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technologies), and potential impact of AM on product modularity and integrality. 
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1. Introduction 

Additive manufacturing (AM) can be economically attractive, particularly for low volume spare 

parts production. This is because AMas it provides flexibility in producing spare parts as and 

when needed, unlike conventional manufacturing, wherein high volumes and therefore, higher 

inventories are needed, to recoup high initial investments in tooling (D’Aveni, 2015). For 

example, Lego, the Danish toy manufacturer spends 20 million Euros on spare parts for their 

equipment, and they estimated a potential saving of 1.2 million Euros by producing some of 

those spare parts using AM. Such savings are possible as large majority of those spare parts are 

consumed in very low quantities over the last 5 years with some having no consumption at all, 

but Lego is forced to keep inventories because of minimum order quantities requirements as 

dictacted  by  suppliers of those spare parts (Hadar, 2018). Also, companies like Daimler have 

started using AM for spare parts manufacturing. Daimler initially used AM to make spare parts 

for older trucks. After it became proficient with the technology, it started producing specialized 

parts for newer low-volume truck models as well. As the number of segments served grows, 

and the number of units sold per segment increases, there will be need for enough parts to be 

produced to become a profitable aspect of the business (D’Aveni, 2018). 

Spare parts management is especially challenging because it is a context 

involvinginvolves high variety, low volume parts (Danaset al., 2006; Knofius et al., 2016). This 

context and is often also characterized by high service requirements coupled with extremely 

sporadic and unpredictable demand patterns. The financial impact in case of stock-outs, and the 

prices for individual parts often tend to be high (Cohen and Ernst, 1988; Durão et al., 2017; 

Huiskonen 2001). The unpredictable demand of spare parts, together with distributed locations 

for where the spare parts are needed (Khajavi, Partanen, and Holmström, 2014), further 



complicates inventory planning and demand forecasting.  Also, traditional statistical-based 

demand forecasting methods cannot handle this intermittent demand (Bergman et al. 2017). As 

a result, there is an increased risk of either holding too high or too low inventory levels, as well 

as risks of stocking parts which could become obsolete over time (Wagner and Lindemann, 

2008). Therefore, it is common practice to hedge against stock-outs by incurring large 

investments in spare parts inventories of critical parts (Bergman et al. 2017). 

Management of spare part inventories is further complicated when OEMs decide to stop 

production of certain parts, resulting in discontinued supply of spare parts that are still in use. 

In such a case, the customer can end up being forced to tie up significant working capital in 

spare parts inventories. This is typically done using a last-time-buy’s (LTB) approach, in which 

a final batch is purchased from OEMs to ensure continuing high levels of service. Carrying 

such high inventory levels of spare parts that are expensive also results in high depreciation and 

obsolescence costs, all of which could impede the profitability for companies (de Souza et al. 

2011). 

Additive manufacturing (AM) has been identified as having the potential of 

manufacturing spare parts with an advantage of providing faster delivery without holding high 

inventory levels (Pérès and Noyes, 2006; Holmström et al., 2010; Holmström and Partanen, 

2014). Use of AM for spare parts manufacturing is potentially useful in industries that face 

penalties or negative consequences for late deliveries (Holmström et al., 2017). Such industrial 

contexts include replacement parts for mining, oil exploration firms (Weller et al., 2015), and 

wind energy farms, to name a few. In all these cited cases, site locations tend to be remote and 

production downtimes could be costly (Lipson and Kurman, 2013). Usage of AM in the spare 

parts supply chain has been studied by several authors (see Muir and Haddud, 2018; Ghadge et 

al. 2018; Li et al. 2017; Holmström et al., 2016; Zanardini et al. 2016; Khajavi et al., 2014). 

Applying AM technologies in after-sales service supply chains can support the maintenance 



process of advanced capital goods throughout their lifecycles, which often spans several 

decades (Knofius et al., 2016).  

The AM domain area has attracted the attention of few research studies, including 

literature reviews. For example, Khorram, Niaki and Nonino (2017) in their literature review 

on the topic identified the following eight major research streams in AM: i) AM technology 

selection; ii) supply chain considerations; iii) product design considerations; iv) production cost 

models; v) environmental aspects; vi) strategic challenges; vii) manufacturing systems, and viii) 

open-source innovation/business models and economics. Gardan (2016) reviewed the most 

prominent AM technologies, and identified new trends relating to new applications, topological 

optimisation, file exchange and development of standards. Uriondo et al. (2015) provided a 

review of present and future applications of AM for the aerospace sector. As can be seen from 

these research works, even though the topic of AM is relatively new, there is already an 

emerging body of literature on the topic. 

Despite these studies on AM, there has been little attention paid to the issue of selection 

of spare parts that are suitable for AM. In fact, only a limited number of applications of AM for 

after-sales service supply chains have been reported in the literature (Knofius et al., 2016). This 

lack of attention paid to spare parts manufacturing that is suitable for AM can be potentially 

explained due to a lack of awareness of the capabilities of AM among supply chain 

professionals, logisticians, and design engineers, all of whom are responsible in some way to 

address logistical issues to improve after-sales service supply chains (Knofius, van der Heijden, 

and Zijm, 2016). A key challenge faced by companies that are considering adopting AM for 

spare parts manufacturing is the difficulty in identifying the most suitable parts which can be 

produced using AM (Chaudhuri et al., 2017).  AM is suitable for spare parts manufacturing but 

will require investments in generating the printable files of the spare parts, which should offset 

the inventory costs over the life time of usage of these parts (Holweg, 2015).  Hence, the 



companies who are willing to explore the possibility of using AM for spare parts manufacturing 

must first identify the most appropriate spare parts, that are suitable for AM. Thus, there is a 

need for systematic research on classifying spare parts, and then understanding the 

characteristics that make the classified spare parts, most suitable for AM. This research 

addresses these needs by specifically raising and addressing the following research questions: 

(1) What are the specific AM technologies and equipment that can be used to produce 

different spare parts?   

(2) What criteria can be used to first classify the spare parts?  

(3) How can the classified spare parts, that are most suitable for AM, be identified?   

 

2. Systematic Literature Review 

2.1. Review process 

To ensure transparency and reproducibility, a systematic review methodology was applied. The 

overall structure of this review is tailored similar to reported structured literature reviews in the 

field of operations and supply chain management (Cooper 1988; Seuring and Gold 2012; 

Tranfield et al., 2003; Vom Brocke et al. 2009). This structure consists of three iterative stages: 

(1) planning the review; (2) conducting the review; and (3) reporting and dissemination. The 

first stage requires defining the literature search strategy, for the literature review by using a 

common taxonomy (Cooper, 1988 and Vom Brocke et al., 2009). The second stage conducts 

the content analysis of the resulting literature, as per established guidelines (Seuring and Gold 

2012). The third stage pertains to synthesizing the findings, also as per established guidelines 

(Tranfield et al., 2003).  

2.1.1. Planning the review 

The initial stages of a systematic review may be iterative, consisting of a process of definition, 

clarification, and refinement (Tranfield, Denyer, and Smart 2003). Prior to the structured 



review, significant time was invested in conducting a non-structured explorative literature 

search. The non-structured explorative literature search was carried to identify topics and 

keywords of common occurrence. Through the initial non-structured exploratory literature 

searches, it became evident that a vast amount of literature exists within each of the individual 

core disciplines that this study touches upon. This experience stressed the need to begin with a 

broad conceptualization of the topical areas (such as supply chain, spare parts and AM) 

including assessment of gaps where knowledge may be needed (Vom Brocke et al., 2009). 

Therefore, a conceptual framework as shown in figure 1, was developed to focus the literature 

review in a directed fashion. The literature search in this study was conducted using the 

databases EBSCO, ProQuest, and Science Direct due to their extensive coverage of literature 

and their high reputation within the core subject areas.  

 

Figure 1. Concept mapping of core subject areas 

2.1.2. Conducting the review 

Keywords were identified through an unstructured literature search. From the identified 

keywords, the appropriate search strings were identified, by combining keywords including 



synonyms with Boolean search modifiers and operators. Table 1 contains the search strings for 

each domain of interest, the databases where the search strings were used, and a specification 

scheme for the search fields for each database. As can be observed, a fourth search string was 

also added to identify those criteria based on which a classification scheme for parts can be 

developed. 

Table 1: Core subject area, search strings, databases and search fields 

Core subject area Search strings Databases Search field 

Additive 

Manufacturing & 

Spare Parts 

("additive manufacturing" OR "direct 

manufacturing" OR "3d printing" OR "3d-

printing" OR "3-d printing" OR "digital 

manufacturing" OR "rapid manufacturing" 

OR "three-dimensional printing" OR "three 

dimensional printing" OR "freeform 

fabrication" OR "solid free form 

fabrication" OR “rapid prototyping” OR 

"additive fabrication" OR "additive 

production" OR "generative 

manufacturing") AND ("spare part" OR 

"spare parts" OR "replacement part" OR 

"replacement parts" OR "service part" OR 

"service parts" OR "repair part" OR "repair 

parts") 

EBSCO Abstract 

ProQuest Anywhere 

except  

full text 

Science 

Direct 

Abstract, 

title,  

keywords 

EBSCO Abstract 



Additive 

Manufacturing & 

Supply Chain 

("additive manufacturing" OR "direct 

manufacturing" OR "3d printing" OR "3d-

printing" OR "3-d printing" OR "digital 

manufacturing" OR "rapid manufacturing" 

OR "three-dimensional printing" OR "three 

dimensional printing" OR "freeform 

fabrication" OR "solid free form 

fabrication" OR “rapid prototyping” OR 

"additive fabrication" OR "additive 

production" OR "generative 

manufacturing") AND ("supply chain" OR 

"supply chains") 

ProQuest Anywhere 

except full 

text 

Science 

Direct 

Abstract, 

title,  

keywords 

Spare Parts & 

Supply Chain 

("spare part" OR "spare parts" OR 

"replacement part" OR "replacement parts" 

OR "service part" OR "service parts" OR 

"repair part" OR "repair parts") AND 

("supply chain" OR "supply chains") 

EBSCO Abstract 

ProQuest Anywhere 

except full 

text 

Science 

Direct 

Abstract, 

title,  

keywords 

Spare Parts & 

Classification 

("spare part" OR "spare parts" OR 

"replacement part" OR "replacement parts" 

OR "service part" OR "service parts" OR 

"repair part" OR "repair parts") AND 

("classification" OR "segmentation" OR 

"ABC") 

EBSCO Abstract 

ProQuest Anywhere 

except full 

text 

Science 

Direct 

Abstract, 

title,  

keywords 

1. The column ‘Search field’ is unique for each database, explaining the difference among them. 

Only scholarly, i.e., peer reviewed journal articles were used in this review. Practitioner 

magazines or newspaper articles were not included. The search strings were used to perform 

literature search in the selected databases. The resulting literature from the search were either 



included or excluded for further assessment (Tranfield et al., 2003). The inclusion and exclusion 

process was divided into subsequent stages with specific criteria for their inclusion or exclusion. 

The criteria used are reported in Table 2. 

Table 2. Criteria used for the inclusion/exclusion process 

Phase Inclusion and/or exclusion criteria 

1 Execution of literature searches with developed search strings. 

2 Exclusion of non-available papers and duplicates within each search string. 

3 Exclusion of duplicates across search strings to establish a new search category (AM 

+ SP + SC) containing papers appearing under all three search strings. 

4 Execution of abstract assessments, and exclusion of papers without relevance. 

5 Execution of full-read assessments, and exclusion of papers without relevance  

6 Execution of backwards literature search based on a content analysis of the resulting 

papers from phase 5. 

In phase 1 of conducting the review, 623 papers were identified from the three databases using 

the developed search strings. In phase 2, duplicate papers within each search string were 

removed from the results. In phase 3, duplicates were removed across search strings. For 

example, fourteen papers appeared in the three search strings presented in the conceptual model 

shown in Figure 1. In phase 4, the abstracts were read to exclude papers that did not focus on 

metal or plastic parts. This is because the initial review found that these papers were vastly 

different and had little to no relevance to our research questions. In phase 5, the above criteria 

from phase 4 were reused along with an exclusion criteria relating to the direct relevance of the 

papers to the research questions. In phase 6, a content-based backward literature search was 

conducted in which papers from the reference list of the already selected papers were evaluated 

for relevance to the research questions. To manage subjectivity between individual researchers, 



exclusion phase 4-6 was conducted jointly via mutual discussions among the first and second 

authors of this paper. The papers’ relevance in relation to the research questions was the primary 

criteria used for exclusion/inclusion decisions. The outcome after the inclusion and exclusion 

process was a set of papers to be further analysed. Table 3 provides a detailed overview of the 

literature gathered from each search string, and the outcome of each phase. In phase 4, 

assessments of abstracts were performed on 312 papers that emerged from phase 3. In phase 5, 

full assessments, i.e., reading the paper in full, were performed on the 186 papers that emerged 

from phase 4. After the full-read assessment in phase 5, 57 papers qualified for the content 

analysis. Inter-rater reliability to assess the validity of the inclusion of papers was calculated 

(Voss, et al., 2002). Both the raters decided to include 57 papers and exclude 546 papers while 

there were disagreements on remaining 20 papers. After discussing the remaining 20 papers 

with the other three authors, it was decided to include the 57 papers for review. Thus, Inter-

rater reliability calculated using Cohen’s κ was 82.6.  In addition to these papers, 45 more 

papers were captured through the backward literature search process. Overall, papers that were 

identified to be related to the classification criteria accounted for the vast majority of included 

papers. Appendix 1 reports the final list of included papers in this literature review. 

Table 3: Outcome of inclusion/exclusion phase 1-7 related to each search category 

 
1st 2nd 3rd 4th 5th 6th Total 

AM + SP 52 35 21 8 6  6 

AM + SC 187 95 81 61 25  25 

SP + SC 274 156 142 78 7  7 

AM + SP + SC   14 10 7  7 

SP + Classification 110 58 54 29 12  12 

Backwards      45 45 

Outcome 623 344 312 186 57 45 102 



2.1.3. Dissemination outlets over time 

The characteristics of the literature selected from each core subject area are illustrated in Figure 

2 and Figure 3 in terms of the number of publications over time, and the publication outlets. 

The papers’ year of publication ranged from 1986 to 2017, with a significant increase in 

publications in recent years (Figure 2). A large contributor to this was the increased focus on 

the impact of AM in supply chain management. Several journals are represented as 

dissemination outlets for research on AM (Figure 3). 

 

 

Figure 2. Distribution of literature over time 

 



 

Figure 3: Distribution of literature over publication outlets 

 

3. Content Analysis of the Literature Review 

The content analysis of the literature review is divided into three sections; one focusing on the 

general and technical aspects of AM in terms of technologies, applications, and limitations, one 

focusing on spare parts management and identification of classification criteria, and finally one 

focusing on the intersection between AM and spare parts. 



3.1. Terminologies used in the AM technologies literature 

Before identifying spare parts that are suitable for AM, it is important to understand the 

different terminologies used for AM technologies. The review showed that various 

terminologies and definitions relating to AM exist in the literature. The AM-related 

terminologies used in our literature sample are reported in Figure 4. 

Most of the terminologies were used to define technologies or machines,  to define 

processes, techniques, methods or concepts, or to identify applications. ASTM International 

defines AM as ‘a process of joining materials to make objects from three dimensional (3D) 

model data, usually depicted as ‘layer upon layer’, as opposed to subtractive manufacturing 

methodologies which take away layers. The synonyms for AM include: additive fabrication, 

additive processes, additive techniques, additive layer manufacturing, layer manufacturing, and 

freeform fabrication (ASTM International 2013).  

 

 

Figure 4: AM-related terminologies and their usage across papers 

(Also, see Appendix 2 for details on how the different terminologies had been used in academic research) 



Additive manufacturing (AM) is the most commonly used terminology of the considered 

terminologies, appearing in most AM-related papers. AM has been defined as a technology 

(Lindemann et al., 2012; Khajavi et al., 2014; Holmström and Partanen, 2014) as a group of 

technologies (Attaran, 2017), and as a process (Berman, 2012; Knofius et al., 2016; Durão et 

al., 2017).  

Rapid prototyping has been referred to as a technology (Khajavi et al., 2014; Lindemann 

et al. 2012), as a process (Achillas et al., 2014; Rogers et al., 2017; Strong et al., 2017) and as 

an application of AM-related technologies (Gress and Kalafsky, 2015; Jha, 2016; Feldmann 

and Pumpe, 2017). Similarly, the literature refers to rapid manufacturing as a technology 

(Lindemann et al. 2012; Sasson and Johnson, 2016), as a process ( Huang et al., 2013; Oettmeier 

and Hofmann, 2016; Ryan et al., 2017), and as an application of AM-related technologies 

(Meisel et al.,2016; Attaran, 2017; Ortt, 2017). Direct digital manufacturing (DDM) has been 

referred to as a technology (Attaran, 2017; Sasson and Johnson, 2016; Sun and Zhao, 2017), 

and as a process (Holmström et al., 2017; Holmström et al., 2016; Oettmeier and Hofmann, 

2016). Similarly, direct manufacturing has been described as a technology (Khajavi et al., 2014; 

Li et al. 2017), and as a process (Holmström et al., 2017; Oettmeier and Hofmann 2016). Other 

terminologies used in the literature are layer or layer-by-layer manufacturing (Attaran, 2017; 

Zanardini et al., 2016), freeform fabrication (ASTM International 2013; Strong et al., 2017; 

Sun and Zhao 2017), additive fabrication (ASTM International 2013; Attaran, 2017; Strong et 

al., 2017), , generative manufacturing (Hasan et al., 2013; Oettmeier and Hofmann, 2016), and 

3D manufacturing (Berman 2012; Sasson and Johnson 2016; Sun and Zhao, 2017). In this 

paper, we used the most common terminologies and definitions in the literature to identify the 

different technologies and equipment used in AM. 



3.1.1. AM technologies and equipment manufacturers 

Selection of spare parts that are suitable for AM will depend on the characteristics of AM 

technologies and the equipment. Based on the understanding of different AM terminologies, 

we proceeded to develop an overview of the different AM technologies and AM equipment. 

This overview will help companies determine the limits of the AM technologies and equipment, 

and select the spare parts that are most suitable for AM, while considering their current 

capabilities and limitations of the technologies. 

The different AM technologies utilize a specific mechanism to build objects layer by 

layer, and have distinct advantages and disadvantages. The major patented AM technologies 

are briefly reviewed below. The ISO/ASTM 52900:2015 standard was created in 2015 to 

standardize all terminology as well as classify different process categories and associated AM 

technologies (ISO/ASTM, 2015). Similar terminology standardization is provided by ISO 

(2014).  ISO (2015) provides explanations for the process fundamentals of AM, including types 

of materials that can be used in different process categories. Together, these standards serve an 

important role in highlighting the difference between characteristics of different AM 

technologies, process, and terminologies, as well as current limitations of different process 

categories. Hence, the standards must be considered before selecting technologies and for 

identifying  spare parts that are suitable for AM.    

The seven AM process categories (and the associated AM technologies in parentheses) 

are as follows: 

1. Material extrusion (Fused Deposition Modeling),  

2. Vat Polymerization (Stereolithography and Direct Light Processing),  

3. Powder Bed Fusion (Selective Laser Sintering, Selective Direct Metal Laser Sintering, 

Selective Laser Melting, Electron Beam Melting),  

4. Material Jetting (material jetting and Drop On Demand),  

5. Binder Jetting (Binder Jetting),  



6. Direct Energy Deposition (Laser Engineering Net Shaping and Laser Based Metal 

Deposition),  

7. Sheet Lamination (Laminated Object Modelling and Ultrasonic Additive 

Manufacturing)  

Because a review of all the above processes and technologies are beyond the scope of this paper, 

we review the most common AM technologies, the materials used, and their advantages and 

disadvantages. We also identify which of the above processes and technologies will be most 

suitable for spare parts.  

Fused deposition modeling (FDM): This technology extrudes and deposits ultra-thin 

layers of thermoplastic material. By heating the material to 1°C above its melting point, it 

solidifies immediately to the previous layer when added. FDM has an accuracy of ±0.05 

mm, produces a seam line between layers, requires support materials in the process, has long 

build time, and suffer from delamination due to temperature fluctuations. Thermoplastics 

that require better engineering properties require a higher temperature to be heated to a 

malleable state and hence are more difficult to print. Industrial FDM printers work in a 

tightly controlled environment limiting likelihood of warping and distortion. Most 

industrial machines also use dual extrusion allowing support structures to be printed in 

dissolvable materials. But, most suitable applications of FDM are in investment casting 

patterns, jigs and fixtures and prototypes (Redwood et al., 2018). One recent technological 

development among the extrusion processes is Continuous Filament Fabrication (CFF) by 

MarkForged, which uses a second print head and reinforces the printed thermoplastic 

material by embedding continuous strands of carbon fibers or fiberglass (Redwood et al., 

2018). 

Stereolithography (SLA) and Direct Light Processing (DLP): Vat polymerization is a 

process in which a liquid photopolymer in a vat is selectively cured by light activated 



polymerization.  SLA uses a photosensitive monomer resin as well as a UV laser to build 

parts layer by layer. It uses mirrors known as galvanometers to rapidly aim a laser beam across 

a vat. The laser beam solidifies the pattern by tracing the cross-section of the part on the 

surface on the liquid. After solidification of each layer, the supporting foundation beneath 

the part is moved down to cover the part with a new layer of resin, where a new layer is 

solidified by the UV laser. SLA creates a good surface finish, and when the object is 

complete, supporting materials must be removed manually. Drawbacks of this technology 

are relatively small build chambers, high cost of the photopolymer, and limited compatible 

materials. DLP uses a similar method but uses a digital light projector screen to flash a 

single image of each layer at once. Thus, it can have faster print times compared to SLA. 

SLA and DLP use thermoset photopolymers to produce the parts. These technologies 

produce dimensionally accurate parts with high details, intricate features and accurate 

tolerances. Its primary applications are in jewellery, dental and hearing aids industries. 

Recent technological development in vat polymerization is Continuous Direct Light 

Processing Method which uses a continuous upward motion of the build plate but can work 

with specific photopolymers (Redwood et al., 2018). 

Selective laser sintering (SLS): Powder Bed Fusion process use thermal energy to 

selectively fuse regions of powder bed. Among the Powder Bed Fusion technologies, SLS uses 

a laser to fuse particles of build materials layer by layer on top of each other (Gao et al., 

2015). After sintering each layer, a layer of build material is drawn across the whole 

powder bed. A laser then sinters the layer of material at those areas that corresponds the 

geometry of the part at a given cross-section of the part. SLS can produce parts from any 

material that can be pulverized, including polymers, metals, ceramics, and glass. Post-

curing is not required, the build time is fast, and complex parts can be manufactured. 

Drawbacks are that SLS is that surface finish is not as good as compared to SLA, and that 



material changeover is difficult. It has long lead times, require post-processing, requires 

skilled operators and advanced material handling systems (Redwood et al., 2018). 

Materials with low thermal conductivity are suitable for Powder Bed Fusion processes. 

Thus, for polymer based SLS, polyamides are almost exclusively used. Interested readers 

may refer to Tiwari et al. (2015) for detailed description and analysis related to choice of 

materials for SLS. To further enhance mechanical properties, heat and chemical resistance 

of parts, polyamides like nylon can be combined with aluminium, glass, carbon or graphite. 

It does not require support structures. SLS is best suited for producing strong functional 

parts with complex geometries and consistent surface finish. Hence, its primary 

applications are in functional parts, low volume part production and complex ducting. 

Thus, SLS can be considered as a potential technology for spare parts. A recent development 

in a technology similar to SLS is Multi Jet Fusion developed by Hewlett Packard (HP), which 

uses a detailing agent. The detailing agent reduces fusing at the boundary of the parts to produce 

features with sharp and smooth edges. 

Direct Metal Laser Sintering (DMLS) and Selective Laser Melting (SLM) use similar 

methods as SLS. DMLS heats the metal powder to a point so that it can fuse together at a 

molecular level while SLM uses the laser to melt the metal powder completely to form a 

homogeneous part. Thus, DMLS produced parts from metal alloys while SLM uses single 

element metals like titanium. DMLS and SLM can produce complex parts with geometries 

which traditional manufacturing technologies cannot produce. But, costs of the processes are 

high and build sizes are also limited. Usually design for AM can make a part a suitable candidate 

for DMLS/SLM. DMLS sand SLM are used for dental, medical, automotive and aerospace 

applications. 

Material Jetting: Material Jetting is a process in which droplets of materials are 

selectively deposited and cured on a build plate. Material jetting operations deposit build 



materials in a rapid line-wise fashion. Thus, multiple parts can be built in a single line with 

no effect on build speed. Thermoset photopolymers are used in material jetting which are 

cured by UV light. Hence, materials with low viscosity are most suitable. Parts produced 

using material jetting are dimensionally very accurate, have very smooth surfaces. But, the 

parts produced have poor mechanical properties and are brittle. Hence, the technology is 

suitable for prototypes, and low-run injection moulds, and are not ideally suited for spare 

parts of industrial products. 

Binder Jetting: It is a process in which a liquid binding agent selectively binds regions of 

a powder bed. Binder jetting moves a print head over the powder surface depositing binder 

droplets that bind the powder particles together to produce each layer of the part. The 

process does not use any heat and thus parts do not suffer from residual stresses. Operating 

costs are low and large parts can be printed. Mechanical properties of parts of the parts 

coming directly out of the print bed are low and secondary processes are needed to achieve 

the desired properties. 

Laser engineered net shaping (LENS): Direct Energy Deposition is a process in which 

focused thermal energy is sued to fuse materials by melting as they are deposited. LENS, 

one of the technologies following the above process builds objects by focusing a high-

powered laser beam on top of a substrate, whereby a molten pool is created, in which metal 

powder is injected to build layers. The supporting foundation beneath the laser beam is 

moved down as each layer is build, by which the desired geometry is created. LENS offers 

appropriate control of manufacturing parameters, and desirable geometric and material 

properties. Apart from being used to manufacture new parts, it can also be used to repair 

parts. Drawbacks of this technology are that parts that are produced with LENS technology 

require postproduction, as they must be cut from the build substrate, and have rough 

surfaces. 



Laminated object manufacturing (LOM): Sheet lamination is a process in which sheets 

of material are bonded to form a part. LOM is a technology uses adhesive-coated sheet materials 

for sequentially laminating and cutting of 2D cross-sections on top of each other to create 

3D objects. A laser beam is used for cutting each layer, with a cutting depth corresponding 

exactly to the thickness of each layer. LOM can be used to manufacture objects in paper, 

metals, plastics, fabrics, synthetic materials, and composites. Drawbacks of the technology 

are dimensional instability, lack of product quality due to internal cavities, and 

postproduction requirements. 

The above overview of AM processes and technologies show that SLS, DMLS, SLM 

and Binder Jetting are most suitable for producing functional parts and spare parts for industrial 

use. Multiple factors need to be considered before a company can make such a choice. Process 

and material design, and part related characteristics (performance, supply and demand issues) 

are some of the factors that will guide the decision making for the choice of AM technologies 

and equipment for spare parts production. The process and material design domain includes the 

elements that describe the printing process, such as printing technology, printing material, and 

printing parameters. The design-related domain includes the elements that describe the design 

model, such as design features and surfaces (Wang et al., 2018). The part-related domain 

includes the elements that describe the performance of the printed part, such as general 

properties (e.g., tensile strength and surface finish), quality of features, supply characteristics 

(e.g., lead time), and demand characteristics (e.g., predictability of demand). Factors in the 

process and material-related domains and design-related domain could influence attributes in 

the part related characteristics. With an understanding of advantages and disadvantages and 

their potential trade off relationships, companies can choose appropriate AM equipment to 

achieve the desired objectives (Wang et al., 2018).  For example, metal binder jetting can be 

much cheaper compared to DMLS or SLM. However, parts produced using binder jetting will 



not be able to meet strict tolerances and mechanical properties. Also, DMLS and SLM can have 

high lead times and build size restrictions.  Thus, for a larger sized part without load bearing 

and hence high mechanical property requirements, binder jetting can be suitable, while for 

smaller alloy parts which have high mechanical property requirements, DMLS can be 

considered as most suitable. Materials which can be used for AM, have to be carefully examined 

for their different properties such as dimensional stability, strength, viscosity, and resistance to 

heat and moisture (Sherman, 2009; Joshi and Sheikh, 2015). We summarize the AM 

technologies and materials, which can be used for spare parts production in Table 4 below. 

Table 4: Summary of AM technologies suited for spare parts production  

AM 

technology 

Most common 

materials 

Part Size Mechanical 

properties 

Dimensional 

accuracy 

SLS Thermoplastic 

powders (Nylon 6, 

11,12, ABS, PEEK) 

Average build 

volume of 300x 300 

x 300 mm and 

bigger machines 

with 750 x 550 x 550 

mm  

Good + or – 0.3% 

with  a lower 

limit of + or -

0.3 mm 

DMLS Metal powders 

(stainless steel and 

alloys) 

Small (maximum of 

250 x 150 x 150 

mm) 

Very good + or - 0.1 mm  

SLM Metal powders 

(aluminium, 

titanium) 

Small (maximum of 

250 x 150 x 150 

mm) 

Very good + or - 0.1 mm 



Binder 

Jetting 

Sandstone, stainless 

steel, Inconel alloy, 

Tungsten carbide 

Large (up to 1800x 

1000 x 700 mm) 

Not as good 

as 

DMLS/SLM 

+ or - 0.2 mm 

(metal) or + 

or – 0.3 mm 

(sand) 

(Adapted from Redwood et al., 2018) 

A list of 37 companies offering industrial additive systems and equipment has been reported 

(Wohlers Associates 2018). A detailed overview of the flagship equipment used in each 

company is given in Appendix 3. For example, details on build envelope, layer thickness, 

materials, and build speed are reported. Also, the post-processing requirements, along with 

critical factors that need to be considered while choosing the most appropriate AM process and 

equipment are provided.  AM equipment and systems can be differentiated on the basis of 

underlying technologies, and applications. For metal AM systems, build envelopes varies from 

200 mm x 200 mm x 380 mm (Arcam EBM 2018) to 5,791 mm x 1,219 mm x 1,219 mm 

(Sciaky 2018). For plastic AM systems, build envelopes varies from 180 mm x 230 mm x 200 

mm (Tiertime 2018) to 2,800 mm x 2,400 mm x 2,300 mm (Voxeljet 2018). The AM systems 

also vary on layer thickness, materials they can use, and build speed. The latter depends on the 

materials used. For AM systems produced with sand, the maximum print speed identified is 

400 l/h (Exone 2018). For plastic, the maximum print speed identified is 15 l/h (Farsoon 

Technologies 2018), and for metal it is 250 cm3/h (Irepa Laser 2018).  

In summary, multiple AM technologies and different types of equipment are currently 

available. Companies planning to manufacture spare parts using AM, must consider the 

capabilities and limitations of the technologies in terms of build volume, build speed, materials 

flexibility, post-processing requirements and the spare part’s design and supply requirements 

to determine feasibility of manufacturing the spare parts using AM.  



3.2. Spare parts classification criteria and methods 

After analysing AM technologies and capabilities of the equipment, we need to understand the 

criteria, which can be used to classify spare parts and assess their suitability for AM. As limited 

research exists on classification of spare parts that are suitable for AM, the broader literature 

on spare parts classification is reviewed in this section. In order to reduce the complexity 

involved in managing thousands of spare parts, it is common practice to classify the parts 

according to their similarities (Silver et al.,1998). From the traditional single-criterion ABC-

classification based on annual dollar usage (average unit price x annual demand volume) to the 

advanced multi-criteria methods, a wide range of classification schemes have been proposed. 

The criteria used for these classifications vary according to the context in which they were used. 

Our review revealed that about twenty criteria were applied for classification purposes more 

than once in the literature. The distribution of different criteria used in the literature is reported 

in Table 5. Additionally, another twenty-one criteria were mentioned at least once, which were 

distributed across twelve 12 papers, and reported as ‘other criteria’. This ‘other’ category 

contained the following criteria: Stock-out cost, part weight, part volume, availability of spares-

consumables, irreplaceability, scarcity, order size requirement, ordering cost, masked time, 

supply certainty, competition, payment terms, maintenance type, availability of technical 

specifications, failure type, machine category, spare part exchange time, exchange process 

complexity, special qualifications required, availability, and turnover rate. As the count at the 

bottom of Table 5 shows, the most frequently used criteria to classify spare parts are lead-time, 

unit cost, criticality, and annual dollar usage. The fifth most used criteria was demand volume, 

which is a little different, as any two of the three criteria (unit cost, demand volume, and annual 

dollar usage) can be used to calculate the other criterion. This dependency is also evident for 

several other criteria, and when selecting the criteria to use for selecting spare parts that are 

suitable for AM, these dependencies and relationships need to be carefully evaluated because 

all the criteria mentioned may not be necessarily independent.  



An overview of how the methodologies used for classification was developed from bi-

criteria analysis to various multi-criteria decision support tools is reported in Table 5. The 

classification schemes utilized some of these techniques: pairwise comparison, a distance-based 

method, outranking, compromise ranking, weighted linear optimization, and rule-based 

decision making.  

Several papers have benchmarked methods against those developed earlier by using the 

same data and criteria (Hadi-Vencheh,, 2010 and Hatefiet al., 2014). Some of these methods 

can also be used for classification of spare parts suitable for AM. However, having a large 

number of criteria and parts may require that the patterns amongst the most suitable parts be 

identified using suitable machine learning based classification schemes and clustering 

techniques in order to save time in the screening process.   

The technical characteristics of parts, which can be considered for spare parts selection 

for AM, are material type, and part size (Knofius et al., 2016; Lindemann et al., 2015). 

Measuring part size in a cubic measure can be used to determine the speed of printing a specific 

part, but it does not indicate whether a part can be printed by specific AM technologies. 

Additional characteristics in cases where parts redesign need to be considered can be 

advantages of using existing materials, possibility for improvement of part characteristics via 

design optimization, reduced material consumption and faster processing times (Lindemann et 

al., 2015). 

Our review revealed that 17 out of 44 papers, either focussed entirely on spare part 

classification, or discussed spare parts in relationship to the criteria mentioned in this paper. 

Those papers are marked with an asterisk in the first column in Table 5. The five criteria applied 

in the spare parts context included:  number of suppliers, production availability, life cycle 

stage, probability of failure, and demand predictability. All the above-mentioned criteria are 

related to downtime reduction and supply risk, which are especially important in a spare parts 



context. Therefore, these findings suggest that special attention should be placed on these five 

criteria when selecting the criteria for ranking spare parts that are suitable for AM. 

Table 5. Criteria and methods used in ABC classification literature 

 

 

 



Table 5 (continued). Criteria and methods used in ABC classification literature

 



3.3. Selecting spare parts that are suitable for AM 

In this section, we reviewed the literature, which considered selection of spare parts for AM. 

Despite many studies considering AM in the context of supply chain, only two studies 

considered how companies should identify appropriate part family candidates to be 

manufactured with AM technologies, with only one of them actually focusing on spare parts. 

Knofius, et al., (2016) presented a methodology for ranking spare parts relative to each other, 

according to their potential value when produced with AM. The proposed method designed to 

rank large numbers of spare parts was a top-down approach, using data available in standard 

information systems (Knofius et al., 2016). Knofius et al., 2016 proposed several opportunities 

for improvement in spare parts management offered by AM, together with the attributes of 

multiple spare parts affecting those opportunities. As the proposed method was intended to be 

used by companies across multiple industries, a more complete description of potential 

attributes would have created a flexible methodology for users. Such a flexible methodology 

can configure individual company objectives in accordance with attributes of alternative spare 

parts. For example, the company objectives used to select the spare parts cited in the Knofius 

et al. (2016) study were securing supply, reducing downtime and reducing costs. This study 

used analytical hierarchy process (AHP) as the procedure for selecting the parts. The details for 

selecting this particular methodology was not specified, while alternate methods could have 

been used. Lindemann et al. (2015) presented a methodology for identification of appropriate 

part candidates to be redesigned and manufactured with AM technologies, considering the 

entire life cycle of products. According to Lindemann et al. (2015), introducing AM 

technologies into businesses is a learning process and not a ‘plug and play’ solution. Many 

companies are testing AM technologies on a sample of parts from their current product 

portfolios (Lindemann et al., 2015). However, due to the current state of AM technologies, they 

cannot be used to manufacture all kinds of parts (Lindemann et al., 2015). In fact, in most cases, 



when considering AM for parts currently being produced with conventional manufacturing 

technologies, a technology switch is not enough, unless part redesign is also simultaneously 

taken into account (Lindemann et al., 2015). They suggest a three-phased workshop-based 

method with inclusion of AM experts, that tries to reduce the time-consuming effort of 

information collection before parts are selected. However, their proposed method is only suited 

for bottom-up assessment of parts with regards to their potential value when redesigned and 

manufactured with AM technologies. 

In conclusion, our review showed that only two studies have proposed methods for 

evaluating and selecting spare parts for AM. One of the suggested method takes a top-down 

approach, using data available in standard information systems, and focused on ranking of 

spare parts based on their current functionality, according to their potential value when 

manufactured with AM. The other study takes a bottom-up approach for identification of 

spare parts qualified for redesign and functional integration with other spare parts, where after 

manufactured with AM. The review showed that there is a need for in-depth research and 

development of a framework and methodology for selecting spare parts, suitable for AM. 

4. Discussion and future research directions 

Spare parts management is characterized by parts of high variety, low demand volume, sporadic 

and unpredictable demand, high service requirements, high financial consequences of stock-

outs, and high prices for individual parts. To meet customer requirements of fast response times, 

many original equipment manufacturers (OEMs) make significant investments in spare parts 

inventories. To reduce complexity, spare parts are classified according to similar 

characteristics. 38 criteria for spare parts classification were identified from the literature 

review. 16 criteria, were mentioned more than once, and were identified in papers focusing on 

classification of spare parts. Five criteria most relevant to classification of spare parts were 

identified to be: probability of failure, number of suppliers, demand predictability, stock-out 



cost, and production availability. All of these criteria were related to downtime reduction and 

supply risk. 

AM has the potential to manufacture spare parts, reduce delivery lead time and reduce 

inventory. AM technologies, suitable for industrial spare parts production, along with 37 

companies offering industrial AM systems and equipment were identified in this paper. Among 

those applicable for manufacturing of spare parts in metal build envelopes varied significantly. 

The review shows that there is a dearth of research on selecting spare parts, suitable for AM. 

Detailed understanding of different spare parts classification criteria and the assessment of 

capabilities of available AM technologies need to be considered while taking into account the 

specific application context before finalising the most appropriate method to select the spare 

parts, most suitable for AM. Companies not using relevant spare parts classification criteria and 

a systematic data driven process of identifying most suitable spare parts for AM, are likely to 

miss some potential aspects and spend a lot of time in conducting such an exercise. There is 

limited research addressing this issue. Therefore, this review is useful, and in particular, has 

paved the way to help identify missing themes and promising opportunities for future research. 

These opportunities for future research are highlighted below: 

Research Direction #1: Spare parts screening for AM with limited data availability 

Suitable data to pre-screen parts and score them on their suitability for AM may not be 

easily available. One reason for the above is that some of the data may reside in an 

Enterprise Resource Planning (ERP) system while data about design may reside in a 

different Product Life Cycle Management (PLM) System. Thus, different functions within 

a company will have access to the desired data. For some organizations, only limited 

amount of required data may be available if the products are old and if drawings do not 

exist. Many small and medium enterprises may also have limited data availability. For such 

contexts, it is important to develop processes to systematically identify the required parts 



through a bottom-up approach by utilizing the experiences of service and maintenance 

technicians. Organizations like Deutsche Bahn have adopted such an approach (Brickwede, 

2017), and yet there is limited research to formalize and generalize this process and make it 

applicable for different contexts.  

Research Direction #2: Cross-functional process for selecting spare parts suitable for AM  

For organizations, where the required data may be available and can be combined, a formal 

process is required. This process includes: validation of data, creating cut-offs for screening 

the parts, and scoring the parts. This requires a cross-functional effort across the 

organization, which may also involve external or internal AM experts. Finally, business 

cases need to be developed for the identified spare parts by comparing AM with existing 

manufacturing technologies over the lifecycle of the product. There is limited literature on 

developing a comprehensive process involving multiple functions to identify the criteria to 

be used to determine the suitability of a spare part using AM, to score and select those parts 

and then to develop the business case that justifies the investment. 

Research Direction #3: Methodology for spare parts selection for AM  

Scoring the parts on suitability for AM is a multi-criteria decision making problem 

(MCDM) and there can be multiple MCDM approaches which can be used, which will 

depend on the nature of relationships between the criteria and the form in which the data 

is available. For example, such approaches may involve quantitative or subjective 

judgment by experts or a combination of both judgments. Many of the criteria that can be 

used to determine suitability of spare parts for AM may be inter-related. Therefore, 

considering such dependencies among the criteria when scoring spare parts with respect to 

objectives is paramount in ensuring a valid scoring framework. This issue has not been 

addressed in the existing literature. Multiple methods need to be applied, and the ensuing 

results validated with the experts. Currently, there are no clear guidelines available in the 



literature in terms of choosing appropriate methodologies. Future research should be 

directed on developing guidelines to choose the most appropriate method depending on the 

context. 

Research Direction #4: Understanding characteristics of spare parts suitable for AM 

Evaluating a large portfolio of spare parts across multiple criteria is a time-consuming 

process. As more products are launched and their spare parts added to the portfolio, 

companies would like to avoid repeating the entire evaluation process. Thus, there is a 

need to understand the characteristics of spare parts which are most suitable for AM 

compared to the less suitable ones, and use those to decide whether any new part is 

suitable for AM or not. As the companies identify more spare parts, which can be 

manufactured using AM, analysis of characteristics of those parts and identifying patterns 

using different machine learning techniques is important. This will facilitate feature and 

characteristic recognition of parts to identify parts which are feasible to be printed and 

then also matching them with the most appropriate AM technology and equipment. This 

can ensure that the entire spare parts selection process for AM need not be repeated when 

new products are developed and new parts are added to the spare parts population. 

Commercial versions of such software which have been recently developed include 

Partfinder by enter2net.de, and AM Part Identifier by 3yourmind.  

Research Direction #5: Design for AM and impact on part selection 

This review focused only on spare parts selection for AM. If parts for existing or new products 

are considered along with options for design for AM, the process of selection of parts can 

become complex. This is so because some individual parts with existing designs may not be 

suitable, but could have potential if those are redesigned or combined to create an integral 

product architecture. In such cases, technical performance measures such as weight reduction, 

strength and durability of the parts will also have to be considered. Future research should be 



directed at the parts selection problem with design for AM in mind. The options for design for 

AM could be amenable to a combination of a top-down data driven approach and the bottom-

up expert opinion driven approach which is extends the workshop based bottom-up approach 

proposed by Lindemann et al. (2015). 

Research Direction #6: Impact of AM on product modularity and integrality 

 The influence of AM on product modularity and integrality is important to understand. This 

influence has an effect on product development strategies, product performance as well as on 

supply chain performance. This area is expected to be an interesting field of research in the 

coming years, with an increased use of AM that could make integral design a favourable 

approach for certain parts, even though the current design may prefer a modularity approach. 

Considering design changes will require companies to evaluate whether to combine individual 

parts and how many of those to combine considering multiple performance objectives such as 

lead time reduction, inventory cost reduction, supply risk reduction, product quality 

improvement, or reduction in carbon footprint. Selecting spare parts for AM can trigger 

redesign decisions. Product modularity and integrality considerations need to be taken into 

account. For example, replacing a single spare part using AM may not be economically justified 

for modular products, but creating an integral design, which can be produced using AM, may 

make it feasible. But, there can be additional costs involved. Hence, there is a need for research 

to explore the various trade-offs related to production of spare parts by AM and their 

implications on product modularity and integrality.  

Research Direction #7: Considering usage of AM in conjunction with conventional 

manufacturing technologies for spare parts production  

AM technologies can also be used to produce tools and moulds with the finished part that is 

being produced using existing technologies such as injection moulding (Charalambis et al., 

2017). This can open up possibilities of low-volume spare parts production using existing 



technologies (currently suitable for only high volumes). Such usage of AM in conjunction with 

conventional technologies (for example, using injection moulding) will help in combining 

superior finish and materials flexibility associated with injection moulding. In this way, design 

complexity can be handled via AM and it is likely that low volume spare parts production can 

become more economical even for complex designs. In some cases, injection moulding alone 

is may not be a favourable option, and AM alone may not be feasible. This could be because of 

limited choices in materials, and inferior finish quality.  This argument is also in line with Gao 

et al. (2015) and Holweg (2015), who commented that AM should be viewed as a complement 

to conventional manufacturing. AM can be exploited due to its unique capabilities in making 

existing products better, and for the ability to manufacture entirely new ones that previously 

could not be made. Thus, the future research on spare parts selection for AM should also 

consider the above option of using AM in combination with conventional manufacturing 

technologies.    

5. Conclusions 

The objective of this review was to create a foundation that companies can use to develop 

methodologies to identify spare parts, which are most suitable for AM. We conducted a 

systematic review of the literature with the following specific goals. First, to document the 

different AM technologies and terminologies, which can be used as inputs to the part selection 

process. Second, to identify the criteria, which can be used to classify spare parts and select the 

most suitable ones, which can be manufactured using AM. Third, to identify the methodologies 

which can be used to identify the most suitable spare parts. As the literature relating to selecting 

parts suitable for AM is limited, we relied on the broader spare parts classification literature to 

identify the criteria, that can be used to select spare parts suitable for AM. We supplemented 

the knowledge base by creating a database of AM equipment manufacturers and by reviewing 

the different capabilities of the equipment.  



In line with these objectives, this review makes two contributions. First, the review 

showed that multiple criteria can be used to classify spare parts to assess their suitability for 

AM.  Their suitability will depend on the context, and thus each company should choose the 

most appropriate spare parts, which are relevant for their business and for which data can be 

made available. Usually, redesign of spare parts to be suitable for AM is not an option. 

Therefore, the technical characteristics that are most appropriate to classify spare parts are 

dimension, weight of the products, and material specifications. A key consideration in the 

selection of spare parts suitable for AM is also defining the objectives that a company may want 

to achieve by using AM for spare parts manufacturing. For example, it could be downtime 

reduction, inventory reduction, lead time reduction, or supply risk reduction, to name a few. 

The basis for which each part is evaluated on the chosen criteria, could help achieve the sought 

after objectives of the company. Hence, companies must define the objectives upfront. The 

objectives most frequently mentioned in the literature are lead-time reduction, inventory cost 

reduction (Muir and Haddud, 2018; Ghadge et al., 2018; Khajavi et al., 2014), supply risk 

reduction, and downtime reduction. However, the extant literature has paid limited attention to 

examining the relationships between parts classification factors and company objectives.  

Second, this review identified future research opportunities in the nascent field of spare 

parts suitable for AM.  We identified seven future research directions relating to several domain 

areas. They include: methodology for spare parts selection; processes to be followed by 

companies to conduct assessments for suitability of spare parts; impact of AM on product 

modularity and integrality, in particular, for parts with redesign options; and considering 

options that utilize benefits of existing conventional technologies and AM for spare parts 

production. 

AM is now actively considered by industrial manufacturers for spare parts as well as 

production of parts for new products. Still, there are limited examples of such parts, which have 



been used in practice in a product. As companies attempt to adopt AM, there will be some 

failures. Analysing such failures and by engaging with both equipment and material 

manufacturers, new solutions could be obtained either in new or customised material 

development. For instance, this can happen by automating the AM process thereby improving 

productivity, or by improving or reducing post-processing tasks. As the AM processes are still 

evolving, there are plenty of opportunities to capture real-time data from AM processes, 

analysing this data and simulating AM processes to optimise process parameters for specific 

applications. Hence, inter-connectedness of AM processes and distributed quality-assurance 

will be key to AM’s future adoption for industrial applications. Another key enabler will be 

development and continuous updating of standards for AM produced parts for each industry. 

This could lead to development of AM qualification and process certification guidelines (AM-

motion, 2018). 
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Appendix 2. Terminologies and their usage across literature 

Terminologies appearing under keywords were not counted, as these were not directly used 

by the authors. The terminologies Manufacturing and Production were assumed synonyms. 
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Appendix 3. AM equipment and systems manufacturers 2018 

Manufacturers were identified through Wohlers Associates (2018). 

Manufacturer Model Build size 

(mm) 

Layer 

thickness 

Material 

class 

Material details Build speed 

3D Systems ProX DMP 320 275 x 275 x 

420 

2-60 μm Metal LaserForm®Ti Gr. 12 

LaserForm®Ti Gr. 52 

LaserForm®Ti Gr. 232 

LaserForm® Ni7183 

LaserForm®Stainless 316L3 

N/A 

3D Systems ProJet MJP 5600 518 x 381 x 

300 

13-16 μ Plastic 

(multi) 

Rigid Plastic Black, Rigid 

Plastic White, Rigid Plastic 

Clear, Elastomeric Black, 

Elastomeric Natural, multi-

material composites 

N/A 

3D Systems ProX SLS 6100 381 x 330 x 

460 

0.08-0.15 

mm 

Plastic Plastics, composites, elastomer 

and CastForm® PS (powders) 

2.7 l/hr 

3DCeram CERAMAKER 900 300 x 300 x 

100 

30 μm Ceramic N/A N/A 

Agilista N/A N/A N/A N/A N/A N/A 

Arcam AB Arcam A2X 200 x 200 x 

380 

250 μm Metal Titanium Ti6Al4V, Titanium 

Ti6Al4V ELI, Titanium Grade 2, 

Cobalt-Chrome, ASTM F75, 

Nickel Alloy 718 

N/A 

Arcam AB Q20plus 350 x 380 

(Ø/H) 

140 μm Metal Titanium Ti6Al4V, Titanium 

Ti6Al4V ELI, Titanium Grade 2, 

Cobalt-Chrome, ASTM F75 , 

Nickel Alloy 718 

N/A 

Asiga N/A N/A N/A N/A N/A N/A 

Carima DM250 250 x 140 x 

280 

130 µm Plastic Various Photopolymer Resin N/A 

CMET ATOMm-8000 800 x 600 x 

400 

0.05 mm Plastic Resins N/A 

Concept Laser X LINE 2000R 800 x 400 x 

500 

30-150 μm Metal Aluminium (AlSi10Mg) 

Titanium alloy (TiAl6V4 ELI) 

Nickel-based alloy (Alloy 718) 

120 cm3/h 

DWS XPRO S 300 x 300 x 

300 

10-100 µm Plastic Polymers and flexible materials N/A 

EnvisionTEC SLCOM 1 30” x 24” x 

24” 

0.1-1.0 mm Plastic Polymer matrices. Can be 

reinforced with fibers like: 

Carbon Fiber, Fiberglass, 

Aramid Fiber (i.e. Kevlar), PBO 

(i.e. Zylon), along with metal 

fibers like steel, aluminum or 

titanium 

N/A 

EnvisionTEC / 

Viridis3D 

RAM 336 3' x 3' x 6' 200-500µ Sand 
 

1.5 - 2.5 

vertical inch / h 

EOS EOS M 400-4 400 x 400 x 

400 incl. 

build plate 

100 μm Metal EOS Aluminium AlSi10Mg, 

EOS Nickel Alloy IN718, EOS 

Nickel Alloy HX, EOS 

MaragingSteel MS1, EOS 

StainlessSteel 316L, EOS 

Titanium Ti64, EOS Titanium 

TiCP Grade 2 

N/A 

EOS EOS P 770 700 x 380 x 

580  

0.06-0.18 

mm 

Plastic Alumide, PA 1101, PA 1102 

black, PA 2200, PA 2201, PA 

3200 GF, PrimeCast 101, 

PrimePart FR (PA 2241 FR), 

PrimePart PLUS (PA 2221) 

Up to 2 x 10 

m/s 

ExOne Exerial™ 1200 x 2200 

x 700 

280-500 μm Sand N/A 300–400 L/h 

ExOne M-Print™ 400 x 250 x 

250 

Min. 0.15 

mm 

Metal Currently available metals 

include 420 & 316 stainless 

steel, sand and other casting 

media also available. 

30-60 

seconds/layer 



ExOne M-Flex™ 400 x 250 x 

250 

Min. 0.15 

mm 

Metal 420 & 316 stainless steel & 

bronze, bronze and tungsten. 

Soda lime (semi-opaque) glass, 

sand and other casting media 

also available. 

30-60 

seconds/layer 

Farsoon HT1001P 1000 x 500 

x 450 

0.06-0.3mm Plastic FS3300PA, FS3250MF, 

FS3400CF, FS3400GF, 

FS6028PA, (PA6) 

15 L/h 

Farsoon FS421M 420 x 420 x 

420 

0.02-0.1mm Metal 316L, 17-4PH, CoCr, Ti64, 

AlSi10Mg, 18Ni300, 420, 

Cu90Sn10, IN625, IN718, Ta, W 

N/A 

Formlabs N/A N/A N/A N/A N/A N/A 

InssTek, Inc. MX-Grande 2,000 x 

1,000 x 

1,000 

N/A Metal (multi) Inconel, Steel N/A 

InssTek, Inc. MX-1000 1,000 x 800 

x 650 

N/A Metal (multi) N/A N/A 

Irepa Laser Magic LF 6000 1500 x 800 

x 800 

N/A Metal (multi) N/A 250 cm3/h 

Lithoz CeraFab 8500 76 x 43 x 

170 

10-100 µm Ceramics  N/A 100 slices / h 

Luxexel Luxexcel 3D 

printing technology 

N/A N/A Luxexcel 

VisionClear 

N/A N/A 

MakerBot 

Industries 

Replicator+ N/A N/A N/A N/A N/A 

Matsuura Lumex Avance-25 

hybrid 

N/A N/A N/A N/A N/A 

Mcor 

Technologies 

Mcor IRIS N/A N/A N/A N/A N/A 

Microfabrica EFAB technology N/A N/A N/A N/A N/A 

OPM Laboratory OPM250L 250 x 250 x 

250 

N/A Metal N/A N/A 

Optomec LENS 850-R 900 x 1500 

x 900 

N/A Metal Inconel alloys, stainless steels, 

titanium alloys 

Up to 0.5 kg/hr 

Prodways ProMaker L7000 800 x 330 x 

200 

25-150 μm Plastic Resins 2,5 kg/h 

ReaLizer SLM 300i 300 x 300 x 

300 

20-100 μm Metal CoCr, Titanium, Steel alloys N/A 

Renishaw RenAM 500M 250 x 250 x 

350 

N/A Metal Titanium, Ti6Al4V 

Aluminium, AlSi10Mg alloy 

Cobalt chromium, CoCr 

Stainless steel, 316L 

Nickel alloys 

N/A 

Renishaw RenAM 500Q 250 x 250 x 

350 

N/A Metal Titanium, Ti6Al4V, Aluminium, 

AlSi10Mg alloy, Cobalt 

chromium, CoCr, Stainless steel, 

316L, Nickel alloys 

Up to 150 

cm³/h 

RepRap Cartesio N/A N/A Metal N/A N/A 

Sciaky The EBAM® 300 

System 

5791 x 1219 

x 1219 

N/A Metal N/A 7 - 20 lbs / h 

SLM Solutions SLM®500 500 x 280 x 

365 

20-75 µm Metal Al-Alloys, Ni-Alloys, Ti-Alloys, 

Co-Alloys, Tool and Stainless 

Steel, Cy-Alloys,  

Up to 171 

cm³/h 

Solidscape S500 N/A N/A Wax N/A N/A 

Stratasys F900 914.4 x 

609.6 x 

914.4 

0.508 mm Plastic Thermoplastics  N/A 

Stratasys OBJET1000 PLUS 1000 x 800 

x 500 

16 microns Plastic 

(multi) 

Can allow as many as 14 

materials  

N/A 

Tiertime X5  180 x 230 x 

200 

0.05-0.4 mm Plastic UP Fila ABS， ABS+ , PLA， 

TPU and more 

N/A 

Voxeljet VX4000 4,000 x 

2,000 x 

1,000 

N/A Sand N/A 123 l/h 



Voxeljet VX1000 2800 x 2400 

x 2300 

150/300 μm Plastic Plastic and sand N/A 

Wuhan Binhu 

Mechanical & 

Electrical Co., Ltd 

HRPS-V 1000 x 1000 

x 600 

0.08-0.3 mm Plastic Polystyrene, coated sand N/A 

Wuhan Binhu 

Mechanical & 

Electrical Co., Ltd 

HRPM-II 250 x 250 x 

250 

0.02-0.2 mm Metal Stainless steel, Ti / Ni alloys 

(10-45um) 

N/A 

Wuhan Binhu 

Mechanical & 

Electrical Co., Ltd 

HRPL-III 600 x 600 x 

500 

0.05-0.3 mm Plastic Photosensitive resin N/A 

 


