
Iterative solvers for generalized finite element solution of

boundary-value problems

M Shadi Mohamed∗, Mohammed Seaid†, Abderrahman Bouhamidi‡

Abstract

Most of generalized finite element methods use dense direct solvers for the resulting linear systems.
This is mainly the case due to the ill-conditioned linear systems that are associated with these methods.
In the current study we investigate the performance of a class of iterative solvers for the generalized finite
element solution of time-dependent boundary-value problems. A fully implicit time-stepping scheme is
used for the time integration in the finite element framework. As enrichment we consider a combination
of exponential functions based on an approximation of the internal boundary layer in the problem under
study. As iterative solvers we consider the generalized minimal residual method and the changing minimal
residual method based on the Hessenberg reduction. Compared to dense direct solvers, the proposed
solvers achieve high accuracy and efficiency at low computational cost and memory storage. Two test
examples for boundary-value problems in two space dimensions are used to assess the performance of
the iterative solvers. Comparison to dense direct solvers widely used in the framework of generalized
finite element methods is also presented. The obtained results demonstrate the ability of the considered
iterative solvers to capture the main solution features. It is also illustrated that this class of iterative
solvers can be efficient in solving the ill-conditioned linear systems resulting from the generalised finite
element methods.

Keywords. Generalized finite element methods; Partition of unity; Boundary-value problems; Krylov
subspace methods; Iterative solvers; Composite materials; Ill-conditioning

1 Introduction

Although they have different names such as the Generalized Finite Element Method (GFEM) [32], the eX-
tended Finite Element Method (XFEM) [34] and the Partition of Unity Finite Element Method (PUFEM)
[17] but the enrichment idea in all these methods remains the same [19]. The idea is to enrich the finite
element space with functions that can reproduce oscillatory solutions or solutions with singularities and/or
discontinuities. So far it has been proven that the enrichment can circumvent the need for highly refined
meshes that are otherwise necessary to recover oscillations or irregularities. Hence, the enrichment sig-
nificantly increases the efficiency of the finite element method. Since their introduction, the enrichment
functions became very popular when dealing with challenging numerical issues. In the past two decades a
large amount of work was dedicated to developing enrichment methods and their applications, not only in
the finite element method but also in the boundary element method [26, 27] and other numerical methods
[18]. For a general review on these methods and related techniques we refer to [4, 12] and further references
are therein.

More recently enriched finite element methods were also extended to deal with time-dependent problems
including conduction-radiation applications, see for example [21, 22, 6, 23]. A common requirement for
all generalized finite element methods is the solution of linear systems of algebraic equations resulting
from the spatial discretization of the boundary-value problem under study. The structure of these linear
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systems substantially differs from those associated with the non-enriched finite element methods. For
time-dependent boundary-value problems these linear systems need to be solved at each timestep during
the time integration process. The above mentioned generalized finite element methods have shown the
potential to provide highly accurate results using a far lower number of degrees of freedom compared to
their conventional finite element methods counterpart. However, the inherited linear systems of algebraic
equations require in many cases the inversion of dense and ill-conditioned matrices which may limit the
performance of the generalized finite element methods for applications requiring large number of enrichments
to be taken into account in the simulations. Needless to mention that increasing the number of enrichments
in the generalized finite element methods results in a deterioration of the condition numbers in these linear
systems and it may also lead to singular matrices.

Due to the ill-conditioning characteristics, iterative solvers are often avoided and instead dense direct
methods are commonly used for solving the linear systems resulting from the generalized finite element
methods. For instance, the Singular Value Decomposition (SVD) algorithm and Gaussian elimination
techniques have been widely used in literature, see [33, 32, 13, 2, 6] among others. It is also known
that the performance of these solvers depends on the number of enrichment and also the number/size
of the timesteps used in the time integration of the boundary-value problem under study. A study on
the performance of the preconditioned conjugate gradient method with the GFEM can be found in [15]
while earlier preconditioners were also proposed for the XFEM [20, 3] and the PUFEM [9]. In all these
references, iterative solvers were used for time-independent problems. But the accumulation of errors in
the time domain can have a crucial effect on the convergence of iterative solvers for the generalized finite
element methods. Our objective in the current study is to examine the performance of iterative solvers in
generalized finite element methods for transient boundary-value problems. Although the conditioning of
the system matrix may not change at different time steps but the error introduced in the time integration
may expose cases that get close to the worst behaviour for which the considered iterative solver does
not converge. We assess the numerical performance of the well-known Krylov subspace methods such as
Generalized Minimal Residual Method (GMRES) [29] and the Changing Minimal Residual method based
on the Hessenberg process (CMRH) [30]. Both GMRES and CMRH solvers do not require the storage of
the full matrix in the linear system as only matrix-vector products are involved in their implementation. In
addition, at each iteration in the GMRES and CMRH solvers, only evaluation of one matrix-vector product
is needed and the approximate solution is obtained by solving a small least squares problem. Most of
research works published in the generalized finite element methods for computational mechanics including
acoustic waves and heat transfer employ dense direct solvers in their implementations. In te current study
we examine the numerical performance of a class of iterative solvers for different applications in diffusion
problems. We present numerical comparisons between dense direct solvers widely used in the literature
for generalized finite element methods and the considered iterative solvers based on the Krylov methods.
We numerically demonstrate that in the framework of generalized finite element methods, iterative solvers
could be an alternative for their direct counterparts. Limited publications are available in the literature on
this topic and the current study is the first to consider the GFEM solution of time-domain problems using
the Krylov subspace methods.

To verify the numerical performance of the considered iterative solvers we present numerical results for two
test examples on transient heat conduction. The examples are considered without applying a preconditioner.
For the first test problem, the analytical solution is given in a squared domain which is used to quantify
the errors of the generalized finite element solution. Effects mesh densities, number of enrichments, and
size of timesteps on the performance of the linear solvers are also examined for this example. In the second
test example we consider a heat conduction problem in a circular enclosure with discontinuous conduction
coefficients and subject to an internal heat source. This test example is more difficult to solve than the
previous example and the performance of the considered iterative solvers is examined for this case using
different numbers of enrichments. Comparisons between iterative solvers and dense direct solvers are also
carried out in our study for both test problems. A difficulty which we try to address in this work is the
ability to split between on one hand the discretization errors caused by the generalized finite element method
and the time integration scheme and on the other hand by the errors remaining from the solvers. To deal
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with this we assume that the SVD method is the most accurate linear solver considered in this paper and
that the error achieved with SVD solver is the minimum possible error. Hence, only the discretization in
space and time are dominating the computed errors. Conversely, the errors achieved with other solvers
(direct or iterative) include also errors remaining from the solver itself. Hence, a contribution of the linear
solver to the error is the difference between the SVD error and this solver error. In the same manner, for a
given problem if a solver shows instabilities in a solution while SVD method still produces a stable solution
then we will attribute the instability to the linear solver. It should be stressed that comparisons between
the conventional finite element method and the GFEM have been carried out in [21] among others and it
will not be repeated in this study.
The present paper is organized as follows. In section 2 we present the generalized finite element method
for solving boundary-value problems. Iterative solvers for the associated linear systems are described in
section 3. In section 4, we present numerical results for two test examples of boundary-value problems.
The accuracy and the robustness of the Krylov subspace methods in general and the CMRH in particular
when combined with the GFEM for time-domain problems, are investigated. Some concluding remarks are
given in section 5.

2 Generalized finite element solution of boundary-value problems

To explain in details the formulation of the generalized finite element method, we consider the following
time-dependent boundary-value problem

∂u(t, ξ)

∂t
−∇ ·

(
D∇u(t, ξ)

)
= f(t, ξ), (t, ξ) ∈ [0, T ]× Ω,

u(t, ξ) +D
∂u(t, ξ)

∂n
= g(t, ξ), (t, ξ) ∈ [0, T ]× ∂Ω, (1)

u(0, ξ) = u0(ξ), ξ ∈ Ω,

where Ω is a two-dimensional spatial domain with boundary ∂Ω, t ∈ [0, T ] the time interval, ξ = (x, y)> the
space coordinates, and n the outward unit normal on the boundary ∂Ω. Here, D is the diffusion coefficient
which may depend on space while f(t, ξ) represents internal source/sink terms. Both the boundary function
g(t, ξ) and the initial function u0(ξ) are given. It should be noted that the boundary-value problem (1) has
been widely used in the literature to model heat transfer, groundwater flow and reaction-diffusion among
many other applications.
To solve problem (1) we first divide the time domain into equal intervals [tn, tn+1] each of the duration
∆t = tn+1 − tn where n = 0, 1, . . . . The notation wn is used to denote the value of a generic function w at
time tn. To integrate in time we use the first-order implicit Euler scheme which is unconditionally stable,
so that the choice of ∆t may be based only on the accuracy to be achieved in the computed solutions. This
choice of a first-order scheme is easy to implement but other high-order implicit time integration schemes
can also be used. However, the first-order time integration may introduce damping into the solution and,
hence, affect the convergence of the iterative solvers. Therefore it is more critical to study the convergence
of the solvers here rather than using a higher order time integration scheme. A semi-discrete form of the
problem (1) is

un+1 − un

∆t
−∇ ·

(
D∇un+1

)
= fn+1,

or simply
un+1 −∆t∇ ·

(
D∇un+1

)
= un + ∆tfn+1, (2)

To solve the problem in space we use the finite element method by establishing a variational formulation for
equation (2). On the domain Ω we consider the Sobolev space of square integrable functions with existing
first order derivatives H1(Ω). We multiply (2) by a weighting function ϕ(ξ), and then integrate over Ω∫

Ω

(
ϕ(ξ)un+1 −∆tϕ(ξ)∇ ·

(
D∇un+1

))
dΩ =

∫
Ω

(
ϕ(ξ)

(
un + ∆tfn+1

))
dΩ, (3)
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Applying the divergence theorem and substituting the boundary condition one obtains the weak formulation
of the problem i.e. find un+1 ∈ H1(Ω) such that:∫

Ω

(
D∆t∇ϕ ·∇un+1 +ϕun+1

)
dΩ+

∮
Γ

∆t
(
un+1−gn+1

)
ϕ dΓ =

∫
Ω

(
un +∆tfn+1

)
ϕ dΩ, ϕ ∈ H1(Ω), (4)

To solve the weak variational formulation (4) using the finite element method, we discretize the spatial
domain Ω into a set of M finite elements Ti with the index i referring to the ith element. The combination
of all these elements forms a quasi-uniform partition Ωh with Ωh ⊆ Ω. For any two different elements Ti
and Tj of Ωh we have

Ti ∩ Tj =


Pij , a mesh point, or

Γij , a common side, or

∅, empty set.

The conforming finite element space for the solution that we use is defined as

Vh =

{
un+1
h (ξ) ∈ C0(Ω) : un+1

h (ξ)
∣∣∣
Ti
∈ Ψ(Ti), ∀ Ti ∈ Ωh

}
, (5)

with

Ψ(Ti) = span

{
ψ(ξ) : ψ(ξ) = ψ̂ ◦ Y −1

j (ξ), ψ̂ ∈ Ψm(Ω̂e)

}
,

where ψ̂ is a basis function defined on the reference element while Ψm(Ω̂e) is the set of all basis functions
defined on the reference element Ω̂e. Here, Yi(ξ) : Ω̂e −→ Ti is an invertible one-to-one mapping.

Next, we formulate the generalized finite element solution to un+1
h (ξ) as

un+1
h (ξ) =

N∑
j=1

Q∑
q=1

U q,n+1
j ΦjGq(ξ). (6)

where {Φj}Nj=1 are a set of polynomial functions with N being the total number of nodes in Ωh. Notice
that each of these functions is associated with one mesh node in Ωh and it is characterized by the property
Φi(ξj) = δij with δij denoting the Kronecker delta. In any element Ti the total number of nodes is M .

In (6), {Gq(ξ)}Qq=1 are known functions that have better approximation properties compared to the poly-

nomial functions Φj . The enrichment functions {Gq(ξ)}Qq=1 exist in many forms and their selections make
the difference between a generalized finite element method to another. A set of functions can be chosen
to enrich the finite element solution space either because they comprise the asymptotic solution space or
because they own better approximation properties to the problem at hand.

For the transient boundary-value problems (2), there are two ways to enrich the finite element solution
(6) depending on whether the functions {Gq(ξ)}Qq=1 depend on the time variable or not. Time-dependent
enrichment functions are known by local enrichment for which a linear system has to be solved at each
timestep. On the other hand, global enrichment uses time-independent functions {Gq(ξ)}Qq=1 and in this
case the matrix in the associated linear system is constant which can be assembled and inverted once during
the time integration process. Time-dependent enrichment functions can be found in [25, 24] among others.
An example for the two-dimensional diffusion problems can be the fundamental solution used in [10]

Gq(ξ) =
1

4π (t− τ)
exp

(
−r2

4 (t− τ)

)
H (t, τ) ,

where r = ‖ξ − ξc‖ is the distance from the function control point ξc = (xc, yc)
> to the point ξ = (x, y)>.

The time parameter τ refers to the delay time and H is the Heaviside function.
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Global enrichments for steady problems include among others the use of plane waves to enrich the solution
space for Helmholtz problems [17, 18] or the use of fundamental solutions for the enrichment functions [24].
Time-independent global enrichment was first introduced in [21] to solve transient diffusion problems of the
form (2). This consists of a set of exponential functions defined as

Gq(ξ) =

exp
(
−
( r
C

)mq
)
− exp

(
−
(
Rc

C

)mq
)

1− exp

(
−
(
Rc

C

)mq
) , q = 1, 2, . . . , Q, (7)

where the constants Rc, C and mq control the steepness of the Gaussian function Gq depending on the
boundary-value problem under study. For transient problems (2) with boundary layers, authors in [21]
proposed global enrichment functions based on hyperbolic tangent functions to be applied to the boundary
part of ∂Ω where high solution gradients are localized. These hyperbolic functions are defined as

Gq(ξ) =
Vq,1 + Vq,2

2
+
Vq,1 − Vq,2

2
tanh

(
r

Rc

)
, q = 1, 2, . . . , Q, (8)

Again here r = ‖ξ − ξe‖ is the distance from the function boundary point ξe = (xe, ye)
> to the point

ξ = (x, y)>. The remaining constants Vq,1, Vq,2 and Rc are the control parameters for the steepness of the
hyperbolic functions Gq depending on the boundary-value problem under study. Note that other expressions

for the enrichment functions {Gq}Qq=1 can also be inserted in the generalized finite element approximation
(6) without major modifications. The enriched finite element methods consistently show higher convergence
rates compared to the standard finite element method. The convergence of such methods is studied in details
in previous works (see for example [21, 24])

The set of unknowns U q,n+1
j are associated with the jth node and the qth enrichment function. The

approximation space can then be defined as

Ṽh = span

ΦjGq(ξ), un+1
h (ξ) =

N∑
j=1

Q∑
q=1

U q,n+1
j ΦjGq(ξ)

 .

In the present work, the enrichment functions (7) introduced in [21] are adopted for the numerical tests. It
is worth remarking that the enrichment functions Gq(ξ) are written in terms of the global coordinates ξ,
but they are multiplied by the nodal shape functions Φj . An elementary matrix of an element Ti is built of
blocks Aij as 

A11 A12 . . . A1M

A21 A22 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AMM





x1

x2

...

xM


=



b1

b2

...

bM


. (9)

It should be stressed that in the GFEM, the enrichment functions are associated with element nodes. Hence,
each block Aij in (9) is associated with the nodes i and j while the corresponding blocks xi and bi are
associated with the node i. The block sizes varies depending on the number of enrichment functions Q.
A higher Q leads to a larger block size. If the considered nodes are not on the domain boundary then
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Figure 1: Illustration of the structure of matrix A in (10) for the standard FEM (left plot), GFEM with
Q = 10 (middle plot) and GFEM with Q = 40 (right plot). Dark color in the plots refers to non-zero entries
in the matrix.

individual blocks can be written as

Aij =



a11
ij a12

ij . . . a1Q
ij

a21
ij a22

ij . . . a2Q
ij

...
...

. . .
...

aQ1
ij aQ2

ij . . . aQQ
ij


, xi =



U1,n+1
i

U2,n+1
i

...

UQ,n+1
i


, bi =



∫
Ω

(
∆tfn+1 + un

)
ΦiG1 dΩ∫

Ω

(
∆tfn+1 + un

)
ΦiG2 dΩ

...∫
Ω

(
∆tfn+1 + un

)
ΦiGQ dΩ


,

with

apqij =

∫
Ω

(
D∆t∇ (ΦiGp) · ∇ (ΦjGq) + ΦiGpΦjGq

)
dΩ.

Assembling the elementary matrices one can obtain a linear system which can be then written as

Ax = b. (10)

The system matrix A is symmetric and composed of the block matrices Aij . Similar to the standard finite
element method the assembly process will overlap all the common nodes between the elements, however, in
this case the overlap will include an entire block matrix Aij rather than a single entry. Figure 1 shows an
illustration of the non-zero entries of the system matrix for a standard finite element mesh compared to the
same mesh enriched with 10 and 40 enrichment functions. From the figure it can be seen that the three plots
show similar patterns. However, the size of the matrix changes significantly with respect to the number of
enrichment functions. Needless to mention that the size of the matrix A increases if the size of individual
block matrices Aij is increased. For example Figure 1 shows that a single entry in the finite element matrix
(left plot) becomes a 10×10 block matrix in the GFEM with Q = 10 (middle plot). Furthermore, it can be
seen in the figure that increasing Q to 10 or 40 will maintain a similar sparsity pattern in general but with
some block matrices Aij starting to show zero rows and columns, hence, leading to a singular system. To
understand this better we plot in Figure 2 the enrichment functions for different values of q. The left plot
in this figure corresponds to the enrichment functions for q = 1, 10, 20, 30, 40, 50, 60 and 70. As we increase
the values of q, the difference between one function and the next becomes smaller. To have a closer look
to the right of the figure we also plot the enrichment function at q = 39, 40 and 41. In this plot it can be
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Figure 2: Enrichment functions for different values of q. The left plot shows the enrichment functions for
q = 1, 10, 20, 30, 40, 50, 60 and 70. The right plot shows the high similarity between enrichment functions
for q = 39, 40 and 41.

seen that the difference between these enrichment functions is negligible. Including such enrichment has
the effect of enriching with the same function two or three times. This repetition of enrichments results in
a singular linear system which can be seen for example for Q = 40 in Figure 1. As a consequence, often
less than ten enrichment functions are used in the literature, see for instnace [14, 21]. However, even for
a small number of enrichment functions, it can be seen in Figure 2 that within the range 0 ≤ x ≤ 0.4 all
enrichment functions are similar. In this case, if a finite element method falls within this range the degrees
of freedom corresponding to the enrichment functions would lead to an ill-conditioned linear system or even
a singular matrix in (10).

In the present study we propose using Krylov subspace methods to deal with such systems. This class of
methods are based on minimizing the residual which can still be an effective strategy even when dealing
with singular systems.

3 Changing minimal residual solver

In this section, we describe the Changing Minimal Residual solver based on the Hessenberg reduction
(CMRH) algorithm for solving the linear system (10). The CMRH solver was first introduced by Sadok in
[30] and was further developed and used in [1, 7, 31] among others. The CMRH solver is an alternative
method to the classical Generalized Minimal RESidual (GMRES) algorithm developed in [28]. In [8, 11] a
new implementation of CMRH was developed for solving nonsymmetric linear systems of algebraic equations
with dense and large matrices as those resulted from the generalized finite element discretization (10).
Comparison studies between the CMRH and GMRES methods in terms of floating point operations and
memory requirements for dense matrices can be found in [11, 30, 31] among others. At this stage, we give
a brief description for the CMRH method and for more details see [7, 8, 11, 31]. To formulate the CMRH
solver for the linear system (10) we define the maximum and Euclidean norms of a vector v ∈ RN as

‖v‖∞ = max
1≤i≤N

|vi| , ‖v‖2 =

√√√√ N∑
i=1

|vi|2,

where vi is the ith component of the vector v. We also use the notation Ai:j,k:l to denote the submatrix of
A consisting of rows i to j and columns k to l. Here, TriU(A) and TriL(A) denote respectively, the upper
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and lower triangular parts of the matrix A. We also use Diag(v) to denote the N -valued square diagonal
matrix with entries v on the diagonal.

Applied to the linear system (10), the CMRH solver uses an initial guess y0 for the exact solution to
construct approximate solutions yk of the form

yk = y0 + wk, k = 1, 2, . . . , (11)

where wk ∈ Kk(A, r0) and r0 = b − Ay0 is the initial residual, with Kk(A, r0) is the Krylov sub-space
defined as

Kk(A, r0) = span
{
r0,Ar0, . . . ,A

k−1r0

}
.

Notice that the CMRH solver uses the Hessenberg process to compute a basis {l1, . . . , lk} of the sub-space
Kk(A, r0) which is reconstructed such that the matrix Lk = [l1, . . . , lk] is unit lower trapezoidal. The
Hessenberg reduction process (with pivoting strategy) computes a unit trapezoidal matrix Lm by first
computing

l1 =
r0

(r0)p1
,

where p1 ∈ {1, . . . , N} is selected such that |(r0)p1 |= ‖r0‖∞. Then, at each iteration k, it proceeds by
computing lk+1 which satisfies

hk+1,klk+1 = Alk −
k∑

j=1

hj,klj , k = 1, . . . ,m,

with the parameters hj,k are determined such that

lk+1 ⊥ ep1 , . . . , epk and (lk+1)pk+1
= 1,

where pj = 1, . . . , N and ei is the ith vector of the canonical basis. Next let Lk and Hk be the matrices
generated by the Hessenberg process and let Hk be the matrix obtained from Hk by deleting its last row.
The correction wk given in (11) can be written in the form wk = Lkdk, where dk ∈ Rk is the solution of
the following least squares problem

min
d ∈ Rk+1

∥∥βe1 −Hkd
∥∥

2
,

where β = (r0)p1 . Hence, the implementation of the CMRH solver for the linear system (10) can be carried
out using the following algorithm:
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Algorithm: CMRH Method

Inputs : A ∈ RN×N ,b ∈ RN ,x ∈ RN an initial guess, tol a tolerance;
Output: xk the kh approximate solution. (xk is stored in b);
Compute b = b−Ax;
% Hessenberg process;
Let p = [1, . . . , N ]T ;
Determine i0 such that |bi0 |= ||b||∞;
β = bi0 , b = b/β;
p1 ↔ pi0 , b1 ↔ bi0 , A1,: ↔ Ai0,:, A:,1 ↔ A:,i0 ;
for k = 1, . . . , until convergence do

u = A:,k + A:,k+1:Nbk+1:N;
Ak+1:N,k = bk+1:N ;
for j = 1, . . . , k do

Aj,k = uj , uj = 0, uj+1:N = uj+1:N −Aj,kAj+1:N,j ;
end
Determine i0 ∈ {k + 1, . . . , N} such that |upi0 |= ||upk+1:pN ||∞;

h = upi0 , b = u/h;

pk+1 ↔ pi0 , bk+1 ↔ bi0 ;
Ak+1,: ↔ Ai0,:, A:,k+1 ↔ A:,i0 ;
% More details on the next two steps can be found in [11];

Update the QR factorization of Hk ;

Apply previous rotations to Hk and βe1;

end
Solve d = βe1; % (H = Hk = TriU(A1:k,1:k));
Update x = x + Ld; %(L = Lk = Diag(ones(k, 1)) + TriL(A:,1:k,−1));
% Reorder the components of x;
for i=1,. . . ,N do

bpi = xi;
end

Note that we have used the symbol ↔ to express swapping contents in the CMRH algorithm. For more
details on over-storage and pivoting strategy in the CMRH solver, see [30, 11, 7, 1, 8].

4 Numerical results

In this section we examine the accuracy and performance of the considered linear solvers for the generalized
finite element solution of two transient boundary-value problems. The first problem was studied previously
in [21] but here we consider higher numbers of enrichment functions. The aim is to investigate the severely
ill-conditioned systems or even singular systems resulting from the GFEM.

In the presented results the errors of the GFEM solutions obtained using the SVD method are considered as
the baseline errors. For the comparison purpose, these errors are assumed to be caused by the finite element
and the time integration approximations rather than the solution of the linear system. This assumption
is based on the wide usage in the literature of the SVD solver to deal with highly ill-conditioned linear
systems similar to the ones considered in the current study. For the considered iterative solvers and in all
the following problems the iterations are terminated when the residual is less than 10−10, which is small
enough to guarantee that the algorithm truncation error dominated the total numerical error.

In the first example the GFEM is used to solve a transient diffusion problem given by the equations (1) with
a known analytical solution [21]. The error in the boundary-value solution is evaluated using the analytical
solution. Other direct solvers based on canonical Gaussian elimination are also considered. The aim in this
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Mesh 1 Mesh 2 Mesh 3

Figure 3: Structured meshes with different element densities used for Example 1.

example is to assess the limits of such dense direct solvers as well as the convergence in the iterative solvers
and the resulting accuracy in the generalized finite element solution. With respect to iterative solvers we
also show the number of iterations required to achieve the requested residual and how this error is reflected
in the solution accuracy of the boundary-value problem. In the second example, we consider the problem
of heat transfer in a composite material with an internal heat source. This is a complex physical problem
which can be used to test the limits of the considered iterative solvers. The performance of both the CMRH
and GMRES for the generalized finite element solution of time-dependent problems using high number of
enrichments is computationally assessed. In both examples a set of exponential functions similar to (7) is
used for the enrichment.

4.1 Example 1

As a first test example we consider a transient diffusion problem in a squared domain. This example has also
been considered in [21, 14] as a benchmark problem for validating the generalized finite element methods.
We solve the equations (1) in Ω = [0, 2]× [0, 2] with the reaction term f(t, ξ), the boundary function g(t, ξ)
and the initial condition u0(ξ) all being explicitly calculated such that the exact solution of the problem
(1) is given by

U(t, x, y) = (2x− x2)
1

5D (2y − y2)
1

5D

(
1− e−Dt

)
, (12)

where the diffusion coefficient D = 0.01. To quantify the errors in this test example we consider the
L2-error defined as

ε2(t) =
∥∥∥unh − U(tn, xh, yh)

∥∥∥
L2(Ω)

, (13)

where ‖·‖L2(Ω) is the L2 norm, u and U are, respectively, the computed and exact solutions. We consider
the three meshes shown in Figure 3 to examine the grid dependence of the results for the considered linear
solvers in the GFEM. The meshes consist of 50 elements and 36 nodes in Mesh 1, 200 elements and 121
nodes in Mesh 2, and 800 elements and 441 nodes in Mesh 3. It is worth mentioning that the numbers of
enrichment functions used here are deliberately higher than the numbers considered in the original example
in [21]. The higher numbers of enrichment leads to severely ill-conditioned systems. This behavior with the
GFEM is known to have serious consequences on the choice of the linear solver. In this work we concern
ourselves with studying this choice rather than studying the convergence of the GFEM which was previously
studied in different places including [21].

In Table 1 we summarize the L2-error obtained for different numbers of enrichment using Mesh 1 and
a fixed timestep ∆t = 0.1. The iterative solvers are compared to direct solvers, namely, the SVD, the
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Table 1: L2-errors in the generalized finite element solution of Example 1 on Mesh 1 with ∆t = 0.1 using
different linear solvers and different number of enrichments Q. Here, the errors are measured after running
the simulation for 1, 5 and 10 timesteps.

Direct solver Iterative solver

Q # timesteps SVD LDL> GaussP Gauss GMRES CMRH

1 2.26E-06 2.62E-06 2.27E-06 2.31E-06 2.68E-06 2.70E-06

14 5 1.23E-05 1.26E-05 1.25E-05 1.24E-05 1.24E-05 1.42E-05

10 2.57E-05 2.64E-05 2.64E-05 2.59E-05 2.58E-05 2.62E-05

1 2.28E-06 3.04E-06 2.31E-06 — 2.50E-06 2.83E-06

16 5 1.24E-05 1.65E-04 1.28E-05 — 1.26E-05 1.35E-05

10 2.59E-05 1.04E-02 2.69E-05 — 2.59E-05 2.72E-05

1 2.31E-06 — — — 2.52E-06 2.59E-06

18 5 1.25E-05 — — — 1.26E-05 1.35E-05

10 2.61E-05 — — — 2.60E-05 2.61E-05

Gauss elimination (Gauss), the Gauss elimination with pivoting and scaling (GaussP) [16] and Cholesky
decomposition (LDL>) [5]. The results of direct and iterative solvers are presented for Q = 14, 16 and 18
at three different instants. For the lowest number of enrichment functions Q = 14, it is clear that the direct
solvers Gauss, GaussP and LDL> start with slightly smaller errors at the first timestep compared to the
iterative solvers. Thereafter, these direct solvers seem to accumulate errors faster at subsequent timesteps
compared to the SVD solver.

By increasing the number of enrichments to Q = 16 the direct solver Gauss becomes unstable (— in Table 1
corresponds to runs where the Gauss, GaussP and LDL> solvers produce indefinite numbers). The solution
error with LDL> at the first timestep is similar to those with other solvers. However, this error becomes
one order of magnitude larger after 5 timesteps and three orders of magnitude larger after 10 timesteps.
At this number of enrichment the GaussP solver seems to still produce reasonable results. It can also be
noted in Table 1 that, at the last set of results corresponding to Q = 18, the three direct solvers Gauss,
GaussP and LDL> cease to produce numerical results. On the other hand the iterative solvers GMRES and
CMRH show consistent results to those obtained using the direct solver SVD for all considered numbers of
enrichments. In general the errors obtained using the CMRH solver are slightly higher than those obtained
using the GMRES method while the latter errors are slightly higher than the ones obtained using the SVD
method. The number of iteration with both GMRES and CMRH increases as we add more enrichment
functions. At the first time step GMRES converges into the considered tolerance after 352 iterations for
Q = 14 while at the same time step GMRES requires 393 iterations for Q = 18. The corresponding numbers
of iterations with CMRH are 336 and 384, which again show an increase.

The iterative solvers alongside with the SVD method are capable of producing useful results for all the
considered enrichment numbers in Table 1 even when the direct solvers Gauss, GaussP and LDL> are
not. This is found to be the case despite the fact that only moderately high enrichment numbers with
a relatively coarse mesh are considered in Table 1. Refining the mesh and/or increasing the number
of enrichment functions leads to even worse conditioned linear systems. This suggests that the canonical
Gauss elimination-based solvers have serious limitations in dealing with such systems. This is a particularly
important observation as the usage of solvers based on canonical Gaussian elimination are widely used in the
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Table 2: L2-errors in the generalized finite element solution of Example 1 on Mesh 2 using SVD, GMRES
and CMRH solvers for high numbers of enrichments Q and different timesteps ∆t. Here, the errors are
measured after running the simulation for 1, 5 and 10 timesteps.

CMRH GMRES SVD

Q ∆t # sv # timesteps # itr L2-error # itr L2-error L2-error

0.5 11 1 836 3.62E-06 943 3.35E-06 3.25E-06

20 0.1 11 5 856 2.06E-06 950 1.67E-06 1.47E-06

0.05 11 10 856 1.97E-06 957 1.57E-06 1.36E-06

0.5 25 1 928 3.70E-06 1061 3.35E-06 3.25E-06

30 0.1 25 5 934 2.29E-06 1066 1.67E-06 1.46E-06

0.05 25 10 936 2.19E-06 1068 1.58E-06 1.37E-06

0.5 61 1 999 3.61E-06 1130 3.35E-06 3.25E-06

40 0.1 61 5 998 2.27E-06 1138 1.66E-06 1.45E-06

0.05 60 10 1021 2.22E-06 1144 1.54E-06 1.36E-06

literature [33, 32, 13, 2] to deal with linear systems generated by the GFEM. The usage of SVD is limited to
few examples due to the high computational cost needed for its implementation. This computational cost
becomes prohibitive for very large linear systems or when solving problems in the time domain. Notice that
a time-dependent linear system has to be solved repeatedly and usually for a large number of timesteps.
Hence, in such cases it is necessary to find an alternative method to the direct SVD method. All the
remaining computations in this paper are performed only using GMRES and CMRH solvers. The solutions
obtained with the iterative solvers are compared to those obtained using the SVD method.

To quantify the accuracy of the iterative solvers with respect to the size of the linear system of algebraic
equations we consider a first mesh refinement as well as higher number of enrichment functions. Table 2
summarizes the L2-errors for the considered linear solvers using Mesh 2 along with Q = 20, 30 and 40.
The table also includes the number of singular values (# sv) resulting from the SVD solver of each of the
matrices that are associated with different timesteps ∆t used in the simulations. It is clear from Table
2 that all matrices in the linear system are singular for the considered values of Q and ∆t. Hence, the
value # sv obtained with SVD, is used to indicate the quality of the linear systems instead of the condition
number which is infinitely large for such systems. It should be stressed that the considered iterative solvers
are based on minimizing the residual. Such a strategy can still be effective even when the linear system is
singular.

As in the previous comparison a consistent accuracy is achieved using CMRH, GMRES and SVD solvers.
Again the errors obtained using CMRH and GMRES solvers are slightly higher than those obtained using
the SVD method for all the considered values of Q and ∆t. It is also evident that increasing the number of
enrichment Q results in an increase in # sv, thus a higher order singularity is encountered. This also results
in an increase in the number of iterations (# itr) required in GMRES and CMRH solvers to achieve the fixed
tolerance of 10−10. However, for any given Q and ∆t, the CMRH solver requires fewer iterations than the
GMRES solver to reach the same tolerance. Hence, for a relatively similar accuracy in the generalized finite
element solution, the convergence in the CMRH solver is attained with at least 10% less iterations than those
required for the convergence in the GMRES solver. Needless to mention that this faster convergence with
the CMRH solver ensures a proportional saving in the computational cost for the CMRH solver compared
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Table 3: L2-errors in the generalized finite element solution of Example 1 on Mesh 2 at different instants
using SVD, GMRES and CMRH methods.

CMRH GMRES SVD

Time ∆t # itr L2-error # itr L2-error L2-error

0.5 872 6.81E-06 980 6.34E-06 6.22E-06

t = 1 0.1 869 4.06E-06 983 3.21E-06 3.05E-06

0.05 871 3.93E-06 988 3.07E-06 2.93E-06

0.5 869 1.56E-05 1041 1.42E-05 1.42E-05

t = 2.5 0.1 948 9.68E-06 1042 8.14E-06 8.14E-06

0.05 948 9.65E-06 1043 7.80E-06 7.90E-06

0.5 992 2.61E-05 1078 2.55E-05 2.56E-05

t = 5 0.1 982 1.77E-05 1080 1.66E-05 1.64E-05

0.05 986 1.71E-05 1081 1.61E-05 1.66E-05

to the GMRES solver. The computational cost in the direct SVD solver is far too large to be compared to
the GMRES and CMRH solvers where the number of iterations is still much smaller than the size of the
linear system.

As mentioned above, increasing the number of enrichment functions clearly affects the size and the structure
of the associated linear system. A higher values of Q leads to a higher # sv and hence, a more sensitive
linear system. To check the stability of the linear solvers, Table 2 also shows the results obtained at the
same instant t = 0.5 but achieved with different timesteps ∆t. For each value of Q, refining the timestep
∆t leads to better L2-errors with all solvers. For example using the CMRH method, refining ∆t from 0.1
to 0.05 at Q = 30, reduces the L2-error from 2.29× 10−6 to 2.19× 10−6. However, when increasing Q and
for a given timestep the L2-error does not improve or even slightly increases with all the linear solvers. For
example using the CMRH solver, increasing Q from 30 to 40 at ∆t = 0.05, leads to a slight increase in the
L2-error from 2.19× 10−6 to 2.22× 10−6. This suggests that the temporal error is dominating the accuracy
rather than the spatial one. Note that adding more enrichment functions in the finite element solution
improves the spatial resolution rather than the temporal error. Hence, in this case adding more enrichment
functions does not improve the L2-error but it only accumulates round-off errors.

Next, we investigate the stability of the considered iterative solvers to the accumulation of L2-errors over
longer time spans. The study is performed using Mesh 2 and a number of enrichment functions Q = 20 for
the same three timesteps ∆t = 0.5, 0.1 and 0.05 considered previously in Table 2. However, now the problem
is considered over longer time spans where the results are shown in Table 3. Again consistent accuracy is
observed for all the solvers with the SVD method leading to the most accurate results in comparison to
GMRES and CMRH solvers. When using CMRH and GMRES solvers for all considered instants, a smaller
∆t consistently improves the L2-error. This suggests that the iterative solvers do not display instability
over large number of steps even for the longer time spans considered. Table 3 also lists the number of
iterations # itr required in CMRH and GMRES solvers to achieve the fixed tolerance. It is also evident
that the CMRH solver requires less number of iterations compared to the GMRES solver while the later
achieves better errors than the former. For the considered boundary-value problem, the CMRH solver leads
to about 10% reduction in # itr compared to the GMRES solver for the same required tolerance to stop
the iterations.
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Figure 4: Time evolution of the L2-error ε2 for Example 1 on Mesh 2 (left plot) and Mesh 3 (right plot)
with ∆t = 0.05 and Q = 20 using SVD, GMRES and CMRH methods.

Our final concern with this example is to test the sensitivity of the iterative solvers to the mesh refinements.
To this end structured Mesh 2 is considered along side with a further refinement namely, Mesh 3 shown in
Figure 3. For both meshes, the number of enrichment functions is set to Q = 20. To minimize the temporal
errors in the computed solutions, the finest timestep ∆t = 0.05 is considered for this set of results. Figure
4 shows the time evolution of the L2-errors for the three solvers CMRH, GMRES and SVD on the two
meshes. As in the previous simulations, the obtained errors exhibit a consistent behavior for all considered
linear solvers. The SVD method produces the minimum errors with slightly higher errors obtained with
GMRES and CMRH solvers. As expected large L2-errors are obtained on the coarse mesh Mesh 2 while
refining the mesh improves the L2-errors on Mesh 3. This behavior is observed in all the three solvers
included in Figure 4. The time evolution of the L2-errors shows a consistent accumulation of the solution
error independently from the linear solver.

To further understand the effect of mesh refinement on the convergence of the considered iterative solvers,
Figure 5 reports the number of iterations in CMRH and GMRES solvers relevant to the L2-errors shown
in Figure 4. The figure clearly confirms that the CMRH solver requires fewer iterations than the GMRES
solver for all the three meshes used in our simulations. In fact refining the mesh seems to increase the gap
between the two iterative solvers. On average the CMRH solver converges with 10% less iterations than
the GMRES solver on Mesh 2. This number of iterations required for convergence increases to about 15%
for the same simulations on Mesh 3. In addition, to have a better look into the convergence rate of CMRH
and GMRES solvers at different instants, Figure 6 shows plots of the residual as it evolves iteratively with
CMRH and GMRES solvers. The plots are presented at three different instants again using ∆t = 0.05,
Q = 20 and for Mesh 2 and Mesh 3. It is clear that there is a difference between the convergence plots
for the GMRES solver and the CMRH solver. The former converges faster than the GMRES solver for
all considered instants. The convergence in the CMRH solver becomes faster than in the GMRES solver
as the mesh becomes fine. This suggests better efficiency in the CMRH solver with larger linear systems.
Obviously, refining the mesh in the generalized finite element method results into larger linear systems
which would then increase the number of iterations required for convergence in the iterative solvers. These
features can be clearly observed in Figure 6.

4.2 Example 2

In this example we solve a heat equation of the form (1) with discontinuities in the conductivity coefficient
D. Similar test example has been considered in [6]. The circular domain is centered at (1, 1)> with unit
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Figure 5: Time evolution of the number of iterations in GMRES and CMRH methods for Example 1 on
Mesh 2 (left plot) and Mesh 3 (right plot) with ∆t = 0.05 and Q = 20.

radius formed by two materials with different heat conduction properties. Here, the solution u in the
boundary-value problem (1) refers to the temperature media, D the conduction coefficient, f(t,x) the
thermal source, g(t,x) the ambient temperature, and u0(x) the initial temperature. In our simulations a
constant ambient temperature 300 is considered which is also assumed to be the domain temperature at
the start of the simulation. The conduction coefficient of the composite enclosure is given as

D(x) =

100, if x ∈ Ωs,

0.1, elsewhere,

where Ωs is a circular sub-domain centered at (1.25, 1.25)> with radius 0.25 as shown in Figure 7. Heat
energy is introduced into the domain with two different releases where the heat source is defined as

f(t,x) =

1500, if x ∈ Ωs,

300, elsewhere.

In this test example we extend the range of problems considered to include more complex components
compared to the first example. The physical model includes discontinuous coefficients in the boundary-value
problem due to simulating isotropic composite materials. Having steep discontinuities in the coefficients of
the boundary value problem, which is the case here, can have an effect on the conditioning of the associated
linear systems. Furthermore, 6-noded quadratic elements are used to represent the geometry compared to
the 3-noded linear elements used in the previous example. Using quadratic elements is usually preferred
in the GFEM where the field solution is recovered with the enrichment. Hence, the element size is only
limited to representing the geometry. Quadratic elements are much more flexible than linear elements when
meshing curved geometries. This flexibility in many cases leads to oddly-shaped elements or combinations
of large and small elements. This can be seen for example in the GFEM mesh used for this problem shown
in Figure 7. Such meshes also affect the conditioning of the resulting linear system in the GFEM. The
example is used to test the sensitivity of iterative solvers to these challenges. It should also be noted that
the problem geometry can only be meshed with an unstructured mesh. Hence, the system matrix to be
solved now is of a non-uniform sparsity pattern and the iterative solvers can be tested for unstructured mesh
computations. To investigate the limits of the iterative solvers when dealing with severely ill-conditioned
systems of a non-uniform sparsity pattern, the problem will be solved for a high number of enrichment
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Figure 7: Problem layout and the GFEM mesh used for Example 2.

functions. In addition to check the effect of the time integration scheme on the stability of the solution, a
relatively large timestep ∆t = 0.1 is chosen.

Because the problem cannot be solved exactly and in order to ensure the convergence of the GFEM, the
problem is first solved for Q = 5, 10, 15 and 20 enrichment functions where the SVD method is used to solve
the associated linear systems. It was confirmed that the GFEM has converged where the same solution is
obtained with Q = 10, 15 and 20. Hence, the converged solution with Q = 20 is taken as a reference for
further GFEM computations of this test example. The problem is then solved again for Q = 50 and 70.
The GFEM solution for Q = 50 and 70 is verified in two ways. First it is compared to the reference solution.
Then the GFEM results are critically evaluated based on how realistic and consistent the obtained heat
diffusion patterns are. This is an important evaluation as different linear solvers may converge to different
solutions due to the conditioning issues in the linear system. However, it is not possible that the iterative
solver will converge to the wrong solution that is consistent with the physical problem.

It was observed for Q = 50 and in the first timestep that both GMRES and CMRH solvers have converged
into the target tolerance of 10−10. The solution obtained using the GMRES solver shows irregular heat
patterns which are not consistent with the reference solution. However, the heat minimum and maximum
magnitudes remain comparable to those obtained with the reference solution. On the other hand the
CMRH and SVD solutions lead to similar solutions that match the reference solution. As the thermal
fronts progress in time and beginning from the second timestep the GMRES solution which is still irregular
starts to show heat magnitudes of few orders larger than those of the reference solution. On the other
hand, the CMRH and SVD solution remains consistent with the reference solution up to t = 2 where the
CMRH solution shows relatively small irregularities in the heat patterns and then by t = 2.5 the CMRH
solution generates irregular patterns but still of a maximum and minimum magnitudes of the same order
as the reference solution. The SVD solution stays in general consistent with the reference solution but at
t = 2.5 starts to show small irregularities.

To further investigate this problem the number of enrichment functions is increased to Q = 70. Although
the GMRES solver converges to the prescribed tolerance but the computed GFEM solution is clearly
nonphysical and does not match the reference solution. The GMRES solution and starting from the first
timestep exhibits non-physical oscillations with irregular heat patterns. The heat magnitudes are also
unrealistically high. The solutions obtained using CMRH and SVD solvers remain consistent with the
reference solution. The temperature distributions obtained using CMRH, GMRES and SVD solvers are
depicted in Figure 8 for three different instants t = 1, 1.5 and 2. It can clearly be seen the irregular
patterns of the solution obtained with GMRES solver. It is clear from the figure that the temperature
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CMRH GMRES SVD

Figure 8: Temperature distributions obtained for Example 2 using the CMRH solver (first column), the
GMRES solver (second column) and the SVD solver (third colum) for three different instants t = 1 (first
row), t = 1.5 (second row) and t = 2 (third row).
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computed using the CMRH solver covers all the heat features captured by the direct SVD solver. Indeed,
the localized heat gradients and the moving thermal fronts are well resolved using the CMRH solver for the
three selected instants. The figure also shows that CMRH produces some irregularities in the solution which
builds up with time. To a lesser extent such irregularities are also observed with the SVD solution. The
irregularities observed with different solvers can be attributed to the fact that for the considered number of
enrichments Q = 70, the linear systems to be solved in the GFEM solver are relatively dense and severely
ill-conditioned. However, this deterioration in the accuracy of the computed solution is not only attributed
to the linear solver but mainly because the system matrix does not change within the time and only the
right-hand side changes at each time step. Therefore, the deterioration in the different linear solvers is not
due to the worsening of the matrix conditioning but it is rather due to falling into cases which get closer to
the worst behaviour i.e., cases which expose the ill-conditioning.Moreover, because the considered timestep
is relatively large, the error introduced by the time integration scheme is also significant. This can also be
seen in the figure where the results show a build-up in the error at the different time instances with CMRH
as well as with SVD. Obviously, the chosen timestep contribute to the instability of the GMRES solution
in this case.

When using iterative solvers in the GFEM and as was observed in this example it is possible that the iterative
solver converges to a wrong solution. In this case, both CMRH and GMRES solvers have converged to the
same tolerance but the GMRES solution is clearly physically wrong as it shows a random heat distribution
which is not consistent with the heat source. On the other hand the results obtained using CMRH and
SVD methods show similar heat patterns which are consistent with the heat source and the discontinuity in
the composite enclosure. This suggests that the CMRH solver is more stable in this case than the GMRES
method. For the considered thermal conditions, the computational work needed to perform one timestep
in the generalized finite element using the direct SVD solver is several times longer than using its CMRH
counterpart. Finally, it is also important to note that despite the ill-conditioning of linear systems, the
convergence of the GFEM solution is still ensured for Q = 50 and 70. A similar heat conduction problem
has been solved in [6] using the partition of unity method but using a low number of enrichments compared
to the ones considered here. The results reported in [6] have also revealed that the standard finite element
method requires far large number of degrees of freedom for a comparable accuracy in the GFEM for similar
heat conduction problem.

5 Concluding remarks

The performance of a class of iterative solvers based on Krylov sub-spaces has been assessed for the solu-
tion of linear systems of algebraic equations in the generalized finite element solution of time-dependent
boundary-value problems. The enrichment consists of embedding a hierarchy of exponential functions in
the finite element shape functions which tend to accurately approximate internal boundary layers in the
problem under study. The numerical advantage of this approach is related to the selection of enrichment
functions which mimic the spatial behaviour of the solution at different time phases such that each function
represent a different phase. However, these functions are time independent and the integration in time is
still achieved following the conventional methods. These approximation properties can lead to a significant
saving in the computational costs compared to only spatial approximation enrichments that change at each
timestep. In general, the generalized finite element method shows higher accuracy than the conventional
finite element method for a fixed number of degrees of freedom. The results obtained showed that the
generalized finite element method has the advantage of requiring less computational resources for the time-
dependent diffusion problems than a conventional finite element method, typical of those widely used in the
finite element solution of elliptic partial differential equations. This fact, as well as its favorable stability
properties, make it an attractive alternative for diffusion solvers based on finite element techniques. In the
current study, special attention has been given to an iterative solver using the changing minimal residual
method based on the Hessenberg reduction and its performance has been examined for the generalized finite
element solution of two test examples for transient diffusion problems. Comparisons to results obtained
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with the well-established iterative solver using the generalized minimal residual method and other dense
direct solvers widely used in generalized finite element methods have also been presented. The aim is to
evaluate the performance of the linear solvers for solving the systems resulting form the generalized finite
element discretizations. The comparison is carried out mainly in terms of errors in the problem solution
rather than the residual of the linear solver used in the solution process. To identify the contribution of
the linear solver in the solution error we assume that the results obtained using the direct singular value
decomposition solver are a reference base for the other linear solvers.

For the considered problems, the changing minimal residual method based on the Hessenberg reduction
has been shown to be superior to all considered methods. The obtained results have also shown that the
direct solvers based on canonical Gaussian eliminations have serious limitations when dealing with the ill-
conditioned matrices associated with the linear systems in the generalized finite element method. This may
encourage other researchers to adopt iterative solvers when using generalised finite element methods despite
the inherited ill-conditioning property in their linear systems. In addition, compared to the GMRES solver
the CMRH solver has consistently achieved the same set tolerance as the GMRES solver but with about
10% fewer iterations than the GMRES solver. For heat conduction problems in composite materials, the
CMRH solver has also demonstrated better stability than the GMRES solver. Although we have restricted
our numerical simulations to the case of two-dimensional problems, the more important implications of
our research concern the use of effective iterative methods for three-dimensional problems in radiation-
conduction applications. We believe that for these problems, the changing minimal residual method based
on the Hessenberg reduction might be very effective since it reduces the number of iterations needed for
convergence and it is relatively inexpensive to implement.
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