4

+ + 2n2
+

)
+

2

3

(
h1,1(X3) + h2,1(X3)

)
− 23

3
(4.16)

The mirror map acting on Y must leave the above expression invariant. As this mirror map

also maps X3 to X∨3 , so that h1,1(X3)+h2,1(X3) is preserved, it follows that n4
+ +2n2

+ must

also be invariant under the mirror map acting on Z+. Furthermore, h2,1(Y ) = h2,1(Y ∨)

implies that n3
+ is the same for Z+ and Z∨+.

Let us now discuss M . Here, the Mayer-Vietoris sequence yields

b2(M) = b2e + 2n2
−

b3(M) = b2o + b3e + 2n3
−
. (4.17)

Under the mirror map acting on the G2 manifold M , b2(M) + b3(M) = b2(M∨) + b3(M∨).

As b2e + b2o + b3e = h1,1(X3) + h2,1(X3) + 1 for anti-holomorphic involutions, this expression

is preserved by the mirror map. It hence follows that n2
− + n3

− must also be left invariant

under the mirror map acting on Z−.

Altogether, we have shown that the expressions n4
+ + 2n2

+, n2
− + n3

− and b2e + b2o + b3e
are all left invariant under an application of the mirror map acting on Z+, Z− and X3. It

then follows that the expression (4.5) for GCS Spin(7) manifolds is preserved under the

mirror map, i.e. (4.6) holds.

Note that we have not provided an explicit construction of mirrors for Z+ and Z−,

but only used the topological constraints they have to satisfy to arrive at this conclusion.
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It should be possible to give a construction of acyl Calabi-Yau fourfolds from projecting

five-dimensional tops as has been done for acyl Calabi-Yau threefolds in [19]. This would

in turn allow to derive combinatorial formulae for the topological invariants of Z+ and Z∨+,

which in turn must imply that n4
+ + 2n2

+ does not change under the mirror map.

It is of course straightforward to describe mirrors of X3, but the definition of Z−
furthermore involves specifying an antiholomorphic action of Z2 on X3 and a resolution of

the orbifold singularities of (X3 × R) /Z2. Clearly, b2e + b2o + b3e = h1,1(X3) + h2,1(X3) + 1

does not depend on the details of the antiholomorphic involution chosen. Furthermore, in

case there exists a resolution of
(
X3 × S1

)
/Z2 we have [36]

bi(M) = bi
((
X3 × S1

)
/Z2

)
+ bi−2(L, ζ) (4.18)

where L is the (real three-dimensional or empty) fixed locus of the involution and ζ is a

possible twist. This potentially constrains which antiholomorphic involutions and which

resolution can be chosen to construct M∨ and hence Z∨−.

As shown in [27], the GCS construction of Spin(7) manifolds is closely related to the

work of [35], in which Spin(7) manifolds are found by resolving anti-holomorphic quotients

of Calabi-Yau fourfolds. This offers another possible perspective on mirror maps of Spin(7)

manifolds in general, and the ones considered here in particular.

4.3 Examples

In this section we revisit the two examples of Spin(7) manifolds studies in section 3 and

show that the mirror map found there agrees with the GCS mirror map described above

in section 4.2.

4.3.1 Example 1

Let us first study the example of section 3.2.1, which has c = (1, 1, 1, 1) and d = (0, 1, 1, 1),

and start by describing its GCS decomposition. Such a decomposition can be found by

cutting the orbifold along X7 = 1
8 . At X7 = 1

8 , only two generators α and γ act non-

trivially on X1 . . . X6, so that we can identify the neck region as X̃3 × S1 × I, where X7 is

a coordinate on I and X8 a coordinate on the S1. Resolving the orbifold X̃3 = T 6/〈α, γ〉
produces the Calabi-Yau threefold X3 with

h1,1(X3) = 19

h2,1(X3) = 19
. (4.19)

Restricting X7 ≤ 1
8 , we find an acyl Calabi-Yau fourfold Z̃+ = T 7 × R/〈α, β, γ〉. Two

copies of Z̃+ can be glued to form an Calabi-Yau orbifold Ỹ , which has already been studied

in [37]. In their terminology, this case is the fourfold ‘model B’, in which σ is the Nikulin

involution with invariants (r, a, δ) = (10, 8, 0). It can be described as (K3×K3) /Z2 with

the Z2 acting as the Nikulin involution with invariants (r, a, δ) = (10, 8, 0) simultaneously

on both K3 surfaces. The topology of the resolution Y of Ỹ is given by

h1,1(Y ) = 24

h2,1(Y ) = 8

h3,1(Y ) = 24

(4.20)
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and χ(Y ) = 288. The relevant data of the decomposition Y = Z+#Z+ is

n2
+ = 2

n3
+ = 8

n4
+ = 76

(4.21)

Restricting X7 ≥ 1
8 , we find the product of an S1 and an acyl G2 manifold Z̃− =

T 6×R/〈α, γ, δ〉, with X8 being a coordinate on the product S1. Two copies of this orbifold

can be glued to the compact G2 orbifold M̃ which has a unique resolution to a G2 manifold

M with (see [4])

b2(M) = 12

b3(M) = 43
. (4.22)

Furthermore, the action of δ at X7 = 1
4 on X3 is such that b2e = 8 and b2o = 11. This

determines that
n2
− = 2

n3
− = 6

n4
− = 6

(4.23)

As a check, one can now use (4.2) to recover the Betti numbers of Z given in (3.8)

(note that the complete resolution corresponds to setting k = 4 in (3.8)). As we have seen

from the CFT analysis this Spin(7) manifold should be considered self-mirror. The same

conclusion is reached by applying the GCS mirror map: both Y and M are self-mirror,

so that

Z± = Z∨± (4.24)

and our Spin(7) mirror map gives Z∨ = Z.

4.3.2 Example 2

Let us now study the example of section 3.2.2, which has c = (1, 0, 1, 0) and d = (0, 1, 1, 1).

We can proceed in the same way as for the first example and cut along X7 = 1
8 . The neck

region is again formed as X̃3 = T 6/〈α, γ〉 with

h1,1(X3) = 19

h2,1(X3) = 19
(4.25)

The acyl Calabi-Yau fourfolds Z̃+ and its resolution Z+ found by setting x7 ≤ 1
8 are

the same as in the first example, so that we already know their topological data, (4.20)

and (4.21).

The acyl G2 orbifolds Z̃− and M̃ are different in this example, but M̃ is again one of

the elementary examples of [4]. Its resolution is not unique and produces nine distinct G2

manifolds Ml with Betti numbers

b2(Mn) = 8 + l

b3(Mn) = 47− l
, (4.26)
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for l = 0 . . . 8. The action of δ at X7 = 1
4 on X3 is again such that b2e = 8 and b2o = 11. We

now find that l must be even and that

n2
− = l/2

n3
− = 8− l/2
n4
− = 8− l/2

. (4.27)

This data again reproduces (3.8) from (4.2) setting l = 2j and k = 4 (again, only the case

k = 4 corresponds to a complete resolution).

We are now ready to discuss the GCS mirror map for Z. We have Z+ = Z∨+ as before

and M∨l = M8−l. This means that the GCS mirror map replaces l → 8 − l in (4.27), so

that it reproduces the CFT results Z∨j = Z4−j .
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A Discrete torsion and modular invariance

To set the stage and outline our strategy, let us review a few basic facts about (generalized)

discrete torsion for strings on orbifolds following [9]. Crucially, the definition of string

theory on orbifolds in general involves an assignment of discrete torsion phases [29]. String

theory on a orbifold of Tn by a group Γ is built from the untwisted sector He composed of

Γ-invariant states, as well as a twisted sector Hg for every non-trivial group element g of

Γ. To find the states in the twisted sectors Hg, we need to study the action of other group

elements h 6= g on Hg. This action in general involves the assignment of phases,

h|Hg = εg(h)h0|Hg , (A.1)

where h0 refers to the usual action of h in the g-twisted sector as expected from the orbifold

group action on the coordinates. These discrete torsion phases must form a representation

of Γ and furthermore must satisfy [29]

εg(h) = εhcgd(h
agb) for ad− bc = 1 (A.2)

to guarantee modular invariance. As the twisted sector associated with a group element g

typically decomposes as

Hg = ⊕fHg,f , (A.3)
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e.g. in case g has several fixed points labelled by fg, a different assignment of phases εfg(h)

for each fg is possible [9]. Of course, these still have to form a representation of Γ.

If we choose to include such ‘generalized’ discrete torsion phases εfg(h) in our model,

modular invariance must be reconsidered. The partition function for our models can be

written as

Z(q, q̄) =
1

|Γ|
∑
h,g∈Γ

TrHh

(
gqL0−c/24q̄L0−c/24

)
≡ 1

|Γ|
∑
h,g∈Γ

Zh;g . (A.4)

where Zh;g refers to the partition function component restricted to the h twisted sector, as

in the summation in the middle. Modular invariance then implies

Z(τ + 1) = Z(τ) → Zg;e(τ + 1) = Zg;g (A.5)

from which εfg(g) = 1 follows, and

Z(−1/τ) = Z(τ) → Zg;h(−1/τ) = Zh;g(τ) (A.6)

which constrains possible assignments of the εfg(h) by linking them to the phases εfh(g).

Although modular invariance for bosonic strings at one loop is sufficient to guarantee

modular invariance at higher genus if εfg(h) = εf ′g(h) for all fg, f
′
g, this is not the case for

more general assignments. However, studying solutions to the above constraints at least

provide us with necessary conditions, which will be enough for our purposes. Furthermore,

we are only going to study partition functions of bosonic strings. Although it is generally

believed that modular invariance of the bosonic string partition function is necessary and

sufficient for modular invariance of the full superstring theory, higher genus amplitudes

again present a caveat to this analysis, see [9] for a more detailed discussion. For the

examples we are presenting, these subtleties are alleviated by the fact that we can match

them to known smooth geometries obtained by a smoothing of the orbifolds in question.

For the examples discussed in this paper, the computation of partition functions is sig-

nificantly simplified by the fact that all of the elements of the orbifold group act diagonally

on T 7 = (S1)7 or T 8 = (S1)8. For the sake of brevity, we have omitted the details of these

computations.

B Discrete torsion analysis for the G2 orbifold

In this appendix, we derive the necessary conditions on discrete torsion phases for the G2

model introduced in section 2. We work out the representation matrices for the orbifold

elements in the highest weight states of the different twisted sectors. These matrices will

have discrete torsion signs showing up, which are then constrained by trace relations coming

from the S-transformation.

The orbifold we are interested in is defined by

X1 X2 X3 X4 X5 X6 X7

α + + + − − − −
β + − − + + −1

2 −
γ − + − + − + −1

2

σ2 + +1
2 + +1

2 + + +
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As discussed in the section 2, we do not need to analyse all the different twisted sectors

in this orbifold. Instead, we would focus on the particular sectors twisted under the action

of α, β, γ, αβ, σ2 and σ2αβ. The α, β, and γ sectors are relevant because they are the

only ones that contribute to the ground state spectrum of the orbifold string theory, and

the others are needed only in order to fix the discrete torsion phases.

α sector. The α-twisted sector can be decomposed into 16 smaller sectors corresponding

to the fixed points of the action of α. They can be labelled by the different values of

{(X4, X5, X6, X7) : Xi ∈ {0, 1
2}}. Now each of these twisted sectors localised at the

fixed points, have a highest weight state of zero momentum and zero winding. We want

to find the representation matrices for the orbifold elements in the basis of these highest

weight states. Under the free action of 〈β, γ, σ2〉, we get two 8D irreducible representations

corresponding to the two X5 choices.

We can then assign coordinate labels for the basis states |j〉fαα , where index fα = {1, 2}
corresponds to the two choices of X5 and j=1,2,. . . ,8 enumerates the different choices of

the other 3 fixed-point coordinates (X4, X6, X7):

|1〉fαα ∼ (0, 0, 0); |2〉fαα ∼
(

0, 0,
1

2

)
; |3〉fαα ∼

(
0,

1

2
, 0

)
; |4〉fαα ∼

(
0,

1

2
,
1

2

)
;

|5〉fαα ∼
(

1

2
, 0, 0

)
; |6〉fαα ∼

(
1

2
, 0,

1

2

)
; |7〉fαα ∼

(
1

2
,

1

2
, 0

)
; |8〉fαα ∼

(
1

2
,

1

2
,

1

2

)
;

(B.1)

In this basis, the orbifold generators act as follows:

α|Hfαα = I8×8 β|Hfαα =


|1〉fαα ↔ |3〉

fα
α

|2〉fαα ↔
∣∣∣4fαα 〉

|5〉fαα ↔ |7〉
fα
α

|6〉fαα ↔ |8〉
fα
α



γ|Hfαα =


|1〉fαα ↔ |2〉

fα
α

|3〉fαα ↔ |4〉
fα
α

|5〉fαα ↔ |6〉
fα
α

|7〉fαα ↔ |8〉
fα
α

 σ2|Hfαα =


|1〉fαα ↔ |5〉

fα
α

|2〉fαα ↔ |6〉
fα
α

|3〉fαα ↔ |7〉
fα
α

|4〉fαα ↔ |8〉
fα
α

 ,

(B.2)

where Hα =
⊕

fα
Hfαα and Hfαα is the space spanned by the highest weight states |j〉fαα .

The representation matrices for the generators after removing spurious phases are

α|Hfαα = I8×8 β|Hfαα =


0 I2×2 0 0

I2×2 0 0 0

0 0 0 I2×2

0 0 I2×2 0



γ|Hfαα =


H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H

 σ2|Hfαα =

(
0 I4×4

I4×4 0

) (B.3)

where H = 0 1
1 0 .
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β sector. The β sector only differs from the α case in the fixed point coordinate labels.

Here they are given by two choices each for the set of coordinates (X2, X3, X6, X7). α

behaves the same way as β did in the α-sector, γ mixes the 2 X7 choices as before, and σ2

mixes the choices for X2. So, no discrete torsion phase arises in this sector either.

γ sector. Analogous to the α sector, there are 16 highest weight states in the γ sector

which can be identified by their fixed point coordinate labels (X1, X3, X5, X7). Under the

free action of 〈α, β, σ2〉, we get eight 2D irreducible representations corresponding to the

two choices for X1, X3, and X5 each.

Let us now assign coordinate labels for the basis states |j〉fγγ , where index fγ =

{1, 2, . . . , 8} corresponds to the 8 choices of (X1, X3, X5) and j=1,2 enumerates the two

choices for X7:

|1〉fγγ ∼
(
X7 =

1

4

)
; |2〉fγγ ∼

(
X7 =

3

4

)
(B.4)

Then the action of the orbifold generators can be obtained from their action on the

coordinate labels, as follows:

α|Hfγγ =
(
|1〉fγγ ↔ |2〉

fγ
γ

)
= β|Hfγγ ; γ|Hfγγ = id. = σ2|Hfγγ (B.5)

Removing spurious phases by exploiting commutation relations of the representation

matrices, we get:

α|Hfγγ = H; β|Hfγγ = εfγ (αβ)H; γ|Hfγγ = I2×2; σ2|Hfγγ =

(
ε1 0

0 ε2

)
(B.6)

where εfγ (αβ) = ±1. The relation σ2α = ασ2 yields ε1 = ε2 = εfγ (σ2) = ±1:

σ2 = εfγ (σ2)I2×2 (B.7)

So there are two choices of discrete torsion signs available in each irreducible representation.

αβ sector. The action of αβ on the coordinates is given by:

X1 X2 X3 X4 X5 X6 X7

αβ + − − − − +1
2 +

In the αβ twisted sector, lowest energy states are labelled by the half-integer mode

n6 taking values in ±1
2 , and coordinate labels (X2, X3, X4, X5). Now the irreducible

representations are 8D, and are spanned by the (n6, X
2, X4) coordinate labels. Let us

assign the basis states |j〉fαβαβ , fαβ = 1, 2, . . . 4 labels the different irreducible representations

corresponding to the choices for (X3, X5):

|1〉fαβαβ ∼
(

1

2
, 0, 0

)
; |2〉fαβαβ ∼

(
−1

2
, 0, 0

)
; |3〉fαβαβ ∼

(
1

2
, 0,

1

2

)
;

|4〉fαβαβ ∼
(
−1

2
, 0,

1

2

)
|5〉fαβαβ ∼

(
1

2
,
1

2
, 0

)
; |6〉fαβαβ ∼

(
−1

2
,

1

2
, 0

)
;

|7〉fαβαβ ∼
(

1

2
,
1

2
,
1

2

)
; |8〉fαβαβ ∼

(
−1

2
,

1

2
,

1

2

) (B.8)
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In this basis, we can write the representation matrices for the orbifold elements by looking

at their action on the basis states just as we did before for the previous sectors:

α|
H
fαβ
αβ

= β|
H
fαβ
αβ

=


H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H



γ|
H
fαβ
αβ

=

(
ε1fαβ (γ)I4×4 0

0 ε2fαβ I4×4(γ)

)
; σ2|Hfαβαβ

=


0 0 0 I2×2

0 0 I2×2 0

0 I2×2 0 0

I2×2 0 0 0


(B.9)

Here, the discrete torsion sign shows up in the γ matrix: εifαβ (γ) = ±1, i=1,2; as is expected

from our γ sector analysis and the S-transform relations.

σ2 sector. The action of σ2 on the coordinates is given by:

X1 X2 X3 X4 X5 X6 X7

σ2 + +1
2 + +1

2 + + +

In the σ2-twisted sector, the lowest energy states are labelled by the two half-integer

winding numbers (n2,n4) each taking values in ±1
2 . We can then have the following assign-

ment of basis states |j〉σ2 , where j=1,2,3,4:

|1〉σ2 ∼
(

1

2
,

1

2

)
; |2〉σ2 ∼

(
1

2
,−1

2

)
; |3〉σ2 ∼

(
−1

2
,

1

2

)
; |4〉σ2 ∼

(
−1

2
,−1

2

)
(B.10)

Looking at the action of the different generators on the basis states as listed above, we get

the following 4D representation matrices:

α =

(
H 0

0 H

)
; β =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ; γ = εσ2(γ)I4×4; σ2 = I4×4 (B.11)

Note that the only non-trivial trace involving a discrete torsion sign in this sector is for γ.

σ2αβ sector. The action of σ2αβ on the coordinates is given by:

X1 X2 X3 X4 X5 X6 X7

σ2αβ + −1
2 − −1

2 − +1
2 +

Just as the case with the αβ sector, the lowest energy states are labelled by

(X2, X3, X4, X5, n6), each of which takes two values. The irreducible representation, as

deduced from the action of the orbifold generators, corresponds to the labels (n6, X2, X4),
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and can be organised in the basis |j〉fσ2αβσ2αβ
, where j=1,2,. . . ,8, and fσ2αβ = 1, 2, . . . , 4:

|1〉fσ2αβσ2αβ
∼
(

1

2
,
1

4
,
1

4

)
; |2〉fσ2αβσ2αβ

∼
(
−1

2
,

1

4
,

1

4

)
; |3〉fσ2αβσ2αβ

∼
(

1

2
,

1

4
,

3

4

)
;

|4〉fσ2αβσ2αβ
∼
(
−1

2
,
1

4
,
3

4

)
|5〉fσ2αβσ2αβ

∼
(

1

2
,
3

4
,
1

4

)
; |6〉fσ2αβσ2αβ

∼
(
−1

2
,

3

4
,

1

4

)
;

|7〉fσ2αβσ2αβ
∼
(

1

2
,
3

4
,
3

4

)
; |8〉fσ2αβσ2αβ

∼
(
−1

2
,

3

4
,

3

4

) (B.12)

After absorption of spurious phases via commutation relations and normalization of

states, we get a discrete torsion sign arising in γ as follows:

α|
H
fσ2αβ
σ2αβ

=


0 H 0 0

H 0 0 0

0 0 0 H

0 0 H 0

 ; β|
H
fσ2αβ
σ2αβ

=


0 0 H 0

0 0 0 H

H 0 0 0

0 H 0 0



γ|
H
fσ2αβ
σ2αβ

= εfσ2αβ (γ)I8×8; σ2|Hfσ2αβσ2αβ

=


0 0 0 I2×2

0 0 I2×2 0

0 I2×2 0 0

I2×2 0 0 0


(B.13)

C Discrete torsion analysis for the Spin(7) orbifolds

In this appendix, we will explicitly determine the allowed discrete torsion phases and

constraints for the Spin(7) orbifold in section 3 — the general structure follows the same

logic as in appendix B.

First, let us recall the definition of the orbifold we are interested in — we focus on

example 2 from section 3. This is a T 8/Z4
2 orbifold where the group generators α, β, γ and

δ act as:
X1 X2 X3 X4 X5 X6 X7 X8

α − − − − + + + +

β + + + + − − − −
γ −1

2 − + + −1
2 − + +

δ − + −1
2 + −1

2 + −1
2 +

Let us now determine the allowed discrete torsion phases.

α, β and αβ sectors. We begin with α. Here we have 16 twist fields in one-to-one

correspondence with the fixed points of the action of α, as outlined in section 3. These

states are labelled by the choice of a coordinate set {(X1, X2, X3, X4) : Xi ∈ {0, 1
2}}.

Under the action of the rest of the group, in particular by 〈γ, δ〉, these get grouped into

4 sets of 4, corresponding to 4 irreducible representations of the orbifold group. Each of

these representations come with a highest weight state of zero momentum and winding,

and our goal is to find the matrix representations of the group element in the basis of such

highest weight states.
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Explicitly, in this sector γ and δ permute the X1 and X3 fixed points, and so we can

label each of the 4 representations by a number fα ∈ {1, . . . , 4} corresponding to one of

the 4 choices of X2 and X4. In other words, the 16 dimensional space of these highest

weight states decomposes further into a sum of 4 dimensional spaces as Hα = ⊕fαH
fα
α . In

each Hfαα , the basis of states then consists of vectors |i〉fαα , where the label i ∈ {1, . . . , 4}
represents one of the 2-tuples in {(X1, X3) : X1, X3 ∈ {0, 1

2}}. Explicitly, we set:

|1〉fαα = (0, 0) , |2〉fαα = (1/2, 0) ,

|3〉fαα = (0, 1/2) , |4〉fαα = (1/2, 1/2) .
(C.1)

In this basis, α acts trivially, β acts diagonally and the action of γ and δ is:

γ|Hfαα :

(
|1〉fαα ↔ |2〉

fα
α

|3〉fαα ↔ |4〉
fα
α

)
, and δ|Hfαα :

(
|1〉fαα ↔ |3〉

fα
α

|2〉fαα ↔ |4〉
fα
α

)
. (C.2)

Introducing discrete torsion phases, by an appropriate choice of normalization of the basis

vectors the matrix representations of γ, δ and β take the form:

γ|Hfαα =

(
H 0

0 H

)
, δ|Hfαα =


0 0 1 0

0 0 0 eiθ

1 0 0 0

0 e−iθ 0 0

 and β|Hfαα =


ε1 0 0 0

0 ε2 0 0

0 0 ε3 0

0 0 0 ε4

 . (C.3)

with ε2i = 1. The requirement that all group elements commute sets the phases in δ|Hfαα
to 1, and forces all εi to be equal, εi ≡ εfα(β) for all i, so that β = εfα(β) · I4×4. So,

the 16 signs we would expect in Zα;β are identified in 4’s, reducing to only 4 degrees of

freedom εfα(β).

The β analysis is virtually identical, only differing by the coordinate labelling of states

(e.g. the fixed points now correspond to the set {(X5, X6, X7, X8) : Xi ∈ {0, 1
2}}) and

the exchanging of the roles of α and β. Once again, the 16 signs get identified in 4’s, and

so we end up with the 4 sign degrees of freedom εfβ (α) for fβ = 1 . . . 4.

Next, let’s do αβ. In this case αβ sends Xi → −Xi for all i, and so we have 256 fixed

points corresponding to the choices Xi ∈ {0, 1
2}. α and β clearly act diagonally, γ permutes

X1 and X5, and δ permutes X3, X5 and X7. We can choose two of these as labels for our

states, and in particular choose X1 and X3. This groups our states into 64 sets of 4 —

i.e. we have a decomposition Hαβ = ⊕64
fαβ=1H

fαβ
αβ , with each Hfαβαβ 4 dimensional. It is then

easy to see that the actions of γ|
H
fαβ
αβ

and δ|
H
fαβ
αβ

are the same as they were in e.g. the α

sector, and so they take the same form (also without discrete torsion phases). For α and

β, we may set them both equal (in order to impose αβ|
H
fαβ
αβ

= I4×4) to:

α|
H
fαβ
αβ

= β|
H
fαβ
αβ

=


ε1 0 0 0

0 ε2 0 0

0 0 ε3 0

0 0 0 ε4

 , (C.4)
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so that αβ = 1 when ε2i = 1. The commutation constraints set all εi equal, and we call

them εfαβ (α, β) so that α|
H
fαβ
αβ

= β|
H
fαβ
αβ

= εfαβ (α, β) ·I4×4 (we use the notation εfαβ (α, β)

to denote the fact that both α and β have discrete torsion signs in the αβ sector), and we

end up with 64 sign degrees of freedom εfαβ (α, β).

δ sector. Now let’s do the δ sector. Here we get 16 fixed points in (X1, X3, X5, X7)

grouped into 2 sets of 8 by the rest of the group, where α permutes X3, β permutes X5

and X7, and γ permutes X1. We choose to label each of the two 8 dimensional sets by

fδ ∈ {1, 2}, corresponding to either the case X5 = X7 or X5 6= X7. In each of these sectors,

we have an 8 dimensional representation Hfδδ with basis states labelled by X1 ∈ {0, 1/2},
and X3, X5 ∈ {1/4, 3/4}. The 8 states |i〉fδδ = (X1, X3, X5) are:

|1〉fδδ = (0, 1/4, 1/4) , |2〉fδδ = (0, 1/4, 3/4) , |3〉fδδ = (0, 3/4, 1/4) ,

|4〉fδδ = (0, 3/4, 3/4) , |5〉fδδ = (1/2, 1/4, 1/4) , |6〉fδδ = (1/2, 1/4, 3/4) ,

|7〉fδδ = (1/2, 3/4, 1/4) , |8〉fδδ = (1/2, 3/4, 3/4) .

(C.5)

and the group action is:

α|Hfδδ
:


|1〉fδδ ↔ |5〉

fδ
δ

|2〉fδδ ↔ |6〉
fδ
δ

|3〉fδδ ↔ |7〉
fδ
δ

|4〉fδδ ↔ |8〉
fδ
δ

 , β|Hfδδ
:


|1〉fδδ ↔ |2〉

fδ
δ

|3〉fδδ ↔ |4〉
fδ
δ

|5〉fδδ ↔ |6〉
fδ
δ

|7〉fδδ ↔ |8〉
fδ
δ

 , and γ|Hfδδ
:


|1〉fδδ ↔ |3〉

fδ
δ

|2〉fδδ ↔ |4〉
fδ
δ

|5〉fδδ ↔ |7〉
fδ
δ

|6〉fδδ ↔ |8〉
fδ
δ

 .

(C.6)

The matrix representations are 8 × 8 and can easily be constructed, and we find after

imposing any commutation relations that any discrete torsion signs vanish.

γ sector. Here we get 16 fixed points with X1, X5 ∈ {1/4, 3/4} and X2, X6 ∈ {0, 1/2}.
In this sector, α and δ both permute X1 and β permutes X5 — thus, the 16 states

get grouped into 4 sets of 4 labelled by the choices of X2 and X6. Choosing a label

fγ ∈ {1, . . . , 4} to represent this choice, the 4 states within each sub sector correspond to

the 2-tuples (X1, X5):

|1〉fγγ = (1/4, 1/4) , |2〉fγγ = (3/4, 1/4) ,

|3〉fγγ = (1/4, 3/4) , |4〉fγγ = (3/4, 3/4) ,
(C.7)

with:

α|Hfγγ , δ|Hfγγ :

(
|1〉fγγ ↔ |2〉

fγ
γ

|3〉fγγ ↔ |4〉
fγ
γ

)
, and β|Hfγγ :

(
|1〉fγγ ↔ |3〉

fγ
γ

|2〉fγγ ↔ |4〉
fγ
γ

)
. (C.8)

It is then clear that αδ acts diagonally. We can then turn these into matrix representations,

and after imposing any constraints we find:

α|Hfγγ =

(
H 0

0 H

)
, δ|Hfγγ = εfγ (δ) · α|Hfγγ and β|Hfγγ =

(
0 I2×2

I2×2 0

)
. (C.9)

So we get 4 sign degrees of freedom εfγ (δ). Only the elements αδ|Hfγγ = αδγ|Hfγγ =

εfγ (δ) · I4×4 act diagonally, and so we should look at these sectors next.
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αδ and αδγ. The actions of αδ and αδγ are:

X1 X2 X3 X4 X5 X6 X7 X8

αδ + − +1
2 − −1

2 + −1
2 +

αδγ −1
2 + +1

2 − + − −1
2 +

So, for αδ we have fixed points in X2, X4, X5 and X7, and the action X3 → X3 + 1/2

means the winding number n3 takes values in Z+ 1/2. In the lowest energy state we must

take n3 = ±1/2, and here α and δ both permute n3, γ acts diagonally, and β permutes

X5 and X7 (both ∈ {1/4, 3/4}). This action groups the 32 states (16 fixed points/twist

fields with two possible winding numbers each) into 8 sets of 4, with a label fαδ ∈ 1 . . . 8

representing these sectors. Within each, we label states by (X5, n3):

|1〉fαδαδ = (1/4,+) , |3〉fαδαδ = (3/4,+) ,

|2〉fαδαδ = (1/4,−) , |4〉fαδαδ = (3/4,−) .
(C.10)

Here, ± is short for n3 = ±1/2. So we find:

α|Hfαδαδ

, δ|Hfαδαδ

:

(
|1〉fαδαδ ↔ |2〉

fαδ
αδ

|3〉fαδαδ ↔ |4〉
fαδ
αδ

)
, and β|Hfαδαδ

:

(
|1〉fαδαδ ↔ |3〉

fαδ
αδ

|2〉fαδαδ ↔ |4〉
fαδ
αδ

)
, (C.11)

with γ diagonal. After imposing representation constraints, only the generator γ retains

a phase and has a matrix representation of γ = εfαδ(γ) · I4×4. As required, the discrete

torsion sign is independent of the winding number, and the 16 sign degrees of freedom get

organized across the twist fields into 8 sets of 2.

For αγδ, the twist fields have labels (X1, X4, X6, X7, n3) with X4, X6 ∈ {0, 1/2},
X1, X7 ∈ {1/4, 3/4} and n3 ∈ {1/2,−1/2}. α and δ permute X1, X3 and n3, while β

permutes X7 and γ acts diagonally. This orders the 32 states into 4 sets of 8, labelled by

a number fαδγ ∈ {1, . . . , 4} and by (X1, X7, n3) within each set:

|1〉fαδγαδγ = (1/4, 1/4,+) , |2〉fαδγαδγ = (1/4, 3/4,+) , |3〉fαδγαδγ = (3/4, 1/4,+) ,

|4〉fαδγαδγ = (3/4, 3/4,+) , |5〉fαδγαδγ = (1/4, 1/4,−) , |6〉fαδγαδγ = (1/4, 3/4,−) ,

|7〉fαδγαδγ = (3/4, 1/4,−) , |8〉fαδγαδγ = (3/4, 3/4,−) ,

(C.12)

The group action is:

α|
H
fαδγ
αδγ

, δ|
H
fαδγ
αδγ

:


|1〉fαδγαδγ ↔ |7〉

fαδγ
αδγ

|2〉fαδγαδγ ↔ |8〉
fαδγ
αδγ

|3〉fαδγαδγ ↔ |5〉
fαδγ
αδγ

|4〉fαδγαδγ ↔ |6〉
fαδγ
αδγ

 , and β|
H
fαδγ
αδγ

:


|1〉fαδγαδγ ↔ |2〉

fαδγ
αδγ

|3〉fαδγαδγ ↔ |4〉
fαδγ
αδγ

|5〉fαδγαδγ ↔ |6〉
fαδγ
αδγ

|7〉fαδγαδγ ↔ |8〉
fαδγ
αδγ

 . (C.13)

After organizing the phases, we find that δ = εfαγδ(δ, γ) ·α, γ = εfαγδ(δ, γ) · I8×8 and β has

no phases (again, εfαγδ(δ, γ) emphasizes that both γ and δ get signs in this sector). This

way, αδγ|
H
fαδγ
αδγ

= I8×8. Once again the discrete torsion phases are winding independent,

and the 16 signs get organized into 8 sets of 2 across the twist fields labelled by fαγδ.
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αγ, βγ, δγ, βδ, αβγ, αβδ and αβδγ. For the rest of the composite group elements,

the analysis follows the above structure and we find that imposing commutation constraints

or equalities such as αγ|Hfαγαγ

!
=I allow us to absorb all discrete torsion phases. So, no new

constraints will arise here.

Constraints. In summary, we have found that their are discrete torsion phases in the α,

β, γ, αβ, αδ and αδγ sectors. We would now like to understand how modular invariance

relates these phases.

First, let us consider the γ, αδ and αδγ twisted sectors. After taking into account the

identification of discrete torsion phases, we find:

Zγ;αδ(−1/τ) = Zαδ;γ(τ)⇒ 4

4∑
fγ=1

εfγ (δ) = 2

8∑
fαδ=1

εfαδ(γ)

Zγ;αδγ(−1/τ) = Zαδγ;γ(τ)⇒ 4
4∑

fγ=1

εfγ (δ) = 4
4∑

fαδγ=1

εfαδγ (δ, γ)

. (C.14)

As a result, after a possible reordering of the labels fg we may set fγ = fαδγ = fαδ and get:

εfγ ≡ εfγ (δ) = εfγ (δ, γ) = εfγ+4(γ) . (C.15)

Now consider the case of α, β and αβ. For α and β we find:

4

4∑
fα=1

εfα(β) = 4

4∑
fβ=1

εfβ (α) . (C.16)

So, after setting fα = fβ :

εfα ≡ εfα(β) = εfα(α) . (C.17)

However, consider the case of αβ. Taking into account the identification of phases

across the twist fields, we find:

4
64∑

fαβ=1

εfαβ (α, β) = 16

4
4∑

fα=1

εfα

⇒ 64∑
fαβ=1

εfαβ (α, β) = 16
4∑

fα=1

εfα ,

where we also used equation (C.17). Thus, we may set:

εfα = εfαβ+4k(α, β) , (C.18)

for k = 0, . . . , 15 and fα = 1, . . . , 4.

Open Access. This article is distributed under the terms of the Creative Commons
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