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Abstract. — We consider the totally asymmetric simple exclusion process with soft-shock
initial particle density, which is a step function increasing in the direction of flow and the
step size chosen small to admit KPZ scaling. The initial configuration is deterministic and the
dynamics create a shock.

We prove that the fluctuations of a particle at the macroscopic position of the shock converge
to the maximum of two independent GOE Tracy–Widom random variables, which establishes
a conjecture of Ferrari and Nejjar. Furthermore, we show the joint fluctuations of particles
near the shock are determined by the maximum of two lines described in terms of these two
random variables. The microscopic position of the shock is then seen to be their difference.

Our proofs rely on determinantal formulae and a novel factorization of the associated kernels.
Résumé. — On considère le processus d’exclusion simple totalement asymétrique avec une

densité initiale de particules à choc modéré, ayant la forme d’une fonction en escalier qui
augmente dans la direction du flux et dont le saut est choisi suffisamment petit pour satisfaire
l’échelle KPZ. On suppose que la configuration initiale est déterministe et que la dynamique
crée un choc.
On montre que les fluctuations d’une particule située à l’endroit macroscopique du choc

convergent vers le maximum de deux variables aléatoires indépendantes de type GOE Tracy–
Widom. Ceci prouve une conjecture de Ferrari et Nejjar. On montre également que les fluc-
tuations conjointes des particules près du choc sont décrites par le maximum de deux lignes
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définies en termes de ces deux variables aléatoires. La position microscopique du choc apparaît
alors comme leur différence.
Nos preuves sont basées sur des formules déterminantes et une nouvelle factorisation des

noyaux associés.

1. Introduction

The continuous time totally asymmetric simple exclusion process (TASEP) is an
interacting particle system on an one-dimensional lattice. At time zero, there is a
given initial configuration of particles such that every site of Z occupies at most one
particle. The dynamics are as follows. A particle jumps randomly to its neighbouring
site to the right provided that it is empty. The jumps of a particle are independent
of the others’ and performed with exponential waiting times having mean 1.
The observables in TASEP are the positions of particles. Initially, particles are

numbered by integers in increasing order from right to left with particle 1 being the
first one to the left of the origin. Denote by Xt(n) the position of particle number n
at time t. Thus, given the initial configuration X0( · ), particles are numbered such
that

· · · < X0(3) < X0(2) < X0(1) < 0 6 X0(0) < X0(−1) < X0(−2) < · · · .
By convention, if there is a rightmost particle then X0(n) = +∞ for every n after
that particle, and similarly, X0(n) = −∞ for every n preceding a leftmost particle.
As an example, if the initial configuration occupies all sites at the negative integers
then X0(1) = −1, X0(2) = −2, X0(3) = −3 and so on, while X0(0) = X0(−1) =
· · · = +∞.
A detailed construction and basic features of TASEP are given in [Lig99]. The

model can also be seen as a randomly growing one-dimensional interface whose
gradient is the particle density. In this respect it belongs to the Kardar–Parisi–
Zhang (KPZ) universality class. The surveys [BG16, Qua13] discuss the relationship
of TASEP to KPZ.
Despite its simplicity TASEP displays many of the interesting behaviour of non-

equilibrium statistical mechanics. Consider a deterministic initial configuration such
that the macroscopic particle density is ρ− to the left of the origin and ρ+ to the
right:

(1.1) ρ± = lim
t→∞

# {particles in the interval [0,±t] at time 0}
t

.

For instance, particles may be arranged periodically in large enough blocks to attain
such a profile. On the macroscopic scale the evolution of the particle density is a
solution to Burgers’ equation [Rez91, Sep98]. Namely, for every T > 0 there is a
density u(T, x) such that∫ b

a
u(T, x) dx = lim

t→∞

# {particles in the interval [at, bt] at time Tt}
t

almost surely,

and u is the unique entropy solution of Burgers’ equation:
(1.2) ∂Tu+ ∂x(u(1− u)) = 0, u(0, x) = ρ−1{x<0} + ρ+1{x>0}.
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Figure 1.1. The travelling shock-front u(T, x) that solves (1.2).

When ρ− < ρ+, there is a traffic jam in the system because particles to the left of
the origin, moving at macroscopic speed 1− ρ−, run into particles to the right of the
origin moving at a slower speed of 1− ρ+. In this case the relevant solution of (1.2)
is given by the travelling front

u(T, x) = u(0, x− νT ), where ν = 1− ρ− − ρ+ .

The number ν is the speed of the traffic jam. This is the shock in Burgers’ equation.
It is of interest to study the microscopic features of the shock, ergo, the fluctuations
of TASEP with an initial particle configuration as above.
A proxy for the location of the shock is the particle at macroscopic position νt.

For large times, the number(1) of said particle is

nshk
t = (ρ−ρ+)t .

Its position fluctuates randomly to the order t1/3 and one would like to calculate, for
every a ∈ R,

lim
t→∞

Pr
[
Xt

(
nshk
t

)
> νt− at1/3

]
.

1.1. The soft shock

This paper considers a softening of the shock where the parameters ρ± are scaled as

(1.3) ρ± = 1± β(t/2)−1/3

2 , β ∈ R and t > 2|β|3.

In the soft shock scenario, TASEP is run until time t with the choice of ρ± as in (1.3)
and t being the parameter within ρ±. One then considers the law of X(nshk

t ) in the
double limit as t→∞ followed by β →∞, in order to transition into the shock.

Theorem 1.1. — Consider TASEP with a deterministic initial configuration of
particles having macroscopic density as in (1.1) and ρ± scaled as in (1.3). Then,

lim
β→∞

lim
t→∞

Pr
[
Xt

(
nshk
t

)
> −at1/3

]
= F1(2a)2,

where F1 is the distribution function of the GOE Tracy–Widom law.

(1)Rounding particle numbers to nearest integers is omitted throughout the paper.
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The soft shock is introduced in [FN15b] and Theorem 1.1 proves a conjecture there.
The scaling (1.3) is considered “critical” for TASEP since the resulting particle fluc-
tuations belong to the KPZ universality class with regards to their scaling exponents
and limit laws. Interestingly, as remarked in Section 1.4, the large time limit of the
soft shock recovers many of the universal Airy processes (Airy1, Airy2, etc.) through
various limit transitions of the parameter β. Also, the rate of convergence that we
find in Theorem 1.1 is of order β−1, although this is not optimized.
The advantage of the soft shock is that it allows to transition into the hard shock

by means of exact calculation of statistical laws. More precisely, one can describe
the limiting law of Xt(nshk

t ) as t → ∞ in terms of Fredholm determinants. Indeed,
Theorem 1.2 provides the large t limiting joint distribution of particles that are in
the window of the soft shock, and Theorem 1.3 establishes the large β limit of that.
Together, they imply Theorem 1.1. These methods should also apply to prove GOE
Tracy–Widom cubed, quadrupled, etc., limiting laws at the merger of shocks when
the initial particle density has two jumps, three jumps, and so on. We do not pursue
it here.

1.2. Large time limit of the TASEP with soft shock

In the case of soft shock the particle numbered nshk
t has non-trivial correlations

with other particles that are within a distance of order t2/3 of its position. Their
positions fluctuate on a scale of order t1/3. As such, consider particles having numbers

n(t, x) = nshk
t − x(t/2)2/3 = t

4 −
β2

2 (t/2)1/3 − x(t/2)2/3,

for x ∈ R, which at time t have macroscopic positions

m(t, x) = x(t/2)2/3

ρ−
= 2x

1− β(t/2)−1/3 (t/2)2/3.

The first limit transition derives the large t limit of the process

(1.4) x 7→ Xt(n(t, x))−m(t, x)
−(t/2)1/3 .

Theorem 1.2. — Given real numbers x1 < x2 < · · · < xm and a1, . . . , am, as
t→∞,

Pr
[
Xt(n(t, xi)) > m(t, xi)− ai(t/2)1/3, 1 6 i 6 m

]
converges to

Pr
[
h(1, xi ; 2β|y|) 6 β2 − 2βxi + ai, 1 6 i 6 m

]
,

where h(1, x; 2β|y|) is a random function of the variable x. The multi-point distribu-
tion functions of h(1, x; 2β|y|) are given in terms of Fredholm determinants:
Pr [h(1, xi ; 2β|y|) 6 ai, 1 6 i 6 m]

= det
(
I−e−xm∂2

Kβe
xm∂2(

I−e(x1−xm)∂2
χ̄a1e

(x2−x1)∂2
χ̄a2 · · · e(xm−xm−1)∂2

χ̄am
))

L2(R)
,

where χ̄a(u) = 1{u6a} is projection onto L2(−∞, a) and Kβ is an explicit operator.
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Kβ is defined separately in Section 2 since its introduction requires crucial termi-
nology and concepts.
Complicated though the determinant in Theorem 1.2 may appear, observe the one-

point distribution functions of h(1, x; 2β|y|) are given by the Fredholm determinant
of operators e−x∂2

Kβe
x∂2 over the spaces L2(a,∞). These will turn out simpler and

play a crucial role in the proofs.
The reason we call the limit process h(1, x; 2β|y|) is that it is the height function

at time 1 of the KPZ fixed point with initial data h0(y) = 2β|y|, as introduced
in [MQR18]. The KPZ fixed point refers to what is expected to be the asymptotic
scaling invariant Markov process for the KPZ universality class. Although the KPZ
fixed point motivates our paper to an extent, the kernels in this case were actually
known previously in [FN15b], and so the results used from [MQR18] are somewhat
auxiliary.

1.3. Transition into the shock

The main result of the paper is the large β limit law of the process h(1, x; 2β|y|).

Theorem 1.3. — As β →∞, the process
x 7→ h

(
1, (2β)−1x ; 2β|y|

)
− β2

converges in the sense of finite dimensional laws to the process
(1.5) x 7→ max{ 2−2/3XTW1 − x, 2−2/3X ′TW1 + x },
where XTW1 and X ′TW1 are two independent GOE Tracy–Widom random variables.

Stated in terms of the TASEP soft shock, Theorem 1.3 asserts that in the double
limit of t→∞ followed by β →∞ the process

x 7→
Xt

(
n(t, (2β)−1x)

)
− β−1x(t/2)2/3

−(t/2)1/3

converges in law to the process (1.5). Process (1.5) may be thought of as the asymp-
totic “shock process” of TASEP with initial density (1.1).

x

u
Flat region: Airy1 joint fluctuations on

scales of t1/3 for height and t2/3 for space.

Shock region: Joint fluctuations given
by the process (1.5) on scales of t1/3

for both height and space.

Figure 1.2. Fluctuations of TASEP that arise from initial density (1.1) when ρ±
are given by (1.3).
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Remark (on interpretation of Theorem 1.3). — The process (1.5) may be expressed
as |x −X| + Y with X = (XTW1 −X ′TW1)/25/3 and Y = (XTW1 + X ′TW1)/25/3. As
this process represents the asymptotic position of particles around the shock, the
“microscopic density” near the shock may be interpreted as its derivative, which is
simply an increasing step function with jump at X = (XTW1 − X ′TW1)/25/3. The
microscopic position of the shock is then at X, and one finds the TASEP shock to
be rigid in that the microscopic density remains a step with the randomness only
affecting its microscopic location.

1.4. Remarks on the soft shock process

“Soft shock” is bit of a misnomer since the shock manifests for large values of β
whereas the process in Theorem 1.2 has interesting features for negative values of
β as well. We have a family of processes interpolating from the Airy2 process at
β = −∞ to the process (1.5) at β = +∞. This is easily seen from the framework of
the aforementioned KPZ fixed point, as the mapping from initial data h0 to h(1, x;h0)
is continuous, so long as h0 is upper semicontinuous with values in [−∞,∞) and
bounded from above by a linear function.
When β = 0, h(1, x; 0) is the Airy1 process corresponding to flat initial data

h0 ≡ 0. As β → −∞, the function 2β|y| converges to −∞1{y 6=0}, which is called
the narrow wedge or droplet (−∞ × 0 = 0). Then h(1, x; 2β|y|) converges to
h(1, x; narrow wedge), which has the law of the Airy2 process minus a parabola.
Its distribution at x = 0 is the GUE Tracy–Widom law.
The soft shock also interpolates between two Airy1 processes at x = −∞ and

x =∞. Indeed, affine and translation symmetries of the KPZ fixed point [MQR18,
Theorem 4.5] imply that for constants c and u,

h
(
1, x+ u;h0(y)

)
− c(x+ u)− c2

4
law= h

(
1, x; h0

(
y + u+ c

2

)
− c

(
y + u+ c

2

))
.

Thus, h(1, x±L; 2β|y|)−β2∓2β(x±L) has the same law as h(1, x; 4β(x±(β+L))∓).
The latter processes converge to h(1, x; flat) as L→∞.
One can also find the Airy2→1 process, which is the law of h(1, x; −∞ · 1{y<0}).

The initial data is called half-flat. Indeed, h(1, x+β; 2β|y|)−β2 + 2β(x+β) has the
law of h(1, x; 4β(y)−), and 4β(y)− converges to the half-flat function as β → −∞.

1.5. An overview of the proof

It is well known that the correlation functions of TASEP, which provide the proba-
bility of particles being at specific sites, are determinantal; see for instance [BFPS07,
BG16] and references there. Our proofs rely on such formulae.
Let us summarize how the GOE TW-squared law arises in Theorem 1.1. The

operator Kβ whose Fredholm determinant provides the law of h(1, 0; 2β|y|) can be
factorized as

I −Kβ = (I −MβK0M
−1
β ) · (I −M−1

β K0Mβ) + Errβ .
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Errβ is an error term that is vanishingly small in the appropriate trace norm as
β → ∞. This effectively allows us to consider the Fredholm determinant of the
product. That approximately becomes a product of determinants, and then the
conjugations by Mβ can be removed. This results in the GOE TW-squared law in
the large β limit.
Observe that if one conjugates away Mβ from one of the factors in the above

representation then the other factor is conjugated by M2
β , and the resulting operator,

M±2
β K0M

∓2
β , does not in fact converge as β → ∞. This was a challenge faced in

previous works.

1.6. Review of literature

The study of the TASEP shock has a history and the reader may find nice discus-
sions in [Fer94, FFV00] and their references. We provide an overview of prior works
most directly related to ours.
In [BFS09] the authors find determinantal formulae for TASEP with particles

having varying speeds, which allows them to study shock fluctuations with Bernoulli-
random initial data. The fluctuations there are Gaussian to the order of t1/2. The
papers [C11, CFP10, FFV00] have related results for Bernoulli initial data. Deter-
ministic shock-like initial data is studied in [FN15a, FN17] by connecting TASEP
to last passage percolation. The authors prove that shock fluctuations for various
setups are governed by the maximum of various Tracy–Widom random variables,
although they are unable to treat the step initial density (1.1).
The soft shock is introduced in [FN15b] in a setup where particles move at two

different speeds instead of being spread out with the two densities ρ±. The authors
prove the analogue of our Theorem 1.2, and present determinantal kernels for the
multi-point distributions in terms of contour integrals. One may verify that their
kernel matches ours. They also conjecture our Theorem 1.1. A beautiful illustration
of the convergence of Xt(nshk

t ) to the GOE TW-squared law is shown in [FN15b,
Figure 1]. The paper [Nej18] also considers a scenario like the soft shock but with
narrow-wedge-like initial data.
Finally, it is well known that for the general asymmetric simple exclusion process,

when started with Bernoulli–random initial data modelling the step density (1.1), a
second class particle from the origin follows the macroscopic shock for large times
t and has asymptotically Gaussian fluctuations to the order t1/2; see e.g. [Lig99].
However, when (1.1) is modelled by deterministic initial data, [FGN19] proves that
the asymptotic position of the second class particle in TASEP is the difference of
two independent GOE Tracy–Widom random variables on the scale of t1/3. One may
think of the second class particle as a random walk in the potential well given by
the TASEP height process, and so it should sit at the minimum of process (1.5),
which is indeed (XTW1 − X ′TW1)/25/3. Further discussions about shocks in ASEP
have appeared in [BB19, Nej19] after this paper.
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2. The soft shock operator

The operator Kβ associated to the soft shock is defined in terms of operators

(2.1) Sx = exp
{
x∂2 + 1

3∂
3
}
, for x ∈ R,

acting on functions f ∈ L2(a,∞) for any fixed a > −∞. (Recall the notation
eL = ∑

k>0
Lk

k! . For instance, translation by λ is eλ∂ since f(x + λ) = ∑
k>0

∂kf(x)
k! λk;

its integral kernel is eλ∂(u, v) = δu+λ,v.)
The operator exp{x∂2}, which corresponds to the heat kernel, is ill-defined for

x < 0 but Sx is well-defined due to the presence of the third derivative operator. In
terms of integral kernels,

(2.2) Sx(u, v) = e
2
3x

3+x(v−u) Ai(v − u+ x2),
where Ai(z) is the Airy function defined as

(2.3) Ai(z) = 1
2πi

∮
〈
dw ew

3
3 −zw,

and 〈 is a contour consisting of two rays going from e−iπ/3∞ to eiπ/3∞ through 0.
(The Airy function also satisfies the Airy equation Ai′′(x) = xAi(x) with Ai(x)→ 0
as x→ +∞.) The operator S0 will often be denoted S. We will use the fact that

S∗S = SS∗ = I.

We now introduce the important hitting operator. Let B(y), for y > 0, denote a
Brownian motion with diffusion coefficient 2. Let h : [0,∞) → [−∞,∞) be upper
semicontinuous with at most linear growth in the sense that h(y) 6 C(1 + |y|) for
some constant C. Let

τ = inf {y > 0 : B(y) 6 h(y)}.
Define the operator Shypo(h)

x in terms of its integral kernel as

(2.4) Shypo(h)
x (u, v) = E

[
Sx−τ (B(τ), v)1{τ<∞}

∣∣∣B(0) = u
]
.

If u 6 h(0) then Shypo(h)
x = Sx. If h is continuous and u > h(0) then

Shypo(h)
x (u, v) = E

[
Sx−τ (h(τ), v)1{τ<∞}

∣∣∣B(0) = u
]
.

Consider also the projection operators onto L2(a,∞) and L2(−∞, a), respectively:
(2.5) χa(u, v) = 1{u=v, u>a} and χ̄a = 1− χa.
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The hitting operator is defined as follows. Consider an upper semicontinuous
h : R→ [−∞,∞) that has at most linear growth. The hitting operator associated
to h requires choosing a split point x ∈ R. Then consider the functions

h±x (y) = h(x± y) for y > 0.
The hitting operator is

(2.6) Khypo(h) = I −
(
Sx − Shypo(h−x )

x

)∗
χh(x)

(
S−x − Shypo(h+

x )
−x

)
.

It is a crucial property of the hitting operator that it does not depend on the choice
of split point x (see [QR19] for a proof).
The operator Kβ is the hitting operator associated to hβ(y) = 2β|y|. It is natural

(and crucial for the large β asymptotics) to take the split point at x = 0, which
utilizes the fact that hβ has different slopes on the two sides of the split point.
Denoting h+

β (y) = 2βy for y > 0,

(2.7) I −Kβ =
(
S − Shypo(h+

β
)
)∗
χ0
(
S − Shypo(h+

β
)
)
.

Since S∗S = I, Khypo(hβ) can be expressed as

S∗χ̄0S + S∗χ0S
hypo(h+

β
) + (Shypo(h+

β
))∗χ0S − (Shypo(h+

β
))∗χ0S

hypo(h+
β

).

Each of these terms have a presence of the operator exp{± ∂3/3} on both sides.
This ensures that the operator exp{x∂2} can be applied legally around Khypo(hβ)

for every x ∈ R, and so the operator inside the determinant from the statement of
Theorem 1.2 is well-defined.
For general initial data h0, the multi-point distribution functions of h(1, x;h0) are

given as follows. Given x1 < · · · < xm and a1, . . . , am,

(2.8) Pr [h(1, xi;h0) 6 ai ; 1 6 i 6 m]

= det
(
I − e−xm∂2

Khypo(h0)exm∂
2(
I − e(x1−xm)∂2

χ̄a1e
(x2−x1)∂2

χ̄a2

· · · e(xm−xm−1)∂2
χ̄am

))
L2(R)

.

The determinantal expression for the multi-point distribution function is the “path
integral” version from [MQR18]. There is an alternative “extended kernel” version.
The hitting operator is also introduced in [QR19] in a modified form and precursors
appear in [BCR15, CQR13, PS02, QR13].

3. First limit transition: proof of Theorem 1.2

Let us introduce a parameter ε > 0 and write
t = 2ε−3/2.

Then m(t, x) = 2xε−1 + 2βxε−1/2 +O(β2). The events of interest are

X2ε−3/2

(
1
2ε
−3/2 − xε−1 − β2

2 ε
−1/2

)
> 2xε−1 + (2βx− a)ε−1/2 +O(β2).
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In order to prove Theorem 1.2 one must derive the limiting joint probabilities of
such events as ε→ 0. Upon replacing x with x− (β2/2)ε1/2 the event becomes

(3.1) X2ε−3/2

(1
2ε
−3/2 − xε−1

)
> 2xε−1 −

(
β2 − 2βx+ a

)
ε−1/2 +O(β2).

We may express the event (3.1) in terms of the height function of TASEP. For
TASEP with initial data X0, let

X−1
t (u) = min {n ∈ Z : Xt(n) 6 u}.

The height function ht : Z→ Z at time t is

ht(z) = −2
(
X−1
t (z − 1)−X−1

0 (−1)
)
− z.

The KPZ-rescaled height function is

(3.2) hε(T, x) = ε1/2
[
h2Tε−3/2(2xε−1) + Tε−3/2

]
.

In terms of the KPZ-rescaled height function one has

hε(T, x) 6 a ⇐⇒ X2Tε−3/2

(
T

2 ε
−3/2 − xε−1

)
> 2xε−1 − aε−1/2 +X0(1).

In the ε→ 0 limit the probability of the event in (3.1) remains unaffected if the term
O(β2) is ignored. Thus, one must show that the limiting multi-point probabilities

lim
ε→0

Pr
[
hε(1, xi) 6 β2 − 2βxi + ai, 1 6 i 6 k

]
are given by the formula from Theorem 1.2. (The function hε(0, y) converges uni-
formly to h0(y) = 2β|y|.)
Here there are several approaches. In [FN15b], a determinantal formula is derived

for these multi-point probabilities for the soft-shock data in a related setup, where
particles to the left of the origin have a different speed than those to the right. Using
their formula, it is not difficult to guess a determinantal formula for our setup and
then check it using the bi-orthogonalization procedure from [BFPS07, Sas05]. On
the other hand, [MQR18, Theorem 2.6] provides a formula for any initial data with a
rightmost particle. One can cutoff the soft-shock initial data far to the right and take
a limit as the cutoff is removed to get a determinantal formula for the multi-point
probabilities which coincides with the guess. Then by direct asymptotic analysis of
the associated determinantal kernels one arrives at Theorem 1.2. This is done with
generality in [MQR18, Theorem 3.13] (“Convergence of TASEP”). Since the limiting
kernel is the same as [FN15b], we omit the details.

4. Second limit transition: proofs of Theorem 1.1 and 1.3

The proof of Theorem 1.1 is presented in Section 4.1 followed by the proof of
Theorem 1.3 in Section 4.2 since the latter builds on the former. We first define the
GOE Tracy–Widom law, introduced in [TW96], in a suitable form. For the remainder
of the paper it is assumed that β > 0.
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The GOE Tracy–Widom law. The distribution function of the GOE Tracy–
Widom law may be written as a Fredholm determinant [FS05]. Consider the operator
A with integral kernel A(u, v) = 2−1/3 Ai

(
2−1/3(u+v)

)
. If R is the reflection operator:

(4.1) Rf(x) = f(−x),
then A may be expressed as A = RS2 = S∗RS. This representation uses that
S2 = e2∂3/3 and, as an integral kernel,

exp
{
t

3∂
3
}

(u, v) = t−1/3 Ai
(
t−1/3(v − u)

)
for t > 0.

That RS2 = S∗RS is implied by the relation ∂R = −R∂. It will turn out that A is
the operator K0. The GOE Tracy–Widom distribution function is
(4.2) F1

(
22/3a

)
= Pr

[
XTW1 6 22/3a

]
= det(I − χaAχa)L2(R) .

4.1. Proof of Theorem 1.1

Let Mβ denote the multiplication operator:
Mβf(x) = eβxf(x).

Note also the translation operator f 7→ f(x+ λ) is given by eλ∂.
Lemma 4.1. — The following commutation relations hold between Mβ, S, R and

the translation operator.
(1) MβS = exp

{
1
3(∂ − β)3

}
Mβ,

(2) Mβ exp{λ∂2} = exp{λ(∂ − β)2}Mβ,
(3) Mβ exp{λ∂} = exp{λ(∂ − β)}Mβ,
(4) MβR = RM−β and exp{λ∂}S = S exp{λ∂}.

Proof. — Relations (1)–(3) follow from the identity ∂Mβ = Mβ(∂+β). Relation (4)
is clear. �
The following lemma is key to calculating the hitting operator associated to hβ(y) =

2β|y|.
Lemma 4.2 (Reflection Lemma). — Let h+

β (y) = 2βy for y > 0. Then the operator

Shypo(h+
β

) = χ0
(
MβRM−β

)
S + χ̄0S.

Proof. — Recall that Shypo(h+
β

)(u, v) = S(u, v) if u 6 h+
β (0) = 0. This contributes

the term χ̄0S. Now assume that u > 0 and let τ be the hitting time of a Brownian
motion of diffusion coefficient 2, starting from u, to the hypograph of h+

β .
Observe that S−t(2βt, v) = e−2t3/3−t(v−2βt) Ai(v − 2βt + t2). Recall that the Airy

function has the following decay: there is a constant C such that
(4.3) |Ai(z)| 6 C if z 6 0 and |Ai(z)| 6 Ce−

2
3 z

3/2 if z > 0.
The above implies that S−t(2βt, v) decays sufficiently fast that one has

Shypo(h+
β

)(u, v) = lim
T→∞

E
[
S−τ (2βτ, v)1{τ6T}

∣∣∣B(0) = u
]
.
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For t 6 T , S−t = e(T−t)∂2
S−T , and one recognizes the integral kernel of e(T−t)∂2 at

the transition density of Brownian motion (with diffusion constant 2) to go from
B(t) = u to B(T ) = v. So the strong Markov property implies

E
[
e(T−τ)∂2(2βτ, v)

∣∣∣B(0) = u
]

= Pr [τ 6 T, B(T ) ∈ dv |B(0) = u] /dv,

where the expression on the right is the transition density of B to go from B(0) = u
to B(T ) = v while hitting the curve h+

β . Denote this expression P hit
T (u, v). Thus,

E
[
S−τ (2βτ, v)1{τ6T}

∣∣∣B(0) = u
]

= P hit
T · S−T (u, v).

Let X(t) = B(t) − h+
β (t). Then P hit

T is the transition density of X to go from
X(0) = u to X(T ) = v− 2βT while hitting 0. By the Cameron–Martin Theorem, X
becomes Brownian motion on [0, T ], started from u and with diffusion constant 2,
after a change of measure by the density exp{−β(B(T )− u)− β2T}. Consequently,

P hit
T (u, v)

= E
[
e−β(B(T )−u)−β2T · 1

{
B hits 0 on [0, T ], B(T ) ∈ d(v − 2βT )

}∣∣∣B(0) = u
]
/dv

= eβ(u−v)+β2T Pr [B hits 0 on [0, T ], B(T ) ∈ d(v − 2βT ) |B(0) = u] /dv.

Since u > 0, if v − 2βT 6 0 then the latter transition density is the transition
density of B to go from B(0) = u to B(T ) = v − 2βT . If v − 2βT > 0, however, one
reflects along the time axis the initial segment of B till the time it hits zero. The
reflection principle then implies that the latter transition density is of B to go from
B(0) = −u to B(T ) = v − 2βT . Hence, for u > 0,

eβ(v−u)−β2TP hit
T (u, v) = eT∂

2(u, v − 2βT )χ̄2βT (v) + eT∂
2(−u, v − 2βT )χ2βT (v)

= eT∂
2+2βT∂ · χ̄2βT (u, v) +R · eT∂2+2βT∂ · χ2βT (u, v).

Relation(2) of Lemma 4.1 gives eT (∂+β)2
M−β = M−βe

T∂2 . Consequently, writing χ2βT
as 1− χ̄2βT and expressing everything in operator notation, we infer

χ0P
hit
T = χ0MβRe

T (∂+β)2
M−β + χ0Mβ(I −R)eT (∂+β)2

χ2βTM−β

= χ0(MβRM−β)eT∂2 + χ0Mβ(I −R)M−β eT∂
2
χ̄2βT .

On multiplying by S−T ,

χ0P
hit
T · S−T = χ0(MβRM−β)S + χ0Mβ(I −R)M−β eT∂

2
χ̄2βT S−T .

The operators χ0 and M±β are diagonal, R is anti-diagonal, and none depend on
T . The lemma thus follows if for every choice of u and v, the quantity

eT∂
2 · χ̄2βT · S−T (u, v) → 0 as T →∞.

Let (I) denote this quantity. Using the integral kernels of eT∂2 and S−T one infers
that (I) equals∫ 0

−∞
dz 1√

4πT
exp

{
−(z+2βT −u)2

4T − 2
3T

3 +T (z+2βT −v)
}
·Ai(v−z−2βT +T 2).
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In order to evaluate (I), write the Airy function in terms of its contour integral
representation (2.3) and switch the contour integration with the integration over
variable z by Fubini. The integral over z is a Gaussian integral, which equals∫ 0

−∞
dz e−

(z−u)2
4T +z(w+T−β) =

√
4πT eu(w+T−β)+T (w+T−β)2Φ

(
−
√

2T (w+T−β)− u√
2T

)
.

Here Φ(w) = (2π)−1/2 ∫ w
−∞ ds e

−s2/2, where w is a complex argument and the integral
is over the horizontal contour s 7→ w + s, for s 6 0, oriented from −∞ to w.
Substituting this into the expression (I), simplifying, and changing variables w 7→
w − T shows that

I = 1
2πi

∮
〈+T

dw e 1
3w

3−(v−u)w Φ
(
−
√

2T (w − β)− u√
2T

)
.

The contour 〈 + T may be shifted back to 〈 without changing the integral. Then
changing variables w 7→ w + β, and shifting the contour 〈 − β back to 〈, implies

I = 1
2πi

∮
〈
dw e 1

3 (w+β)3−(v−u)(w+β) Φ
(
−
√

2Tw − u√
2T

)
.

If the contour is arranged such that | arg(w)| = π/5 then Φ(−
√

2Tw−u/
√

2T )→ 0
as T → ∞. This is because Φ(−w) → 0 as w → ∞ within the sector |arg(w)| 6
π/4−ε for any ε > 0 [OODL+17, Eq. 7.2.4]. Moreover, if |arg(w)| > π/6+ε along the
contour then the exponential factor decays in modulus to the order exp{−δ<(w)3}
for some δ > 0. Arranging the contour as such, the dominated convergence theorem
implies that (I)→ 0 as T →∞. �

We may now observe that the hitting operator K0 is in fact the operator A
associated to the GOE Tracy–Widom law. Employing the definition from (2.7),
Lemma 4.2, and using the fact S∗S = I, it follows that

K0 = I − (S − Shypo(h+
0 ))∗χ0(S − Shypo(h+

0 ))
= S∗[I − (I −R)χ0(I −R)]S.

The relations Rχ0 = χ̄0R and R2 = I imply

I − (I −R)χ0(I −R) = χ0R +Rχ0 = R,

which establishes the claim.
Theorem 1.2 gives

Pr
[
h(1, 0; 2β|y|) 6 β2 + a

]
= det (I −Kβ)L2(β2+a,∞)(4.4)

= det
(
I − eβ2∂Kβe

−β2∂
)
L2(a,∞)

.

Lemma 4.3 (Factorization lemma). — The operator eβ2∂Kβe
−β2∂ admits the

following factored form.

I − eβ2∂Kβe
−β2∂ = (I −Mβ(A+ Eβ)M−β)∗ (I −Mβ(A+ Eβ)M−β) ,

where Eβ = S∗−βχ̄0(I −R)Sβ and A = S∗RS.
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Proof. — Lemma 4.2 and the relation χ0 = χ0SS
∗χ0 imply that

(4.5) I −Kβ = [S∗χ0(S − χ0M2βRS − χ̄0S)]∗ [S∗χ0(S − χ0M2βRS − χ̄0S)] .
Since S∗S = I and Mβ commutes with the projection χ0, we see that
S∗χ0(S − χ0MβRM−βS − χ̄0S) = I − S∗χ̄0S − S∗χ0MβRM−βS

= I − S∗χ̄0S + S∗χ̄0MβRM−βS − S∗MβRM−βS

= I − S∗MβRM−βS − S∗Mβχ̄0(I −R)M−βS .

We now conjugate the above equation by the translation eβ2∂ and use relations (1)
and (3) from Lemma 4.1 to bring M±β to the outside. The adjoint of relation (1)
gives S∗Mβ = Mβ exp

{
− 1

3(β + ∂)3
}
. Thus, for the term S∗MβRM−βS,

eβ
2∂S∗MβRM−βSe

−β2∂

= Mβ exp
{
β2(∂ + β)− 1

3(β + ∂)3
}
R× exp

{
−β2(∂ + β) + 1

3(β + ∂)3
}
M−β

= Mβ exp
{
−β∂2 − 1

3∂
3
}
R exp

{
β∂2 + 1

3∂
3
}
M−β

= MβR exp
{
−β∂2 + 1

3∂
3 + β∂2 + 1

3∂
3
}
M−β

= MβAMβ.

The last equation used that A = RS2. A key point above is that conjugation by the
translation cancels the term involving ∂ in the expansion of ±1

3(β + ∂)3.
Analogously, one computes to see that

eβ
2∂S∗Mβχ̄0(I −R)M−βSe−β

2∂

= Mβ exp
{
−β∂2 − ∂3

3

}
χ̄0(I −R)× exp

{
β∂2 + ∂3

3

}
M−β

= MβEβM−β.

In conclusion,
eβ

2∂S∗χ0(S − χ0M2βRS − χ̄0S)e−β2∂ = I −Mβ(A+ Eβ)M−β.
The lemma follows from this relation and the expression (4.5) for I −Kβ. �
Lemma 4.3 and (4.4) give

Pr
[
h(1, 0) 6 β2 + a

]
= det

(
(I−Mβ(A+Eβ)M−β)∗(I−Mβ(A+Eβ)M−β)

)
L2(a,∞)

.

Decompose the product above in the form (I−X)∗χa(I−X) + (I−X)∗χ̄a(I−X).
The determinant of the first term over L2(a,∞) factorizes, and upon conjugating
out Mβ from each factor one gets

(4.6) det
(

(I −Mβ(A+ Eβ)M−β)∗χa(I −Mβ(A+ Eβ)M−β)
)
L2(a,∞)

= det
(
I − A− Eβ

)2

L2(a,∞)
.
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The proof of Theorem 1.1 will be completed by showing that the second term in
the decomposition, as well as the term Eβ, provide negligible error as β →∞. This is
the content of the following two lemmas. The argument makes use of some standard
inequalities between the Fredholm determinant, trace norm, Hilbert–Schmidt norm
and operator norm that may be found in the book [Sim05].

Lemma 4.4. — As β →∞, ‖Eβ‖tr → 0 on L2(a,∞). Consequently,

det
(
I − A− Eβ

)
L2(a,∞)

−→ det
(
I − A

)
L2(a,∞)

.

Proof. — The representation of Eβ over L2(a,∞) is χaEβχa. Therefore, χaEβχa =
E1
β − E2

β with

E1
β = χaS

∗
−βχ̄0Sβχa and E2

β = χaS
∗
−βχ̄0RSβχa.

If suffices to show that both of the operators above have vanishingly small trace
norm on L2(R) as β →∞.
Consider the operator E1

β. Using the inequality ‖T1T2‖tr 6 ‖T1‖HS ‖T2‖HS with
T1 = χaS

∗
−βχ̄0 and T2 = χ̄0Sβχa gives

‖E1
β‖tr 6 ‖χaS∗−βχ̄0‖HS ‖χ̄0Sβχa‖HS = ‖χ̄0S−βχa‖HS ‖χ̄0Sβχa‖HS.

Since S±β(u, v) = exp{±2
3β

3 ± β(v − u)}Ai(v − u+ β2), one has

‖χ̄0S−βχa‖2
HS · ‖χ̄0Sβχa‖2

HS

=
∫ ∞

0
du

∫ ∞
a

dv e−2β(v+u) Ai2(v+u+β2)×
∫ ∞

0
du

∫ ∞
a

dv e2β(v+u) Ai2(v+u+β2).

We change variable v 7→ v + a in both integrals above. Then, changing variables
y := u+ v and x := u− v in both integrals gives

‖χ̄0S−βχa‖2
HS ·‖χ̄0Sβχa‖2

HS =
∫ ∞

0
dy ye−2βy Ai2(β2+y+a)

∫ ∞
0

dy ye2βy Ai2(β2+y+a).

Rescaling the variable of the first integral as y 7→ y/2β, and of the second as
y 7→ β2y/2, shows that

(4.7) ‖χ̄0S−βχa‖2
HS · ‖χ̄0Sβχa‖2

HS

= β2

16

∫ ∞
0

dy y e−y Ai2(β2 + a+ (2β)−1y)×
∫ ∞

0
dy y eβ3y Ai2

(
β2
(

1 + y

2

)
+ a

)
.

Recall there is a constant C such that |Ai(z)| 6 C exp{−2
3z

3/2} if z > 0 and
|Ai(z)| 6 C if z < 0. Since a is fixed, suppose β satisfies β2 + a > 1, say. Then due
to the aforementioned bound on the Airy function the contribution to the first of
the two integrals above results from y being of bounded order, y ≈ 1. In particular,
there is a constant Ca such that for sufficiently large β (in terms of a),∫ ∞

0
dy y e−y Ai2(β2 + a+ (2β)−1y) 6 Ca Ai2(β2).

The magnitude of the second integral from (4.7) may also be determined from a
critical point analysis by using the bound on the Airy function above. By abusing
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notation a bit, there is a constant Ca such that for large enough β,

eβ
3y Ai2

(
β2
(

1 + y

2

)
+ a

)
6 Ca exp

{
β3
(
y − 4

3

(
1 + y

2

)3/2)}
.

The function y − (4/3)(1 + (y/2))3/2 is uniquely maximized at y = 0 and its value
there is −4

3 . Therefore the second integral from (4.7) is of order e− 4
3β

3 as β → ∞.
Consequently, there is a (new) constant Ca such that such for sufficiently large β,

‖χ̄0S−βχa‖2
HS · ‖χ̄0Sβχa‖2

HS 6 Ca β
2 Ai2(β2)e− 4

3β
3
.

This shows that ‖E1
β‖tr → 0 as β →∞ since Ai(β2) is of order e− 2

3β
3 .

Now consider the operator E2
β. Using the definitions one has that

E2
β(u+a, v+a) = 1{u>0, v>0} e

β(v−u)
∫ ∞

0
dz e−2βz Ai(β2 +a+u+z) Ai(β2 +a+v−z).

The trace norm of E2
β is the same as that of (u, v) 7→ E2

β(u + a, v + a) since the
latter is a conjugation of the former by the unitary operation of translation. So we
consider the latter kernel.
When β2 + a > 1, the major contribution to the integral above comes from z

being in a region around zero, z ≈ 0, due to the rapid decay of the integrand in the
variable z. Consequently, for large β there is a constant Ca such that
(4.8) |E2

β(u+ a, v + a)| 6 Ca 1{u>0, v>0} e
β(v−u) Ai(u+ β2) Ai(v + β2).

The right hand side above decays rapidly in the variable u, namely, it is at most of
order e− 2

3 (β3+u3/2) 1{u>0}. Consider its rate of decay in the variable v.
The asymptotics of the Airy function show that for v > 0,

|eβv Ai(v + β2)| 6 exp
{
βv − 2

3(v + β2)3/2 + const
}
.

The exponent above is uniquely maximized at v = 0 whereby it equals −2
3β

3. More-
over, for large values of v the exponent is of order βv− 2

3v
3/2−β2v1/2 + const, which

is seen from a Taylor expansion of (1 + x)3/2 around x = 0. If β > 1, say, then the
quantity βv − 2

3v
3/2 − β2v1/2 6 −5

8v
1/2 because β2 + 2

3v − βv
1/2 is at least 5

8β
2, the

minimum being at v = 9
16β

2. The upshot is that for v > 0,

|eβv Ai(v + β2)| 6 exp
{
−2

3β
3 − 5

8v
1/2 + const

}
.

All in all it follows that there are constants Ca and κ > 0 such that

|E2
β(u+ a, v + a)| 6 Ca 1{u>0, v>0} e

− 4
3β

3−κ (u3/2+v1/2).

This implies that the trace norm of E2
β decays to the order e− 4

3β
3 , as required. �

Lemma 4.5. — As β →∞, the difference of determinants

det
(

(I−Mβ(A+Eβ)M−β)∗(I−Mβ(A+Eβ)M−β)
)
L2(a,∞)

−det
(
I−A−Eβ

)2

L2(a,∞)

tends to zero.
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Proof. — In the following argument all Fredholm determinants are over L2(a,∞).
Denote X = A+ Eβ. On the space L2(a,∞),

(I −MβXM−β)∗χ̄a(I −MβXM−β) = (MβXM−β)∗χ̄a(MβXM−β)

because χ̄a annihilates the identity on L2(a,∞). Consequently, on L2(a,∞),

(I −MβXM−β)∗(I −MβXM−β)
= χa(I −MβXM−β)∗χa(I −MβXM−β)χa︸ ︷︷ ︸

Y

+χa(MβXM−β)∗χ̄a(MβXM−β)χa︸ ︷︷ ︸
E

.

The determinant of Y is det(I −X)2.
Since χa and χ̄a are projections and commute with M±β,

Y = M−β(χa − χaX∗χa)χaM2β(χa − χaXχa)M−β ,
E = M−β(Mβχ̄aXχa)∗(Mβχ̄aXχa)M−β .

The operators I − X and I − X∗ are invertible on L2(a,∞) for sufficiently large
β because I − A is invertible there (since det(I − A)L2(a,∞) = F1(22/3a) > 0) and
Eβ has vanishingly small trace norm as β → ∞. In fact, this means that both the
operator norm and the Fredholm determinant of I −X are uniformly bounded away
from 0 for sufficiently large β. This implies invertibility of Y on L2(a,∞), and one
observes from the above expressions for Y and E that on this space

(4.9) M−βY
−1EMβ

= (I − χaXχa)−1χaM−2β(I − χaX∗χa)−1(Mβχ̄aXχa)∗(Mβχ̄aXχa).

In order to compare the determinant of Y +E with that of Y one first conjugates
both operators as M−β(Y + E)Mβ and M−βEMβ, and then uses the inequality

|det(I − T )− 1| 6 ‖T‖tr e
‖T‖tr+1,

to deduce that

|det(Y + E)− det(Y )| 6 |det(Y )| ‖M−βY −1EMβ‖tr e
‖M−βY −1EMβ‖tr+1.

The determinant of Y remains bounded in β by Lemma 4.4.
The trace norm ofM−βY −1EMβ may be bounded using the inequalities ‖T1T2‖tr 6
‖T1‖op ‖T2‖tr and ‖T1T2‖tr 6 ‖T1‖tr ‖T2‖op. (The second follows from the first by
taking adjoints.) Thus,

(4.10) ‖M−βY −1EMβ‖tr

6 ‖(I − χaXχa)−1‖op

× ‖χaM−2β (I − χaX∗χa)−1 (Mβχ̄aXχa)∗(Mβχ̄aXχa)‖tr

6 ‖(I − χaXχa)−1‖op ‖χaM−2β‖tr

× ‖(I − χaX∗χa)−1(Mβχ̄aXχa)∗(Mβχ̄aXχa)‖op

6 ‖(I − χaXχa)−1‖2
op ‖χaM−2β‖tr ‖Mβχ̄aXχa‖2

op.
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The first operator norm in the last expression above remains bounded for large β as
remarked. Since χaM−2β is a diagonal operator, it has trace norm

‖χaM−2β‖tr =
∫ ∞
a

du e−2βu = e−2βa

2β .

The operator norm ofMβχ̄aXχa is at most ‖Mβχ̄aAχa‖op +‖Mβχ̄aEβχa‖op. Observe
that

Mβχ̄aAχa(u+ a, v + a) = eβa ·
(
eβu 2−1/3 Ai

(
2−1/3(u+ v + 2a)

)
1{u<0, v>0}

)
.

The operator norm of the kernel inside the big parentheses is bounded in terms of β
because the kernel decays to the order e−

√
2

3 v3/2 for large values of v and to the order
e−β|u| for negative values of u. Since the operator displayed above is a conjugation of
Mβχ̄aAχa by a translation, it follows that ‖Mβχ̄aAχa‖op 6 Ca e

βa for some constant
Ca. Similarly, Mβχ̄aEβχa = eβae∂a(Mβχ̄0e

−∂aEβe
∂aχ0)e−∂a. The operator norm of

what sits within the big parentheses is vanishingly small in terms of β by a calculation
entirely analogous to that of Lemma 4.4. So in all, ‖Mβχ̄aXχa‖op 6 Ca e

βa for some
constant Ca.
Therefore, (4.10) implies that for some (new) constant Ca,

‖M−βY −1EMβ‖tr 6
Ca
β
.

Thus ‖M−βY −1EMβ‖tr tends to 0 as required. �

Lemma 4.4 and Lemma 4.5 together conclude the proof of Theorem 1.1.
This section concludes by extending Theorem 1.1 to arbitrary one-point distribu-

tions of h(1, x; 2β|y|), which will be utilized in the proof of Theorem 1.3.

Proposition 4.6. — For every a, x ∈ R, as β →∞ the probability

Pr
[
h(1, (2β)−1x; 2β|y|)− β2 6 a

]
−→ F1

(
22/3(a+ x)

)
F1
(
22/3(a− x)

)
.

Proof. — By Theorem 1.2, the probability

Pr
[
h(1, x, 2β|y|)− β2 6 a

]
= det

(
I − e−x∂2

Kβe
x∂2)

L2(a+β2,∞)

= det
(
I − e−x∂2+β2∂Kβe

x∂2−β2∂
)
L2(a,∞)

.

Factorization Lemma 4.3 then gives

I − e−x∂2+β2∂Kβe
x∂2−β2∂ =

(
I − ex∂2

MβXM−βe
−x∂2)∗ (

I − e−x∂2
MβXM−βe

x∂2)
,

where X = A+ Eβ. Commutation relation (2) of Lemma 4.1 implies that

e∓x∂
2
MβXM−β e

±x∂2 = Mβ e
∓x(∂+β)2

X e±x(∂+β)2
M−β

= Mβ e
∓x(∂2+2β∂)X e±x(∂2+2β∂) M−β.
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The relation ∂R = −R∂ now implies the following identities.
e∓x(∂2+2β∂) Ae±x(∂2+2β∂) = e∓2βx∂ Ae±2βx∂,

e∓x(∂2+2β∂) Eβ e
±x(∂2+2β∂) = S∗−β∓x e

∓2βx∂ χ̄0(I −R) e±2βx∂ Sβ±x

= S∗−β∓x χ̄∓2βx(I −Re±4βx∂)Sβ±x.
Substituting in (2β)−1x for x now shows that Pr [h(1, (2β)−1x; 2β|y|)− β2 6 a]

equals

det
((
I −Mβ(ex∂Ae−x∂ + Eβ,x)M−β

)∗
(I −Mβ

(
e−x∂Aex∂ + Eβ,−x)M−β

))
L2(a,∞)

,

where Eβ,x = S∗−β−x/2β χ̄x(I −Re2x∂)Sβ+x/2β. The proof now proceeds exactly as in
the arguments of Lemma 4.4 and Lemma 4.5. The argument of Lemma 4.5 remains
the same, and in place of Lemma 4.4 one needs to show that the trace norm of
Eβ,±x over L2(a,∞) converges to zero as β →∞. The proof of the latter is entirely
analogous to the proof of Lemma 4.4. We do not repeat the calculations for brevity.
In conclusion, as β →∞, Pr [h(1, (2β)−1x; 2β|y|)− β2 6 a] tends to

det(I − ex∂Ae−x∂)L2(a,∞) · det(I − e−x∂Aex∂)L2(a,∞)

= det(I − A)L2(a+x,∞) · det(I − A)L2(a−x,∞)

= F1(22/3(a+ x)) · F1(22/3(a− x)). �

4.2. Proof of Theorem 1.3

We will use an argument by way of the variational principle for the law of the
process h(1, x; 2β|y|). An Airy sheet A2(x, y) is a random function of real variables
x and y defined by the identity

A2(x, y) = h
(
1, x;−∞1{z 6=y}

)
+ (x− y)2.

Here, −∞1{z 6=y} is the narrow wedge at y. The height functions above are all coupled
by a “common noise”. This noise is naturally present in TASEP and the coupled
height functions may be obtained as a joint KPZ scaling limit of TASEPs with
different wedge initial data that all move under a common dynamic. See [MQR18,
Section 4.5].
Actually, [MQR18] proves existence of an Airy sheet (due to tightness) but not

its uniqueness (see also [Pim17] for a similar result). Nevertheless, the following
properties we use are common to every Airy sheet: it is continuous, invariant under
switching variables, and has the law of the Airy2 process in each variable when the
other is held fixed. Also, the following variational principle applies to every Airy
sheet [MQR18, Theorem 4.18] (see also [CQR15]).
Variational principle. — Let h0 : R → [−∞,∞) be a upper semicontinuous

function with at most linear growth. Then the KPZ height function x 7→ h(1, x;h0)
(as defined in (2.8)) satisfies

h(1, x;h0) law= sup
y∈R

{
A2(x, y)− (x− y)2 + h0(y)

}
.
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Variational formulae like these originate in [Joh03] and are similar to the Hopf–Lax–
Oleinik formula for solutions to Burgers’ equation; see [CQR15, Sep98].

Lemma 4.7. — An Airy sheet has the following modulus of continuity uniformly
over y and x1, x2 with |x1 − x2| 6 1.∣∣∣A2(x1, y)−A2(x2, y)

∣∣∣ 6 Op

(
|x1 − x2|1/4

)
.

The notation Op( · ) means a random quantity that is finite with probability one.
Proof. — For every fixed y, A2(x, y) is an Airy2 process in x, which satisfies the

modulus of continuity estimate stated above by [MQR18, Theorem 4.4]. (The Airy2
process is Hölder-(1/2− ε) almost surely.) Thus, the modulus of continuity estimate
above holds for every fixed y. By a union bound it then holds uniformly over all
rational values of y. By continuity of an Airy sheet, it also holds uniformly over
all y. �

Using the variational principle and separating the supremum over y 6 0 from the
supremum over y > 0 one has that

h(1, x; 2β|y|) law= sup
y∈R
A2(x, y)− (x− y)2 + 2β|y| = max {I, II}, where

I = sup
y60
A2(x, y)− (x− y)2 − 2βy and II = sup

y>0
A2(x, y)− (x− y)2 + 2βy .

Rewrite (I) by changing variable y 7→ y − β + x and (II) by changing variable y 7→
y+β+x. Then h(1, (2β)−1x; 2β|y|)−β2 has the law of max {X1(x)− x, X2(x) + x}
where

X1(x) = sup
y6β− x

2β

A2

(
x

2β , y − β + x

2β

)
− y2 ,

and

X2(x) = sup
y>−β− x

2β

A2

(
x

2β , y + β + x

2β

)
− y2 .

Now consider X1(x) for a fixed value of x. Since y 7→ A2(x/2β, y) has the law of
the Airy2 process, by the modulus of continuity estimate of Lemma 4.7 (the roles of
x and y are now switched) one infers that

sup
y ∈ [β− |x|2β , β+ |x|2β ]

A2

(
x

2β , y − β + x

2β

)
= A2

(
x

2β ,
x

2β

)
+Op(β−1/4).

As a result, the supremum of A2

(
x

2β , y − β + x
2β

)
− y2 over y 6 β − x

2β may be
replaced by its supremum over y 6 β with an additive error of order op(1) as β →∞,
since the supremum on the leftover interval is of order Op(1) − β2. (The notation
op(1) denotes a term that converges to zero in probability as β →∞.)
Furthermore, due to the modulus of continuity estimate in Lemma 4.7, the latter

supremum may be replaced by the supremum of the process y 7→ A2(0, y − β) over
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y 6 β with an additional penalty of op(1). This is because replacing the x/2β by 0
introduces an additive error of order Op(β−1/4). As a result,

X1(x) = sup
y6β
A2(0, y − β)− y2 + op(1) as β →∞.

This same argument implies that
X2(x) = sup

y>−β
A2(0, y + β)− y2 + op(1) as β →∞.

Observe that the two suprema above are X1(0) and X2(0), respectively.
Since this holds for every fixed x, it follows from the variational principle that for

any finite number of points x1, . . . , xm, the joint law of the m-dimensional vector
xi 7→ h(1, (2β)−1xi, 2β|y|) satisfies

(4.11) h(1, (2β)−1xi; 2β|y|)− β2 law= max {X1(0)− xi, X2(0) + xi}+ op(1)
as β →∞.

Lemma 4.8. — The random variables X1(0) and X2(0) jointly converge in law to
two independent GOE Tracy–Widom random variables 2−2/3XTW1 and 2−2/3X ′TW1 ,
respectively, as β →∞.

Proof. — It suffices to show that given s, s′ ∈ R, as β →∞,
Pr [X1(0) 6 s,X2(0) 6 s′] −→ F1(22/3s)F1(22/3s′).

There are numbers a and x such that s = a+ x and s′ = a− x. Observe the event
{X1(0) 6 s,X2(0) 6 s′} equals the event that max {X1(0)−x,X2(0)+x} 6 a. Since
X1(x) = X1(0) + op(1) and X2(x) = X2(0) + op(1) as β → ∞, it suffices to show
that as β →∞,

Pr [max {X1(x)− x,X1(x) + x} 6 a] −→ F1
(
22/3(a+ x)

)
F1
(
22/3(a− x)

)
.

The law of the maximum above is h(1, (2β)−1x; 2β|y|)−β2 by the variational principle.
The required convergence is then the statement of Proposition 4.6. �

Lemma 4.8 together with representation (4.11) imply that as β →∞,

h(1, (2β)−1x; 2β|y|)− β2 −→ max {2−2/3XTW1 − x, 2−2/3X ′TW1 + x}
in the sense of finite dimensional laws with respect to the variable x. This completes
the proof of Theorem 1.3.
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