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1 Introduction

One of the fundamental observables that we can use to characterize Quantum Field Theories

is their partition function on arbitrary manifolds M. The partition function depends both

on intrinsic data T defining the theory — which we can provide without reference to

the underlying manifold — and on background data on M, such as a metric gµν , a Spin

connection ωabµ , and backgrounds Aµ for the global symmetries of the theory, which might

be continuous or discrete.1 If M is non-compact, we need to specify boundary conditions

for the theory, which we denote as |ψ〉, for reasons that will become apparent momentarily.

For a theory T on a manifold M with this structure specified, we can thus write

ZT [M(g, ω,A, |ψ〉)] (1.1)

for the partition function.

Our main interest in this paper will be the case in which T is a six-dimensional SCFT

preserving N = (2, 0) supersymmetry, which we construct as follows. Consider IIB string

theory on a manifold2 M6×C2/Γ, with Γ ⊂ SU(2). By the McKay correspondence [1], the

relevant discrete groups Γ are in a one-to-one correspondence with the simple Lie algebras

of ADE type. Given such an algebra gΓ, we denote by GΓ the simply connected Lie

group with algebra gΓ. It is a well supported conjecture that this system has a non-trivial

interacting fixed point at low energies, given by an interacting six-dimensional N = (2, 0)

SCFT [2], known as the (2, 0) theory of type gΓ. In fact, all known interacting (2, 0) SCFTs

that do not factorize into decoupled SCFTs at the level of local operators can be obtained

from this construction.3

The (2, 0) theory of type gΓ has a number of remarkable properties, one of the most

exotic ones being that on generic M6 there is no canonical choice for the background

connection for its global symmetries. More concretely, the (2, 0) theory of type gΓ is

believed to possess a discrete global 2-form symmetry [3] given by the center Z(GΓ) of

GΓ. The generators of this symmetry do not all commute with each other, so quantum

mechanically there is no way of setting all background fields for the 2-form symmetry to

zero. The following consequence of this fact might be more familiar: upon compactification

on T 2 the (2, 0) theory becomes N = 4 SYM with gauge algebra gΓ, and the 2-form

symmetry gives rise to the 1-form symmetries measuring the number of Wilson and ’t Hooft

lines. It is a familiar fact that the associated symmetry generators do not commute [4, 5].

Since the symmetry generators do not commute, they are not simultaneous observ-

ables. The best we can do is to select a maximal commuting subset of these operators and

1The separation into background and intrinsic data is sometimes arbitrary: if we restrict ourselves to

four-dimensional Yang-Mills theories with constant coupling τ we could view τ as part of the data defining

T . However, if we wish to allow for the possibility that τ varies across M then we must include it as part

of the background data to be specified for each manifold. The second interpretation will be more natural

from the point of view in this paper, and such configurations will play an interesting role below.
2In this paper we will take M6 to be closed, Spin and orientable, and furthermore we will assume that

the cohomology groups of M6 are freely generated, so there is no torsion.
3The free, or “abelian”, (2, 0) theory can be obtained by replacing C2/Γ by a single-centered Taub-

NUT space.
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decompose the Hilbert space in their simultaneous eigenbasis. By selecting an eigenvector

from this basis, an associated subset of the background fields for the 2-form symmetry can

all be set to zero, or to any definite value. However, choosing a maximal commuting set

of fluxes to fix requires explicit reference to the structure of H3(M6;Z(GΓ)), and gener-

ically such a choice will not be invariant under large diffeomorphisms of M6. This can

be naturally interpreted as an anomaly (see [6] for an introduction), but the fact that the

ambiguity in the partition function is not just a phase makes the situation exotic. This

state of affairs is often described by saying that the (2, 0) theory has a partition vector (of

“conformal blocks”, in analogy with the situation for chiral theories in two dimensions) as

opposed to having a partition function, or sometimes, more concisely, by saying that the

(2, 0) theory is a “metatheory”.

At this point we reach a puzzle, which this paper aims to clarify: we have explained

that generally there is no canonical choice of partition function for the six-dimensional (2, 0)

theory, due to the non-commutativity of the operators generating the 2-form symmetry.

But on the other hand, we started our discussion by saying that the (2, 0) theory of type gΓ

can be constructed by considering a low-energy limit of IIB string theory on C2/Γ×M6.

The fact that there is no canonical choice of partition function for the (2, 0) theory should

then imply that there is no canonical choice for the partition function of IIB string theory

on C2/Γ×M6. We will argue that this is indeed the case.

Briefly, in order to have a well defined partition function of the IIB theory on C2/Γ×M6

one needs to specify boundary conditions for the RR fluxes, and in the presence of torsion

this is a fairly subtle affair due to the self-dual nature of RR fields in string theory [7, 8].

We will show that there is indeed no choice of boundary conditions in which all RR fluxes

are set to zero at infinity, and in fact the set of choices for boundary conditions for IIB on

C2/Γ×M6 is in one-to-one correspondence with the set of choices one makes in choosing

a partition function for the (2, 0) theory of type gΓ on M6.

This result removes a fair bit of mystery from the usual statement that the (2, 0) theory

has no well-defined partition function, since the standard construction of such theories in

string theory requires one to provide the missing data in the form of boundary values for

the RR fluxes. Remarkably, all possible choices for the (2, 0) theory can be accommodated

in the IIB construction. In terms of symmetries our viewpoint provides a reinterpretation

of the 2-form symmetry of the (2, 0) theory in terms of transformations of the boundary

conditions on IIB.

This whole discussion might come as a bit of a surprise to the reader familiar with

the proof in [9, 10] that there is a canonical partition function of IIB on a ten-manifold

M10. The key assumption in the argument in [9, 10] that does not hold for the geometries

analyzed in this paper is that M10 has an intersection form with unit determinant. This

is always the case for compact manifolds, but generically it is not the case for M10 =

M6 × C2/Γ (except for the case associated with E8). Similarly, the statement that string

theory always gives rise to modular invariant theories (see for example [11]) is true under the

assumption that we have a compact transverse space, so that the six-dimensional effective

theory of interest is coupled to six-dimensional gravity. But this does not hold for the

configurations that we study in this paper, in which the metric is just a background field in

– 3 –
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the six-dimensional theory. The effective six-dimensional theories that one finds in the case

M10 = M6 × C2/Γ are not modular invariant, but since six-dimensional gravity is non-

dynamical there is no contradiction. (The ten-dimensional gravity theory is dynamical, but

again there is no contradiction because as we will describe the lack of modular invariance

of the six-dimensional theory ultimately comes from the lack of modular invariance of the

choice of boundary conditions on M6 × S3/Γ, and we do not sum over these when doing

the gravitational path integral.)

We emphasize that our viewpoint here, focusing purely on a careful analysis of the

original construction of (2, 0) theories in ten dimensional type IIB string theory, is com-

plementary to existing viewpoints on the partition function of (2, 0) theories. One such

viewpoint is that of relative QFTs articulated by Freed and Teleman in [12], where one

views the (2, 0) theories as furnishing the boundary degrees of freedom for certain non-

invertible seven dimensional TQFTs [13–15]. For the AN cases one can also study the

question using holography [16]. We find that all three approaches give the same results

whenever they are simultaneously applicable.

We have organized this paper as follows. We start in section 2 by explaining how to

choose boundary condition for RR fields in IIB string theory on M6 × C2/Γ. In section 3

we compare the results of section 2 to the known results for the behaviour of the (2, 0)

partition function, and extend the results to the (1, 0) case, refining a previous proposal

in [17]. We then show how one can rederive the known classification of four dimensional

N = 4 theories [18] (of ADE type) from the IIB perspective. Along the way we encounter

a simple geometric reinterpretation of the fractional instanton number in N = 4 theories

with simply-connected gauge group, which we expect to generalize to less supersymmetric

cases. In section 4 we explore these ideas in less familiar backgrounds: we will discuss

global aspects of 4d theories in the presence of duality defects (as studied in [19–26], for

instance) and subtleties having to do with modular invariance in the context of 4d/2d

dualities that arise when the four dimensional manifold has two-cycles. We point out an

interesting relation between the Vafa-Witten partition function of self-dual su(p) theories

on K3 and Hecke operators acting on the partition function of chiral bosons, and briefly

discuss a (speculative, but suggestive) connection between these partition functions and

the j invariant. In section 5, we conclude and list a number of directions for further re-

search. Appendix A contains technical results on the complex K-theory groups of rational

homology spheres used in the main text, and appendix B discusses the Vafa-Witten par-

tition functions [27] of N = 4 theories with algebra su(N) on K3 for different choices of

the global form of the gauge group, and how their behavior under dualities agrees with

expectations.

2 Quantization of type IIB string theory on M6 × C2/Γ

We begin with a short informal outline of the main argument in this section, without going

into the technical details. Most of the work in the rest of the section will be in making

these arguments fully precise.
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Consider type IIB string theory compactified on M6 × C2/ZN , which is believed to

yield the AN−1 (2, 0) theory on M6 at low energies. Without changing the behaviour at

infinity, we could instead consider a resolution of the C2/ZN orbifold, so that the spacetime

curvature is arbitrarily small and the string coupling is small and constant. Thus, the

subtlety in specifying boundary conditions cannot be due to any particular property of

string theory in singular spaces. Instead, it is due to the presence of the self-dual RR field

F5 = ∗F5 in type IIB supergravity. As pointed out in beautiful work by Freed, Moore and

Segal [7, 8] (building on [16, 28–34]), quantization of self-dual fields in spaces with torsion

needs to be done with care, even at arbitrarily weak coupling.

In more detail, in order to characterize the IIB background we should specify boundary

conditions for all the supergravity fields, including F5. Classically, we would specify the

background value for F5 at infinity, which we could simply set to zero if desired. Quantum

mechanically, the story is far more subtle. We describe it in detail below, but the main

point is that for each class σ ∈ Tor(H5(M6 × S3/ZN ;Z)) there is a unitary flux operator

Φσ, which measures the torsional part of the flux on the homology class Poincaré dual

to σ. The boundary conditions are encoded in the expectation values of these operators,

and naively we could simply choose a state with 〈Φσ〉 = 1 for every σ, corresponding to a

background with no flux at infinity. Surprisingly, this is not possible, as the torsion flux

operators for self-dual forms on different cycles do not always commute [7, 8]:4

ΦσΦσ′ = e2πi L(σ,σ′)Φσ′Φσ . (2.1)

Here L(σ, σ′) is the linking pairing for the torsion 5-forms σ, σ′, taking values in Q/Z.

Most of the technical details in this section deal with the careful computation of this

linking pairing.

The nonvanishing commutator (2.1) implies that one cannot specify the value of all

fluxes simultaneously, and in particular one cannot simply set the F5 flux to zero at infinity.

Instead, the best we can do is to choose a maximal set of commuting flux operators and

set the corresponding fluxes to zero (or to another fixed value). Given such a choice we

can in principle compute the partition function for type IIB on that background, which

also determines the partition function for the AN−1 (2, 0) theory on M6. However, there

is no canonical choice for the maximal subset of commuting operators to set to zero and,

in fact, large diffeomorphisms on the boundary typically relate different choices. In light

of this, one might expect that the collection of boundary conditions for type IIB in this

background, with the subtleties due to non-vanishing commutators properly taken into

account, is precisely the vector space of partition functions of the (2, 0) theory on M6. In

the coming sections we will argue that this expectation is indeed correct.

4In general, electric and magnetic fluxes for p-form theories on spaces with torsion do not commute [7, 8].

The basic observation is that the action of the electric flux operator is to shift the connection by a closed form

in H•(X; U(1)), while the magnetic flux operator measures the topological class of the bundle associated

to the connection. This implies that whenever topologically non-trivial closed forms in H•(X; U(1)) exist

(that is, in the presence of torsion, see footnote 5 below), electric and magnetic operators do not necessarily

commute. It was argued in [7, 8] that analogously, fluxes for self-dual forms do not necessarily commute

with each other whenever the spacetime has torsion.
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Note that the RR fields in IIB string theory are more properly described in terms

of differential K-theory (see [8, 35, 36] for an introduction). This not only accounts for

the local data of the C4 connection (the “differential” qualifier), but also the fact that

the flux quantization conditions are better described by K-theory [37]. However, to un-

derstand the commutation relations it is sufficient to restrict to ordinary K-theory, since

the commutators depend only on the K-theory class, and more specifically its torsional

component. Related to this, the class σ really lives in H4(M6 × S3/Zn; U(1)) (or rather,

its generalization in differential K-theory) rather than Tor(H5(M6×S3/ZN ;Z)), but again

to understand the flux commutation relations it will be sufficient to restrict ourselves to

torsion classes.5

2.1 Flux operators and the Hilbert space H[RR](N9)

Starting again from the beginning, we aim to specify the boundary conditions for euclidean

IIB string theory on a ten-dimensional manifold X10 = M6 × C2/Γ, where M6 is closed,

oriented, Spin, and without torsion. To understand how to choose boundary conditions

properly, we first take a slight detour and review some basic aspects of quantum field theory

(see, e.g., [38] for a less telegraphic exposition).

In general, a d-dimensional quantum field theory associates a Hilbert space H(Nd−1)

to each (d− 1)-dimensional manifold Nd−1. This Hilbert space is the one associated with

quantization of the original theory on Nd−1 × R, where R denotes the time direction. We

stress that we are not yet specifying the value of the fields on Nd−1, the Hilbert space only

depends on Nd−1 itself. Indeed, in the quantum theory a choice of field configuration on

Nd−1 corresponds to choosing a state |ψ〉 ∈ H(Nd−1).

Now consider the quantum field theory on a manifold Xd with boundary Nd−1 =

∂Xd. Then the path integral on Xd, without specifying the boundary conditions, can

be understood as a dual vector 〈Z| ∈ H∗(Nd−1), so the value of the path integral with

boundary conditions specified by |ψ〉 ∈ H(Nd−1) is
〈
Z|ψ

〉
∈ C.

Type IIB string theory in ten dimensions is most certainly not an ordinary ten-

dimensional quantum field theory, but a version of the above is believed to hold whenever

the ten-dimensional manifold is non-compact, with X10 asymptotically of the form N9×R.

Classically, we would specify the boundary conditions on N9 by giving boundary conditions

at infinity for the IIB supergravity fields. We focus on the RR fields, setting B = 0, which

are classified by K-theory [37]. For the purposes of studying the Heisenberg group of fluxes

it is enough to consider the topological class K1(N9) of the RR fields at the boundary [8].6

5The two groups are related by the short exact sequence

0→W4 → H4(M6 × S3/Zn; U(1))→ Tor(H5(M6 × S3/ZN ;Z))→ 0 ,

with W4 the group of topologically trivial C4 Wilson lines on M6 × S3/Zn.
6Although it is not true in general, we will show that for the spaces discussed in this paper one has:

K1(N9) =
⊕

i∈2Z+1

Hi(N9) (2.2)

so the reader unfamiliar with K-theory can think instead of the formal sum of cohomology groups of odd

degree. Note that whenever we write Hi(Y ) or Hi(Y ), without explicit mention of the coefficient ring, we

– 6 –
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In analogy with the situation on QFT described above, we will assume that there is

a Hilbert space H(N9) associated to quantum boundary conditions, and that a specific

choice of boundary conditions furnishes a vector in this Hilbert space.7 (This prescription

has been used before, for instance in the case of AdS/CFT boundary conditions [16].) In

particular, if X10 = C2/Γ×M6 with M6 compact then N9 = S3/Γ×M6.

We will focus on the subsector of the Hilbert space H(N9) describing the topological

class of the RR fields at the boundary, which we will denote H[RR](N9). If the classical

picture were not modified quantum mechanically, then the answer would be that H[RR](N9)

is graded by classes in K1(N9), or in other words that the boundary conditions are deter-

mined topologically by the K-theory class of the flux on the boundary. That this is not

the case was shown in [7, 8]. We refer the reader to these papers for the derivation, and

here just state the result of the analysis as it applies to our case. Recall that the K-theory

group K1(N9) is an abelian group which might (and, in our examples, will) contain a

torsional subgroup

Tor(K1(N9)) =
{
x ∈ K1(N9)

∣∣ nx = 0 for some n ∈ Z
}
. (2.3)

We can also construct the group of fluxes modulo torsion

K
1
(N9) =

K1(N9)

Tor(K1(N9))
. (2.4)

Freed, Moore and Segal [7, 8] showed that there is a grading of H[RR](N9) by K
1
(N9); in

other words the non-torsional part of the flux can be specified without subtleties, and the

associated flux operators commute. Remarkably, they also showed that this commutativity

does not hold for the torsional part.

To quantify this, we postulate a set of unitary operators Φx, one for each K-theory

class x ∈ TorK1(N9). The precise relation between these operators and the background

RR fluxes will become clear shortly, but we remark for the present that they are essentially

the integrals “exp(i
∫
Ax ∧ FRR)” where FRR is the background flux and Ax is a flat

connection associated to the torsion class x. As shown by Freed, Moore and Segal [7, 8],

these operators do not commute. Instead,

ΦxΦy = s(x, y)ΦyΦx , (2.5)

where s(x1, x2) is a perfect pairing

s : Tor(K1(N9))× Tor(K1(N9))→ U(1) (2.6)

that we will discuss extensively below. Some useful properties of s(x, y) are that it is

skew (s(x, y) = s(y, x)−1), alternating (s(x, x) = 1) and bimultiplicative (s(x + y, z) =

s(x, z)s(y, z) and s(x, y + z) = s(x, y)s(x, z)). We say that a pairing A × A → U(1) is

are always referring to singular (co)homology theory with coefficients in Z.
7If we specify the IIB geometry without choosing boundary conditions for the fields, then what we have

is a dual vector of partition functions 〈Z| ∈ H∗(N9), which in the case of Md = C2/Γ×M6 will induce a

partition vector on the gΓ (2, 0) theory on M6.

– 7 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
9

perfect if the induced map A → Hom(A,U(1)) is an isomorphism. The fact that the

pairing is perfect implies, in particular, that no non-trivial torsion flux commutes with all

other fluxes.

Note that it is not in general true that ΦxΦy = Φx+y. Indeed, this would be incom-

patible with (2.5). However, we will assume that

s(x, y) = 1 =⇒ ΦxΦy = Φx+y . (2.7)

More generally, ΦxΦy and Φx+y will differ by a phase.

Since the flux operators do not commute, we cannot specify the asymptotic values for

all fluxes simultaneously. Instead, the asymptotic values define a state in the Hilbert space

H[RR](N9), and this Hilbert space is a representation of the Heisenberg group generated

by the flux operators, defined below.8 To construct this representation, we diagonalize

a maximal commuting subset of the flux operators, as follows. (See [16, 40] for previous

discussions of this construction in related contexts.)

Consider a subgroup L ⊂ Tor(K1(N9)). Define

L⊥ := {x ∈ Tor(K1(N9)) | ∀y ∈ L, s(x, y) = 1} , (2.8)

where L⊥ is itself a subgroup of Tor(K1(N9)). We say that L is isotropic if L ⊆ L⊥, and

that L is a maximal isotropic subspace of Tor(K1(N9)) if there is no isotropic subspace L′

such that L ⊂ L′, or equivalently, if L = L⊥.

Clearly, L is isotropic if and only if the group generated by the flux operators {Φx|x ∈
L} is abelian, hence choosing maximal isotropic L corresponds to picking a maximal set of

commuting observables. Given maximal isotropic L, there is a unique state in the Hilbert

space H[RR](N9) such that

Φx |0;L〉 = |0;L〉 ∀x ∈ L. (2.9)

As a unit eigenvector of the flux operators in L, this state is naturally thought of as a state

of “zero flux”. To see what fluxes we have turned off (and to turn them on with definite,

non-zero, values), we consider the quotient:

FL :=
Tor(K1(N9))

L
. (2.10)

Choosing a representative f of each coset in FL, we obtain a basis for H[RR](N9):

|f ;L〉 = Φf |0;L〉 , (2.11)

where the choice of representative only affects the overall phase of each basis element. The

flux operators {Φx|x ∈ L} are diagonal in this basis: Φx|f ;L〉 = s(x, f)|f ;L〉 for all x ∈ L.

We conclude that in this basis the background RR flux belongs to a definite coset

f ∈ FL, whereas the flux operators Φx, x ∈ L, are diagonalized with eigenvalues s(x, f).

8See [39] for background material on Heisenberg groups.
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Each maximal isotropic subspace L ⊂ TorK1(N9) gives a different basis |f ;L〉 for the same

Hilbert space H[RR](N9), with different fluxes specified in different bases.

We reiterate at this point that it is only once we have specified |ψ〉 ∈ H[RR](N9) that

have we completely fixed the IIB background, and only in this case we expect to have

a uniquely determined partition function. How do we choose |ψ〉? In ordinary quantum

mechanics we would write

|ψ〉 =
∑
j

aj |j〉 (2.12)

and we would choose the ai freely, giving rise to arbitrary superpositions of basis states.

In the current context we are dealing with boundary conditions at infinity, so we expect

the Hilbert space to split into superselection sectors. Given that fluxes do not commute,

the most conservative proposal (essentially the same choices studied in [16, 40])) is to first

specify a maximal isotropic subspace L ⊂ TorK1(N9), which will select the generators of

the discrete 2-form symmetries present in the (2, 0) theory. We then choose |ψ〉 = |f ;L〉
for arbitrary f ∈ F , specifying a background flux f ∈ FL for these 2-form symmetries.

As we discuss more extensively in section 3.4, in the particular case thatM6 =M4×T 2

the different choices of L reproduce the choices of global form for the associated N = 4

theory in four dimensions. More precisely, the state |0;L〉 is associated with the N = 4

theory with 1-form symmetries determined by L (and thus, with a specific choice of global

form for the gauge group and discrete theta angles [18]), and no background fluxes.

2.2 The K-theory groups of M6 × S3/Γ

In the case of interest to us we have that N9 = M6 × S3/Γ, so our task is to compute

the K1 group of this space. Since N9 is a product, we can make use of the Künneth exact

sequence for K-theory [41]

0→
⊕
i+j=m

Ki(X)⊗Kj(Y )→ Km(X × Y )→
⊕

i+j=m+1

TorZ(Ki(X),Kj(Y ))→ 0 (2.13)

with all indices taken modulo 2. In this equation TorZ(A,B) is the ‘Tor’ functor between A

and B (see for instance [42] for a definition), which has the property of vanishing whenever

A or B are free. Since we are assuming in our case that the cohomology of M6 has no

torsion, we find

K1(M6 × S3/Γ) = (K0(M6)⊗K1(S3/Γ))⊕ (K1(M6)⊗K0(S3/Γ)) . (2.14)

We will compute these K-theory groups by making use of some basic properties of

K-theory. Consider first a manifold X without torsion, such as M6. The existence of the

Chern isomorphism

Ki(X)⊗Z Q ∼=
⊕

n≡i mod 2

Hn(X;Q) (2.15)

immediately implies that

Ki(X) ∼=
⊕

n≡i mod 2

Hn(X;Z) . (2.16)
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The computation of the K-theory groups for S3/Γ is slightly more involved, since this

space has non-vanishing torsion. Remarkably, the end result is that (2.16) still applies. In

particular, the cohomology groups of S3/Γ are

H•(S3/Γ) = {Z, 0,Γab,Z} , (2.17)

where Γab := Γ/[Γ,Γ] is the abelianization of Γ, discussed further below, and we used

π1(S3/Γ) = Γ (since S3 is the universal cover of S3/Γ), along withH2(S3/Γ) = H1(S3/Γ) =

π1(S3/Γ)ab by Poincare duality and the Hurewicz theorem. Thus, (2.16) would give

K0(S3/Γ) = Z⊕ Γab , K1(S3/Γ) = Z . (2.18)

That these are indeed the K-theory groups of S3/Γ is shown to be the case in appendix A.

Applying the K-theory Künneth formula (2.13) and comparing with the Künneth for-

mula for cohomology, we see that likewise

Ki(M6 × S3/Γ) ∼=
⊕

n≡i mod 2

Hn(M6 × S3/Γ;Z) , (2.19)

so in this case K-theory reduces to cohomology. In particular,

TorHn(M6 × S3/Γ) = Hn−2(M6)⊗ Γab , (2.20)

and so

TorK1(M6 × S3/Γ) ∼=
⊕

n=1,3,5,7,9

TorHn(M6 × S3/Γ) = K1(M6)⊗ Γab , (2.21)

with potentially non-vanishing contributions in degrees 3, 5 and 7 arising from the degree

1, 3 and 5 components of K1(M6) =
⊕

n=1,3,5H
n(M6), respectively.

2.3 The defect group and the linking pairing

The group Γab is easy to determine:9

Γ ⊂ SU(2) gΓ Γab

ZN AN−1 ZN
Binary dihedral Dic(2k−2) D2k Z2 ⊕ Z2

Binary dihedral Dic(2k−1) D2k+1 Z4

Binary tetrahedral 2T E6 Z3

Binary octahedral 2O E7 Z2

Binary icosahedral 2I E8 1

(2.22)

The Γ = ZN case is clear, and that of Γ = Dicn can be worked out without much effort as

follows. A presentation of Dicn is〈
a, x | a2n = 1, x2 = an, x−1ax = a−1

〉
. (2.23)

9To avoid confusion, we refer to the binary dihedral group of 4n elements as Dicn (for dicyclic, another

name for the same family of discrete groups).
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We obtain the abelianization by adding the relation ax = xa, which after some straight-

forward simplifications leads to 〈
a, x | x2 = an, a2 = 1

〉
(2.24)

which is Z2⊕Z2 for n even and Z4 for n odd. Similarly, one can verify the exceptional cases

by adding the relation st = ts to the following presentations for the exceptional groups

Γ Presentation

2T
〈
s, t | (st)2 = s3 = t3

〉
2O

〈
s, t | (st)2 = s3 = t4

〉
2I

〈
s, t | (st)2 = s3 = t5

〉 (2.25)

Notice that (2.22) follows a simple pattern: let GΓ be the simply connected Lie group

with algebra gΓ, and Z(GΓ) its center, then (as already pointed out in [17, 43])

Γab = Z(GΓ) . (2.26)

This relation will play a key role below when we compare our IIB analysis with the results

of previous analyses of the global structure of the (2, 0) theory. It is not hard to prove that

this relation is not accidental. Since H1(S3/Γ) = H2(S3/Γ) = Γab as previously remarked,

it is sufficient to show that H1(S3/Γ) = Z(GΓ).

To do so, we first provide an alternate description of H1(S3/Γ). Recall that whenever

we have a pair of spaces (X,A) such that A ⊂ X there is a long exact sequence in homology

of the form [42]

. . .→ Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ . . . (2.27)

where Hn(X,A) denotes the singular homology of X relative to A. We take A to be S3/Γ,

and XΓ to be a smooth, simply-connected space such that ∂XΓ = S3/Γ. More concretely,

XΓ can be taken to be a sufficiently large neighbourhood of the origin of a resolved C2/Γ.

Since H1(XΓ) = 0 and H2(S3/Γ) = 0, we have the short exact sequence

0→ H2(XΓ)→ H2(XΓ, S
3/Γ)

∂−→ H1(S3/Γ)→ 0 . (2.28)

Geometrically, this exact sequence encodes the fact that one-cycles in S3/Γ can be con-

structed by intersecting a non-compact 2-cycle in XΓ with the S3/Γ. Clearly, adding

compact 2-cycles has no effect on this description, hence the exact sequence.

More physically, we can understand the quotient

C := H1(S3/Γ) =
H2(XΓ, S

3/Γ)

H2(XΓ)
(2.29)

as a “defect group” [17, 44] describing the screening of surface operators, in analogy with

the field theory analysis in [4, 5]. In brief, H2(XΓ, S
3/Γ) is expected to parametrize the

surface operators in the six-dimensional SCFT living at the singular point, while H2(XΓ)
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parametrizes the “charge carriers” of the theory, and so C measures how much of the charge

of the surface operators remains unscreened in the 6d SCFT. We refer the reader to [17]

for a more detailed discussion of C from this viewpoint.

Recall that we can identify H2(XΓ) with the root lattice Λr
Γ of gΓ. Because gΓ is simply

laced, ΛrΓ is also the coroot lattice, whose dual is the weight lattice Λw(GΓ) of the universal

cover GΓ. On the other hand, geometrically we have that

H2(XΓ, S
3/Γ) = H2(XΓ) = Hom(H2(XΓ),Z) (2.30)

where the first equality is Lefschetz duality and in the second we have used the universal

coefficient theorem together with H1(XΓ) = 0. We are thus led to identify H2(XΓ, S
3/Γ)

with Λw(GΓ). Therefore, we can rephrase (2.29) in group theory terms as

H1(S3/Γ) =
Λw(GΓ)

ΛrΓ
. (2.31)

It is well known that this quotient is Z(GΓ), see for instance theorem 23.2 of [45].

We now come back to the perfect pairing s(x, y) introduced in (2.5). A key ingredient

in constructing this pairing is the linking (or torsion) pairing L(x, y), which is a perfect

pairing of the form

L : TorHp−1(Nn−1)× TorHn−p−1(Nn−1)→ Q/Z , (2.32)

describing the linking of torsion homology classes on a (n−1)-dimensional manifold Nn−1.

To define this pairing, consider a torsion homology class [a] ∈ TorHp−1(Nn−1) of order ka,

so that ka[a] = 0. Thus, given a representative ap−1 of the class [a], there is a chain Ap
such that kaap−1 = ∂Ap. We define

L(a, b) ≡ 1

ka
(Ap ◦ bn−p−1) (mod 1) , (2.33)

where x◦y denotes the signed intersection number between transversely intersecting chains

x, y on Nn−1. This definition is independent of the choice of Ap for fixed ap−1, as the

intersection number of [b] (a torsion cycle) with any closed cycle vanishes. Likewise, it does

not depend on the choice of representative ap−1 within the torsion class [a], as ap−1 →
ap−1 + ∂λp shifts L(a, b) by an integer λp ◦ bn−p−1. Finally, noting that

Σp ◦ ∂Σn−p = (−1)p(n−p)Σn−p ◦ ∂Σp , (2.34)

we find L(b, a) = (−1)p(n−p)L(a, b), implying that L(a, b) is also independent of the choice

of representative bn−p−1 of the torsion class [b] ∈ TorHn−p−1(Nn−1).

By Poincaré duality, the linking pairing can also be framed in cohomology:

L : TorHn−p(Nn−1)× TorHp(Nn−1)→ Q/Z . (2.35)

To define it in cohomological terms, consider the short exact sequence

0→ Z→ Q→ Q/Z→ 0 , (2.36)
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which induces a long exact sequence in cohomology of the form

. . .→ Hk(Nn−1;Z)
π−→ Hk(Nn−1;Q)→ Hk(Nn−1;Q/Z)

δ−→ Hk+1(Nn−1;Z)→ . . . ,

(2.37)

where δ, (induced by) the coboundary operator, is sometimes called the Bockstein homo-

morphism. Given x ∈ TorHn−p(Nn+1;Z), π(x) = 0, and thus exactness of the above

sequence implies that X ∈ Hn−p−1(Nn−1;Q/Z) exists such that δX = x. The linking

pairing is then

L(x, y) =

∫
Nn−1

X ^ y , (2.38)

which is valued in Q/Z. Writing y = δY for Y ∈ Hp−1(Nn−1;Q/Z) as well, this becomes∫
Nn−1

X ^ δY (schematically “
∫
X ∧ dY ”), in which form the properties discussed in the

preceding paragraph are readily established.

We now consider Maxwell theory for a (p − 1)-form gauge potential, following Freed,

Moore and Segal [8]. Given electric and magnetic torsion classes, x ∈ Hd−p(Nd−1) and

y ∈ Hp(Nd−1) respectively, the corresponding flux operators Φx and Φy do not commute,

ΦxΦy = e2πi L(x,y)ΦyΦx , (2.39)

where L(x, y) is the linking pairing we have just discussed. The situation is slightly different

for self-dual gauge fields, for which electric and magnetic fluxes are one and the same. In

this case, the commutator is

ΦxΦy = e2πi L(x,y)S(x, y)ΦyΦx , (2.40)

where S(x, y) is a correction of the form

S(x, y) =
1 + S(x) + S(y)− S(x)S(y)

2
, S(x) = (−1)

∫
Nd−1

x^ν2k
, (2.41)

with k = d−2
4 and ν2k the Wu class of degree 2k.10 Note that S(x), S(y) = ±1, with

S(x, y) = −1 if S(x) = S(y) = −1 and S(x, y) = +1 otherwise. This correction is needed

because, e.g., the linking pairing is not alternating on Hd/2(Nd−1) [8].

In this paper, our primary interest is in type IIB string theory on N9 =M6 × S3/Γ.

Associated to the self-dual RR field C4, there are flux operators labelled by torsion classes

x = c3 ⊗ `2 ∈ TorH5(N9) = H3(M6)⊗H2(S3/Γ) . (2.42)

For such classes,
∫
N9
x ^ ν4 6= 0 requires ν4 to have components of the form p3 ⊗ q1 ∈

H3(M6)⊗H1(S3/Γ). Since H1(S3/Γ) = 0, we conclude that S(x) = 1 for all x ∈ H5(N9),

and so the S(x, y) correction factor can be dropped.

More generally, the RR fluxes are described by K-theory rather than cohomology.

However, we have shown that the K-theory groups of N9 = M6 × S3/Γ reduce to coho-

mology groups, and so it is natural to guess that the flux commutators likewise reduce to

10We assume that d/2 is odd in the self-dual case. For a more general discussion, see [7].
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the cohomological ones discussed above, and in particular that the perfect pairing s(x, y)

introduced in (2.5) is given by

s(x, y) = e2πiL(x,y) , x, y ∈ TorK1(N9) =
⊕

i=2k+1

TorH i(N9) , (2.43)

where L(x, y) = 0 when the degrees of x and y do not add to d = 10, and the correction

factor S(x, y) is absent per the above discussion. Indeed, (2.43) follows from the K-theory

pairing found by Freed, Moore and Segal [8], validating this guess.11

We now compute the linking pairing L(x, y) for N9 =M6 × S3/Γ. It is convenient to

work in homology. Since torsion comes from the S3/Γ component, we have

L(a⊗ `1, b⊗ `2) = (a ◦ b)LΓ(`1, `2) , (2.44)

with a, b ∈ H∗(M6) and `1, `2 ∈ H1(S3/Γ). Thus, it is sufficient to compute the linking

pairing LΓ : H1(S3/Γ)×H1(S3/Γ)→ Q/Z, along with the intersection form on M6.

To write down the linking pairing LΓ, it is convenient to use a construction of H1(S3/Γ)

that emphasizes the intersection form on XΓ. Using (2.30), we can rewrite (2.28) as

0→ H2(XΓ)
Q−→ Hom(H2(XΓ),Z)

∂−→ H1(S3/Γ)→ 0 , (2.45)

where Q is the homomorphism

Q : H2(XΓ)→ Hom(H2(XΓ),Z)

x 7→ q(x, ·)
(2.46)

with q the intersection form on H2(XΓ). Therefore,

H1(S3/Γ) =
Hom(H2(XΓ),Z)

Q(H2(XΓ))
. (2.47)

The linking pairing on S3/Γ can be constructed from this short exact sequence and the

intersection form q, as follows (see also [44]). Given σ1, σ2 ∈ H1(S3/Γ), we pick ξi ∈
∂−1(σi). Then, since H1(S3/Γ) is pure torsion, there exists ni 6= 0 such that ∂(niξi) =

niσi = 0, and therefore we can pick Σi ∈ H2(XΓ) such that niξi = Q(Σi). The linking

pairing is then12

LΓ(σ1, σ2) ≡ 1

n1n2
q(Σ1,Σ2) ≡ 1

n2
ξ1(Σ2) ≡ 1

n1
ξ2(Σ1) (mod 1) . (2.48)

Equivalently, this can be written as

LΓ(σ1, σ2) ≡ q−1(ξ1, ξ2) (mod 1) , (2.49)

with q−1 : Hom(H2(XΓ),Z) × Hom(H2(XΓ),Z) → Q defined precisely by the above

procedure.13

11To see this, one can use the result in Klonoff’s thesis [46] to express the integral over differential K-

theory classes in terms of the η-invariant. As shown by Atiyah, Patodi and Singer in [47] the η invariant

on M6 × S3/Γ will factor into the index on M6 times η on S3/Γ. For odd forms the first term will be

simply the intersection pairing on M6, and since ΩSpin
3 (pt) = 0 the last quantity will be equal (mod 1) to

the Chern-Simons invariant of the torsional class on S3/Γ, reproducing the expression in cohomology.
12There is some ambiguity in the literature regarding the overall sign of the linking number. We follow

the conventions in [48].
13Note that q−1 need not be integral; since q is integral, q−1 is integral iff det q = ±1.
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Figure 1. Dynkin diagram for Dn.

We now discuss examples, starting with the Dn case. The structure of H2(XDn)

together with its intersection form is encoded in the Dynkin diagram shown in figure 1,

where each dot represents a generator of H2(XDn) and each link between nodes indicates

that the given homology classes intersect once. Ordering the homology basis elements as

{α, α̃, a0, a1, . . . , an−3} we have the intersection matrix

q =


−2 0 1

0 −2 1

1 1 −2 1

1
. . . 1

1 −2

 . (2.50)

We introduce a dual basis of Hom(H2(XDn),Z) given by {α∗, α̃∗, a∗0, a∗1, . . . , a∗n−3}, with

the property that a∗i (aj) = δij , and similarly for α and α̃. The relations introduced by Q

on Hom(H2(XDn),Z) are then

Q(α) = −2α∗ + a∗0 = 0 , Q(a1) = −2a∗1 + a∗0 + a∗2 = 0 ,...
Q(α̃) = −2α̃∗ + a∗0 = 0 , Q(ai) = −2a∗i + a∗i−1 + a∗i+1 = 0 ,...
Q(a0) = −2a∗0 + a∗1 + α∗ + α̃∗ = 0 , Q(an−3) = −2a∗n−3 + a∗n−4 = 0 .

(2.51)

A little bit of algebra shows that these relations imply that a∗k = (n−2−k)a∗n−3, so we can

take a∗n−3, α
∗, α̃∗ as generators of the quotient (2.47), subject to the remaining relations

α∗ + α̃∗ = (n− 1)a∗n−3 , 2α∗ = 2α̃∗ = (n− 2)a∗n−3 , (2.52)

which implies 2a∗n−3 = 0. We now distinguish whether n is even or odd. For n even we have

2α∗ = 2α̃∗ = 0 , a∗n−3 = α∗ + α̃∗ . (2.53)

This is a Z2⊕Z2 group, in agreement with (2.22). We can choose α∗ and α̃∗ as generators.

Furthermore, it is easy to verify that when restricted to α∗ and α̃∗ we have, using (2.49)

LΓ = q−1 mod 1 =


Leven :=

(
0 1

2
1
2 0

)
for n ∈ 4Z ,

Lodd :=

(
1
2 0

0 1
2

)
for n ∈ 4Z + 2 .

(2.54)

If we instead choose n to be odd, we obtain the equations

α∗ + α̃∗ = 0 , a∗n−3 = 2α∗ = 2α̃∗ , (2.55)
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(a) A5,2 (b) D5,2 (c) D7,4

Figure 2. The generalized geometries considered in the text. Nodes denote two-cycles, a line

connecting two nodes indicates that the cycles intersect each other transversely, and a number next

to the node denotes (minus) its self-intersection.

which gives a presentation of a Z4 group generated by α∗. From the inverse intersection

form we obtain

q−1(α∗, α∗) = −n
4
. (2.56)

Taking into account that n is odd, we obtain a linking form

LΓ(∂α∗, ∂α∗) =
(−1)

n+1
2

4
mod 1 . (2.57)

Other cases can be analyzed similarly; we will present the results below.

The technology that we developed above is not restricted to ALE cases, and applies

equally well to any IIB background such that the horizon manifold is smooth.14 We will

determine the linking pairing (and thus operator commutation relations in the six dimen-

sional theory) geometrically in a number of cases, including those where more than one

possibility exists at the level of the algebra. In particular, we can apply this method to

geometrically engineered (1, 0) theories in six dimensions, as studied in [17].

Consider for instance the case in which the small resolution of XΓ has two curves a1

and a2, of self-intersection −3 and −2 respectively. The two curves intersect at a point.

The resulting intersection diagram is shown in figure 2(a). This geometry is one of the

“generalized A-type” configurations studied in [17, 50], to which we refer the reader inter-

ested in further details. The point of greatest interest to us is that XΓ can be understood

as a desingularization of C2/Γ, with Γ a Z5 subgroup of U(2) acting as

(z1, z2)→ (ωz1, ω
2z2) , (2.58)

with ω = exp(2πi/5). The intersection matrix for this geometry, in the ai basis, is

q =

(
−3 1

1 −2

)
, (2.59)

14In some cases the IIB axio-dilaton might have non-trivial behaviour at infinity, so K-theory is not

necessarily the right framework for classifying fluxes. (We refer the reader to [49] for a review of some of

the difficulties in trying to extend the K-theory classification to situations in which SL(2,Z) dualities are

important.) Our discussion below deals with F5 only, which is invariant under SL(2,Z) transformations,

and we are in a context where K-theory reduces to cohomology, so we expect our results to survive in a

more careful treatment.
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leading to the relations

3a∗1 = a∗2 , 2a∗2 = a∗1 . (2.60)

From here we learn that H1(S3/Γ) = Z5, as expected. Given that 2−1 = 3 in Z5 we can

take either a∗1 or a∗2 as generators, let us take a∗1 for convenience. We have

LΓ(∂a∗1, ∂a
∗
1) ≡ q−1(a∗1, a

∗
1) ≡ 3

5
(mod 1) . (2.61)

Note that 3 is not a quadratic residue in Z5, so this linking form is inequivalent to the one

with value 1
5 for the linking number of the generator with itself.

As another illustration, consider the d = 6, N = (1, 0) compactifications classified

in [50–52]. The associated defect group was discussed in [17], where it was shown that

for the “generalized D-type” singularities, obtained by taking the quotient C2/Dp+q,q,
15

one has

H1(S3/Dp+q,q) =
Hom(H2(XDp+q,q),Z)

Q(H2(XDp+q,q))
= Z2 ⊕ Z2p , (2.62)

whenever q is even. Consider for example the case p = 3. In this case Z2p
∼= Z2 ⊕ Z3. Up

to a sign that we specify below, there is a unique linking form for the Z3 factor, but for

the remaining Z2 ⊕ Z2 factor we have two possibilities, given by Leven and Lodd in (2.54).

And indeed both possibilities appear: a straightforward application of the techniques above

shows that the (p, q) = (3, 2) case (in figure 2(b)) has intersection form Leven, while the

(p, q) = (3, 4) case (in figure 2(c)) has a linking form given by Lodd.

Finally, let us consider the “generalized DN” theory of type Dp+q,q with (p, q) = (2, 7).

It was shown in [17] that the defect group in this case is Z8. A computation along the lines

described above shows that the linking form is

LΓ(`, `) =
5

8
mod 1 (2.63)

with ` the generator of H1(S3/D9,7). Note that 5 is not a residue modulo 8, so this linking

form is inequivalent to the naive pairing L(`, `) = 1
8 mod 1. Another inequivalent pairing

LΓ(`, `) =
3

8
mod 1 (2.64)

is also realized, for instance by choosing (p, q) = (2, 9). More generally, one finds that

S3/Dp+q,q for (p, q) = (2, 2k + 1) has pairing

LΓ(`, `) =
3q

8
mod 1 (2.65)

despite the defect group always being Z8, so all possible pairings are realized.

Other generalized DN theories can be analyzed similarly, we will briefly state the results

without proof. For instance, consider the family of theories Dp+q,q with (p, q) = (3, 3k+1).

One finds that the defect group is Z3 ⊕ Z2 ⊕ Z2 for q even (or equivalently, k odd), and

Z12 for q odd [17]. In this last case we find the linking form

LΓ(`, `) = − q

12
+

1

2
mod 1 (2.66)

15Dp+q,q is a certain subgroup of U(2) acting freely on the S3 at infinity. For details see [17].
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with ` the generator of Z12. For q even, we find instead

LΓ(`3, `3) =
2

3
mod 1 (2.67)

with `3 a generator of the Z3 factor, and

LΓ|Z2⊕Z2 =

{
Lodd when q ∈ 4Z
Leven when q ∈ 4Z + 2

(2.68)

for the restriction of the linking form to the Z2 ⊕ Z2 factor. One can also see that the

(p, q) = (3, 3k − 1) case leads to precisely the same results as the ones we have just given.

3 Comparison with known results in four and six dimensions

Let us summarize the story so far. Quantizing type IIB string theory on a non-compact

manifold M6 × C2/Γ requires a choice of flux boundary conditions on N9 =M6 × S3/Γ.

Because electric and magnetic flux operators do not commute, there is no canonical “zero

flux” boundary condition that we can choose. Instead, the possible boundary conditions

for the RR fluxes are states in a Hilbert space acted on by the flux operators Φx, x ∈
TorK1(N9), with commutation relations

ΦxΦy = s(x, y)ΦyΦx , (3.1)

where s(x, y) is a perfect pairing. Maximal commuting subsets of the flux operators are in

direct correspondence with maximal isotropic subspaces L ⊂ TorK1(N9) with respect to

the perfect pairing s(x, y). Given maximal isotropic L, there is a basis of eigenstates |f ;L〉
labeled by cosets f ∈ FL = TorK1(N9)/L with

∀x ∈ L, Φx|f ;L〉 = s(x, f)|f ;L〉 . (3.2)

These states have boundary flux in a definite coset f ∈ FL, the strongest condition that

we can consistently impose. In particular, f ∼= 0 (restricting the flux to lie along L) is

the closest we can come to a “zero flux” boundary condition. The resulting quantization

depends on the choice of maximal isotropic subspace L ⊂ TorK1(N9).

Note that the flux operators Φx generate a Heisenberg group, summarized by the short

exact sequence,16

0→ U(1)→W π−→ TorK1(N9)→ 0 , (3.3)

where π(Φx) = x. The Hilbert space of flux boundary conditions discussed above is the

unique irreducible representation of W, and so the Heisenberg group W is a convenient

avatar for the choice of boundary conditions.

16To be precise, this sequence is exact if we take W to be generated by the flux operators and arbitrary

U(1) phase factors. If we take W to be generated by the flux operators alone, then U(1) must be replaced

by ZN in the exact sequence, where N is the order of the largest cyclic subgroup of TorK1(N9).
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For N9 =M6 × S3/Γ with M6 torsion-free, K1(N9) is the sum of cohomology groups

of odd degree and the perfect pairing is

s(a1 ⊗ `1, a2 ⊗ `2) = exp

(
2πi LΓ(`1, `2)

∫
M6

a1 ^ a2

)
, (3.4)

where ai ∈ H1,3,5(M6), `i ∈ H2(S3/Γ) = Γab, and LΓ is the linking pairing for S3/Γ, which

can be computed using the methods described in the previous section. For instance, for

Γ ⊂ SU(2) — leading to the (2, 0) theories — we find (see also [53])

Γ GΓ Γab LΓ

ZN SU(N) ZN 1
N

Dic(4N−2) Spin(8N) Z2 ⊕ Z2 Leven

Dic(4N−1) Spin(8N + 2) Z4
3
4

Dic(4N) Spin(8N + 4) Z2 ⊕ Z2 Lodd

Dic(4N+1) Spin(8N + 6) Z4
1
4

2T E6 Z3
2
3

2O E7 Z2
1
2

2I E8 0 0

(3.5)

When the defect group Γab is cyclic, we list LΓ(a, a) for the generator a, whereas for

Γab = Z2 ⊕ Z2, we refer to the two cases in (2.54).

We emphasize that the correct linking pairing is in general not determined by the

defect group. For instance, the defect groups for Spin(8N) and Spin(8N + 4) are both

Z2 ⊕ Z2, but the linking pairings are distinct. This has physical consequences, e.g., for

S-duality in 4d compactifications of these theories, and we will see that the linking pairings

in (3.5) correctly reproduce known results from the literature. This is a sensitive test of

our methods.

3.1 (2,0) theories

This solves the problem of specifying the RR flux boundary conditions for type IIB string

theory compactified onM6×C2/Γ. We now compare our results with known results about

the global structure of 6d (2, 0) theories with simple Lie algebras. To do so, we use the

universal coefficient theorem, which is the short exact sequence (see theorem 2.33 in [54])

0→ Hn(X)⊗A→ Hn(X;A)→ Tor(Hn+1(X), A)→ 0 . (3.6)

Applying (2.21) along with the assumption that M6 is torsion-free, we find

TorK1(M6 × S3/Γ) = H1(M6; Γab)⊕H3(M6; Γab)⊕H5(M6; Γab) . (3.7)

Thus, the Heisenberg group can be presented as

0→ U(1)→W → H1(M6; Γab)⊕H3(M6; Γab)⊕H5(M6; Γab)→ 0 , (3.8)
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as is typically done in the (2, 0) literature. Note, however, that the cohomology theory of

M6 with coefficients in Γab does not in itself define the perfect pairing s(x, y). Instead,

this depends on the topology of S3/Γ, as we have seen.

Since (3.4) involves the cup product onM6, the Heisenberg group splits naturally into

a direct sum W =W1,5 ⊕W3, where

0→ U(1)→W1,5 → H1(M6; Γab)⊕H5(M6; Γab)→ 0 , (3.9)

0→ U(1)→W3 → H3(M6; Γab)→ 0 . (3.10)

The W1,5 factor is associated with D1 and D5 branes wrapping torsional cycles in S3/Γ,

and stretching from infinity to the singularity, giving rise to point and codimension two

operators in the six dimensional theory. We also expect to have operators related to these

by SL(2,Z) transformations of the IIB background, that is (p, q) 5-branes and (p, q) 1-

branes. It would be interesting to understand these operators more fully from the field

theoretic viewpoint, but we will not do so here, simply noting that a choice of maximal

isotropic subspace within H1(M6; Γab) ⊕ H5(M6; Γab) can be done canonically, without

reference to the details of M6. For example, we can choose L = H1(M6; Γab), or with

equal validity L = H5(M6; Γab).

Likewise, W3 is associated with D3 branes wrapping torsion cycles in S3/Γ, giving rise

to 2-surface operators in the six dimensional theory. However, unlike before, there is no

M6-independent choice of boundary conditions (except in some special cases, see (3.12)

below). This differs from the situation at the classical level, where all background fluxes

can be set to zero if desired. Due to the non-commutativity of fluxes in the presence of

torsion, this canonical choice ceases to exist in the quantum theory: trying to set all fluxes

to zero would be akin to trying to fix both the position and momentum of a particle in

ordinary quantum mechanics.

These IIB results have clear implications for 6d (2, 0) theories. In order to fully specify

the partition function of a six-dimensional (2, 0) theory on a manifoldM6 we need to specify

the background fields for the global 2-form symmetries of the theory. These background

fields are inherited from the asymptotic boundary conditions for the F5 flux — or somewhat

more precisely, from the holonomies of C4 on torsion cycles, see [7, 8] and the remarks at

the beginning of section 2.1. But we have just argued that completely fluxless boundary

conditions for F5 are impossible. Thus, the background fields for the 2-form symmetries of

the (2, 0) theory cannot all be set to zero. Instead, only a subset can be fixed, the remainder

being summed over. The choice of this subset is a choice of maximal abelian subgroup of

the Heisenberg groupW3 in (3.10), equivalently the choice of a maximal isotropic subspace

of H3(M6; Γab).

Indeed, precisely the same structure has been previously argued — by different means

— to describe the global structure of (2, 0) [16, 55] and (1, 0) [17] theories. The IIB

viewpoint that we have developed here encompasses all previously understood cases, and

allows us to determine the precise commutation relations for the 2-form flux operators, as

illustrated above for C2/D2n and C2/Dp+q,p. For instance, the distinction between Leven

and Lodd for the case p = 3 with q even should lead to distinct S-duality patterns after

compactification on T 2; to our knowledge this is not yet explored in the literature.
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3.2 Theories and metatheories

As we have seen, the (2, 0) theories are generally “metatheories”: they have a partition

vector — associated to a choice of maximal isotropic subspace L ⊂ Γab⊗H3(M6) — rather

than a partition function. If we can devise a prescription for choosing L, independent of

the details ofM6,17 then the partition vector becomes a partition function, and we obtain

a “genuine” theory. In particular, this is true when

L = L0 ⊗H3(M6) , (3.11)

where L0 ⊂ H2(S3/Γ) = Γab is “self-dual,” i.e., equal to its orthogonal complement L0 =

L⊥0 with respect to the linking pairing LΓ.

Crucially, since the linking pairing LΓ on H2(S3/Γ) is symmetric (unlike the linking

pairing L on H5(N9), which is antisymmetric), self-dual L0 need not exist. In particular,

one can show that |L||L⊥| = |Γab|, and so the order of the defect group must be a perfect

square. Examining (3.5), the possibilities corresponding to simple Lie algebras are easily

classified:18

g Γab L0 G

Ak2−1 Zk2 k SU(k2)/Zk
Dk Z2 ⊕ Z2 or Z4 (1, 1) or 2 SO(2k)

D4k Z2 ⊕ Z2 (1, 0) Ss(8k)

D4k Z2 ⊕ Z2 (0, 1) Sc(8k)

E8 0 0 E8

(3.12)

where in each case L0 is cyclic and we indicate its generator. Fixing these maximal isotropic

subspaces, we obtain genuine (2, 0) theories (see, e.g., [3, 40]), where G is the 5d gauge

group that results from compactification on S1 (see below) and Ss(4k) = Spin(4k)/Z(L)
2

and Sc(4k) = Spin(4k)/Z(R)
2 are the semispin groups. Notice in particular that the linking

pairing Leven leads to additional genuine (2, 0) theories that are not present for Lodd.

The distinction between metatheories and genuine theories is further illuminated by

considering the behavior of extended operators. For instance, the (2, 0) theory with Lie

algebra D4k contains three types of 2-surface operators, corresponding to the three non-zero

elements of the defect group Z2⊕Z2. These 2-surface operators are not “mutually local”, in

that correlation functions containing multiple types of 2-surface operators will have branch

cuts when one type circles another. We can solve this problem by declaring only one type

of 2-surface operator to be “genuine” [3, 16, 56]. The remaining “non-genuine” 2-surface

operators are then interpreted as lying at the boundaries of 3-surface operators (the branch

17A precise way of stating this is the following: the 6d metatheory D may be viewed as a choice of

boundary condition for a 7d anomaly theory on a half-infinite line. To generate a genuine 6d theory, we

place the anomaly theory on an interval, with D on one boundary and gapped boundary conditions T on

the other. Distinct choices of T lead to distinct genuine theories with the same spectrum of local operators

(determined by D). If gapped boundary conditions are not possible then there are no genuine theories

corresponding to D. (We thank Davide Gaiotto for discussions on this point.)
18The Ss(8k) and Sc(8k) cases are related by an outer automorphism of Spin(8k), and triality relates

them to SO(8) for k = 1. The case SU(4)/Z2 = SO(6) appears twice in the table due to an exceptional

isomorphism.
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cuts), with the correlation functions only topologically dependent on the position of the

3-surfaces.

Indeed, depending on which 2-surface operator we designate as genuine, we obtain one

of the genuine theories SO(8k), Ss(8k), or Sc(8k) listed in the table above, where the gen-

erator of the maximal isotropic subspace L0 corresponds to the genuine 2-surface operator.

The other genuine theories also correspond to choosing genuine 2-surface operators in the

same manner, but with the added complication that some 2-surface operators fail to be

“self-local”, in that two operators of the same type can generate a branch cut upon circling

each other.19

To see how these properties follow from the string theory picture discussed previously,

it is convenient to consider first the conceptually simpler 6d (1, 1) theories.

3.3 Wilson and ’t Hooft operators

To obtain 6d N = (1, 1) Yang-Mills theories with simple ADE Lie algebra gΓ, we replace

type IIB string theory with type IIA string theory in our discussion above, with Γ ⊂
SU(2).20 To define the partition function for this theory on a manifold M6 we again need

to choose boundary conditions at infinity. The main difference with the IIB case is that

in IIA the RR fluxes live in K0(X), instead of K1(X) [37]. Repeating the analysis above,

mutatis mutandis, we obtain

Tor(K0(M6 × S3/Γ)) = (H0(M6)⊕H2(M6)⊕H4(M6)⊕H6(M6))⊗ Γab , (3.13)

so that once more the Heisenberg group splits naturally into two components

0→ U(1)→W0,6 → H0(M6; Γab)⊕H6(M6; Γab)→ 0 , (3.14)

0→ U(1)→W2,4 → H2(M6; Γab)⊕H4(M6; Γab)→ 0 , (3.15)

both with the commutation relations coming from the torsion pairing in S3/Γ times the

intersection number in M6. As we will see, the Heisenberg algebra W2,4 is associated

to Wilson and ’t Hooft operators, and correspondingly the maximal isotropic subspaces

of H2(M6; Γab) ⊕ H4(M6; Γab) are related to the global form of the gauge group. The

significance ofW0,6 is less clear, and we defer further consideration of it to a future work.21

Wrapping a D2 brane on a torsion one-cycle σa of S3/Γ and extending it from the

singularity off to infinity, we obtain a Wilson line operator in the 6d gauge theory. To

determine whether the Wilson line operator is genuine, we move it around a closed path

in M6, tracing out a two-cycle Σ2, and ask whether the correlation function has changed

once it returns to its original position. If we initially deform the D2 brane only within

19For instance, the A1 theory has one non-trivial 2-surface operator, which fails to be self-local. As a

result, there is no maximal isotropic subspace of the kind (3.11) for this Lie algebra.
20Note that F-theory is not available to restore (1, 0) supersymmetry in the Γ ⊂ U(2) cases, unlike in IIB.

It would be interesting to consider IIA backgrounds with varying dilaton and compare with a geometric

analysis in M-theory, but we do not attempt this here.
21In the IIA description the associated operators come from D0 branes wrapping the torsion cycle (sug-

gestive of fractional instanton effects in the field theory [57]), and D6 branes wrapping the torsion cycle

and extending from infinity to the singularity, where they become Γab-valued domain walls.
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a distance r < r0 of the singularity, then the net result of the deformation is to add a

D2 brane wrapped on σa × Σ2 at radius r = r0. Extending the deformation outward

(r0 → ∞) corresponds to moving the wrapped D2 brane far away from the singularity.

The Chern-Simons coupling
∮
σa×Σ2

C3 of the wrapped D2 brane contributes a phase to

the path integral unless the holonomy of C3 on σa × Σ2 vanishes. Explicitly, pulling back

to S3/Γ × Σ2, the phase is exp(2πiLΓ(PD[σa], f)) where PD denotes the Poincaré dual

within S3/Γ and f ∈ TorH4(S3/Γ×Σ2) ∼= H2(S3/Γ)⊗H2(Σ2) ∼= H2(S3/Γ) is the torsion

component of the F4 flux along S3/Γ × Σ2. Thus, the correlation function has a branch

cut unless the linking pairing LΓ(PD[σa], f) vanishes.

Likewise, a D4 brane wrapped on σb and extended from the singularity to infinity yields

a ’t Hooft 3-surface operator in the gauge theory. Consider the link Σ2 of the 3-surface

wrapped by the ’t Hooft operator withinM6. The presence of the D4 brane generates tor-

sional flux f = PD[σb] within TorH4(S3/Γ×Σ2) ∼= H2(S3/Γ), and so deforming a Wilson

line associated to the torsion cycle σa along Σ2 we pick up a phase exp(2πiLΓ(σa, σb)): the

Wilson and ’t Hooft operators are not mutually local.

Suppose that we wish to designate all Wilson lines as genuine. Per the above discus-

sion, this requires a boundary condition where the torsion component of [F4], classified

by TorH4(S3/Γ×M6) ∼= Γab ⊗H2(M6), vanishes. The corresponding maximal isotropic

subspace is L = Γab ⊗ H4(M6). As this choice is independent of the details of M6, it

produces a genuine (1, 1) theory with Wilson lines classified by Γab = Z(GΓ). In a gauge

theory with gauge group G, we expect a Wilson line operator for each element of Z(G)

(see, e.g., [18]), so we interpret this theory as the 6d (1, 1) theory with simply connected

gauge group GΓ.

More generally, for any subgroup LW ⊆ Γab, we can choose the maximal isotropic

subspace

L = [LW ⊗H4(M6)]⊕ [LH ⊗H2(M6)] , LH = L⊥W , (3.16)

for which the Wilson lines LW and ’t Hooft lines LH = L⊥W are genuine. By the same

reasoning as above, this is a genuine (1, 1) theory with gauge group GΓ/LH .22 In this way,

the M6-independent maximal isotropic subspaces reproduce the different global forms of

the gauge group.

This result can also be understood from the viewpoint of generalized global symme-

tries [3]. Consider, as an example, the six-dimensional (1, 1) theory with algebra su(N).

The choice of a global form of the gauge group can be understood as a choice of which

higher-form symmetries are present in the theory. For instance, if we choose global form

SU(N) then there is a ZN discrete 1-form symmetry counting Wilson lines (which are

“genuine”, in this theory), while if we choose global form SU(N)/ZN there is instead a

ZN 3-form symmetry counting ’t Hooft 3-surface operators. In the former case, we can

couple the theory to a background 2-form ZN gauge field, with the non-trivial gauge bun-

22To make this statement precise, we need to specify a canonical map between Λw(G)
Λr and Z(G). In

particular, we choose this map so that g ∈ Z(G) gives a phase exp(2πiLΓ(g, r)) to representations in the

coset r ∈ Λw(G)
Λr . This is the natural choice, but has potentially unexpected consequences for the case D4k,

e.g., the left-handed spinor coset maps to the generator of Z(R)
2 .
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dles classified by H2(M6;ZN ). These gauge bundles for the background 2-form should

correspond to the background flux f ∈ FL, where FL is given by (2.10). Thus, the global

form SU(N) corresponds to the maximal isotropic subspace L = H4(M6;ZN ) (for which

FL ∼= H2(M6;ZN )), in agreement with the above analysis. The case SU(N)/ZN is ana-

lyzed similarly.

3.4 N = 4 theories of ADE type

The above discussion is readily generalized to the (2, 0) theories, with corresponding

changes in the dimensions of branes/operators and the ranks of fluxes. However, as many

(2, 0) theories do not admit anM6-independent maximal isotropic subspace, see section 3.2,

it is particularly interesting in this case to consider Lagrangian subspaces that depend on

M6. The discussion of the previous section can be summarized as follows: switching to

homology using Poincaré duality, the Lagrangian subspace L ⊂ H1(S3/Γ) ⊗ H3(M6) ∼=
H3(M6; Γab) is the space of cycles on which the holonomy of C4 is asymptotically fixed

to zero by the boundary conditions. As such, these are the cycles around which we can

deform the 2-surface operators without encountering a branch cut. When L is M6 de-

pendent, this means that some but not all branch cuts are eliminated, and in general no

2-surface operators are genuine when deformed around an arbitrary three-cycle.

Having understood the behavior of 6d (2, 0) theories in terms of boundary conditions

in type IIB string theory, we can apply the same ideas to compactifications of the (2, 0)

theory. Our goal in the remainder of this section is to demonstrate that the classification

of 4d N = 4 theories given by [18] (see also [58]) is reproduced in this framework. To do so,

we consider T 2 ×M4 compactifications of the (2, 0) theories, following a similar approach

to Tachikawa [40] but using Heisenberg group commutators computed directly in the type

IIB picture discussed above, rather than inferred from four dimensional reasoning [18, 58].

The Lie algebras D4k and D4k+2 (not analyzed in [40]) provide a particular sensitive test

of our reasoning, as the different linking pairings Leven and Lodd for these two cases lead to

different patterns of 4d S-duality, in agreement with [18].

First note that, in the absence of torsion on M4, we have by the Künneth formula

H3(M4 × T 2) = H3(M4)⊕ [H2(M4)⊗H1(T 2)]⊕H1(M4) . (3.17)

Again for degree reasons we have a natural splitting of the associated Heisenberg group

W3 =W1,3 ⊕W2, with

0→ U(1)→W1,3 → H1(M4; Γab)⊕H3(M4; Γab)→ 0 , (3.18)

0→ U(1)→W2 → H2(M4)⊗H1(T 2)⊗ Γab → 0 . (3.19)

The Heisenberg group W1,3 is associated to point and 2-surface operators in the 4d theory.

Noting that, M4 and T 2-independent choices of maximal isotropic subspace are always

possible within this factor, such as L1,3 = H1(M4; Γab) or L1,3 = H3(M4; Γab), we ignore

it for the time being, instead focusing on the factor W2 describing line operators.

To obtain genuine 4d theories, we consider M4-independent maximal isotropic sub-

spaces of H2(M4)⊗H1(T 2)⊗ Γab. These are of the form

L = H2(M4)⊗ LT 2 (3.20)
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where LT 2 is a maximal isotropic subspace of H1(T 2; Γab), corresponding to the Heisen-

berg algebra

0→ U(1)→WT 2 → H1(T 2; Γab)→ 0 . (3.21)

Since a maximal isotropic subspace of H1(T 2; Γab) always exists there are genuine theories

corresponding to every Lie algebra, unlike in six dimensions. Instead, the absence of a

genuine six dimensional theory causes a “modular anomaly”: tracing a closed path in the

complex structure moduli space of the torus changes the partition function.

In particular, the partition function is generally not a modular-invariant function of the

holomorphic gauge coupling τ . From the 6d perspective, τ is the complex structure of the

torus and modular transformations τ → aτ+b
cτ+d are large diffeomorphisms in the background

metric. Thus, the failure of modular invariance (in the absence of additional background

fields along the torus) is the result of a 6d anomaly in large diffeomorphisms. Depending

on the 6d anomaly, a characteristic pattern of S-dualities is generated, as in, e.g., [18].

Note that if we view fixed τ as part of the defining data of the theory then we would

not consider the non-invariance of the partition function under SL(2,Z) transformations of

τ to be a 4d anomaly, but rather a consequence of deforming along a fixed line from one

theory to another. On the other hand, when considering four-dimensional backgrounds

with varying τ , the anomaly viewpoint becomes more natural. We revisit this point below

in the context of theories with codimension-two duality defects.23

Thus, for each maximal isotropic subspace of LT 2 ⊂ H1(T 2; Γab) there is a genuine 4d

N = 4 theory. Wrapping the 2-surface operators of the 6d (2, 0) theory on different cycles

of the torus, we obtain different types of 4d line operators. For instance, reducing the (2, 0)

theory first on the A cycle of the torus, we obtain a five-dimensional gauge theory, with

Wilson line and ’t Hooft 2-surface operators. Reducing again on the B cycle, the ’t Hooft

operators become lines. Thus, 2-surface operators wrapped around the A and B cycles are

Wilson and ’t Hooft lines, respectively, whereas those wrapped around a combination of

the two are dyonic lines.

We can identify the genuine theory in question by specifying which of these line oper-

ators are genuine. In particular, by the same reasoning as in the previous section, there is

a one-to-one correspondence between the elements of the maximal isotropic subspace LT 2

and the genuine line operators in the 4d theory, and so the result can be directly compared

with [18].

Consider for example the N = 4 theories with Lie algebra su(N), corresponding to the

AN−1 (2, 0) theory on a torus. In general H1(T 2; Γab) = H1(T 2)⊗Γab = Γab⊕Γab with the

perfect pairing s(a, b) = exp(2πiLT 2(a, b)), where LT 2 is the linking pairing on S3/Γ× T 2

LT 2(a, b) = LΓ(πA(a), πB(b))− LΓ(πB(a), πA(b)) a, b ∈ Γab ⊕ Γab , (3.22)

and πA : Γab ⊕ Γab → Γab and πB : Γab ⊕ Γab → Γab project onto the first and second

summand, respectively. In the su(N) case, Γab = Γ = ZN , and we obtain the perfect pairing

s(e1p +m1q, e2p +m2q) = exp

(
2πi

N
(e1m2 − e2m1)

)
(3.23)

23See [59–62] for recent work studying other aspects of anomalies on the space of coupling constants.
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(a) SU(3) (b) (SU(3)/Z3)0 (c) (SU(3)/Z3)1 (d) (SU(3)/Z3)2

Figure 3. Maximal isotropic subspace of H1(T 2;Z3) = Z3 ⊕ Z3 with respect to the perfect

pairing (3.23). We have labelled the possibilities using the nomenclature of [18]. Each filled dot

corresponds to a genuine line operator.

from (3.5), where p and q denote the A and B cycles of the torus, respectively. Here ei and

mi denote the Wilson and ’t Hooft charges of the associated line operators, respectively.

For instance, L = {mq|0 ≤ m < N} is a maximal isotropic subspace whose elements

correspond to ’t Hooft lines of every possible ZN charge; the associated gauge theory is

therefore (SU(N)/ZN )0 in the notation of [18].

For any fixed N , it is a simple exercise to enumerate the maximal isotropic subspaces

of ZN ⊕ ZN with respect to the perfect pairing (3.23). For instance, the case N = 3 is

shown in figure 3, with results that are easily seen to agree with [18]. More generally, flux

operators Φ1 and Φ2 commute if

e1m2 − e2m1 ≡ 0 (mod N) . (3.24)

This is the same as the mutual locality constraint found in [18], so the results will agree in

general.

The so(4k + 2) and E6,7,8 theories are handled similarly. However, the case so(4k)

deserves special attention, as the defect group Γab = Z2 ⊕ Z2 is not cyclic, and there are

multiple possible linking pairings, each with different consequences. For so(8k), the linking

pairing is LΓ = Leven per (3.5), so we obtain the perfect pairing

s(e1p + ẽ1p̃ +m1q + m̃1q̃, e2p + ẽ2p̃ +m2q + m̃2q̃) = (−1)e1m̃2+ẽ1m2+e2m̃1+ẽ2m1 (3.25)

using (3.22), where p and p̃ denote the A cycle of the torus tensored with the two generators

of Z2 ⊕ Z2 and likewise for q and q̃. For so(8k + 4) the linking pairing is LΓ = Lodd, so we

obtain instead

s(e1p + ẽ1p̃ +m1q + m̃1q̃, e2p + ẽ2p̃ +m2q + m̃2q̃) = (−1)e1m2+ẽ1m̃2+e2m1+ẽ2m̃1 . (3.26)

These agree with (5.4) of [18], which is a sensitive check of our analysis.

The above analysis generalizes readily to compactifications of the (2, 0) theory on an

arbitrary compact Riemann surface Σ; M4-independent maximal isotropic subspaces are

now of the form L = H2(M4)⊗LΣ, associated to the Heisenberg group 0→ U(1)→WΣ →
H1(Σ)⊗Γab, with the perfect pairing s(c1⊗`1, c2⊗`2) = exp

(
2πi (c1◦c2) LΓ(`1, `2)

)
, where

◦ is the intersection form on Σ. It would be interesting to understand how adding punctures

on Σ — as in class S constructions — changes this story.
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3.5 Fractional instanton numbers and the linking form

Although this is somewhat outside the main line of development of our paper, we point

out that in the N = 4 cases one can give a simple expression for the fractional instanton

numbers for GΓ/Γ
ab bundles, as computed in [63] (see also [18]) in terms of the linking

pairing discussed above. Let us assume that M4 has no torsion and also that it is a Spin

manifold. Consider the class w2 ∈ H2(M4; Γab) measuring the obstruction to lifting the

given GΓ/Z(GΓ) = GΓ/Γ
ab bundle to GΓ. Since TorH4(M4×S3/Γ) ∼= H2(M4; Γab) along

the same lines as above, we can rewrite this as a class ŵ2 ∈ TorH4(M4×S3/Γ). Denoting

by L̂ the linking form in M4 × S3/Γ, one can check that the fractional instanton number

can be expressed as24

ninst ≡
1

2
L̂(ŵ2, ŵ2) (mod 1) , (3.27)

in the conventions where the minimal local GΓ-instanton on R4 has instanton number 1.25

This relation is less surprising if we recall the fact that the fractional instanton number ninst

encodes the change in the partition function of N = 4 super-Yang-Mills under τ → τ + 1,

up to a factor c(M4) that depends on the topology of M4 but not on w2 [27]:26

Zw2(τ + 1) = exp
(

2πi(c(M4) + ninst)
)
Zw2(τ) . (3.28)

From the type IIB string theory perspective this is a change in the phase of the partition

function resulting from a large diffeomorphism of the T 2 factor in the M4 × T 2 × C2/Γ

geometry, in the presence of a RR 5-form flux given by ŵ2⊗x, with x a generator of H1(T 2).

As such, a rough argument for (3.27) is as follows. Heuristically, we could express

the path integral of IIB string theory on a manifold X10 with background flux F as the

the partition function of the anomaly theory A on a manifold Y11 with ∂Y11 = X10, and

an insertion in Y11 of an appropriate flux operator ΦF (see for instance [16] for a similar

construction in the context of AdS/CFT). In our situation, depicted in figure 4(a), we are

interested in computing the partition function of A on a cylinder with flux ŵ2 ⊗ x on one

end, and (due to the large diff on the T 2 factor) a flux ŵ2 ⊗ (x + y) on the other end. In

order to create these fluxes, we introduce operators Φŵ2⊗x and Φŵ2⊗y into the bulk of the

anomaly theory.

Now take two copies of the cylinder constructed above, and glue them together, along

with two trivial cylinders, into a torus, as in figure 4(b). Bringing the four insertions

together we obtain the commutator s(ŵ2 ⊗ x, ŵ2 ⊗ y) which is a c-number, and can be

taken out of the path integral. The c(M4) factor in (3.28) is associated to the change in

the partition function with no flux, so it is natural to conjecture that it is associated with

the value of the partition function in the absence of ΦF insertions.27 Removing this overall

24Recall that we are taking M4 to be a Spin manifold, so 1
2

∫
M4

w2 ^ w2 is an integer.
25In comparing with the results of [18], it might be useful to recall that in the case at hand one can define

the Pontryagin square of x ∈ H2(M4,Z2) by P(x) = x2 mod 4, where x ∈ H2(M4) is an uplift of x.
26That is, the fractional instanton number encodes an anomaly under θ → θ + 2π. See [62] for recent

work discussing this viewpoint in more detail.
27It should in principle be possible to compute this change in the partition function of IIB string theory

in terms of an eleven-dimensional anomaly theory A (see [31, 64–67]) on a cylinder with boundary the
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(a) Action of the large diff on IIB. (b) Building the commutator.

Figure 4. (a) The fractional instanton number can be viewed as the anomaly coming from a large

diffeomorphism in the presence background torsion flux. At the level of the fluxes, this can be

implemented by the insertion of suitable operators in the anomaly theory. (b) Gluing two copies

of the configuration giving the anomaly to two configurations without flux we obtain the anomaly

theory with four operator insertions. Bringing the operators together we obtain the commutator,

a c-number.

factor, the construction implies that

s(ŵ2 ⊗ x, ŵ2 ⊗ y) =
[
exp(2πi ninst)

]2
. (3.29)

Using the relations between s and the linking form given above, this implies (3.27) up to

a sign, which depends on choices of orientation that we have not been careful about.

The above argument is somewhat heuristic. It would be interesting to work it out

in detail and determine its implications beyond the N = 4 case. It seems natural to

conjecture, for instance, that (3.27) still holds if we consider (1, 0) theories compactified

on T 2. Even though the resulting theory may be non-Lagrangian, (3.27) is a natural

guess for the behavior of the partition function in the presence of backgrounds for the

1-form symmetries.

3.6 Product groups

Consider the case of the E8 theory in six-dimensions, arising from IIB on C2/E8. Since28

H2(S3/E8) = 0 the (2, 0) theory of e8 type is a genuine six-dimensional theory: no choice

ten dimensional configurations related by the large diffeomorphism. A natural stepping stone towards the

full eleven-dimensional computation would be to reproduce the anomalous phases of the partition function

from the behaviour of the anomaly theory for the six-dimensional (2, 0) theory [15]. See [59] for an analysis

following this approach for the abelian case (or more generally, for six-dimensional theories with an invertible

anomaly theory).
28The space S3/E8 is known as the “Poincaré homology sphere”, and is well known to have the same

homology groups as S3. As we have explained above, this statement is equivalent to the fact that the centre

of E8 is trivial.
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of IIB boundary conditions at infinity is needed in order to define the theory on any

six-manifold. This implies, in particular, the well-known fact that the N = 4 theory with

gauge group E8 is invariant under SL(2,Z) dualities. The group E8 has a maximal subgroup

(E6 × SU(3))/Z3, and one can check that the N = 4 theory with this gauge group is also

invariant under SL(2,Z).

We can reproduce this result from our geometric perspective, by showing that there is

a genuine six-dimensional theory of type e6 ⊕ su(3). Consider a local K3 with singularities

of type locally C2/E6 and C2/Z3. We link the singularities by small rational homology

spheres S3/E6 and S3/Z3, with total manifold their disjoint union Su := S3/E6 t S3/Z3.

From (3.5) we obtain

H2(Su) = H2(S3/E6)⊕H2(S3/Z3) = Z3 ⊕ Z3 (3.30)

with linking form

Lu = LE6 ⊕ LZ3 =

(
2
3 0

0 1
3

)
. (3.31)

Let a and b be the generators of H2(Su) corresponding to the H2(S3/E6) and H2(S3/Z3)

factors, respectively. Because Lu(a+b, a+b) = 0, H2(Su) has a self-dual subspace generated

by a+b (as well as one generated by a−b). Associated to this, there is a maximal isotropic

subspace of H2(Su)⊗H3(M6) given by

Lu = Span(a+ b)⊗H3(M6) . (3.32)

Following the same reasoning as above, after reduction on T 2 we obtain a 4d theory with

line operators that carry equal charge under the Z3 1-form symmetries associated to e6 and

su(3), hence the global form of the gauge group is indeed (E6 × SU(3))/Z3.

We emphasize that in this last example it was essential that LE6 = −LZ3 , so this is

another sensitive check of our arguments. This condition can also be understood along the

lines of the previous section: because of the change in sign of the linking form, the induced

fractional instanton numbers associated to the two factors are equal and opposite, so that

the τ → τ + 1 transformation becomes anomaly-free.

Similar checks can be performed for the rest of the maximal subgroups of E8. For

instance, (Spin(10) × SU(4))/Z4 is another example where the precise signs in (3.5) are

crucial to get the right results.29 An interesting case is (SU(5) × SU(5))/Z5, for which

H2(S3/Z5 t S3/Z5) = Z5 ⊕ Z5 with linking pairing

L =

(
1
5 0

0 1
5

)
. (3.33)

Since 22 ≡ −1 mod 5 and gcd(2, 5) = 1, we can perform an invertible change of basis

a′ = 2a of the first Z5 factor so that the linking pairing becomes

L =

(
−1

5 0

0 1
5

)
(3.34)

and we can proceed as above.

29As in (3.12), we use the global form of the 5d gauge theory that results from circle compactification to

label genuine (2, 0) theories.
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As pointed out in [27], there are self-dual N = 4 theories with gauge group (SU(N)×
SU(N))/ZN for any N . At first, this poses a bit of a puzzle, since in general there is no n

such that n2 ≡ −1 mod N . For instance, for N prime, the condition for such an n to exist

(i.e., for −1 to be a quadratic residue) is that N ≡ 1 mod 4. Choose N = 3, for example.

The linking pairing is

L =

(
1
3 0

0 1
3

)
(3.35)

and it is easy to see that H2(Su) has no self-dual subspaces.

The resolution of the puzzle is that the theories described in [27] are really of the form

(SU(N)×SU(N))/ZN , meaning that in the IIB string theory realization the 16 supercharges

preserved by the first factor are precisely the 16 supercharges broken by the second factor,

as in brane-antibrane systems. In the deep infrared, the two AN−1 theories decouple,

and each is invariant under 16 supercharges. However, the preserved supercharges have

opposite chiralities ((2, 0) versus (0, 2)), and the full theory is non-supersymmetric at the

massive level.

Geometrically, this is achieved by gluing ALE spaces with opposite orientation to each

other. The change of orientation flips the overall sign of the intersection form on the ALE

space, which likewise flips the sign of the linking pairing on S3/ZN by (2.49). The correct

linking pairing on H2(Su) is therefore

L =

(
− 1
N 0

0 1
N

)
(3.36)

which admits self-dual subspaces, such as Span(a+ b).

4 Self-dual boundary conditions

In the previous sections we have discussed how a careful treatment of boundary conditions

in IIB string theory in M6 × C2/Γ allows us to reproduce the known global structure of

(2, 0) theories of type gΓ on M6, giving in particular a systematic way of understanding

the set of discrete 2-form symmetries of the (2, 0) theory and their commutation relations,

as encoded in the Heisenberg group

0→ U(1)→W3 → H3(M6,Γ
ab)→ 0 . (4.1)

We have seen that W3 can be naturally understood as the group of asymptotic fluxes for

the self-dual RR 5-form on M6 ×C2/Γ. The known classification of N = 4 theories arises

beautifully from this viewpoint.

Have understood these rather subtle properties of the 6d (2, 0) and 4d N = 4 theories

from the IIB viewpoint, the following question naturally arises. Say that we choose M6 =

M4 × Σ, as above. In choosing boundary conditions for type IIB on M4 × Σ × C2/Γ we

generally need to choose between breaking large diffeomorphisms on Σ or on M4. What

makes the IIB boundary conditions that are invariant under the large diffeomorphisms of

M4 special from the IIB viewpoint? The answer, clearly, is that there is nothing special
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about them from the 10d perspective. As such, it is in principle an interesting question

to choose different boundary conditions and examine their consequences. In fact, we will

argue that in some contexts it is more natural to choose boundary conditions that are

invariant under large diffeomorphisms of Σ. Perhaps surprisingly, we show that these

alternate “self-dual” boundary conditions are possible whenever M4 satisfies a few basic

assumptions, regardless of whether a genuine (2, 0) theory exists in six dimensions.

4.1 On the global structure of N = 4 theories with duality defects

As a warm-up, and to provide additional motivation, we first describe a situation where

it becomes impossible to choose boundary conditions that are invariant under large diffeo-

morphisms of M4.

We consider the (2, 0) theory of type gΓ compactified on M6 = K3× Σ, where Σ is a

Riemann surface and the K3 is elliptically fibered. More concretely, we construct K3 as a

hypersurface {P = 0} of degree (12, 6) in a toric space Y described by the gauged linear

sigma model with charges

u1 u2 x y z

C∗1 1 1 4 6 0

C∗ 0 0 2 3 1

(4.2)

We can write the fibration in Weierstrass form

P = −y2 + x3 + f(u1, u2)xz4 + g(u1, u2)z6 (4.3)

where f and g are sections of the line bundles OP1(8) and OP1(12), respectively. (That is,

locally they are homogeneous functions of s1, s2 of degrees 8 and 12, respectively.)

There is a fibration map π : K3 → P1 induced by the ambient space fibration

πa : Y → P1

πa(u1, u2, x, y, z) = (u1, u2) . (4.4)

The generic fiber π−1(u1, u2) is T 2. The Calabi-Yau space K3 has a section, namely an

embedding P1 → X intersecting each fiber once, given by {z = 0} ∩ {P = 0}.
There are two interesting limits to consider. When the volume of Σ is very small,

we recover a 4d N = 4 theory on K3 along the same lines as we have already discussed.

If instead the volume of the T 2 fiber of K3 is very small, we expect an effective local

description in terms of 4d N = 4 SYM on P1×Σ with algebra gΓ. However, this description

is qualitatively different from the previous case, due to the presence of duality defects.

Recall that the complexified gauge coupling of the N = 4 theory is given by the complex

structure of the T 2 fiber. As the fibration is non-trivial in this case, the gauge coupling

varies across M4 = P1 ×Σ, and is now better viewed as a background field, rather than a

“constant”.30 There are codimension two loci along the P1×Σ base — the duality defects

— located at the vanishing points of the discriminant

∆(u1, u2) = 4f(u1, u2)3 + 27g(u1, u2)2 , (4.5)

30See [19–26] for studies of such backgrounds.
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around which the complexified gauge coupling has SL(2,Z) monodromies. Notice that ∆

is a section of OP1(24), so generically it vanishes at 24 points in the base P1.

For a generic fibration, it is easy to see that the monodromy group for loops beginning

and ending at any fixed base point is the entire SL(2,Z). As an explicit example, let us

start with a class of K3 manifolds introduced by Sen [68], where

f(s1, s2) = αQ(si)
2 , g(s1, s2) = Q(si)

3 , Q(si) =
4∏
i=1

(s1 − ais2) , (4.6)

with α and ai arbitrary complex constants and ai 6= aj for i 6= j. The monodromy around

each zero of Q is given by

M =

(
−1 0

0 −1

)
. (4.7)

These K3 manifolds have the peculiarity that the complex structure of the torus is constant.

In fact they have a familiar interpretation in the context of F-theory [69], where each defect

corresponds to four D7 branes on top of an O7− plane [68].31 In this configuration we have

∆ = (4α3 + 27)Q(si)
6 . (4.8)

That is, there are six zeroes of ∆ coalescing on each zero of Q(si). We now study what

happens around each zero of Q(si) when we perturb f, g away from the special form (4.6).

The answer is well known in the context of F-theory (and before that, from the analysis of

the Seiberg-Witten solution of N = 2 SU(2) with four flavours [74, 75]): the six zeroes of ∆

split into four mutually local degenerations (the D7 branes, in F-theory) and two mutually

non-local degenerations (the O7− plane).

To show explicitly that the monodromy group is the full SL(2,Z), we choose an ex-

plicit basis for the geometry, following the conventions of [76, 77]. The defect described

above splits into four degenerations of type A, one of type B and one of type C. The

A degenerations are associated with degenerations the (1, 0) cycle of the T 2, the B with

degenerations of the (1,−1) cycle, and C with degenerations of the (1, 1) cycle (all defined

relative to a common canonical basepoint). The SL(2,Z) monodromies associated to these

degenerations are

MA =

(
1 −1

0 1

)
; MB =

(
0 −1

1 2

)
; MC =

(
2 −1

1 0

)
. (4.9)

One can obtain the two standard generators

T =

(
1 1

0 1

)
; S =

(
0 −1

1 0

)
(4.10)

of SL(2,Z) from here. Clearly T = M−1
A , and one can also see easily that S = MCM

2
A. This

situation is depicted in figure 5.

31We refer the reader interested in reading more about F-theory to the excellent reviews [70–73].
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Figure 5. The paths that implement the monodromies S and T at the point p in the presence of the

degenerations of the elliptic fibration discussed in the text. The dotted lines indicate branch cuts.

The monodromies indicated in the text are obtained by crossing the branch cut counterclockwise.

Figure 6. SL(2,Z) duality orbits for the N = 4 su(3) theories, from [18].

We now specialize to the A2 theory, for concreteness, the generalization to other al-

gebras being clear.32 Thus, we aim to describe an N = 4 theory with algebra su(3) on

P1×Σ in the presence of duality defects. What is the global form of the gauge group of this

theory? Intriguingly, this question is not answerable, because none of the genuine su(3)

theories can be placed in a background with generic duality defects. This because these

theories are not invariant under the SL(2,Z) monodromy group of a generic collection of

defects, see figure 6. More concretely, say that we declare that the gauge group on a R4

neighbourhood of the point p in figure 5 is of the form SU(3). By taking the path with

monodromy τ → −1/τ , we end up with (SU(3)/Z3)0 instead, in contradiction with our

initial assertion.

There are two kinds of solutions to this problem. More conservatively, we can restrict

to some particular genuine theory, which will restrict to a particular class of duality defects

leaving the choice of theory invariant. While this is well suited to certain problems, this

restrictive viewpoint is not always satisfactory. For instance, the 6d viewpoint suggests the

possibility of a 4d/4d correspondence between duality defects on P1 × Σ and elliptically

fibered K3 with constant gauge coupling. However, if we fix a choice of genuine theory in the

32One subtlety in the A1 case is that the 4d N = 4 theory with algebra su(2) can also be understood as

part of the usp(2N) family. As the discussion in this paper does not cover such cases, we avoid using A1

for the following argument.
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former case, then the boundary conditions will not be invariant under large diffeomorphisms

of K3 in the latter, whereas they will be invariant under large diffeomorphisms of Σ.

This suggests a second solution, which is to view the 4d theory with varying τ as a

kind of metatheory, just like the (2, 0) theory. In classifying general boundary conditions,

we are led back to the Heisenberg group

0→ U(1)→W3 → H3(K3× Σ;Z3)→ 0 , (4.11)

arising from the 6d perspective. However, in some cases it is interesting to focus on more

restricted choices other than those arising from genuine 4d theories. For instance, as we

have seen above, it is particularly natural to consider choices that are invariant under

large diffeomorphisms of Σ. We discuss a further motivation for Σ-independent boundary

conditions in section 4.3 below.

DoesW3 contain a maximal isotropic subspace that is invariant under the large diffeo-

morphisms of Σ? It is a non-trivial result, shown below, that such a subspace does exist,

not just for the su(3) theory on K3 but for any (2, 0) theory on any smooth, compact, Spin

manifold M4 without torsion.

4.2 Self-dual subspaces for smooth Spin four-manifolds

If M4 has no torsion, then (cf. (3.17)):

H3(M4 × Σ; Γab) = H3(M4; Γab)⊕ [H2(M4; Γab)⊗H1(Σ)]⊕H1(M4; Γab) . (4.12)

Thus, a Σ-independent maximal isotropic subspace of H3(M4×Σ; Γab) should take the form

L = L3 ⊕ (L2 ⊗H1(Σ))⊕ L1 , L2 = (L2)⊥ , L3 = (L1)⊥ , (4.13)

where Li ⊆ H i(M4; Γab) = H i(M4) ⊗H2(S3/Γ) and (. . .)⊥ denotes the orthogonal com-

plement with respect to the linking pairing

LM4(a1 ⊗ `1, a2 ⊗ `2) = (a1 ◦ a2)LΓ(`1, `2) , (4.14)

with a1 ◦ a2 =
∫
M4

a1 ^ a2 the intersection form on M4.33

Note that the linking pairing LM4 is symmetric. Following the nomenclature of sec-

tion 3.2, we call a subspace L of the form L = L⊥ “self-dual”, where in particular this

differs from a maximal isotropic subspace (applicable to an antisymmetric linking pairing)

in that a self-dual subspace is not guaranteed to exist. Because we can freely pick L1, fixing

L3 = (L1)⊥ (or vice versa), the existence of a Σ-independent maximal isotropic subspace

of H3(M4 × Σ; Γab) is equivalent to the existence of a self-dual subspace of H2(M4; Γab).

Below, we show that such a subspace exists for any smooth, compact Spin manifold M4

without torsion and for any Γ.

33This is a slight abuse of notation, since the intersection form is defined on homology; however, the

difference is an implicit application of Poincaré duality, which we won’t need to keep track of.
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4.2.1 The su(2) case

We begin with the A1 case, deferring a general statement till later. As above, we assume

that M4 is compact, Spin, and without torsion. Additionally, in order to be able to apply

some general results of Donaldson, we require that M4 is smooth.

Since M4 is torsion-free, H i(M4;Z2) = H i(M4) ⊗ Z2. Denote by ρ : H i(M4) →
H i(M4;Z2) the associated mod-2 reduction of cohomology classes. Explicitly, ρ is con-

structed from the short exact sequence

0→ Z ×2−−→ Z mod 2−−−−→ Z2 → 0 , (4.15)

which induces the long exact sequence in cohomology

. . .→ H2(M4)
ψ−→ H2(M4)

ρ−→ H2(M4;Z2)
φ−→ H3(M4)→ · · · (4.16)

Since there is no torsion in M4 the map φ = 0 in (4.16) is necessarily vanishing, and then

H2(M4;Z2) ∼= coker(ψ). Since ψ is simply multiplication of elements in H2(M4) by 2, we

can write

H2(M4;Z2) =
H2(M4)

2H2(M4)
, (4.17)

and think of elements of H2(M4;Z2) as the reduction modulo 2 of elements in H2(M4).

For any x ∈ H2(M4) we have

x2 = ρ(x)2 = Sq2(x) = ν2 ◦ x mod 2 (4.18)

where Sq2(x) denotes the Steenrod square [42] and ν2 is the second Wu class [78], which

in terms of Stiefel-Whitney classes can be written as ν2 = w2 + w2
1. A Spin manifold has

w1 = w2 = 0, so we learn that the intersection form is even. A theorem of Donaldson [79, 80]

then implies that the intersection form is necessarily of indefinite signature.

Likewise, the intersection form is unimodular when M4 is compact. The classification

of even unimodular forms of indefinite signature is a classical result, known as the Hasse-

Minkowski classification (see [81]), implying that one can choose a basis for H2(M4) such

that the intersection form is given by a block diagonal matrix of the form34

(−C(E8))⊕p ⊕H⊕q . (4.19)

Here p ≥ 0 and q > 0 are integers depending on M4, H is the matrix

H =

(
0 1

1 0

)
, (4.20)

and −C(E8) is the negative of the Cartan matrix of E8, which in our conventions will

be written

C(E8) =



2 0 −1 0 0 0 0 0

0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


. (4.21)

34Here we assume that the signature σ(M4) = −8p is non-positive. When the signature is positive, we

replace C(E8)→ −C(E8).
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We would like to construct a Z2-symplectic structure on M4, by which we mean a

choice of basis for H2(M4;Z2) such that the Z2 valued intersection form in this basis has

the form H⊕(4p+q). Clearly, the problem reduces to finding a change of basis for each

C(E8) block. The Z2-valued intersection form on H2(M4;Z2) is defined in terms of that

on H2(M4) by

a · b ≡ â ◦ b̂ (mod 2) , (4.22)

where for conciseness we have denoted â = ρ−1(a) and b̂ = ρ−1(b) for the uplifts to H2(M4).

Likewise, there is a quadratic refinement (·)2/2 : H2(M4;Z2)→ Z2 (the Pontryagin square)

given by

a2/2 ≡ (â ◦ â)/2 (mod 2) . (4.23)

As discussed above, the intersection form is even, so a2/2 ∈ Z2 as required. While we are

primarily interested in the intersection form, the Pontryagin square shows up in certain

calculations (see (3.27) and [18]), so we will keep track of it as well. In particular, the

symplectic basis can be chosen so that a2/2 = 0 for each basis element a.

We now explicitly construct a Z2-symplectic basis for the C(E8) intersection form.

Denote by êi the generators of H2(M4) with êi · êj = −C(E8)ij as above. They define an

associated basis {ei} of H2(M4;Z2), by taking ei = ρ(êi). The desired symplectic basis is

given by si = Sijej with

S =



1 1 1 0 1 0 1 1

0 1 1 0 1 0 1 1

1 1 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 1 1 0 0

1 1 0 0 1 0 1 0

1 0 0 0 0 0 0 1


. (4.24)

Consider the lift ŝi = Sij êj . We have

ŝi · ŝj = −(SC(E8)St)ij = −



8 7 0 −2 4 2 6 2

7 8 −2 −4 4 2 4 0

0 −2 4 3 0 0 2 2

−2 −4 3 4 −2 −2 0 2

4 4 0 −2 4 3 4 0

2 2 0 −2 3 4 2 0

6 4 2 0 4 2 8 1

2 0 2 2 0 0 1 4


ij

. (4.25)

Reducing modulo 2, we conclude that

si · sj = (H⊕4)ij . (4.26)

Since the diagonal elements are likewise multiples of four, s2
i /2 = 0, and we are done.

4.2.2 SL(2,Z)-invariant partition function on K3

The symplectic basis we have just constructed yields a self-dual subspace I0 of H2(M4;Z2)

in a rather trivial manner: divide the generators si into pairs (ei, ēi), with the property that

ei ·ej = ēi · ēj = 0 and ei · ēj = δij . Then I0 = Span{e1, . . . , en} is self-dual, where n = 4p+q
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and |I0| = 2n. There are many such subspaces because, e.g., we can exchange e1 ↔ ē1, and

likewise for the other pairs. Note that I0 is also “null”, which we define to mean x2/2 = 0

for all x ∈ I0.35 Self-dual does not imply null, since, e.g., Span{e1 + ē1, . . . , en + ēn} is

self-dual but not null. This distinction makes a difference for some calculations.

LettingM4 be simply connected for simplicity (so as to be able to ignore L1,3 in (4.13)),

corresponding to the self-dual subspace I0 there is a maximal isotropic subspace

L0 = I0 ⊗H1(Σ) ⊂ H3(M4 × Σ) . (4.27)

The associated choice of boundary conditions is invariant under large diffeomorphisms of

Σ, as desired, but not under large diffeomorphisms of M4.

We now perform some checks on this construction. Consider type IIB string theory on

M4 × T 2 × C2/Z2 with the boundary condition |L0〉 associated to the maximal isotropic

subspace L0 in (4.27). Since L0 is invariant under large diffeomorphisms of T 2, in the small

T 2 limit we expect to obtain an effective 4d description on M4 that is SL(2,Z) invariant.

For concreteness, choose M4 = K3, which should give a four dimensional N = 4 theory

with algebra su(2) on K3, with a peculiar choice of global structure that is not invariant

under large diffeomorphisms of the K3,36 but is invariant under the SL(2,Z) duality group

of N = 4 su(2) theory.37 We will refer to this choice of global structure as SO(3)0. We

emphasize that in contrast to genuine 4d field theories, but reflecting its origin in the (2, 0)

theory of type A1 (equivalently from the IIB C2/Z2 orbifold), the construction of this

“theory” makes explicit reference to the topology of M4 in the form of a particular choice

of self-dual I, which is not invariant under large diffeomorphisms of M4. Note that by the

4d/4d correspondence discussed above, this theory is related to one with 24 duality defects

on P1 × T 2 where invariance under large diffeomorphisms has been imposed along the T 2.

The existence of self-dual I is a non-trivial check (at the level of the partition function)

that this is possible.

To proceed further, we write |L0〉 in a particular basis, which will give an expansion

of the partition function Z(τ) =
〈
Z|L0

〉
in terms of “conformal blocks.” A convenient

choice is the one associated to the ordinary SU(2) theory, with basis elements |v〉 for each

v ∈ H2(M4;Z2), each associated to a background flux v for the Z2 one-form symmetry of

the theory. Equivalently, as in [27], we can think of the basis elements |v〉 as representing

classes of SO(3) gauge bundles that are not SU(2) gauge bundles. Referring to section 2.1,

section 3.4 we see that

Φu⊗a |v〉 = (−1)u·v |v〉 , Φu⊗b |v〉 = |u+ v〉 , (4.28)

35Thus, the elements of I0 are even, in the classification of [27].
36A peculiarity of the K3 case is that the theory can be topologically twisted without changing the

partition function [27], which implies that the partition function itself will, in fact, be invariant under large

diffeomorphisms of the K3. But we have no reason to expect this to be true for general M4.
37The existence of self-dual phases of the N = 4 su(2) theory has been suggested by Argyres and

Martone [82]. Here we have shown that something similar can be constructed in IIB, at the price of

breaking invariance under large diffeomorphisms in four dimensions. We emphasize that there is another

class of constructions one could consider in this context, the N = 1 case in the usp(2N) family, which we

have not yet analysed.
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where a, b denote the generators of the A and B cycles of T 2 and we fix the phases of the

basis elements so that |v〉 = Φv⊗b |0〉.
The associated conformal blocks Zv(τ) =

〈
Z|v
〉

were computed by Vafa and Wit-

ten [27]. We will not need the precise expressions, only their transformations under

SL(2,Z), which are given below. By linearity, given Zv(τ) we can determine the parti-

tion function for the SO(3)0 theory on K3 once we decompose |L0〉 in the {|v〉} basis. To

do so, recall that the defining property of |L0〉 is that

Φx |L0〉 = |L0〉 (4.29)

for all x ∈ L0 = I0 ⊗H1(T 2). Since {|v〉} is a basis, we can write

|L0〉 =
∑
v

cv |v〉 (4.30)

for some cv to be determined. We have L0 = L
(a)
0 ⊕ L

(b)
0 where L

(a)
0 := I0 ⊗ a and

L
(b)
0 := I0 ⊗ b with a, b the generators of H1(T 2), so if (4.29) holds for L

(a)
0 and L

(b)
0 then

it holds for all L0. Thus, we require

Φa⊗u |L0〉 =
∑
v

cv(−1)u·v |v〉 = |L0〉 , Φb⊗u |L0〉 =
∑
v∈I0

cv |u+ v〉 = |L0〉 , (4.31)

for all u ∈ I0. The first condition implies that

cv(−1)u·v = cv , ∀u ∈ I0 . (4.32)

Since I0 is self-dual, this implies that cv = 0 for v /∈ I0. The second condition then implies

cv = c′v for v, v′ ∈ I0, so we conclude that

|L0〉 =
∑
v∈I0

|v〉 , (4.33)

up to an overall normalization that we will not fix carefully. The partition function for

SO(3)0 is therefore

ZSO(3)0
(τ) =

∑
v∈I0

Zv(τ) . (4.34)

According to the results in [27], under S-duality we have

Zv(−1/τ) = (−1)
χ(K3)+σ(K3)

4 2−n
(τ
i

)−χ(K3)
2

∑
u∈H2(M4;Z2)

(−1)u·vZu(τ) , (4.35)

with χ(K3) = 24 and σ(K3) = −16 the Euler characteristic and signature of K3, and

n = 11 so that dim(H2(M4)) = 2n as above. Likewise,38

Zv(τ + 1) = (−1)v
2/2Zv(τ) , (4.36)

in agreement with the general discussion in section 3.5.

38For general four-manifolds M4 there is be an extra phase e−2πis, where s = χ(M4)/12 [27], but we

ignore it in what follows since for M4 = K3 we have s ≡ 0 mod 1.

– 38 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
9

We now check how Z0(τ) transforms under SL(2,Z). Invariance under T is immediate,

since I0 is null. To derive the S-transformation, we use

∑
v∈I0

(−1)u·v =

{
2n if u ∈ I0 ,

0 if u /∈ I0 .
(4.37)

The case u ∈ I0 is immediate. When u /∈ I0, I0 can be divided into cosets Iu and Iu + vu,

where Iu = {v ∈ I0|u · v = 0} and vu is any element of I0 − Iu (so that (−1)u·vu = −1).

The cosets are of equal size 2n−1, so the positive and negative terms in the sum cancel.

Using (4.35) and (4.37), we immediately conclude that

ZSO(3)0
(−1/τ) = τ−12ZSO(3)0

(τ) . (4.38)

As explained in [27], the fact that the partition function is a modular form of non-zero

weight originates from omitting higher derivative couplings to the curvature.39 We obtain

a fully modular invariant function by multiplying by, e.g., η(τ)24. Something similar should

correspond to including the appropriate higher derivative terms in the calculation.

One can perform a similar analysis of the modular properties of the K3 partition

function for su(N) theories. We leave the technical details to appendix B, but note that

the results are in perfect agreement with the type IIB viewpoint developed above as well as

with [18]. For the present, we confine ourselves to the question of the existence of self-dual

I0 in the su(N) case (and for other algebras), as discussed below.

4.2.3 su(N) and other algebras

It is not difficult to extend the argument of section 4.2.1 from su(2) to su(N) for small values

of N by brute force, but the computation quickly gets unwieldy. Luckily, the mathematical

problem that we are studying has a well known general solution.40 Abstractly, what we

are trying to show is that the Cartan matrix C(E8) in (4.21) and H⊕4 are equivalent as

bilinear forms over ZN . This is certainly not true over Z, as C(E8) and H⊕4 have different

signatures, (8, 0) and (4, 4) respectively. However, the signature is not well-defined over

ZN , and so with no obvious invariant to distinguish them, it perhaps unsurprising that

C(E8) and H⊕4 become equivalent. In fact, we will see that any two even unimodular

bilinear forms of the same dimension become equivalent over ZN .

To show this, note that by the Chinese remainder theorem

ZN = Zpn1
1
⊕ · · · ⊕ Zpnkk , (4.39)

where N = pn1
1 · · · pnkk and the pi are distinct prime numbers. Given a change of basis from

C(E8) to H⊕4 modulo Ni = pnii for each factor, we can again use the Chinese remainder

theorem to assemble them into a change of basis over N . Thus, we can set N = pn for the

rest of the proof without loss of generality.

39It would be very interesting to derive these corrections from the 11d anomaly theory for type IIB string

theory, similarly to the heuristic argument in section 3.5, see footnote 27.
40We thank Jack Shotton for explaining the following proof to us.
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We first consider the case of p 6= 2. We introduce the Jacobi-Legendre symbol for

a ∈ Z and prime p, defined as

(
a

p

)
=


1 if a is a quadratic residue mod p and a 6≡ 0 mod p,

−1 if a is not a quadratic residue mod p,

0 otherwise.

(4.40)

Then theorem 9 in section 15.7.2 of [83] implies41 that two quadratic forms f and g are

equivalent over Zpn if and only if they have the same dimensions and(
det f

p

)
=

(
det g

p

)
. (4.41)

Since we have that both det(H⊕4) = det(C(E8)) = 1, it follows that these bilinear forms

(or more generally, any two unimodular forms) are equivalent modulo pn for any n > 0

and any prime p > 2.

The case p = 2 is addressed in theorem 10 in section 15.7.5 of [83]. This theorem

implies42 that even bilinear forms are equivalent over 2n iff the same conditions as above

hold, namely that they have the same dimension and the same Jacobi-Legendre symbol(
det f

2

)
=

(
det g

2

)
. (4.42)

As above, this is clearly satisfied for C(E8) and H⊕4, as they are both even unimodular.

Thus, C(E8) and H⊕4 are equivalent bilinear forms modulo N for any integer N . Note,

however, that per (3.27) the partition function depends not just on the intersection form

but also on its quadratic refinement, the Pontryagin square. Fortunately, in the torsion-

free case that we are studying the quadratic refinement over ZN can be extracted from

the intersection form over Z2N , and so the above argument implies that the quadratic

refinements of C(E8) and H⊕4 are likewise equivalent over ZN for any N . In particular,

since the above argument does not depend on the details of C(E8) and H⊕4, any even

unimodular bilinear form admits a basis of the form

ei · ej = ēi · ēj = 0 , ei · ēj = δij , e2
i /2 = ē2

i /2 = 0 , (4.43)

upon reduction modulo N . From this, we can construct a null, self-dual subspace for su(N)

compactified on any smooth, compact, Spin M4 without torsion,

I0 = Span{ei} , (4.44)

just as in the case N = 2 discussed above.

41We give a simplified version that avoids the use of p-adic integers Ẑp (distinct from Zp := Z/pZ). The

precise statement in [83] is that two p-adic quadratic forms f̂ and ĝ are equivalent if the conditions given

in the text hold for every Jordan block of f̂ and ĝ. To reach the statement in the text we first promote

C(E8) and H⊕4 to bilinear forms on Ẑp, then use the result in [83] to prove that they are equivalent over

Ẑp, and finally use the well-known fact that for every m ≥ 0, every α ∈ Ẑp is congruent modulo pm to a

unique integer 0 ≤ n < pm to reduce the p-adic transformations that implement the change of basis to Zpm
transformations.

42There is also a classification theorem for odd forms; for simplicity we only present the statement for

even forms.
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We briefly comment on the (2, 0) theories of D and E type. In the cases D2k+1 and

Ek, the defect group is cyclic, and the above analysis remains valid. For the D4k+2 theory,

the basis (4.43) for N = 2 leads to a larger basis

αi · ᾱj = δij , βi · β̄j = δij , α2
i /2 = ᾱ2

i /2 = β2
i /2 = β̄2

i /2 = 0 , (4.45)

with αi = ei ⊗ α, βi = ei ⊗ β, etc., where α and β are the generators of the Z2 ⊕Z2 defect

group. Likewise, for D4k we obtain

αi · β̄j = δij , βi · ᾱj = δij , α2
i /2 = ᾱ2

i /2 = β2
i /2 = β̄2

i /2 = 0 . (4.46)

In either case, the expanded basis is still of the form (4.43) for N = 2 (with twice as many

generators), and so a null self-dual subspace exists as before.

While we expect that similar statements can be made for any defect group and linking

pairing, we defer further consideration of this to a future work.

4.3 2d/4d correspondences and Hecke transforms

There is another application of the previous discussion that we will now briefly outline.

Consider a compactification of the (2, 0) theory of type gΓ on M6 = M4 × Σ. There

are two natural limits to take: we can take the limit in which Σ is small, obtaining an

effective four-dimensional theory TΣ on M4, or alternatively we can first make M4 small,

obtaining a two-dimensional theory TM4 on Σ. There are deep relations between TM4

and TΣ, due to their common six-dimensional origin. It is expected that such a 2d/4d

correspondence exists for any suitableM4/Σ pair, as long as we can introduce appropriate

supersymmetric twists.43

A basic observable that we can compute in these theories is the partition function.

The expectation is that

ZΓ
(2,0)[M4 × Σ;L] = ZTΣ [M4] = ZTM4

[Σ] (4.47)

where the first term denotes the partition function of the six-dimensional (2, 0) theory of

type Γ on M4 × Σ, with a choice of maximal isotropic subspace L ⊂ W3. Although we

have chosen not to display it to avoid cluttering the notation too much, TM4 and TΣ will

depend on the choice of L and Γ.

An important subtlety now arises: to obtain a genuine 4d theory, we should choose L to

be independent of the details ofM4. Likewise, to obtain a genuine (i.e., modular invariant)

2d theory, we should choose L to be independent of the details of Σ. However, we have

seen that in general L cannot simultaneously be invariant under large diffeomorphisms of

43A case that has been extensively studied in the last few years is the one described by Alday, Gaiotto

and Tachikawa [84], see [85] for a clear and concise review. The best understood cases in this context are

M4 = S4, in which TS4 is Liouville theory (or perhaps more naturally, Toda theory [86]), andM4 = S3×S1,

where TS3×S1 is q-deformed Yang-Mills [87]. From the point of view of this paper, the most interesting

cases arise whenever M4 has non-trivial one or two-cycles. An example of a configuration with non-trivial

one-cycles isM4 = S3×S1, and indeed in this case one can relate the choice of maximal isotropic subgroup

in the Heisenberg group with the choice of the global form of the q-deformed Yang-Mills theory [40]. The

simplest example with non-trivial two-cycles is M4 = S2 × S2, which was studied in [88].
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both M4 and Σ! In particular, this is only seems to be possible when the corresponding

(2, 0) theory is genuine, see section 3.2. Thus, to make (4.47) true we must either choose

a genuine (2, 0) theory — and the associated Σ and M4 reductions44 — or at least one of

TM4 and TΣ cannot be genuine.

In this section, we will explore the consequences of making the 2d theory TM4 genuine

(modular invariant). To do so, we choose a maximal isotropic subspace of the form (4.13),

just as above. In particular, fixing M4 = K3 and choosing a self-dual subspace I0 of

the form (4.44) leads to a modular-invariant 2d CFT KΓ on Σ.45 We have not identified

this theory, but we will be able to prove some interesting facts about its elliptic genus (as

defined by the Vafa-Witten partition function [89]).

Choose, for concreteness, Γ = Z2. We denote by K2 := KZ2 the two-dimensional

modular invariant theory that we are after. In this case (4.47) implies that

ZK2 [T 2] = ZSO(3)0
[K3] (4.48)

see (4.34). It is interesting to compute this explicitly using the results of [27]. In particular,

from a general partition vector

|L〉 =
∑
v

cv |v〉 (4.49)

we obtain

Z[K3] = c0Ẑ(τ) + cevenZeven(τ) + coddZodd(τ) , ceven =
∑
v 6=0

v2/2=0

cv , codd =
∑

v2/2=1

cv ,

(4.50)

since the conformal blocks Zv = {Ẑ, Zeven, Zodd} only depend on whether v is zero, non-zero

and even, or odd, with [27]

Ẑ(τ) =
1

4
G(q2) +

1

2

[
G(q1/2) +G(−q1/2)

]
, (4.51a)

Zeven(τ) =
1

2

[
G(q1/2) +G(−q1/2)

]
, (4.51b)

Zodd(τ) =
1

2

[
G(q1/2)−G(−q1/2)

]
. (4.51c)

where q = exp(2πiτ) and

G(q) :=
1

η24(q)
=

1

q
∏∞
n=1(1− qn)24

. (4.52)

Note that this is the elliptic genus for 24 left moving bosons, excluding their zero modes.

As a warmup, we describe the partition function for the genuine 4d su(2) theories

on K3, following the nomenclature of [18]. For SU(2), we have cv = (1/2)δv,0, where

overall 1/2 follows the conventions of [27]. By comparison, for SO(3)+ theory, we have

44In particular, the 4d theory must be modular invariant in this case.
45It is possible that the particular 2d CFT obtained in this way depends on the specific choice of I0;

however, the topologically twisted Vafa-Witten partition function (essentially an elliptic genus from the 2d

perspective) does not depend on this choice (cf. footnote 36), and we so we ignore this subtlety for now.
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cv = 1, implying that ceven = neven and codd = nodd where neven = 1
2(222 + 211) − 1 and

nodd = 1
2(222−211) count the number of non-trivial SO(3) gauge bundles (see [27]). Finally,

for SO(3)− we have cv = (−1)v
2/2, which is the same as before except with codd = −nodd.

We now consider the SO(3)0 theory, as defined above. From (4.33), cv = δv∈I0 . Since

I0 is null and self-dual, this implies c0 = 1, ceven = 211 − 1, and codd = 0, where we use

|I0| = 211. Thus, explicitly

ZK2 [T 2] = ZSO(3)0
[K3] =

1

4
G(q2) + 210

[
G(q1/2) +G(−q1/2)

]
. (4.53)

It is an easy exercise, using the well-known modular transformation properties of η(q), to

show that ZK2(τ) transforms as a modular form of weight −12, the same as G(q) itself. In

fact, the two expressions are closely connected, as

ZK2 [T 2] = 211(T2[G])(τ) (4.54)

where Tm is the Hecke operator (see [90, 91] for reviews, as well as section B.1) acting on

modular forms of weight k by

(Tm[f ])(τ) = mk−1
∑
a,d>0
ad=m

1

dk

∑
0≤b<d

f

(
aτ + b

d

)
. (4.55)

In fact, the relation (4.54) holds more generally. Let Kp denote the theory KZp arising from

the Ap−1 theory on K3. In the case where p is prime, the elliptic genus for Kp is computed

in appendix B.2, with the result

ZKp [T
2] =

1

p2
G(pτ) + p10

p−1∑
j=0

G

(
τ + j

p

)
, (4.56)

which can be easily checked to satisfy

ZKp [T
2] = p11(Tp[G])(τ) . (4.57)

By a more involved calculation, this formula can also be shown to hold for composite N ,

see section B.5.46

We see that, at least at the level of the elliptic genus, the set of theories KN is in

some sense generated from the theory of 24 left-moving bosons with elliptic genus G(τ).

More precisely, there exists a family of modular-invariant two-dimensional conformal field

theories KN , obtained by compactification of the six-dimensional (2, 0) theory of type AN−1

on K3, whose elliptic genera are

ZKN [T 2](τ) = f(τ)(TN [G])(τ) , (4.58)

46To be precise, this is true when N is square-free. When N is divisible by a perfect square, different

choices of I0 lead to different partition functions. However, by imposing additional restrictions on I0 this

ambiguity is eliminated, and (4.57) remains true.
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where now we introduce a prefactor of f(τ) to account for possible (unknown) curva-

ture corrections [27]. We expect these corrections to restore modular invariance, as we

ultimately have a IIB compactification with boundary conditions invariant under large dif-

feomorphisms on Σ. Modular invariance constrains f(τ) to be a modular form of weight

12, but it is otherwise unknown. We will conjecture a specific form below.

Note that the situation is very similar to the original discussion in [89], where it was

show that there is a similar relation between the theory of N M5 branes and the heterotic

string.47 Namely, the partition function of N M5 branes on K3 × T 2 is the same as the

N -th Hecke transform of the heterotic string partition function on T 2.48 While in the

case of M5 branes it was natural to expect the existence of a modular invariant theory —

as the N = 4 U(N) theory is SL(2,Z) invariant — the existence of the KN theories is a

bit more surprising, and crucially depends on the existence of the self-dual subspaces I0

constructed in section 4.2.2. It would be very interesting to learn more about this class of

theories (and their natural generalizations when we replace K3 by other four-manifolds),

particularly given their close connection to the six-dimensional (2, 0) theory.

A conjecture for f(τ ). We now make a simple guess for f(τ), with interesting conse-

quences. To motivate it, we make the following assumptions:

1. f(τ) is a modular form of weight 12.

2. f(τ), coming from curvature corrections, is independent of N .

3. The form (4.58) holds for N = 1, where we expect to have a trivial theory.

These conditions, taken together, fix f(τ) = G−1(τ) = η24(τ), up to an overall constant

which we take to be N13 for convenience. That is, we conjecture that the full modular

invariant elliptic genus is

ZKN [T 2](τ) = N13TN [G](τ)

G(τ)
. (4.59)

Assuming that this is indeed the case, one finds the result49

ZK2 [T 2](τ) = 213η24(τ)(T2[η−24])(τ) = J(τ)− 24 , (4.60)

where

J(τ) = j(τ)− 744 =
1

q
+ 196884q + 21493760q2 + 864299970q3 + . . . (4.61)

is Klein’s j-invariant without the constant term. Two dimensional theories with parti-

tion function equal to the j-invariant have a rich history, most notably the moonshine

47See [92, 93] for further recent work relating various two-dimensional CFTs via Hecke transforms.
48In this context the Hecke transform can be understood as an averaging over degree N multi-coverings

of the torus by the heterotic string. See [94–96] for previous work exploring the connection between global

forms and multi-coverings of the torus.
49The appearance of a minus sign in the constant term is perhaps unexpected, but since we are computing

an elliptic genus there is no reason why this cannot occur. It would be interesting to better understand the

significance of this term.

– 44 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
9

module constructed by Frenkel, Lepowsky and Meurman [97], used by Borcherds to prove

monstrous moonshine [98]. It is quite enticing that the same function seems to appear

(assuming that our guess for f(τ) is correct) in trying to understand the partition function

of the (2, 0) A1 theory on K3.

From a purely mathematical point of view, we can understand the appearance of the

j-function here from the fact that ZKN [T 2](τ) is a modular function that is analytic in the

upper half plane and meromorphic with a pole of order N−1 at q = 0, so it can be expressed

as an order N − 1 polynomial in J(τ) for any N . The N coefficients in the expression in

terms of J(τ) can be determined by looking to the first N terms in the Laurent expansion

of ZKN [T 2](τ) around q = 0.

It is in fact possible to give concise expressions for the expansion of ZKN [T 2](τ) in

terms of J(τ) in the case that N is prime, as a special case of the results in [99]. Define

B(x; q) :=
E2

4(q)E6(q)

q(j(q)− x)
, (4.62)

where we have introduced the Eisenstein series E4(q) = 1 + 240q + 2160q2 + 6720q3 + . . .

and E6(q) = 1− 504q− 16632q2 − 122976q3 + . . .. If we denote by B(m;x) the coefficients

in the q-expansion of B(x; q),

B(x; q) :=
∞∑
m=1

B(m;x)qm , (4.63)

we have that

ZKN [T 2](τ) = B(N − 1; J(τ) + 744) . (4.64)

For reference, we find the elliptic genera for the first few primes to be

ZK2 [T 2](τ) = J(τ)− 24 ,

ZK3 [T 2](τ) = J(τ)2 − 24J(τ)− 393516 ,

ZK5 [T 2](τ) = J(τ)4 − 24J(τ)3 − 787284J(τ)2 − 71800864J(τ) + 75517745046 . (4.65)

We can also analyze directly the case of small composite N by comparing coefficients in

the Laurent expansion around q = 0. In this way we find, for instance

ZK4 [T 2](τ) = J(τ)3 − 24J(τ)2 − 590400J(τ)− 55032320 ,

ZK6 [T 2](τ) = J(τ)5 − 24J(τ)4 − 984168J(τ)3 − 88569408J(τ)2 + 191409608916J(τ)

+ 19264322219040 . (4.66)

Intriguingly, this agrees with (4.64), and it seems reasonable to conjecture that the formula

is valid for all N .
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It is also interesting to look directly to q expansion in the small N cases:

ZK2 [T 2](τ) =
1

q
− 24 + . . . ,

ZK3 [T 2](τ) =
1

q2
− 24

q
+ 252 + . . . ,

ZK4 [T 2](τ) =
1

q3
− 24

q2
+

252

q
− 1472 + . . . ,

ZK5 [T 2](τ) =
1

q4
− 24

q3
+

252

q2
− 1472

q
+ 4830 + . . . . (4.67)

...

These expressions have a remarkably simple structure, and the general result is easily

guessed from here

ZKN [T 2](τ) =
1

qNG(q)
+O(q) =

1

qN

∞∑
n=1

qnτ(n) +O(q) , (4.68)

where τ(n) is the Ramanujan tau function, not to be confused with the modular parameter

τ . Note that this form is somewhat reminiscent of extremal CFTs, see, e.g., [100], but with

the vacuum character replaced by a different function.

In fact, (4.68) is easy to prove using the properties of the Hecke operator. From it, we

obtain the exact expression,

ZKN [T 2](τ) =

N∑
n=1

τ(n)JN−n(τ) , (4.69)

where Jn(τ) := Tn[J ](τ) has the q expansion q−n+196884qn+. . . for n > 0, with J0(τ) := 1.

5 Conclusions

In this paper we have shown how to understand from the IIB perspective the fact that the

six-dimensional (2, 0) theories arising at C2/Γ singularities typically do not have a partition

function, but rather a vector of partition functions, in which the components mix under

large diffeomorphisms. The basic observation is that non-commutativity of RR fluxes in

type IIB string theory and non-commutativity of 2-form discrete flux operators in the

(2, 0) theory are two sides of the same coin, and in fact they generate the same Heisenberg

group. So the problem of choosing a specific direction in the Hilbert space of possible six-

dimensional (2, 0) theories (that is, the space of “conformal blocks”) maps to the problem

of choosing boundary conditions in the non-compact IIB space. More formally, we have

shown how a theory with a non-invertible anomaly theory, the six-dimensional (2, 0) theory,

can arise as a subsector of type IIB string theory, an anomaly-free theory.

One advantage of the IIB viewpoint is that it allows us to separate the problem of

determining the behaviour of the discrete 2-form symmetries of the (2, 0) theory from the

complicated local dynamics of the tensionless strings. Effectively, we have geometrized this
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sector of the problem into one involving free field theory for RR forms, solved in [7, 8]. This

reformulation allows us to give simple derivations of some subtle facts in the six-dimensional

theory, in particular the structure of the commutation relations for flux operators. While

the answer for the (2, 0) theory was already known by compactification on T 2, our derivation

has the virtue of easily generalizing to cases where the answer was not previously known,

such as the (1, 0) theories.

The IIB perspective also provides a first principles approach to discussing the global

structure of more exotic field theory setups, such as the theories with duality defects

studied in section 4, and naturally suggests a method to compute the anomalous phases of

some strongly-coupled 4d theories under specific modular transformations, as conjectured

in section 3.5.

There are a number of interesting open questions that we have not addressed. For

instance, we have assumed that M6 had no torsion. This was done only for mathematical

simplicity, and it would be fact be physically quite interesting to drop this assumption.

The fact that K-theory plays an important role in the IIB picture suggests that in the

presence of torsion on M6 K-theory might play a role in the classification of field theories.

It would be interesting to work this out in detail.

Along related lines, we have seen that in the absence of M6 torsion the IIB construc-

tion gives rise to all the global forms of the (2, 0) theories known from the holographic

viewpoint [16]. The presence of torsion in M6 introduces an interesting twist: the holo-

graphic classification of global forms for the (2, 0) theory is given in terms of cohomology

in M-theory, while that for IIB is given in terms of K-theory. Comparing the results of

both descriptions would be very interesting, and is potentially somewhat analogous to but

different from [10, 101].

It would also be interesting to understand the results in this paper from the viewpoint

of the 11d anomaly theory for IIB string theory [31, 64–67]. Our results suggest that in some

sense non-invertible anomaly theories can be constructed by considering the behaviour of

invertible anomaly theories in non-compact spaces; it would be interesting to make this

statement precise. Such a reformulation would likely have useful applications in the study of

duality anomalies for strongly coupled four dimensional theories, as we have sketched above.

Although we have focused mostly on K3×C2/Γ×T 2, it is clear that the basic idea will

generalize to more involved geometries. For instance, one can study the global structure

in the case of Vafa-Witten topologically-twisted compactifications of N = 4 on other four-

manifolds M4, such as P2, where we also know the answer for the partition function [27,

89], by considering cases in which M4 appears as a submanifold of threefolds [89] or G2

manifolds [102]. More generally, we might consider different theories in four dimensions,

such as those coming from other choices for the 4d topological twist, or alternatively the

Ω-deformed backgrounds that lead to the 4d/2d correspondence found by Alday, Gaiotto

and Tachikawa [84]. (See [103, 104] for discussion on how to realize these backgrounds in

string theory.)

Along similar lines, we could also consider compactifications on singular Calabi-Yau

theefolds in the context of geometric engineering (starting with [105–108], and more re-

cently [109–116]). The global structure of any theory that can be engineered in terms of a
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singular threefold or fourfold with isolated singularities can in principle be obtained via an

extension of the methods described here. It would be very interesting to do this in detail.

Another assumption that would be interesting to drop is that M6 is compact. We

might, for instance, consider IIB on spacetimes of the form C2/Γ1×C2/Γ2×T 2. As argued

in [117], such a configuration leads to a chiral WZW model (with algebra determined by

Γ1 and Γ2) living on T 2. It is natural to conjecture that a careful analysis of the boundary

conditions of IIB in this background should reproduce the structure of conformal blocks of

the chiral WZW model, and in particular give a geometric picture for the Verlinde formula

for these theories [118–122] (and relatedly, a direct string theory interpretation of the work

by Nakajima [123]). Additionally, considering such non-compact geometries would be the

starting point for understanding the behaviour of the global structure under gluing, along

the lines of [44, 124].

The inclusion of non-simply laced algebras in lower dimensions is another important

open problem. This would require the analysis of IIB backgrounds with orientifold actions,

changing the type of K-theory that we need to consider.

Finally, we could also ask what happens if one replaces C2/Γ by a multi-centered

Taub-NUT space (for simplicity we refer to the Γ = ZN case here). The local dynamics are

unaffected, but there is an additional normalizable mode, corresponding to a centre of mass

degree of freedom. In the six-dimensional (2, 0) theory this mode leads to a free tensor

multiplet, which is expected to reduce in the N = 4 theory to the U(1) factor of U(N). In

light of the results of this paper, it is natural to ask whether this is the only possibility, or

one can obtain the other gauge groups with algebra u(1) ⊕ su(N) by choosing boundary

conditions appropriately in the same IIB background. It would be interesting to work this

out in detail; we expect the work of Belov and Moore [31, 64, 65] to be relevant here.
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A K-theory groups of S3/Γ

In this appendix we compute the (complex) K-theory groups of S3/Γ, with Γ an arbi-

trary discrete subgroup of U(2) acting freely on S3. These spaces are orientable, with

cohomology groups50

H i(S3/Γ) =


Z for i ∈ {0, 3}
Γab for i = 2

0 for i = 1

, (A.2)

where Γab := Γ/[Γ,Γ] denotes the abelianization of Γ, as given by the Hurewicz homomor-

phism. Note that Γab is pure torsion, since Γ itself is.

The Atiyah-Hirzebruch spectral sequence. Say that we are interested in comput-

ing the (complex) K-theory groups Kp(X) of some manifold X, where p is the degree.

Given that Kp is a generalized cohomology theory (see for example §13.90 of [125] for a

description of the associated spectrum), we can compute the groups of interest using the

Atiyah-Hirzebruch spectral sequence (we refer the reader to [126] for background on the

computation of spectral sequences)

Ep,q2 = Hp(X;Kq(pt))⇒ Ep+q∞ (X) (A.3)

associated to the fibration 0 → pt → X → X → 0. Using K∗(pt) = Z[x, x−1] and the

cohomology groups (A.2) we can immediately write the E2 terms in the Atiyah-Hirzebruch

spectral sequence. We show the result in figure 7.

There are two small complications one encounters in going from E2 to Ki(S3/Γ). First,

there might be non-vanishing differentials acting on the modules in the spectral sequence.

By dimensional reasons, the only potentially non-vanishing differential is

d3 : E0,p
2 → E3,p−2

2 (A.4)

for p even. This differential necessarily vanishes, though, because otherwise we would find

K0(S3/Γ) = Γab, which is incompatible with the Chern homomorphism (2.15). The other

issue to deal with is that of potential non-trivial extensions. Recall that we have

Ep,q∞ =
F pKp+q

F p+1Kp+q
(A.5)

for the filtration

Kn(S3/Γ) = F 0Kn ⊃ . . . F iKn ⊃ F i+1Kn ⊃ . . . (A.6)

The only potentially non-trivial step is

E0,0
∞ = Z =

Kn(S3/Γ)

Γab
, (A.7)

50The result for H1 follows from the universal coefficient theorem (see theorem 3.2 in [42])

0→ Ext(Hn−1(X),Z)→ Hn(X)→ Hom(Hn(X),Z)→ 0 . (A.1)

Since H0(X) is free, this implies that H1(X) = Hom(H1(X),Z), which vanishes since H1(X) = Γab is

torsion.
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Figure 7. Contributions of the second page E2 = E∞ to K0(S3/Γ) (blue, on top) and

K−1(S3/Γ) = K1(S3/Γ) (pink, below).

or in other words that 0 → Γab → Kn(S3/Γ) → Z → 0 is exact. But this sequence splits,

since Z is free, and thus we find

K0(S3/Γ) = Z⊕ Γab , K1(S3/Γ) = Z . (A.8)

So in this case K-theory is completely determined by cohomology:

Ki(S3/Γ) ∼=
⊕

n≡i mod 2

Hn(S3/Γ,Z) . (A.9)

B K3 partition functions for N = 4 theories with algebra su(N)

In this appendix we perform two related calculations of the N = 4 Vafa-Witten partition

function on K3 [27, 89] for gauge algebra su(N). Firstly, we compute the partition function

for all the genuine theories classified by [18], and verify that their duality relations are as

expected. Secondly, we compute the elliptic genus of the modular-invariant KN theory

described in section 4.3.

B.1 The Hecke operator

Before diving into the physics, we briefly review the Hecke operator and some associated

identities.

Recall that a modular form f of weight w ∈ 2Z is a holomorphic function satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)wf(τ) (B.1)

for any integers a, b, c, d satisfying ad−bc = 1. More generally, a non-holomorphic modular

form of weight (w, w̃) satisfies

f

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= (cτ + d)w(cτ̄ + d)w̃f(τ, τ̄) . (B.2)

where w − w̃ ∈ 2Z.
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For any integer m ≥ 1, we define the Hecke operator Tm (see [90, 91] for reviews) by

its action on a modular form of weight w

(Tm[f ])(τ) := mw−1
∑
a,d>0
ad=m

1

dw

∑
0≤b<d

f

(
aτ + b

d

)
. (B.3)

For a non-holomorphic modular form we replace w → w + w̃.

We now show that Tm[f ] is itself a modular form of weight w. It is easy to see that

(Tm[f ])(τ + 1) = (Tm[f ])(τ). To compute the S transformation, we first derive a useful

identity. Consider (B.1) with c 6= 0, and define t ≡ cτ + d, so that τ = t−d
c and

f

(
− 1

ct
+
a

c

)
= twf

(
t

c
− d

c

)
. (B.4)

Thus, for coprime k,N :

f

(
− 1

Nτ
+
k

N

)
= τwf

(
τ

N
+
k′

N

)
, (B.5)

where kk′ ≡ −1 (mod N). More generally:

f

(
−1

τ
+
k

N

)
=

(
gcd(k,N)τ

N

)w
f

(
gcd(k,N)2

N2
τ +

k′ gcd(k,N)

N

)
, (B.6)

where k′ is the solution to the equation:

kk′ ≡ − gcd(k,N) (modN) , (B.7)

and we take the convention gcd(0, n) = n for n > 0.

Thus,

(Tm[f ])(−1/τ) = mw−1
∑
a,d>0
ad=m

1

dw

∑
0≤b<d

f

(
− a

dτ
+
b

d

)

= mw−1τw
∑
a,d>0
ad=m

∑
0≤b<d

(
gcd(b, d)

m

)w
f

(
gcd(b, d)2

m
τ +

b′ gcd(b, d)

d

)
, (B.8)

where bb′ ≡ − gcd(b, d) (mod d). Define ã := gcd(b, d), d̃ := m/ gcd(b, d), and b̃ := b′a, and

note that there is a bijective relationship between (a, d, b) and (ã, d̃, b̃) (with 0 ≤ b < d and

0 ≤ b̃ ≤ d̃); in particular a = gcd(b̃, d̃), d = m/ gcd(b̃, d̃), and bb̃ ≡ −aã (mod m), so the

map is its own inverse. Thus,

(Tm[f ])(−1/τ) = mw−1τw
∑
ã,d̃>0

ãd̃=m

1

d̃w

∑
0≤b̃<d̃

f

(
ãτ + b̃

d̃

)
= τw(Tm[f ])(τ) , (B.9)

so Tm[f ] is indeed a modular form of weight w.
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B.2 su(p) with p prime

As a warmup, we first consider the case where N = p is prime, taking a somewhat ad hoc

approach. Later, we return to the general N case and proceed more systematically.

We start with the partition function of SU(p) on K3 for prime p [27, 89]:

ZSU(p)(τ) =
1

p
Ẑ(τ) , Ẑ(τ) =

1

p2
G(pτ) +

1

p

p−1∑
j=0

G

(
τ + j

p

)
, (B.10)

where G(τ) = 1/η(τ)24 is a modular form of weight −12, Ẑ(τ) is the conformal block

associated to the trivial gauge bundle, and we follow the normalization conventions of [27].

Under S (τ → −1/τ) we obtain:

G(pτ)→ G

(
− p

τ

)
= (τ/p)−12G

(
τ

p

)
, (B.11a)

G

(
τ

p

)
→ G

(
− 1

τp

)
= (τp)−12G(τp) , (B.11b)

G

(
τ + j

p

)
→ G

(
− 1

τp
+
j

p

)
= τ−12G

(
τ + j′

p

)
,

(
jj′ ≡ −1 mod p

)
, (B.11c)

using (B.5). Therefore,

ZSU(p)

(
−1

τ

)
=

1

τ12

[
p9G

(
τ

p

)
+

1

p14
G(pτ) +

1

p2

p−1∑
j=1

G

(
τ + j

p

)]

=
1

(pτ)12
Z(SU(p)/Zp)0

(τ) , (B.12)

where we define:

Z(SU(p)/Zp)0
(τ) :=

1

p2
G(pτ) + p21G

(
τ

p

)
+ p10

p−1∑
j=1

G

(
τ + j

p

)
. (B.13)

Applying T k (τ → τ + k), we obtain:

Z(SU(p)/Zp)k(τ) := Z(SU(p)/Zp)0
(τ + k) =

1

p2
G(pτ) + p21G

(
τ + k

p

)
+ p10

j 6=k∑
06j<p

G

(
τ + j

p

)
.

(B.14)

Applying S again, we find:

Z(SU(p)/Zp)0

(
−1

τ

)
=

1

τ12

[
p10G

(
τ

p

)
+ p9G(pτ) + p10

p−1∑
j=1

G

(
τ + j

p

)]

=
p12

τ12
ZSU(p)(τ) , (B.15a)

Z(SU(p)/Zp)k

(
−1

τ

)
=

1

τ12

[
p10G

(
τ

p

)
+p21G

(
τ + k′

p

)
+

1

p2
G(pτ)+ p10

j 6=k∑
0<j<p

G

(
τ + j′

p

)]

=
1

τ12
Z(SU(p)/Zp)k′

(τ) . (B.15b)
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where kk′ ≡ −1 (mod p). We have deliberately chosen notation in (B.13) and (B.14) in line

with [18]. Indeed, as we will show later, these are the partition functions for the SU(p)/Zp
theory with different discrete theta angles. As a simple check, note that S : (SU(p)/Zp)k ↔
(SU(p)/Zp)k′ for kk′ ≡ −1 (mod p) is a special case of the rules given in [18].

These partition functions can be decomposed into conformal blocks

Z(SU(p)/Zp)k(τ) = Ẑ(τ) +

p−1∑
a=0

naω
ka
p Z

(a)(τ) , (B.16)

where Ẑ(τ) is the v = 0 block, as above, and Z(a)(τ) is the v 6= 0 block with v2/2 ≡ a

(mod p), and na denotes the gauge bundle multiplicities within H2(K3;Zp) in each cate-

gory. We can determine these multiplicities by choosing a basis of the form (4.43), so that

v = viei + v̄iēi for vi, v̄i = 0, . . . , (p− 1), and

v2/2 ≡ δijviv̄j (mod p) . (B.17)

For fixed v2/2 ≡ a (mod p) with a 6= 0, this equation can be solved to eliminate one of the

v̄is provided that vi 6= 0 for some i. Therefore,

na = (p11 − 1)p10 =
p22 − p11

p
, a 6≡ 0 (mod p) , (B.18)

n0 =
p22 − p11

p
+ p11 − 1 , (B.19)

where the remaining case n0 (v2/2 ≡ 0 (mod p) with v 6= 0) is fixed by the requirement

p22 = 1 +
∑

a na. Equivalently, the extra p11− 1 gauge bundles correspond to the non-zero

elements of the self-dual subspace I0.

The conformal blocks Z(a)(τ) remain to be determined. These are not given explicitly

in [27, 89], but fortunately we can reverse engineer them from the partition functions that

we have derived using the modular properties of the SU(p) and SU(p)/Zp theories. We find

1

p

p−1∑
k=0

Z(SU(p)/Zp)k(τ) = Ẑ + n0Z
(0)

=
1

p2
G(pτ) +

p22 + (p− 1)p11

p
· 1

p

p−1∑
j=0

G

(
τ + j

p

)
,

1

p

p−1∑
k=0

ω−akp Z(SU(p)/Zp)k(τ) = naZ
(a) (B.20)

=
p22 − p11

p
· 1

p

p−1∑
j=0

ω−ajp G

(
τ + j

p

)
, a 6≡ 0 (mod p) .

Comparing with (B.10), we obtain the simple result

Z(a)(τ) =
1

p

p−1∑
j=0

ω−ajp G

(
τ + j

p

)
. (B.21)

We verify that these are the correct conformal blocks by independent means below.

– 53 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
9

With the conformal blocks in hand, we can compute the partition function for the

modular-invariant theory Kp:
ZKp(τ) =

∑
v∈I0

Zv(τ) = Ẑ(τ) +
∑
a

caZ
(a)(τ) , (B.22)

where c0 = p11− 1 and ca = 0 for a 6≡ 0 (mod p) since I0 is null and |I0| = p11. We obtain

ZKp(τ) :=
1

p2
G(pτ) + p10

p−1∑
j=0

G

(
τ + j

p

)
. (B.23)

This is nothing but the Hecke transform of G(τ), up to normalization:

ZKp(τ) = p11Tp[G](τ) , (B.24)

from which it is evident that ZKp(τ) is a modular form of weight −12, in line with the

expectation the Kp is a genuine 2d CFT. Below, we show that (B.24) generalizes to

arbitrary square-free N , and to any composite N once an ambiguity in the definition of

the KN theory is appropriately resolved.

B.3 Conformal blocks for general su(N)

We now consider su(N) for general N . The U(N) partition function was obtained by [89]:

ZU(N)(τ, τ̄) = TN [ZU(1)](τ, τ̄) =
1

N2

∑
a,d>0
ad=m

d
∑

0≤b<d
ZU(1)

(
aτ + b

d
,
aτ̄ + b

d

)
, (B.25)

where

ZU(1)(τ, τ̄) = G(τ)θΓ19,3(τ, τ̄) , θΓ19,3(τ, τ̄) :=
∑

V ∈Γ19,3

q
1
2
V 2
L q̄

1
2
V 2
R . (B.26)

Here Γ19,3 is the even self-dual lattice of signature (19, 3), θΓ19,3(τ, τ̄) is the associated

theta function, and ZU(N) has weights (−5/2, 3/2), with (−12, 0) coming from G(τ) and

(19/2, 3/2) coming from θΓ19,3 . Note that, since K3 has negative signature σ = −16, the

geometric intersection form on K3 is

U ◦ V = UR · VR − UL · VL , so that
1

2
V 2 =

1

2
V 2
R −

1

2
V 2
L . (B.27)

This is the reverse of the usual worldsheet convention, but we will stick to it to maintain

consistency with the rest of the paper.

The U(N) partition function can be decomposed as

ZU(N)(τ, τ̄) =
∑

V ∈Γ19,3

(q1/N )
1
2
V 2
L (q̄1/N )

1
2
V 2
RZV (τ) , (B.28)

where q := e2πiτ and ZV (τ) is holomorphic and satisfies the periodicity condition ZV (τ) =

ZV+NU (τ) for any U ∈ Γ19,3. In particular, Zv(τ) are the conformal blocks, indexed by

gauge bundles v valued in

H2(K3;ZN ) ∼= H2(K3)

N ·H2(K3)
=

Γ19,3

N · Γ19,3
, (B.29)

since K3 is torsionless.
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Our goal is now to extract the conformal blocks Zv(τ) from the U(N) partition function

ZU(N)(τ, τ̄). First, noting that there are not N22 distinct conformal blocks but rather many

of them equal due to the symmetries of K3, we list the data on which Zv(τ) can depend.

Clearly, these include the order k of v within Z22
N , where k divides N by elementary group

theory. Likewise, the blocks can depend on the Pontryagin square v2/2, which is single-

valued on Z22
N modulo N because

(v +Nu)2

2
=
v2

2
+Nv ◦ u+N2u

2

2
. (B.30)

However, if v has order k < N then it lies within N
k Γ19,3, and therefore v ◦ u is a multiple

of N/k, implying that 1
2v

2 is single-valued modulo N2/k, or equivalently that the refined

Pontryagin square 1
2(kv/N)2 is single-valued modulo k. This is naturally interpreted as

the Pontryagin square on the subgroup H2(K3;Zk) = N
k H

2(K3;ZN ) of SU(N)/Zk gauge

bundles modulo SU(N) gauge bundles. Note that 1
2v

2 (mod N) is fixed by 1
2(kv/N)2

(mod k), but the converse is not true when gcd(k,N/k) > 1, which holds for some k

whenever N is divisible by a perfect square.

Thus, we can categorize the conformal blocks Zv(τ) by the order k of v, as well as

a ≡ 1
2(kv/N)2 (mod k), or more physically as SU(N)/Zk gauge bundles that do not lift

to any covering group, where the associated Stiefel-Whitney class v = w2 has Pontryagin

square a modulo k. In fact, this is all the data on which the conformal blocks can depend,

because the U(N) partition function only depends on 1
2V

2, and we have extracted all data

from this that is invariant under shifts V → V +NU . Thus, we denote the su(N) conformal

blocks as Z
(a)
N ;k(τ).

To compute these blocks, define the sublattice ΓN ;k = N
k Γ19,3 for each k|N , let Γ

(a)
N ;k

be the subset of ΓN ;k with (v/(N/k))2

2 ≡ a (mod k), and let Γ̂
(a)
N ;k denote the subset of Γ

(a)
N ;k

that is not in ΓN ;k̃ for any k̃ < k.51 Correspondingly, we have theta functions

θN ;k :=
∑

P∈ΓN ;k

(q1/N )
1
2
P 2
L(q̄1/N )

1
2
P 2
R , (B.31a)

θ
(a)
N ;k :=

∑
P∈Γ

(a)
N ;k

(q1/N )
1
2
P 2
L(q̄1/N )

1
2
P 2
R , (B.31b)

θ̂
(a)
N ;k :=

∑
P∈Γ̂

(a)
N ;k

(q1/N )
1
2
P 2
L(q̄1/N )

1
2
P 2
R , (B.31c)

so that (cf. [89])

ZU(N) =
∑
k|N

k−1∑
a=0

θ̂
(a)
N ;kZ

(a)
N ;k . (B.32)

Explicitly, we find:

θN ;k(τ) = θΓ19,3

(
N

k2
τ

)
, θ

(a)
N ;k(τ) =

1

k

k−1∑
j=0

ωajk θΓ19,3

(
N

k2
τ +

j

k

)
, (B.33)

51Since the intersection of ΓN ;k and ΓN ;k̃ is ΓN ;gcd(k,k̃), we can restrict to k̃|k.
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where
∑k−1

a=0 θ
(a)
N ;k = θN ;k as required. The functions θ̂

(a)
N ;k are determined implicitly by

θ
(a)
N ;k =

∑
`|k

∑
06b<k/`

`2b≡a mod k

θ̂
(b)
N ;k/` . (B.34)

This can be inverted using the Möbius inversion formula, but this is unnecessary.

To extract the conformal blocks from ZU(N), we apply

θΓ19,3

(
N

k2
τ +

j

k

)
=

k−1∑
a=0

ω−ajk θ
(a)
N ;k(τ) =

∑
`|k

k/`−1∑
a=0

ω−aj`k/` θ̂
(a)
N ;k/`(τ) , (B.35)

to the Hecke transform formula (B.25) to obtain

ZU(N)(τ) =
∑
k|N

k

N2

k−1∑
j=0

G

(
N

k2
τ +

j

k

)∑
`|k

k/`−1∑
a=0

ω−aj`k/` θ̂
(a)
N ;k/` . (B.36)

Resumming, we obtain:

ZU(N)(τ) =
∑
k|N

k−1∑
a=0

θ̂
(a)
N ;k

∑
`|N
k

k`

N2

k`−1∑
j=0

ω−aj`k G

(
N

k2`2
τ +

j

k`

)
=
∑
k|N

k−1∑
a=0

θ̂
(a)
N ;kZ

(a)
N ;k , (B.37)

from which we read off:

Z
(a)
N ;k =

∑
`|N
k

k`

N2

k`−1∑
j=0

ω−aj`k G

(
N

k2`2
τ +

j

k`

)
, (B.38)

since the θ̂
(a)
N ;k are linearly independent. This is nothing but a modified Hecke transform:

Z
(α)
N ;k =

1

N2

∑
a,d>0
ad=N
k|d

d
∑

0≤b<d
ω
−αbd/k
k G

(
aτ + b

d

)
, (B.39)

with the added constraint that d is a multiple of k and a phase factor in the sum.

In the special case where N is prime, we recover:

Ẑ = Z
(0)
N ;1 =

1

N2
G(Nτ) +

1

N

N−1∑
j=0

G

(
τ + j

N

)
,

Z(a) = Z
(a)
N ;N =

1

N

N−1∑
j=0

ω−ajN G

(
τ + j

N

)
,

(B.40)

which matches (B.10), (B.21).
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B.4 Partition functions for genuine theories

The partition function for the (SU(N)/Zk)` theory as defined by [18] is then

Z(SU(N)/Zk)m =
k

N

∑
d|k

d−1∑
a=0

ω
am(k/d)
d n̂

(a)
N ;dZ

(a)
N ;d (B.41)

where we normalize using the conventions of [27] — N/k being the volume of the ZN/k
center — and n̂

(a)
N ;d is the number of gauge bundles in H2(K3;ZN ) of the indicated type.

The multiplicity factor n̂
(a)
N ;d can be computed using the modular properties of the

theta function θΓ19,3 , as follow. Consider for instance,

nk := lim
q→1

θN ;k

θN ;1
. (B.42)

This counts the index of the sublattice ΓN ;1 ⊆ ΓN ;k. Since q → 1 corresponds to τ → 0,

we can relate it to q → 0 (τ → i∞) by τ → −1/τ . We have:

θΓ19,3(−1/τ,−1/τ̄) = τ8|τ |3θΓ19,3(τ, τ̄) , (B.43)

since θΓ19,3 is modular form of weight (19/2, 3/2). Thus,

nk = lim
τ→0

θΓ19,3

(
N
k2 τ
)

θΓ19,3(Nτ)
= lim

τ→i∞

(k2/N)11

(1/N)11
·
θΓ19,3

(
k2

N τ
)

θΓ19,3

(
1
N τ
) = k22 . (B.44)

While this result is obvious, we can derive similar, less obvious results in the same way. In

particular:

n
(a)
k := lim

q→1

θ
(a)
N ;k

θN ;1
=

1

k

k−1∑
j=0

ωajk lim
τ→0

θΓ19,3

(
N
k2 τ + j

k

)
θΓ19,3(Nτ)

=
1

k

k−1∑
j=0

ωajk lim
τ→i∞

(
k gcd(j,k)

N

)11
θΓ19,3

(
gcd(j,k)2

N τ + j′ gcd(j,k)
k

)
(1/N)11θΓ19,3

(
1
N τ
)

= k11 · 1

k

k−1∑
j=0

ωajk gcd(j, k)11 (B.45)

using (B.6), where j′ is the solution to j′j ≡ − gcd(j, k) mod k. Note that nk =
∑k−1

a=0 n
(a)
k ,

as required. Now n̂
(a)
k = limq→1

θ̂
(a)
N ;k

θN ;1
, is given implicitly by the formula:

n
(a)
k =

∑
`|k

`2b≡a (mod k)∑
b

n̂
(b)
k/` . (B.46)

As with (B.34), it is not necessary to solve this explicitly.

Use (B.45), we obtain

k11 gcd(j, k)11 =
k−1∑
a=0

ω−ajk n
(a)
k =

∑
`|k

k/`−1∑
a=0

ω−aj`k/` n̂
(a)
k/` . (B.47)
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Applying this to (B.41) gives:

Z(SU(N)/Zk)m =
∑
`|N

`−1∑
j=0

k`

N3
G

(
N

`2
τ +

j

`

) ∑
d| gcd(k,`)

d−1∑
a=0

ω
amk−j`

d
d n̂

(a)
d

=
∑
`|N

`−1∑
j=0

k`

N3
gcd(k, `)11 gcd

(
j`−mk
gcd(k, `)

, gcd(k, `)

)11

G

(
N

`2
τ +

j

`

)
,

(B.48)

which can be rewritten somewhat more concisely as:

Z(SU(N)/Zk)m =
∑
`|N

k`

N3

`−1∑
j=0

gcd[j`−mk, k2, `2]11G

(
N

`2
τ +

j

`

)
. (B.49)

Thus, we get a Hecke transform modified by the weight gcd[. . .]11.

We now verify that this has the modular properties predicted by [18]. Under T : τ →
τ + 1, we find:

T : Z(SU(N)/Zk)m → Z(SU(N)/Zk)m+N/k
(B.50)

in agreement with [18]. Under S : τ → −1/τ , we find:

Z(SU(N)/Zk)m(−1/τ) =
∑
`|N

k`

N3

`−1∑
j=0

gcd[j`−mk, k2, `2]11

(
` gcd(j, `)

N
τ

)−12

(B.51)

×G
(

gcd(j, `)2

N
τ +

ĵ′ gcd(j, `)

`

)
,

(
jj′ ≡ − gcd(j, `) mod `

)
.

We resum this in terms of the variables:

˜̀=
N

gcd(j, `)
, j̃ =

j′N

`
, (B.52)

which are “dual” to the original variables j, `, in that there is bijective involution between

them, i.e., gcd(j′, `′) = N/` and jj̃ ≡ −N2

`˜̀
(mod N), just as discussed below (B.8).

Let (k̃, m̃) be related to (k,m) by the same bijective involution. Observe that:

gcd[j`−mk, k2, `2]

k`
=

gcd[j̃ ˜̀− m̃k̃, k̃2, ˜̀2]

k̃ ˜̀
. (B.53)

Using this formula, we obtain:

Z(SU(N)/Zk)m(−1/τ) = (k̃τ/k)−12Z(SU(N)/Zk̃)m̃(τ) (B.54)

which reproduces the predictions of [18].

Proof of (B.53). To prove (B.53), it is convenient to generalize it slightly to

gcd[j`X −mkY, k2, `2]

k`
=

gcd[j′`′Y −m′k′X, k′2, `′2]

k′`′
(B.55)
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for any X,Y ∈ Z such that gcd(X,N) = gcd(Y,N) = 1. We proceed inductively in the

prime factors of N .

Consider first the case where N = pn is a prime power. We then have

k = pκ , m = m0p
µ , ` = pλ , j = j0p

θ ,
(

gcd(k,m) = pµ, gcd(`, j) = pθ
)
, (B.56)

for integers κ, µ, λ, θ,m0, j0 satisfying 0 6 µ 6 κ 6 n and 0 6 θ 6 λ 6 n. We can chose m in

the range 0 < m 6 k and j in the range 0 < j 6 `, in which case gcd(m0, p) = gcd(j0, p) = 1.

Therefore:

k′ = pn−µ , m′ = m′0p
n−κ ,

(
m0m

′
0 ≡ −1 (mod pκ−µ)

)
, (B.57a)

`′ = pn−θ , j′ = j′0p
n−λ ,

(
j0j
′
0 ≡ −1 (mod pλ−θ)

)
. (B.57b)

We have

gcd[j`X −mkY, k2, `2]

k`
=

gcd[j0p
λ+θX −m0p

κ+µY, p2λ, p2κ]

pκ+λ
, (B.58a)

gcd[j′`′Y −m′k′X, k′2, `′2]

k′`′
=

gcd[j′0p
2n−λ−θY −m′0p2n−κ−µX, p2n−2µ, p2n−2θ]

p2n−µ−θ . (B.58b)

We can assume λ+θ > κ+µ without loss of generality due to the symmetry of the identity

to be proven under (`, j,X)↔ (k,m, Y ). We then obtain:

gcd[j`X −mkY, k2, `2]

k`
= pµ−λ gcd[j0p

λ+θ−κ−µX −m0Y, p
2λ−κ−µ, pκ−µ] , (B.59a)

gcd[j′`′Y −m′k′X, k′2, `′2]

k′`′
= pµ−λ gcd[j′0Y −m′0pλ+θ−κ−µX, pλ+θ−2µ, pλ−θ] . (B.59b)

If λ+θ−κ−µ > 0, then the first term is not divisible by p since gcd(m0Y, p) = gcd(j′0Y, p) =

1, so we obtain pµ−λ in both cases. Conversely, if λ+ θ = κ+ µ, we find:

gcd[j`X −mkY, k2, `2]

k`
= pµ−λ gcd[j0X −m0Y, p

λ−θ, pκ−µ] , (B.60a)

gcd[j′`′Y −m′k′X, k′2, `′2]

k′`′
= pµ−λ gcd[j′0Y −m′0X, pκ−µ, pλ−θ] . (B.60b)

We have:

m0m
′
0 = apκ−µ − 1 , j0j

′
0 = bpλ−θ − 1 , (B.61)

so that

(j0X −m0Y )j′0m
′
0 = bXm′0p

λ−θ − aY j′0pκ−µ + j′0Y −m′0X . (B.62)

Let r = min(λ− θ, κ− µ) > 0. We find:

gcd[j0X −m0Y, p
r] = gcd[(j0X −m0Y )j′0m

′
0, p

r] = gcd[j′0Y −m′0X, pr] , (B.63)

and the identity is proven for N a prime power.
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Next, consider the case where N = N1N2 with gcd(N1, N2) = 1. We can split ` = `1`2
and `′ = `′1`

′
2 such that `i|Ni and `′i|Ni. Observe that gcd(`, j) = gcd(`1, j) gcd(`2, j),

so that

`′i =
Ni

gcd(`i, j)
, `i =

Ni

gcd(`′i, j
′)
, (B.64)

We define ji ≡ j/ gcd(j, `i±1) = j`′i±1/Ni±1, and observe that gcd(`i, j) = gcd(`i, ji),

so that

`′i =
Ni

gcd(`i, ji)
, `i =

Ni

gcd(`′i, j
′
i)
. (B.65)

Moreover,

jj′ = aN1N2 −
N2

1N
2
2

`1`′1`2`
′
2

, (B.66)

for some a ∈ Z, which implies

j1j
′
1 = a

(
`2`
′
2

N2

)
N1 −

N2
1

`1`′1
. (B.67)

Since `2`
′
2/N2 = `2/ gcd(`2, j2) ∈ Z, we find

j1j
′
1 ≡ −

N2
1

`1`′1
(modN1) , (B.68)

and likewise for j2j
′
2. Assuming that (B.55) is true for N1, we obtain

gcd[j`X −mkY, k2
1, `

2
1]

k1`1
=

gcd
[
j1`1

(
`2
`′2
N2

)
X −m1k1

(
k2
k′2
N2

)
Y, k2

1, `
2
1

]
k1`1

=
gcd

[
j′1`
′
1

(
k2
k′2
N2

)
Y −m′1k′1

(
`2
`′2
N2

)
X, (k′1)2, (`′1)2

]
k′1`
′
1

=
gcd

[
j′1`
′
1

(
`′2
`2
N2

)
Y −m′1k′1

(
k′2
k2
N2

)
X, (k′1)2, (`′1)2

]
k′1`
′
1

=
gcd[j′`′Y −m′k′X, (k′1)2, (`′1)2]

k′1`
′
1

, (B.69)

where in the penultimate step we make use of our freedom to exchange gcd(x, y) ↔
gcd(zx, y) provided that gcd(y, z) = 1. Thus, if (B.55) is also true for N2, we find:

gcd[j`X −mkY, k2, `2]

k`
=

gcd[j`X −mkY, k2
1, `

2
1]

k1`1
· gcd[j`X −mkY, k2

2, `
2
2]

k2`2

=
gcd[j′`′Y −m′k′X, (k′1)2, (`′1)2]

k′1`
′
1

· gcd[j′`′Y −m′k′X, (k′2)2, (`′2)2]

k′2`
′
2

=
gcd[j′`′Y −m′k′X, k′2, `′2]

k′`′
, (B.70)

and the formula holds for N = N1N2. Thus, (B.55) is proven by induction, and (B.53)

follows as a corollary.
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B.5 The KN partition function

We now consider the KN theory.

ZKN (τ) =
∑
v∈I0

Zv(τ) =
∑
k|N

k−1∑
a=0

Ĉ
(a)
k [I0]Z

(a)
N ;k(τ) , (B.71)

where Ĉ
(a)
k [I0] counts the multiplicity of the indicated type of gauge bundle on the null

self-dual subspace I0.

Above, we have indicated the possibility that the multiplicities Ĉ
(a)
k [I0] depend on

the choice of null self-dual subspace I0. In fact, unless N is square-free, this is true. For

instance, for N = 4, the Z22
2 subspace of H2(K3,Z4) = Z22

4 is null self-dual, but there are

also null self-dual Z11
4 subspaces of the form (4.44), where Ĉ

(a)
4 = 0 for all a in the former

case but not in the latter.

However, there is a special type of null self-dual subspace that unique determines Ĉ
(a)
k

for all N . We say that I0 is “completely null” if, for any v ∈ I0, kv = 0 (modulo N)

implies 1
2(kv/N)2 ≡ 0 (mod k). In other words, for all k|N , the intersection of I0 with

H2(K3;Zk) = N
k H

2(K3;ZN ) is null with respect to the Pontryagin square on H2(K3;Zk).
Note that a completely null self-dual subspace I0 exists for any N , because we can apply

the method of section 4.2.3 first to N ′ = 2N2 and then reduce by modular congruence to

determine the Pontryagin square on each subgroup H2(K3;Zk).
Because a null subspace of H2(K3;Zk) can have at most k11 elements (where the

bound is saturated in the self-dual case), we conclude that completely null I0 has at most

k11 elements whose order divides k for each k|N , that is Ck ≤ k11, where

Ck =
k−1∑
a=0

C
(a)
k , C

(a)
k =

∑
`|k

∑
b

`2b≡a mod k

Ĉ
(b)
k/` , (B.72)

are the inclusive counts. Suppose for instance that N = pn is a prime power. Then, as a

finite abelian group, I0 can be decomposed into the direct sum of cyclic groups of prime

power order:

I0 = Zpn1 ⊕ . . .⊕ Zpn` , ni ≤ n . (B.73)

The number of elements with order dividing p is then p`, so ` ≤ 11 by the above argument.

However, if I0 is self-dual, then |I0| = N11 = p11n, so that∑
i

ni = 11n . (B.74)

Taken together, these constraints have only one solution, I0 = Z11
N , so that the bound

Ck ≤ k11 is saturated for all k|N . The same result generalizes to any N using the Chinese

remainder theorem. Thus, if I0 is self-dual and completely null, then its intersection with

each subspace H2(K3;Zk) is null self-dual.

In particular, this implies the counts

C
(0)
k = k11 =

∑
`|k

Ĉ
(0)
k/` , C

(a)
k = Ĉ

(a)
k = 0 , (a 6≡ 0 (mod k)) . (B.75)
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For general N , we define the IIB boundary conditions for the KN theory by a choice of I0

that is self-dual and completely null. The partition function is then:

ZKN (τ) =
∑
k|N

Ĉ
(0)
k Z

(0)
N ;k(τ) =

∑
k|N

Ĉ
(0)
k

∑
`|N
k

k`

N2

k`−1∑
j=0

G

(
N

k2`2
τ +

j

k`

)

=
1

N2

∑
d|N

d12
d−1∑
j=0

G

(
N

d2
τ +

j

d

)
= N11TN [G](τ) . (B.76)

This remarkably simple result (generalizing (B.24)) makes it manifest that ZKN (τ) is a

modular form of weight −12.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. McKay, Graphs, singularities, and finite groups, Proc. Symp. Pure Math. 37 (1981) 183.

[2] E. Witten, Some comments on string dynamics, in the proceedings of Future perspectives in

string theory (Strings’95), March 13–18, Los Angeles, U.S.A. (1995), hep-th/9507121

[INSPIRE].

[3] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP

02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[4] G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys.

138 (1978) 1.

[5] G. ’t Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl.

Phys. B 153 (1979) 141 [INSPIRE].

[6] S. Monnier, A modern point of view on anomalies, Fortsch. Phys. 67 (2019) 1910012

[arXiv:1903.02828] [INSPIRE].

[7] D.S. Freed, G.W. Moore and G. Segal, The uncertainty of fluxes, Commun. Math. Phys.

271 (2007) 247 [hep-th/0605198] [INSPIRE].

[8] D.S. Freed, G.W. Moore and G. Segal, Heisenberg groups and noncommutative fluxes,

Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].

[9] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103

[hep-th/9610234] [INSPIRE].

[10] E. Witten, Duality relations among topological effects in string theory, JHEP 05 (2000) 031

[hep-th/9912086] [INSPIRE].

[11] N. Seiberg and W. Taylor, Charge lattices and consistency of 6D supergravity, JHEP 06

(2011) 001 [arXiv:1103.0019] [INSPIRE].

[12] D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys. 326

(2014) 459 [arXiv:1212.1692] [INSPIRE].

– 62 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/hep-th/9507121
https://inspirehep.net/search?p=find+EPRINT+hep-th/9507121
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5148
http://dx.doi.org/https://doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/https://doi.org/10.1016/0550-3213(78)90153-0
https://doi.org/10.1016/0550-3213(79)90595-9
https://doi.org/10.1016/0550-3213(79)90595-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B153,141%22
https://doi.org/10.1002/prop.201910012
https://arxiv.org/abs/1903.02828
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.02828
https://doi.org/10.1007/s00220-006-0181-3
https://doi.org/10.1007/s00220-006-0181-3
https://arxiv.org/abs/hep-th/0605198
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605198
https://doi.org/10.1016/j.aop.2006.07.014
https://arxiv.org/abs/hep-th/0605200
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605200
https://doi.org/10.1016/S0393-0440(97)80160-X
https://arxiv.org/abs/hep-th/9610234
https://inspirehep.net/search?p=find+EPRINT+hep-th/9610234
https://doi.org/10.1088/1126-6708/2000/05/031
https://arxiv.org/abs/hep-th/9912086
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912086
https://doi.org/10.1007/JHEP06(2011)001
https://doi.org/10.1007/JHEP06(2011)001
https://arxiv.org/abs/1103.0019
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.0019
https://doi.org/10.1007/s00220-013-1880-1
https://doi.org/10.1007/s00220-013-1880-1
https://arxiv.org/abs/1212.1692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1692


J
H
E
P
1
0
(
2
0
1
9
)
1
6
9

[13] S. Monnier, The global anomalies of (2, 0) superconformal field theories in six dimensions,

JHEP 09 (2014) 088 [arXiv:1406.4540] [INSPIRE].

[14] S. Monnier, Topological field theories on manifolds with Wu structures, Rev. Math. Phys. 29

(2017) 1750015 [arXiv:1607.01396] [INSPIRE].

[15] S. Monnier, The anomaly field theories of six-dimensional (2, 0) superconformal theories,

Adv. Theor. Math. Phys. 22 (2018) 2035 [arXiv:1706.01903] [INSPIRE].

[16] E. Witten, AdS/CFT correspondence and topological field theory, JHEP 12 (1998) 012

[hep-th/9812012] [INSPIRE].

[17] M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the defect group of a 6D

SCFT, Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].

[18] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional

gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

[19] J.A. Harvey and A.B. Royston, Localized modes at a D-brane-O-plane intersection and

heterotic Alice atrings, JHEP 04 (2008) 018 [arXiv:0709.1482] [INSPIRE].
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Classics. Birkhäuser, Switzerland (2006).

[40] Y. Tachikawa, On the 6d origin of discrete additional data of 4d gauge theories, JHEP 05

(2014) 020 [arXiv:1309.0697] [INSPIRE].

[41] M. Atiyah, Vector bundles and the Künneth formula, Topology 1 (1962) 245.
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