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This paper presents a constitutive modelling approach for the viscoplastic-damage behaviour of geomaterials. This
approach is based on the hyperelasticity framework, where the entire constitutive behaviour is derived from only
two scalar potentials: a free-energy potential and a dissipation function. The novelty of the new proposed model, in
addition to being thermodynamically consistent, is that it requires only a few parameters that can be derived from
conventional laboratory testing. The model has been specifically tested for its ability to reproduce a series of triaxial
compression tests on core rock samples. The comparison between the viscoplastic-damage model predictions and
experimental results shows that the model is remarkably successful in capturing the stress–strain response both at
peak stress and in the region of material softening and the time to reach failure.
Notation
A total cross-sectional area of a surface within the unit

cell
AðkÞ

nþ1 algorithmic modulus
As solid matrix area within A
C friction angle
c1 material parameter related to cohesion
c2 material parameter related to the friction angle
c3 material parameter related to the dilation angle
D dissipation rate
D viscoplastic-damage consistent tangent modulus
De standard isotropic elasticity tensor
E Young’s modulus
_ep plastic deviator strain rate
F Helmholtz free-energy function
f yield function
G shear modulus
I second-order unit tensor
K bulk modulus
k iteration counter
m order of the dissipation function D
n material constant
p effective mean stress
q deviatoric stress invariant
rd material constant that governs the ratio of damage
rp material constant that governs the ratio of

viscoplasticity
t time
`d material damage occurring with a representative

continuum volume element
`p micro-plastic strain
_av plastic volumetric strain rate
b softening/hardening parameter
ε total strain tensor
εe elastic strain tensor
_d p plastic strain rate
ϵf tolerance
ϵr relative tolerance
h viscous coefficient that controls the extent of plastic

strain
L arbitrary Lagrangian multiplier
n Poisson’s ratio
P(ad) hardening/softening function
σ true stress tensor
f angle of friction
χ generalised stress tensor
χ dissipative stress tensor
y dilatancy angle

Introduction
Creep may be defined as continued deformation without a stress
change. Creep has been studied since about 1905, although such
behaviour was documented as early as 1833 (Griggs, 1939). Most
early studies focused on the creep rupture of metals under tensile
stress. However, later studies have been carried out on rocks, in
particular salt rocks, as these soft rocks creep under temperature
and stress conditions, as evidenced from laboratory data (Hayano
et al., 2001). Determining the creep characteristics of rock is an
important stage in developing a tool that can predict the time-
dependent deformation of an underground cavity. Creep tests
performed in the laboratory are very significant in mining and
improved design of underground structures (Cristescu, 1989).
Creep testing of rock in the laboratory has been carried out by a
number of researchers (Heap et al., 2010; Langer, 1982; Le
Comte, 1965; Li and Xia, 2010; Obert, 1965; Phueakphum et al.,
2010; Scott-Duncan and Lajtai, 1993; Singh, 1975; Vouille et al.,
1984; Yang and Jiang, 2010). The simplest creep tests are those
during which the rock specimen is uniaxially loaded in
compression. The testing procedure involves an increment of load
applied quickly to the rock specimen, and the stress is held
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constant while the gradually increasing strain is recorded regularly
(Goodman, 1989). Triaxial tests have also been carried out in
which the sample is confined by an all-around pressure, more
closely simulating in situ conditions. The duration of an individual
creep test is generally several weeks or months. Tests lasting a
number of years have also been reported (Cristescu, 1989).

Laboratory data from creep tests are mostly depicted in the form
of strain–time curves of which the general form is displayed in
Figure 1 (Goodman, 1989; Jaeger et al., 2007; Jeremic, 1994). An
instantaneous elastic strain, ee, is followed by primary or transient
creep (region 1) in which strain occurs at an ever-decreasing rate.
Secondary creep (region 2) follows if the constant stress
overcomes a given limit and is characterised by a constant strain
rate. For higher constant stress levels, tertiary creep (region 3) is
also observed, which is characterised by a strain rate increase with
time and leads eventually to failure. As illustrated by Jeremic
(1994), laboratory investigations have shown that removal of the
applied load in region 1 at point P of Figure 1 causes the strain to
decrease rapidly to point Q (change in strain equal to e) and then
asymptotically back to zero at point R. Thus, region 1 can be
classified as viscoelastic. Removal of stress in region 2 at point T
will result in permanent deformation (VO). Thus, region 2 can be
classified as viscoplastic. Despite the classification of these
regions as viscoelastic and viscoplastic being an idealisation, it is
reasonable to think that at low levels of stress the material
behaviour is roughly viscoelastic and at high levels the behaviour
is viscoplastic. The tertiary stage of creep behaviour (region 3)
appears due to progressive microcracking of the material and
would result in a loss of strength and stiffness, which may
eventually lead to failure and a complete loss of the load-carrying
capacity of the material.

Creep behaviour can also be classified according to the acting
stress; it is possible to divide creep behaviour into volumetric and
deviatoric (or shear) creep (Tavenas et al., 1978). Volumetric
creep is caused by constant volumetric stress, and deviatoric creep
is caused by constant deviatoric stress. Generally, volumetric
2
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creep consists only of the primary phase of the creep
deformation – that is, it tends to stabilise. Deviatoric creep may or
may not consist of all three phases, depending on the shear
mobilisation. If the deviatoric stress is low, then only the primary
creep phase will appear, but after crossing some level of the shear
mobilisation, the primary phase will be followed by the secondary
phase, which can lead to the tertiary phase and creep rupture.
Tertiary creep is often observed in soft rocks, and it represents a
problem in a mining environment.

There are a great number of constitutive models developed to
account for the time-dependent creep behaviour of geomaterials.
Extensive reviews for constitutive modelling of creep can be
found in the papers by Liingaard et al. (2004) and Grimstad et al.
(2017). Existing constitutive models for creep behaviour can
generally be classified into three categories (Liingaard et al.,
2004): (a) elementary phenomenological models, (b) rheological
models and (3) general stress–strain–time models.

In elementary phenomenological models, empirical relations are
obtained by directly fitting the observed test data with simple
mathematical functions. Logarithmic and exponential laws are often
adopted to link creep strain to time. Examples of these models can
be found in the papers by Singh and Mitchell (1968), Campanella
and Vaid (1974), Leroueil (1987), Yin (1999) and Bi et al. (2019).
One of the basic limitations of elementary phenomenological
models is that they are strictly valid only for conditions that are
identical to those of the test from which they were derived (e.g.
one-dimensional (1D) condition). However, they can provide
practical solutions to engineering problems, as far as the boundary
conditions are consistent with the laboratory experiments.

Rheological models consist of a combination of different
components, such as springs, dashpots and sliders, to describe the
time-dependent creep behaviour of a material. The structure of
these models is not related to a particular creep test, and therefore,
only the model parameters change between tests in order to provide
a fit for the strain–time data. Linear viscoelastic models consist of
various combinations of two states of deformation, elastic
behaviour (represented by a spring) and viscous behaviour
(represented by a dashpot). Many different linear viscoelastic
models have been proposed, such as the Maxwell, the Kelvin and
the Burgers model. The simplest model that can be used to trace
strain up to the onset of secondary creep is the Burgers model,
which is composed of a Maxwell model and a Kelvin model
connected in series (Figure 2(a)). An overview of these viscoelastic
models can be found in the book by Jaeger et al. (2007). These
viscoelastic models are typically formulated for 1D problems.
However, they can be extended and applied to three-dimensional
boundary-value problems. Birchall and Osman (2012), for
example, presented analytical solutions for predicting the creep
displacements of deep tunnels in three dimensions using the
Burgers model. Linear viscoelastic models cannot simulate the
failure of geomaterials. Slider elements (St Venant elements) are
added to the elastic and viscous components of viscoelasticity in
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Figure 1. Typical deformation of creep materials as a function of
time (after Jeremic (1994))
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order to include the failure process. Typically, a slider element is
placed in parallel with a dashpot element, known collectively as a
Bingham unit (Figure 2(b)). The model by Perzyna (1966) is a
well-known example of a viscoplasticity model. A viscoplastic
material exhibits a time-dependent behaviour only in the plastic
region. This behaviour corresponds to the secondary stage of creep.
However, these models cannot replicate tertiary creep behaviour.

Generalised stress–strain models can describe both viscous effects
and rate-independent behaviour of soils under general loading
conditions. Several theoretical approaches have been used to
derive these models. Borja and Kavazanjian (1985), for example,
used the concept by Bjerrum (1967) of total strain decomposition
into an immediate (time-independent) part and a delayed (time-
dependent) part to model the stress–strain–time behaviour of wet
clays. A modified Cam-Clay yield surface (Roscoe and Burland,
1968) is employed to characterise the time-independent
stress–strain behaviour. Kaliakin and Dafalias (1990) presented a
bounding-surface model for the time-dependent response of
overconsolidated soils. The basic characteristic of the bounding-
surface approach is that the material exhibits a memory of the
loading history and the plastic deformation depends on the
distance between the present stress point and an image stress
point on the bounding surface defined by a mapping rule for
stress states within the surface. Hashiguchi and Okayasu (2000)
adopted the subsurface modelling approach to simulate the time-
dependent behaviour. This model assumes a bounding surface and
a subloading surface that always passes through a current stress
point. The model can describe the continuous stress rate–strain
rate relation in the loading process with smooth elastic–plastic
transition. Despite the complexity of the generalised models
mentioned earlier, numerical investigations have focused on
volumetric creep under undrained conditions, despite the fact that
creep is an inherently drained phenomenon, as it takes a long time
to develop (Jardine, 2014, Kavvadas and Kalos, 2019). At large
shear stress approaching strength, deviatoric creep strain rates
accelerate and lead to tertiary creep and failure (Bishop, 1966).
 [ UNIVERSITY OF DURHAM] on [29/01/20]. Published with permission by th
The literature on constitutive formulations for predicting tertiary
deviatoric creep is sparse. Dragon and Mroz (1979), Al-Shamrani
and Sture (1998), Pellet et al. (2005) and Shao et al. (2003)
modelled tertiary creep using a strain-softening/hardening approach
based on the shear-stress-driven damage mechanism. Gioda and
Gividini (1996) predicted tertiary creep by introducing viscous
damage on a Bingham model. Kavvadas and Kalos (2019) presented
a time-dependent constitutive model for cohesive structured soils
(TMS model). The TMS model is constructed from three
characteristic surfaces: (a) an internal plastic yield envelope (PYE),
which is a small surface bounding the elastic domain; (b) an external
structure envelope (SE) bounding the PYE and all accessible states;
and (c) an intrinsic envelope, corresponding to an equivalent intrinsic
state. The size, shape and location of the SE give the magnitude of
the structure (and strength), which increases with viscous volumetric
strains and degrade with plastic strains and viscous shear strains. The
TMS model is capable of simulating tertiary creep; however, it
requires identification of 21 material constants.

The main aim of this work is to model tertiary creep using a sound
theoretical framework. The new simple model, presented here,
makes use of damage mechanics concepts. The damage mechanics
framework is a powerful tool that can be used to simulate many
features in geomechanics, as illustrated by Xiao and Liu (2017) and
Xiao and Desai (2019a, 2019b). This paper extends the
hyperplasticity approach of Collins and Houlsby (1997), Houlsby
and Puzrin (2000) and Puzrin and Houlsby (2001) to model
coupled viscoplastic-damage frictional materials. This paper focuses
on deviatoric creep and presents a model that obeys the laws of
thermodynamics. The entire constitutive behaviour can be derived
from two scalar potentials: a free-energy potential that provides the
elasticity law and a dissipation potential that provides the yield
function, the direction of plastic flow and the evolution of a
damage variable. No additional assumptions are required. The
motivation here is to derive a simple model. Thus, the new model
has only a few parameters that have physical meanings and is
capable of capturing the tertiary creep observed in soft rocks.
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Figure 2. Examples of rheological models: (a) Burgers model; (b) Bingham model
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The hyperplasticity framework
For isothermal deformations of a continuum undergoing small
strains, the first and second laws of thermodynamics can be
written as

σ : _ε ¼ _F þ D1.

where F represents the Helmholtz free-energy function; D is the
dissipation rate, which is strictly non-negative; and σ denotes the
true stress tensor and ε denotes the total strain rate tensor. Collins
and Houlsby (1997) and Houlsby and Puzrin (2000) introduced
the hyperplasticity theoretical framework, in which they
demonstrated that the material behaviour can be determined from
the knowledge of the two thermodynamic potential functions F
and D. The local state of the material is assumed to be defined
completely by the knowledge of (a) the strain tensor ε, (b) a set
of internal tensor variables and (c) the entropy. For the isothermal
case, the entropy does not enter into the formulation.

For a damaged material, the internal variables can, most usefully,
be thought of as the micro-plastic strains `p and the material
damage `d occurring within a representative continuum volume
element. Therefore, free energy is chosen to be of the form F(ε,
`p, `d), while the dissipation rate function is taken to be
Dð _ε, ` p, _̀ p, _̀ p, _̀ dÞ. If the dissipation function is homogenous
of the first order, then Equation 1 can be rewritten as

σ : _ε ¼ ∂F
∂ε

: _ε þ ∂F
∂` p

: _̀ p þ
∂F
∂` d

: _̀ d þ
∂D
∂ _̀ p

: _̀ p þ
∂D
∂ _̀ d

: _̀ d
2.

It follows that

σ ¼ ∂F
∂ε3.

and

χp − χp

� �
: _̀ p ¼ 0

χd − χdð Þ : _̀ d ¼ 04.

where the generalised stress tensors χp and χd are given by

χp ¼ −
∂F
∂` p

χd ¼ −
∂F
∂` d5.
4
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and the dissipative stress tensors χp and χd are given by

χp ¼ ∂D
∂ _̀ p

χd ¼ ∂D
∂ _̀ d6.

Following the orthogonality condition by Ziegler (1983), which
was adopted in the hyperplasticity framework of Houlsby and
Puzrin (2000), a wide range of classes of materials can be
described by enforcement of the stronger condition in Equation 4

χp ¼ χp

χd ¼ χd7.

To develop rate-independent thermomechanical models, Puzrin
and Houlsby (2001) suggested a decoupled form of dissipation
function that is appropriate for multiple surface kinematic
hardening plasticity models. For a rate-independent damage
material, the dissipation function takes the form of

D ¼ ∂D
∂ _̀ p

: _̀ p þ
∂D
∂ _̀ d

: _̀ d
8.

As noted by Einav et al. (2007), adopting a decoupled dissipation
for rate-independent plasticity-damage models may result in
damage prior to plastic straining or vice versa. Furthermore, the
uncoupled dissipation potentials imply multi-yield surfaces, each
one associated with the evaluation of each internal variable.
Therefore, Einav et al. (2007) proposed a coupled dissipation
function for rate-independent materials, which leads to a single
yield function, of the form

D ¼
XN

i¼1
ci ε, `ð ÞFi _aið Þ½ �n

� �1=n
9.

where ci(ε, `) is a positive definite function and Fið _aiÞ is a
homogenous first-order function operator returning a positive
scalar. It should be emphasised that for a rate-independent
material, the dissipation function is chosen to be a homogeneous
first-order function of the internal variable rate. Thus, the
dissipation function can be expressed mathematically through the
Euler equation

D ¼ ∂D
∂ _̀

: _̀
10.

In rate-dependent materials, the dissipation function is not a first-
order function. Thus, Equation 9 and the formulations mentioned
 by the ICE under the CC-BY license 
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earlier cannot be directly applied. If D is of order m, then Z =
D/m can be defined so that

∂Z
∂ _̀

: _̀ ¼ mZ ¼ D
11.

and the dissipative stress tensor can be derived as

χ ¼ ∂Z
∂ _̀12.

For more details about the mathematical formulation of the
hyperplasticity framework, the reader is referred to the book by
Houlsby and Puzrin (2006).

Formulation of a new viscoplastic damage
model
This paper presents a new viscoplastic-damage model that is
capable of simulating secondary creep and tertiary creep. The
viscoplastic component of the model describes the secondary,
steady-state creep, while the damage component of the model can
describe the tertiary creep during which the strain rate increases
with time due to a reduction in material stiffness. Here the theory
of continuum damage mechanics is used, which was developed by
Kachanov (1958), who introduced an internal scalar variable to
model the creep failure of metals under uniaxial loads. Other
significant contributions to this theory were made by Lemaitre and
Chaboche (1990), among others. The authors combined continuum
damage mechanics within the framework of hyperplasticity, thus
encompassing viscoplasticity and damage within a single theory.

In this paper, the attention is focused on the case of isotropic
damage, so that `d is simply a scalar internal variable starting
from 0 and increasing to a maximum value of 1. The damage
variable can be defined as

ad ¼ A − As

A
13.

where A is the total cross-sectional area of a surface within the
unit cell in one of the three perpendicular directions and AS is the
solid matrix within A.

The free-energy potential can also be written as follows

F ¼ 1

2
1 − adð Þεe : De : εe14.

where ε e is the elastic strain tensor defined as the total strain
minus the plastic strain and De is the standard isotropic elasticity
tensor. From this potential, the elasticity law is given by
 [ UNIVERSITY OF DURHAM] on [29/01/20]. Published with permission by th
σ ¼ ∂F
∂εe

¼ 1 − adð ÞDe : εe
15.

The stresses associated with the damage can be derived from the
free-energy potential as follows

cd ¼ −
∂F
∂ad

¼ 1

2 1 − adð Þ2 σ : De½ �−1: σ

¼ q2

6G 1 − adð Þ2 þ
p2

2K 1 − adð Þ216.

where G is the shear modulus; K is the bulk modulus; p ¼
tr½σ�=3 is the effective mean stress; tr½�� is the trace operator of ½��;
and q ¼ ð3J2Þ1=2 is the deviatoric stress invariant, with J2 ¼
½ð1=2Þðs : sÞ�1=2. s ¼ σ − pI, with I as the second-order unit
tensor.

For a coupled viscoplastic-damage material, the authors propose a
dissipation function of the form

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp c1 þ c2pð Þ _ap1�2 þ rdr c1 þ c2pð Þ _ad�2 þ hn−1 _an

p2

hhr
17.

The term inside the first brackets under the square root, in the
expression of the dissipation function, D, represents the
dissipation due to plasticity, while the term inside the second
brackets represents the dissipation due to damage. The additive
term under the square root is the dissipation due to viscosity.
c1 ¼ c*1PðadÞ and c2 ¼ c*2PðadÞ, where c*1 and c*2 are material
parameters related to the cohesion and the friction angle,
respectively. P(ad) is a hardening/softening function, _ap1 and _ap2

are internal variables associated with the micro-plastic strain, _ad

is the material damage, h is the viscous coefficient that controls
the extent of plastic strain, n is a material constant, while rp and
rd are two constants governing the ratio of viscoplasticity and
damage, and r is defined as

r ¼ cd
q − c3p

¼ q2

6G 1 − adð Þ2 q − c3pð Þ þ
p2

2K 1 − adð Þ2 q − c3pð Þ18.

The internal variables _ap1 and _ap2 can be taken as equal to the
plastic deviatoric shear strain rate _ag , which is defined as

_ag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_ep : _ep

r
19.
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where

_ep ¼ _d p −
_av

3
I

20.

and _ep is the plastic deviator strain rate; _d p is the plastic strain
rate; and _av ¼ tr½ _d p� is the plastic volumetric strain rate.

The dissipation function (Equation 17) is consistent with the
coupled form given by Equation 9 and therefore yields a single
yield surface. This coupled dissipation function, therefore, defines
a model that introduces damage whenever plasticity occurs and
vice versa. As will be illustrated later, the definition of r given by
Equation 18 implies that the damage starts with the plasticity
behaviour. In the absence of damage in a rate-independent
material, this dissipation function collapses to the standard form
of dissipation in a Drucker–Prager-type material (i.e. D ¼
pðc1 þ c2 pÞ _ag ).

A linear relationship between the volumetric and shear strain rates
can be introduced as follows

c3 _ag þ _av ¼ 021.

where c3 ¼ c*3PðadÞ is a material parameter related to the
dilation angle. Therefore, the modified dissipation function can be
written as

D* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp c1 þ c2pð Þ _ag

h i2
þ rdr c1 þ c2pð Þ _ad½ �2

r
þ hn−1 _an

g þ L c3 _ag þ _av

� �
22.

where L is an arbitrary Lagrangian multiplier.

Since the dissipation given by Equation 22 is the summation of
homogeneous functions of different orders, Equations 11 and 12
can be applied to obtain the dissipative stresses. It follows that the
dissipative deviatoric stress cq is given by

cq ¼
_ag rp c2p þ c1ð Þn−1
h i2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp c2p þ c1ð Þ _ag

h i2
þ rdr c2 p þ c1ð Þ _ad½ �2

r
þ hn−1 _an−1

g þ c3L23.

and the dissipative stress due to damage is given by

cd ¼ _ad rdr c2p þ c1ð Þ½ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp c2p þ c1ð Þ _ag

h i2
þ rdr c2p þ c1ð Þ _ad½ �2

r
24.
6
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and the dissipative mean stress is equal to the Lagrangian
multiplier

cp ¼ L25.

Manipulating the preceding stress expressions (Equations 23–25)
leads to the following equation

cq − c3cp − hn−1 _an−1
g

rp c2p þ c1ð Þ

" #2
þ cd

rdr c2p þ c1ð Þ
� �2

¼ 1
26.

Since there is no kinematic hardening, the true stresses and the
dissipative stresses are identical; from Ziegler’s orthogonality, the
dissipative stresses and the generalised stresses are equal – that is

cp ¼ cp ¼ p cq ¼ cq ¼ q27.

An expression for the damage internal variable in the true stress
space can be found by substituting Equations 23 and 24 into
Equation 18 and making use of Equation 27

_ad ¼ rp
rd

� �2 _ag q − c3pð Þ
q − c3p − _an−1

g hn−1
� �

28.

Equation 26 can be rewritten in the true stress space as

q − c3p − hn−1 _an−1
g

rp c2p þ c1ð Þ

" #2
þ q − c3p

rd c2p þ c1ð Þ
� �2

¼ 1
29.

Rearranging the preceding equation, the following is obtained

_ag ¼
1

h
q − c3p − c2p þ c1ð Þrp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

q − c3p

c2p þ c1ð Þrd

� �2s8<
:

9=
;

1= n−1ð Þ

30.

The plastic deviatoric strain rate _ag is a non-negative quantity;
therefore, the expression inside the braces in Equation 30 must be
greater than or equal to zero. As a result, the yield criterion can be
easily derived and is shown to be given by

f ¼ c2k
1

r2p
þ 1

r2d

 !
− 1 ¼ 0

31.
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where
ck ¼ q − c3pð Þ
c2 p þ c1ð Þ32.

For Drucker–Prager-type materials, the constants rp and rd are
related by the following expression
1

r2p
þ 1

r2d
¼ 1

33.

This is consistent with the definitions of rp and rd in a rate-
independent material as proposed by Einav et al. (2007). It
follows that rp ≥ 1 and rd ≥ 1. In the limiting case when rp = 1, rd
→ ∞ and the constitutive model simplifies to a viscoplastic
model. It should be noted that Equation 17 implies that
cd ¼ r c1 þ c2pð Þ34.

Thus, comparing this with the definition of r given by Equation
18, the expression for the yield surface (Equation 31) can be
retrieved. Thus, damage can start only with the start of the plastic
behaviour.

By applying the dilatancy constraint of Equation 21 and using
Equation 20, it can be shown that for a Drucker–Prager material,
the components of the plastic strain rate are given by
_d p ¼ _ag
3

2q
s −

c3
3
I

� �
35.

The preceding relationship can be written as

_d p ¼ _g
∂g
∂σ36.

where g = q − c3p and _g ¼ _ag . For convenience, the set of
constitutive viscoplastic-damage equations is summarised in
Table 1.

Integration of the constitutive model
In order to use the proposed damage viscoplasticity model in a
displacement-based finite-element formulation, a stress integration
procedure of the constitutive model, which takes place at the
elemental Gauss points, is required. Here the iterative implicit
backward Euler stress integration scheme based on the operator
split methodology is used (Simo and Taylor, 1985). For a strain
 [ UNIVERSITY OF DURHAM] on [29/01/20]. Published with permission by th
increment Dd over a time step Dt and the state variables at tn, the
updated stress vector rn+1 and the damage parameter adnþ1

can be
obtained. This involves two basic sequences over a time interval
[tn, tn+1] – namely, an elastic predictor and a plastic corrector,
depending on whether the elastic trial stress falls inside or outside
the yield function f.

Elastic predictor
During the elastic predictor, the plastic internal variables are kept
constant and equal to their respective values at time t. For the
initial iteration count k = 0, these variables are

Dd p 0ð Þ
nþ1 ¼ 0 a 0ð Þ

dnþ1
¼ adn37.

where the subscript (n + 1) indicates that all values are obtained at
the end of the increment. Furthermore, the elastic trial stress is
expressed as

σ trial
nþ1 ¼ 1 − adnþ1

� �
D

: d e
n þ Dd nþ1

	 

− 1 − adnþ1

� �
D : Dd p

nþ138.

At this stage, if the trial state is admissible (i.e. f ð ð0Þnþ1, a
ð0Þ
dnþ1

Þ £ ef ,
where ef is a tolerance factor) then ð�Þnþ1 ¼ ð�Þtrialnþ1. Otherwise, the
yield criterion is violated and plastic and damage strains are
expected to occur.

Plastic correction
The Newton–Raphson scheme, which can lead to efficient return
mapping procedures (de Souza Neto et al., 2009), was adopted to
evaluate the plastic corrector sequence. To this end, a system
of non-linear implicit equations has to be solved simultaneously
for the unknowns aTnþ1 ¼ fr nþ1, adnþ1

gT iteratively using the
Newton–Raphson method. The discrete residuals associated with
the unknowns are written as follows
Table 1. Drucker–Prager viscoplastic-damage model

(a) Additive split of the strain tensor
ε ¼ εe þ εp

(b) Elastic constitutive equation

σ ¼ ∂y
∂εe ¼ ð1 − adÞDe : εe

(c) Yield function

fðσ, adÞ ¼ c2k ð1r2p þ
1
r2d
Þ − 1; ck ¼ ðq−c3pÞ

ðc2pþc1Þ

(d) Non-associative flow rule

_εp ¼ _g ∂g
∂σ; g ¼ q − c3p

_g ¼ 1
h

h
q − c3p − ðc2p þ c1Þrp

n
1 − ½ q−c3p

ðc2pþc1Þrd�
2
o1=2 i1=ðn−1Þ

(e) Evolution of accumulated plastic strain and damage

_ag ¼ _g
_ad ¼ ðrprdÞ

2 _ag ðq−c3pÞ
ðq−c3p− _an−1

g hn−1Þ
7
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r kð Þ
nþ1 ¼ snþ1 − 1 − adnþ1

	 
trial
nþ1

adnþ1
− adn

8<
:

9=
;

þ Dt
_g 1 − adnþ1

� �
De ∂s fnþ1

− _ad

8<
:

9=
;

39.

where k is an iteration counter. In the linearisation process of
Equation 39, the directional derivative of the system variables
fr nþ1, adnþ1

g in the direction of Dan+1, with Ddn+1 being kept
constant during the return mapping, implies that

A kð Þ
nþ1

h i
da kð Þ

nþ1 ¼ −r kð Þ
nþ1  A kð Þ

nþ1

h i
¼ ∂r kð Þ

nþ1

∂a kð Þ
nþ1

 a kþ1ð Þ
nþ1 ¼ a kð Þ

nþ1 þ da kð Þ
nþ140.

where the components of ½AðkÞ
nþ1� are the partial derivatives of the

residual vector with respect to the non-linear system fsnþ1, adnþ1
g.

If the residuals are greater than a specified tolerance – for instance,
‖ rðkÞnþ1 ‖ = ‖ r

ð0Þ
nþ1 ‖ < ϵr, where ϵr is a relative tolerance – Equation

39 is solved again to update the unknowns and iteration is
continued until the residuals fall within the specified tolerance. For
presentational convenience, Table 2 summarises more clearly the
operations needed for the iterative implicit stress-update algorithm
for the viscoplastic-damage model.

Consistent tangent operator
The next task consists of the derivation of the elasto-plastic
tangent operator consistent with the algorithm employed to update
the stress for use in finite-element computations. The viscoplastic-
damage consistent tangent modulus is derived as

D ¼ ∂r nþ1

∂d nþ1
−
∂r nþ1

∂anþ1
A½ �−1nþ1

∂rnþ1

∂d nþ141.

The computation of Equation 41 relies on the total derivatives
∂rnþ1=∂d nþ1 of the implicit non-linear residual equations in
Equation 39 and the inverse of [A], which can be extracted from
the local iteration procedure of the return mapping algorithm
(Rouainia and Muir Wood, 2001; Rouainia and Peric, 1998).

Selection of model parameters
Many advanced constitutive models have been developed to
reproduce some aspects of viscoplastic behaviour identified in the
literature. However, these models are often characterised by their
use of numerous parameters, many of which have no clear
physical meaning and require extensive laboratory testing to be
calibrated and be practical as a design tool. In addition to being
thermodynamically consistent and derived entirely from two
8
ed by [ UNIVERSITY OF DURHAM] on [29/01/20]. Published with permission
potentials without any additional assumptions, the proposed
model requires only eight parameters to capture both the elastic
and the coupled viscoplastic-damage behaviour: two for linear
elasticity, three for the yield surface, two for the viscous
behaviour and one for defining damage. These parameters have a
physical meaning and can be obtained from relatively
straightforward testing procedures.

The pre-yield behaviour is modelled linear elastically using
Young’s modulus E and Poisson’s ratio n, which can be obtained
from the approximately linear part of a stress–strain curve obtained
from laboratory testing (following a triaxial test, for example). The
model requires the identification of three conventional parameters
of the Drucker–Prager model (c*1 , c

*
2 and c*3 ), which are related to

cohesion, C; friction angle, f; and dilatancy angle, y. The
cohesion, friction angle and dilatancy angle can be identified from
conventional triaxial tests. In triaxial tests, the Drucker–Prager
yield surface can be taken to circumscribe the Mohr–Coulomb
Table 2. Stress-updating procedure – small strain

(a) Initialise

k ¼ 0, að0Þ
dnþ1

¼ adn
, σð0Þ

nþ1 ¼ σtrial
nþ1

(b) Check the yield condition and evaluate residuals

f ðkÞnþ1 ¼ fðσðkÞ
nþ1, a

ðkÞ
dnþ1Þ

r ðkÞnþ1 ¼
(
σðkÞ

nþ1 − ð1 − adnþ1Þσtrial
nþ1

aðkÞ
dnþ1 − adn

)
þ Dt

(
_g ð1 − aðkÞ

dnþ1ÞDe ∂σ f ðkÞnþ1

− _ad

)

If ‖ r ðkÞnþ1 ‖ < er and f ðkÞnþ1 < ef ; then

set ð�Þnþ1 ¼ ð�ÞðkÞnþ1 and exit

Else

(c) Compute the algorithmic modulus

AðkÞ
nþ1 ¼

Aσσ
nþ1 Aσad

nþ1

Aadσ
nþ1 Aadad

nþ1

#"

where

Aσσ
nþ1 ¼ I þ ½Dg ∂

2
σσ f ðkÞnþ1 þ ∂σ f ðkÞnþ1

n
∂σ Dg ðkÞ

nþ1

oT
�ð1 − aðkÞ

dnþ1ÞDe

Aσad
nþ1 ¼ ½Dg ∂

2
σad

f ðkÞnþ1 þ ∂σ f ðkÞnþ1 ∂ad
Dg ðkÞ

nþ1�ð1 − aðkÞ
dnþ1ÞDe

þ σtrial
nþ1 − Dg ðkÞ

nþ1 ∂σ f ðkÞnþ1

Aadσ
nþ1 ¼

n
∂σ DaðkÞ

dnþ1

oT

Aadad
nþ1 ¼ 1 − ∂ad

DaðkÞ
dnþ1

(d) Evaluate increment of stresses and internal variable(
Dσ ðkþ1Þ

nþ1

Dad
ðkþ1Þ
nþ1

)
¼ −ðAðkÞ

nþ1Þ−1 : rðkÞnþ1

(e) Update stresses and internal variable(
s ðkþ1Þ
nþ1

aðkþ1Þ
dnþ1

)
¼
(

s ðkÞ
nþ1

aðkÞ
dnþ1

)
þ
(

Ds ðkþ1Þ
nþ1

Dad
ðkþ1Þ
nþ1

)

Set k ¼ k þ 1 and go to ðbÞ
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yield surface as shown in Figure 3 in the deviatoric stress space.
Therefore

c*1 ¼ 6C cos fð Þ
3 − sin fð Þ c*2 ¼ 6 sin fð Þ

3 − sin fð Þ −
6 sin yð Þ

3 − sin yð Þ 

c*3 ¼ 6 sin yð Þ
3 − sin yð Þ42.

In this model, the post-yield behaviour is described by the
softening/hardening function P(ad) equal to (1 − bad)

2, where b
is the softening/hardening parameter. This function fits well with
experimental data, as demonstrated by Shao et al. (2003). The
parameter b can be obtained from the post-yield stress–strain
curve in triaxial tests; if the geomaterial softens, b > 0, and if it
hardens, then b < 0.

The parameters rp and rd are related by Equation 33 and govern
the damage as shown in Figure 4. When rd/rp = 0, the model
performs as a classical viscoplastic model and the damage
mechanism is deactivated. However, when 0 < rd/rp £ 1·0, the
model is allowed to undergo damage and therefore softening.
The ratio rd/rp can be estimated by measuring the damage in the
material. The variations of the elasticity modulus can be found in
a displacement control triaxial test by carrying out a post-yield
unloading/reloading cycle and comparing the values of the
material stiffness with that of its original value before the yield
stress is reached. There are other techniques for measuring
damage in materials reported throughout the literature (see e.g. the
 [ UNIVERSITY OF DURHAM] on [29/01/20]. Published with permission by th
paper by Lemaitre and Dufailly (1987)). If a rapid test is carried
out and the damage ad is plotted against the accumulative
deviatoric plastic strain ag , then the ratio rd/rp can be estimated
from the initial slope of the ag − ad curve. From Equation 28

rp
rd

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
dad

dag

 !
ad→0

vuut
43.

Two parameters are used to describe the viscoplasticity response;
viscosity is defined by the parameter h, and the rate-sensitivity
parameter is described by the non-dimensional parameter n. Both
parameters are positive. These parameters are analogous to the
parameters of the model by Perzyna (1966), which are widely
used in computational applications of viscoplasticity and can be
obtained using triaxial tests from the relationships given by
Equation 30.

Numerical simulations and comparison with
experimental data
The model has been specifically tested for its ability to reproduce
a series of triaxial compression test results on three different
geomaterials reported in the literature: (a) sandstone (Yang and
Jiang, 2010), (b) Meuse–Haute/Marne claystone (Hu et al., 2014)
and (c) Inada granite (Fujii et al., 1999).

Stress–strain response in drained triaxial tests
Yang and Jiang (2010) carried out drained triaxial tests on
sandstone core samples extracted at the Xiangjiaba Hydropower
Project in south-western China. The samples were taken at a
depth of between 61·2 and 62·5 m, where the Poisson’s ratio
and density are approximately n = 0·22 and 2·600Mg/m3,
Mohr–Coulomb Drucker–Prager

σ3

σ1 σ2

Figure 3. Comparison of Mohr–Coulomb and Drucker–Prager
failure criteria in the deviatoric plane
q

rd/rp = 0

rd/rp = 1·0

0 < rd/rp < 1·0

ε1

Figure 4. Modelling coupled plasticity-damage behaviour
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respectively. Triaxial loading tests under drained conditions
performed on isotropically compressed samples were used to
illustrate the short-term and the long-term behaviour.

The short-term loading tests were conducted under three different
confining pressures (s3 = 3, 5 and 7MPa), and axial stresses were
imposed at a constant rate of 0·127MPa/s until peak strength was
reached. The measured angle of friction f was found to be about
58·4°. Table 3 shows the mechanical behaviour observed under
triaxial compression. The peak axial strain e1p is defined as the
strain value at rupture in terms of the complete stress–strain
curve. The modulus of elasticity (Es) refers to the slope of the
approximately linear part of the stress–strain curve, while
the modulus of deformation (E50) is defined as the slope between
the original point and the stress at half-peak strength.

The parameters c*1 , c
*
2 and c*3 of the viscoplastic-damage model

are calculated from the measured angle of friction f and a
dilatancy angle of f/4 using Equation 42. Hoek and Brown
(1997) studied the relationship between the angle of dilation y
and the angle of friction f and recommended that for a good-
quality sample, y can be taken as f/4. The average value of the
Young’s modulus ðE50 þ EsÞ=2 for each sample is used in the
numerical simulation (see Table 4). In the absence of the detailed
testing procedure (described earlier) for obtaining the model
parameters, the short-term loading test data for a confining pressure
of 5 MPa are used to obtain the remaining model parameters. A
Matlab software built-in standard Levenberg–Marquardt optimisation
procedure has been utilised to estimate the set of material parameters.
Table 4 shows the resulting set of material parameters used in the
simulations.

Figure 5 shows the comparison between the short-term drained
stress–strain response of the model and the experimental data with
three different confining pressures. As can be seen from
Figures 5(a)–5(c), the new coupled viscoplastic-damage model is
10
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remarkably successful in matching the general shape of the
stress–strain response for all three confining pressures, at both
peak stress and in the region of material softening.

Validation was also carried out with drained triaxial compression
tests of saturated Meuse–Haute/Marne claystone. These tests were
undertaken by Hu et al. (2014) on samples taken from a depth of
about 521 m and were subjected to an in situ vertical stress of
12·7 MPa and horizontal stresses in the range 12·3–13·8MPa.
The axial strain rate in these tests was set at 10−7/s (corresponding
to an average stress rate of 10−4 MPa/s). The measured angle of
friction f was found to be about 21·4°, and the cohesion c was
found to be 3·94MPa. The optimised parameters used in the
analysis are shown in Table 3. Figure 6 shows the relationship
between the radial strain and the axial strain at different confined
pressures. This figure demonstrates that except for the case of
high confining pressure (20MPa), the new model can reasonably
replicate the experimental data.

Table 5 shows the evolution of the relative residual norm for a
confining pressure of 5MPa for three typical load increments.
These results provide a clear indication of the good rates of
convergence. The number of iterations needed to meet the
convergence tolerance of er = 10−8 is between three and four per
load step.

Strain–time response in creep triaxial tests
Yang and Jiang (2010) also conducted creep tests on sandstone in
triaxial cells. In these tests, the deviator stress q = (s1 − s3) was
kept constant. Figure 7 shows the comparison between the results
of the viscoplastic-damage model and the experimental data for
creep tests with a confined pressure of 5MPa and a constant
deviator stress of 160MPa. The failure occurs after approximately
31·48 h. It can be seen that the general trend is well captured in
terms of the time required to reach failure and the magnitude of
axial strain. The evolution of the accumulative damage predicted
by the model during the creep test is shown in Figure 8. It can be
noticed that the accelerated damage rate follows a pattern similar
to that of the accelerated creep strain. This is consistent with the
experimental data of Heap et al. (2010), which show an
accelerated rate of change in the pore volume of sandstone during
tertiary creep.

Validation is also made against triaxial creep tests on Inada
granite reported by Fujii et al. (1999). These tests were conducted
under a confining pressure of 10MPa. The testing programme
investigated the effect of creep stress on the strain–time
behaviour. The numerical simulations were carried out with the
Table 4. Viscoplastic-damage parameters used in the numerical simulation
Sample
 c*1
 c*2
 by
c*3
 the ICE under th
g

e CC-BY licens
n

e 
rp
 a
Sandstone (Yang and Jiang, 2010)
 21·95
 1·83
 0·55
 5800
 1·42
 1·05
 0·4

Claystone (Hu et al., 2014)
 7·21
 0·64
 0·19
 6000
 3·00
 1·08
 0·5

Inada granite (Fujii et al., 1999)
 31·39
 1·86
 0·56
 6300
 1·35
 1·02
 0·2
Table 3. Mechanical behaviours of sandstone samples under
conventional triaxial compression (Yang and Jiang, 2010)
Confining pressure, s3: MPa
 3
 5
 7

Peak strength, (s1 − s3)peak: MPa
 163·6
 180·7
 209·6

Residual strength, (s1 −

s3)residual: MPa

43·0
 42·2
 44·7
Axial strain at peak strength, e1p:
× 10−3
7·6250
 7·6700
 7·5556
Young’s modulus Es: GPa
 25·77
 27·73
 32·69

Young’s modulus E50: GPa
 21·41
 32·63
 30·91
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parameters for Inada granite shown in Table 4. Figure 9
demonstrates that the viscoplastic damage model is capable of
predicting the time required to failure at different stress levels.

Limitations of the new viscoplastic damage model
Inherent or structural anisotropy is observed in many types of
sedimentary rocks. The strength of the rock material strongly
depends on the loading orientation with respect to the
microstructure (Pietruszczak et al., 2002). The model presented
here deals with isotropic damage only. Therefore, it is applicable
Viscoplastic-damage model

Triaxial test data σ3 = 3 MPa 
(Yang and Jiang, 2010)
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Triaxial test data σ3 = 7 MPa
(Yang and Jiang, 2010)
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Figure 5. Comparison of model predictions and short-term stress–strain triaxial results for (a) s3 = 3MPa, (b) s3 = 5MPa and (c) s3 = 7MPa
Table 5. Return mapping residual norms for three typical load
increments
e

Iteration
 ICE under the
Increment 70
 CC-BY license 
Increment 200
 Increment 300
1
 0·0354
 0·2442
 0·0575

2
 1·65 × 10−4
 0·0027
 1·22 × 10−4
3
 3·47 × 10−9
 6·35 × 10−7
 3·00 × 10−8
4
 —
 2·24 × 10−10
 1·70 × 10−12
Viscoplastic-damage model

Triaxial data (Hu et al., 2014)
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Figure 6. Comparison of model predictions and experimental
results for drained triaxial with different confining pressures
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only to the case of monotonic loading. The present formulation
assumes that the dilatancy angle is constant and that there is a
unique relationship between the plastic shear strain and the
volumetric strain increments. Alejano and Alonso (2005) showed
the dependency of the dilatancy angle on the confining stress and
the material plasticity. The model is formulated in terms of triaxial
stress space, and validation is carried out against triaxial data. It
could be generalised by incorporating an appropriate Lode’s angle
dependency function such as that suggested by Eekelen (1980).
The strength parameters c1, c2 and c3 can be expressed as a
function of Lode’s angle. However, further validation is needed.
Furthermore, temperature dependency could be easily
12
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incorporated within the hyperplasticity approach as explained by
Houlsby and Puzrin (2000).

Conclusions
In this paper, the authors have combined the continuum damage
approach within the framework of hyperplasticity for rate-
dependent materials, thus encompassing viscoplasticity and damage
within a single theory. A novel coupled viscoplastic-damage
constitutive model has been derived from two scalar potentials: a
free-energy potential that provides the elasticity law and a
dissipation potential that provides the yield function, the direction
of plastic flow and the evolution of a damage variable. No
additional assumptions are required. The model is formulated with
few parameters that can be derived from conventional laboratory
testing. It has been shown that the new model is capable of
capturing the secondary and tertiary creep observed in soft rocks.
Comparison with triaxial data has shown that the model provides a
good approximation to short-term stress–strain curves obtained for
different confining pressures and to long-term creep data.
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