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Abstract We study branching diffusions in a bounded domain D of R? in which par-
ticles are killed upon hitting the boundary d D. It is known that any such process under-
goes a phase transition when the branching rate § exceeds a critical value: a multiple of
the first eigenvalue of the generator of the diffusion. We investigate the system at criti-
cality and show that the associated genealogical tree, when the process is conditioned to
survive for along time, converges to Aldous’ Continuum Random Tree under appropri-
ate rescaling. The result holds under only a mild assumption on the domain, and is valid
for all branching mechanisms with finite variance, and a general class of diffusions.

Mathematics Subject Classification 60J60 - 60J80

1 Introduction

This paper concerns branching diffusions in a bounded domain D of R¥. For us, these
are processes in which individual particles move according to the law of some diffu-
sion, are killed upon exiting the domain, and branch into a random number of particles
(with distribution A, independent of position) at constant rate 8 > 0. Whenever such a
branching event occurs each of the offspring then stochastically repeats the behaviour
of its parent, starting from the point of fission, and independently of everything else.
The configuration of particles at time ¢ will be represented by the D-valued point
process

Xy ={Xu(0) : u e N},
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where N; is the set of individuals alive at time ¢ (its size will be denoted by |N;|).
We write P* for the law of the process initiated from a point x € D. Finally, we will
always assume that the offspring distribution A satisfies

E(A)=m>1 and E(A?) < oo, (1.1

and that the generator
1 .
L=3 > 0@ dy,) (1.2)
6]

of the diffusion is uniformly elliptic (see Sect. 2.1) with coefficients a”/ = a’/! e
cl(D)forl <i,j<d.

It is known that such a system exhibits a phase transition in the branching rate: for
large enough B there is a positive probability of survival for all time, but for small S,
including at criticality, there is almost sure extinction. The critical value of S is equal
to mk_ 7> Where A is the first eigenvalue of —L on D with Dirichlet boundary conditions
(see (2.1)). The main goal of this paper will be to study the system at criticality and
find a scaling limit for the resulting genealogical tree. This is the continuous plane
tree that is generated purely by the birth and death times of particles in the system,
and encodes no information about the spatial motion.

More precisely, for # > 0 we condition the critical branching diffusion to survive
until time at least t, and look at the associated genealogical tree T, equipped with its
natural distance d. Rescaling distances by a factor ¢ gives us a sequence of laws on
random compact metric spaces:

(law) 1 X
(Tt x,dix) == |T, ?d under P* (- | | N¢| > 0). (1.3)

We will prove that this sequence converges in distribution to a conditioned Brownian
continuum random tree as t — 0o, with respect to the Gromov-Hausdorff topology.
Indeed, if we let e be a Brownian excursion conditioned to reach height at least 1, and
write (T, de) for the real tree whose contour function is given by e, then we obtain
the following result.

Theorem 1.1 Suppose that D C R isa C' domain' and that L as in (1.2) is uniformly
elliptic with coefficients a'/ = a’' € C'(D) for 1 < i, j < d. Further suppose that A
satisfies (1.1), and that ¢ € C' (D) where ¢ is the first eigenfunction of —L on D (see
Sect. 2.1). Then, at the critical branching rate B = A/(m — 1), and for any starting
point x € D,

(Tl,xr dt,x) — (T97 de)
—00

in distribution, with respect to the Gromov—Hausdorff topology.

I we say that D C RYisa {Lipschitz / ck/ ¢k} domain (for k € Z>0p and « € [0, 1]) if, at each point
xg € 0D, there exists r > 0 and a {Lipschitz / ck 7 ¢k} function Y RY=! 5 R such that relabelling
and reorienting axes as necessary, D N B(xp, r) = {x € B(xg,r) : xd > y(x1 ..... xd=1y
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Remark 1.2 One sufficient condition to ensure that the hypotheses of Theorem 1.1 are
satisfied is to assume that D is C> for some « € [0, 1] (see Lemma 2.3). However,
this is also satisfied in many other cases, so we leave the assumptions of Theorem 1.1
as general as possible.

On the way to proving Theorem 1.1 we also obtain new proofs of several other
results concerning critical branching diffusions, some of which are already known in
various forms. The reason for detailing these proofs here is threefold: firstly, it allows
us to pin down the regularity required on the domain D; secondly, it provides a new
and somewhat more probabilistic approach to the theory, that we believe is interesting
in its own right; and finally, the proofs serve to introduce many concepts and ideas
that are crucial for the proof of Theorem 1.1.

Let us first look at the phase transition. This result was originally proved by Sev-
ast’yanov [45] and Watanabe [46], in the case when L is a constant multiple of A.
However, it has also been reworked and generalised since then. In [4, Chapter 6], a
more general version of the result is given for branching Markov processes whose
moment semigroup satisfies a certain criterion. One of the main examples discussed is
when the process is a branching diffusion on a manifold with killing at the boundary.
This is slightly more general than the set up of the present paper, in that the diffusion
is on a manifold and the branching mechanism is allowed to be spatially dependent,
however, a (fairly abstract) condition on the moment semigroup is required. In [31]
the criterion is shown to be satisfied, for example, if the manifold has c3 boundary
and the generator of the diffusion is uniformly elliptic with C* coefficients. Here we
will prove the result under a weaker assumption on the domain and generator, but in
our slightly more specific framework. Related results have also been shown in [20],
which studies local extinction versus local growth on compactly contained subsets of
a (possibly infinite) domain D, and in [26], where D is taken to be a bounded interval
of the real line.

Theorem 1.3 ([45], [46]) Let D C R4 be a bounded domain with Lipschitz boundary
and suppose that L and A are as in Theorem 1.1. Then, for any starting position
x € D, if A is the first eigenvalue of —L on D with Dirichlet boundary conditions
then,

e forf > % the process survives for all time with positive P* -probability.
e for B < ﬁ the process becomes extinct P*-almost surely.

A

Moreover, if B < 2+

then P*(|N;| > 0) — 0 as t — oo, uniformly in D.

The rest of the paper will focus on the behaviour of the system at criticality, starting
with an asymptotic for the survival probability. The results of Theorems 1.4, 1.6 and
Corollary 1.7 have also been shown in [4, Chapter 6] in the same framework discussed
above (see also [30,31], and [29] for the one-dimensional case). Here we provide new
proofs, which hold under fewer assumptions on the domain D, and which we can also
modify to give key ingredients for the proof of Theorem 1.1 (see for example Lemma
5.3).
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1002 E. Powell

Theorem 1.4 Suppose that D is C' and that L and A are as in Theorem 1.3. Then,
in the critical case B = ﬁ or all x € D we have

1 2(m — 1
P* (IN;| > 0) ~ — x . (m — Do) . (1.4)
t A (E[A%] - E[A]) [ e(y)3dy
ast — oo. Here ¢ is the first eigenfunction of L on D, normalised to have unit L?
norm.

This asymptotic then allows us to study the behaviour of the system when it is
conditioned to survive for a long time, which is important for the proof of Theorem
1.1. One tool that we will use is a classical spine change of measure, under which the
process has a distinguished particle, the spine, which is conditioned to remain in D
forever (as in [41]). Along this spine, families of ordinary critical branching diffusions
immigrate at rate 5 A according to a biased offspring distribution. Note that there
is no extinction under this new measure, which we denote by Q*. We will prove that
changing measure in this way is in fact somewhat close to conditioning on survival
for all time, in the sense of the following proposition.

Proposition 1.5 Assume the hypotheses of Theorem 1.4. Then for any T > 0, x € D
and B € Fr, where F is the natural filtration of the process, we have

Jim PY(B | [N;| > 0) = Q*(B). (1.5)

To our knowledge, Proposition 1.5 does not appear in the existing literature,
although the idea behind it is well-known: see [25, Theorem 5].

Finally, we prove a Yaglom-type limit theorem for the positions of the particles in
the system at time ¢, given survival.

Theorem 1.6 For any measurable function f on D such that || pf ()2p(x) dx < oo,
we have

Y FX)| N >0 | > Z
uenN;

in distribution as t — 00, where Z is an exponential random variable with mean

* (ELA2] = ELA)) (0, N2y [p @
2(m—1) '

One consequence of Theorem 1.6 (or rather its proof) is that it allows us to describe
the limiting distribution of the particles in the system at time 7, given survival. It turns
out that this is the law with density ¢, normalised to be a probability distribution.
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Corollary 1.7 Fort > 0, let u; be the random point measure with law

1
i Z Sx,) | INi] >0
t

ueN;

That is, s has the law of the empirical measure of particles alive at time t, given
survival. Then for each f as in Theorem 1.6, we have that

i (f) = n(f)

in distribution, and hence in probability, as t — 00, where

_ Jpeo) f(x)dx

1.1 Context

It is interesting to note the analogy between Theorems 1.3—1.6 and classical results
from the theory of Galton—Watson processes. Indeed, for critical Galton—Watson pro-
cesses, Kolmogorov [34] proved an asymptotic for the probability of survival up to
time n:

P(Z, > 0) ~ &
n

where Z,, is the population size at time 7, and the constant depends on the variance
of the offspring distribution. Moreover, Aldous [2,3] and Duquesne and Le Gall [19]
showed that if you condition a critical Galton—Watson process to reach a large gener-
ation or have a large total progeny, then you have a scaling limit for the resulting tree.
This limit is in the Gromov—Hausdorff topology, after rescaling distances in the tree
appropriately, and the limiting object is the Continuum Random Tree, [2]. In fact, this
result can be extended to multitype Galton—Watson processes with a finite number of
types, as in [39], where the same scaling limit exists. Since a branching diffusion can
be thought of as a limit of multitype Galton—Watson processes (considering the types
to be positions and discretising the domain appropriately) it is reasonable to conjecture
that such a process will have the same limiting genealogy when conditioned to survive
for a long time.

On the other hand this result must be non-trivial, given what is known and expected
for other types of domain. For example, [6-9,33] have studied branching Brownian
motion on the positive half line (with absorption at the origin) where each particle
moves with a drift —u. In this set up there is a critical value of the branching rate S,
equal to B, = u?/2, such that for < f. extinction occurs with probability one. In
[8], an asymptotic for the survival probability is calculated, which is very different
from that of Theorem 1.4. Moreover, results of [7] in the near critical regime suggest
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1004 E. Powell

that the critical genealogy in this case should be closely related to the Bolthausen—
Sznitman coalescent [12]. This is also related to non-rigourous physics predictions of
Brunet, Derrida, Mueller and Munier, [13, 14]: see [10] for a survey of the area, further
references and a general discussion of these predictions. This is of course not just a
one-dimensional effect, as the behaviour will trivially be the same when the domain
D is a half-space with a drift in the direction of the hyperplane. Hence Theorem 1.1
is not likely to hold if we drop the boundedness assumption on the domain D. More
generally, this raises the following question:

Question 1.8 If the domain D is allowed to be unbounded, or very irregular, what
other behaviours do we see appearing at criticality (whenever we can make sense of
this notion)?

In general it is an open, and we believe extremely interesting problem, to try and
classify all the possible different behaviours that can occur at criticality depending on
the geometry of the domain.

1.2 Organisation of the paper and main ideas

After setting up the relevant notations and preliminary theory, we begin with the proof
of Theorem 1.3. The main idea, which differs from the more analytic proofs given in
[4,45,46], is to exploit the existence of the martingale

(M=o = [ e®7P0=D0% (X)) (1.6)

ueN; >0
(also appearing in [20,26]) that arises naturally from the definition of the process.
Since ), N, 9(X ; ) roughly tells us the size of the system at time 7, and M, converges
almost surely as r — o0, the behaviour of the exponential term in (1.6) governs the
possible survival or extinction of the process.

We then turn to the proofs of Theorems 1.4 to 1.6. The proof of Theorem 1.4
proceeds by a combination of probabilistic arguments, and the analysis of a system of
coupled ordinary differential equations. Naively, we expand the survival probability
(as a function of x, for each fixed r) with respect to the orthonormal basis of L%(D)
given by the eigenfunctions of —L. Then because the survival probability satisfies
a certain partial differential equation (the FKPP equation for branching Brownian
motion, [38]) we get a family of coupled ODEs from the coefficients. In fact, we do
not explicitly use that the survival probability satisfies this PDE (as we can derive
the ODEs for the coefficients directly and avoid potentially complicated technical
assumptions), but this is the motivation behind the proof. Unfortunately however, the
system of ODE:s is not immediately easy to analyse, and this is where the probabilistic
line of reasoning comes into play. Changing measure using the martingale (M;);>¢ (to
get a spine characterisation of the system as discussed in the introduction) allows us
to deduce that the survival probability actually just decays like a(¢)¢(x) as t — oo,
where a(t) is the first coefficient in the expansion. Thus, our problem is reduced to
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the study of a single ODE. From here elementary analysis, combined with some extra
information obtained from the probabilistic arguments, yields the result. Proposition
1.5, Theorem 1.6 and Corollary 1.7 then follow fairly straightforwardly.

The remainder of the paper is devoted to the proof of Theorem 1.1. To do this,
we take an i.i.d. sequence of critical processes, and concatenate the height functions
of their associated continuous genealogical trees. A key idea is to define a suitable
analogue of the Lukazewicz path for Galton—Watson trees: that is, something that will
approximate this concatenated height process well, and will converge after rescaling
to a reflected Brownian motion. At first it seems too much to hope that such a precise
combinatorial structure survives in this spatial context. However, it turns out that
we can exploit the martingale (M;);>0 by “exploring it in a different order”. Just
as (M;);>o roughly measures the size of our population when we let time evolve in
the usual way, when we explore the genealogical tree in a “depth first” order and
define a new process analogolously to (M;);>0, this process remains a martingale and,
perhaps surprisingly, becomes a kind of spatial analogue of the height function. After
strengthening Corollary 1.7, we can prove that the quadratic variation of this new
martingale is essentially linear, and thus obtain an invariance principle.

Of course, we have to prove that this new martingale is indeed a good approximation
to the height process. This is one of the main difficulties, as the reversibility tools that
are key to proving the analagous statement for the Lukasiewicz path in the Galton—
Watson case are lost. Instead, we must use precise estimates, and a delicate ergodicity
argument related to our spine change of measure. This is one of the reasons that our
machinery from the proof of Theorem 1.4 is so essential. Tightness arguments then
allow us to conclude.

2 Preliminaries

2.1 Spectral theory and diffusions

Let us first assume that D C R is a bounded domain satisfying a uniform exterior
cone condition. This means that: (1) D is an open connected set of R? with |D| < oo

and boundary 3 D ; and (2) there exist 7, k > OsuchthatVy € 8D, we can find n € RY
with || = 1 and

{zeB(y,r):n-(z—y)>0and|n-(z—y)| <«klz—yl} C D"

Such a condition is satisfied, for example, if d D is Lipschitz, see eg. [17, p. 27].
Let

d
L= 0;(a’d,)

i,j=1

be a self-adjoint differential operator on D, which is uniformly elliptic, meaning that
there exists a constant 6 > 0 such that for all ¢ € R? and a.e. x € D
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1006 E. Powell

D aV (kg = 0IEP,

ij=1

see [21, §6.1]. We also assume that a is symmetric, i.e. a = a’t andthata’/ € C1(D)
foralll <i,j <d.

We say that ¢ € HO1 (D)? is an eigenfunction of —L with Dirichlet boundary
conditions, and associated eigenvalue A, if

d
f Z a' (x) 8y, @(x) ijv(x)dxzf AG(X)v(x) dx 2.1)
D . D

i,j=1

forevery v € HO1 (D), asin[21, §6.3]. Thatis, ¢ is a weak solution of — Lu = Au with
zero boundary conditions. Given the assumptions made on L and D, the following
properties then hold (see [17, Theorem 1.6.8] and [22, Theorem 9.30].):

e The eigenvalues of —L are all real and can be written 0 < A := A1 < Ay < Az---
(repeated according to their finite multiplicity) with A; — oo as k — oo.

e The associated eigenfunctions {¢; };>¢ (normalised correctly) form an orthonormal
basis of L?(D). Moreover, the first eigenfunction ¢ =: ¢ is strictly positive in D,
and ¢; € C(D) foralli > 1.

Now we consider the diffusion (X (¢)),>0 associated to L on D. This is the Markov
process on D U (9), where we identify the boundary d D of D with the single isolated
point (9), such that:

e X (1) evolves as a diffusion with generator L forall t < t? :=inf{s > 0: X(s) €
oD}; and
e X(1)= () forallr > P,
Thus (X (#));>0 is the diffusion with generator L, killed or absorbed upon hitting
dD. We write P* for its law when started from x € D. Then by [17, Theo-
rems 2.1.4 and 2.3.6], the function

PP, y) =Y exp(—Aal)@n()@n(y); € (0,00), x,y € D 22)

n>1

is well defined as a uniform limit on [, 00) x D x D for any ¢ > 0, and is the
transition density of the process X, restricted to (x, y) € D x D. We also have the
estimate, [17, Corollary 3.2.8]

0<plx,y) <t ™? (23)

for some constant ¢ > 0.

2 We define H(; (D) to be the closure of CZ°(D) (the space of infinitely differentiable functions with
compact support strictly inside D) with respect to the norm HullHl(D) = lull2 + Z?:l || D¥i @2,
where D%i u is the ith partial derivative of u in the weak sense.
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In particular, for any ¢ > 0 and any f € LY(D) we have
f FOPP .y dy = PX(F(X () Lpo ) 2.4)
D

The properties (2.2)—(2.4) of the killed diffusion and associated transition kernel
pP above, are consequences of the fact that the symmetric Markov semigroup asso-
ciated with the killed diffusion is ultracontractive (see [17, §2]) when D satisfies a
uniform exterior cone condition. In fact, if we assume some more regularity on the
domain, then it will satisfy a certain stronger form of contractivity known as intrinsic
ultracontractivity, first defined in [18]. Intrinsic ultracontractivity is satisfied by the
semigroup of the killed diffusion, for example, if the domain D is bounded and Lips-
chitz [5, Theorem 1]. The key property of intrinsic ultracontractivity that we will use
is the following.

Lemma 2.1 Suppose that D is a bounded Lipschitz domain (or more generally, a
domain such that the semigroup of X is intrinsically ultracontractive). If

KD(x y) = w
e 9(x)

is the transition density for (X (t));>o conditioned to remain in D for all time [41]
then for any ¢ > O there exists a constant C, depending only on the domain such that

‘KP(x, »

1
P()?

<Cpe !

forallt > eandx,y € D, where y := Ay — A1 > 0 is the spectral gap for —L on D.
Proof See for example [18] or [5, Equation (1.8)]. O
We also have the following estimate:

Lemma 2.2 Suppose we are in the set up of Lemma 2.1. Then for some constants
c1, ¢, we have

w—z?
e L2r s

pP(w,2) <cir?

forall z,w € D.
Proof See [5, Eq. (1.2)] or [17, P. 89]. O

We also have the following result, which gives us extra regularity on the eigenfunctions
of L, if we assume some extra regularity on the domain.

Lemma 2.3 Suppose that the boundary of D is C*>% for some a > 0 and that L is
a generator satisfying the conditions assumed throughout this section. Let {¢;};>1 be
an L? orthonormal basis of eigenfunctions for —L. Then

g € C'(D)

foralli > 1.
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1008 E. Powell

Proof [22, Theorem 6.31] |

2.2 Branching diffusions

As stated in the introduction, we can view a branching diffusion in D C R? as a point
process

Xy ={Xu(1) :u € Nt}

taking values in D. This is often all that we will need to speak about, but since we are
eventually interested in the genealogy of such processes, it will be helpful at various
points to to view them as elements of a larger state space: the space of marked trees.
The set up described in this section closely follows [24,28].

We begin by recalling the Ulam—Harris labelling system. Let

Q:={gu

neN

be the set of finite labels on N = {1,2,3...}. Asubset T C 2 is called a tree if:

e NeT,;
e u,ve Qanduv € T implies that u € T; and
e forallu € T there exists A, e NU{O} suchthatuj e T <— 1< j < A,.

We will refer to elements u € T as particles or individuals in T. We think of the
element ¥ as representing an initial ancestor, and individuals u € T as describing its
descendants. For example, if u € T is given by the label (2, 1) then u would be the first
child of the second child of @. For u, v € Q we write uv for the concatenation of the
words u and v, so for example if u = (1,2,3),v = (2, 1), then uv = (1, 2,3,2, 1).
We also set u) = Pu = u for all u € Q2. We say that v is an ancestor of u (written
v < u) if there exists w € Q such that vw = u, and write |u| for the length (or
generation) of u, where |u| = n if u € N". Then the above tree condition simply
means that: 7" has an initial ancestor or root ¥J; T contains all of the ancestors of all of
its individuals; and finally, each individual u € T has a finite (possibly 0) number A,
of children, labelled in a consecutive way. We write T for the set of trees.

We will want to consider marked trees, where the marks will correspond to the
behaviour of particles in our branching diffusion. If we have a tree T € T, we will
mark each u € T with a lifetime /,, € [0, 0c0), and a motion in D,

Xy sy —lu,su) > D,

where s, = Y, _, [y is the death time of the particle u.
We write

T:={T,1,X) =T, "uer, Xiuer) : T €T, and [, € [0, 00),
Xy sy —1lu,sy) > Dforallu € T}
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for the set of all marked trees on D. With an abuse of notation, if we have a marked tree
(T,1, X)and u € T we will also sometimes extend the definition of X, to the whole of
the ancestry of u. That is we will set X,,(¢) to be equal to X, (¢) if ¢ ¢ [s, —1,;, s,,), and
v is the unique ancestor of  alive at time ¢. If u has no children, we write X, (t) = ()
forall + > s, where () is an additional cemetery point that we introduce for use later
on. Finally, we write

Nl = {I,t eT:te [Su - lu,su)}

for the set of particles alive in T at time 7, and let | V; | be the number of such particles.
As in the introduction, we let

Xy ={X,(): ue N}
be the point process on D corresponding to the marked tree (7, [, X).
2.2.1 Probability measures on marked trees
Let (J);>0 be the filtration on the space of marked trees defined by

Fr=o ({(u, Xu L) s S t}U{u, Xu($)) 15 € [sy — Ly, 1], 1 €[5 — Luy su)})

fort > 0 and set

T = U(Utzoffrt)-

Then (3}),>0 is the natural filtration associated with the point process (X;);>0. We let
P* be the probability measure on (T, Fo) such that:

e Xy(t) evolves under the law P* described in Sect. 2.1 for 0 < ¢t < Iy, where
ly = ‘L'é) A vy, ‘E@D is the first time that Xy hits D and vy ~ Exp(f) is an
exponential random variable independent of Xy;.

e Ay = 0on the event that [ = r@D . On the complementary event, Ay is distributed
as an independent copy of the offspring distribution A.

e At any branching event where a positive number of children are born, all children
repeat stochastically, and independently, the behaviour of their parent, starting
from the point of fission.

That is, P* is the law of the system described in the introduction, with offspring
distribution A and constant branching rate § > 0.

2.2.2 The many-to-few formulae
One particularly useful property of the branching diffusions considered in this section
are the so-called many-to-few formulae, which allow one to calculate certain expec-

tations for the system with relative ease. We state the two simplest cases here; for the
more general formula, see for example [28, Lemma 1].
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1010 E. Powell

Lemma 2.4 (Many-to-one) Suppose that f is a measurable function on the Borel sets
of D. Then

P Y fXu@) | =" TVPPY (F(X (0L p0-y)

ueN;

where we recall that m = E(A).

Lemma 2.5 (Many-to-two) Suppose that f and g are measurable functions on the
Borel sets of D. Then

P Y F(X) ) g(Xu()

ueN, veEN;

= DB P (£(X (1) g(X (1) o)) + BE(A2)

t
-~ IE(A))/O eGP (L, b g (X (s).1 —5)) ds

where q(y,r) = Py(f(X(r))]l{,ow})Py(g(X(r))]l{,D>r})f0r ye Dandr > 0.

For the proof of the above lemmas, see [28, Lemma 1], which is stated in a more
general setting. For an explanation of how this general statement gives the lemmas
above, see [28, § 4.1, §4.2].

2.2.3 The continuous genealogical plane tree

If we have a marked tree (7,1, X) € T corresponding to a branching diffusion, we
will also want to associate with it a continuous genealogical tree T. This tree (which
we emphasise is different from T') is the main object of Theorem 1.1: it is the plane
tree with branch lengths given by the lifetimes of particles in the system.

We first need to give a few definitions. A metric space (T, d) is said to be a real
tree if, for all v, w € T the following two conditions hold [36]:

(1) There exists a unique isometric map ¢,y : [0, d(v, w)] — T with ¢, ,,(0) = v
and ¢y, (d (v, w)) = w.

(2) Any continuous injective map [0, 1] — T that joins v and w has the same image
as @y -

One way to define is a real tree is the following: take a continuous function C :

[0, 00) — [0, co) with C(0) = 0 and define a “distance” function on [0, co) x [0, c0)

by

de(s,t) =C(s)+C(t) —2 n%in] C(r)
rels,t

whenever s < ¢. It is easy to verify that this defines a pseudometric on [0, co). Thus,
quotienting by the equivalence relation ~ that identifies points with d¢ (-, -) = 0 we
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= Cio b 4= Ty b ete.

Fig.1 Anexample of the continuous tree T = T generated by a branching diftfusion. Here ug = 9, u1 =
(1),up = (1, 1), u3 = (2) and ug = (3). Every branch of T corresponds to a particle u € T, and this
branch has length /;,

obtain a metric space (T¢, dc) := ([0, 00)/ ~, dc). One can prove, see for example
[36], that this metric space is a real tree. The function C is called the contour function
of the tree.

In our set up, if we have a marked tree (7', [, X) € Twelet (T(T, [, X),d(T, [, X))
= (Tc(r,1,x), dc(r,1,x)) be the real tree with contour function (C(T', X, [)(t));>0 =:
(C(1))r>0 described as follows. Let {} =: uo, u1, ua, - ... u7|} be the set of labels of
T in depth first order. This is the ordering on 7 such that u is less than v iff at the first
coordinate where the labels of u and v differ, the coordinate of u is less than that of v.
For any two individuals w, w’ € T we let w A w’ denote their most recent common
ancestor: that is, the (unique) u with |u| largest, such that u < w and u < w’. We can
then define, for j > O such thatu; £ uj41:

o ri =8y — Suruiy — buinu; o be the length of time between the birth time

i i jrujir — lujaugy,) to be the length of t bet the birth t
of uj A uji1 and the death time of uj, and

° r} = lu,.Jrl — (Suj/\uH_] _lu_,'Au_j+|) to be the length of time between the birth time
of uj Auji and the birth time of u .

We set rj = r;. =0ifu; < ujy1.Let R} = qulk—}—rk—i—r,i, and for r €
[0, Rj+1 — Rj) set

t ifr €[0,1;)
Ct+Rj)—C(Rj) = le—l‘ ifte[lj,lj+rj)
—2rj+t ifte[lj+rj,lj+rj+r;-).

That is: C(¢) is positive and linear with unit speed on [R;, R; +[;) and [R; +[; +
rj, Rj+lj+r; +r}), andis negative and linear with unitspeedon [R;+1;, R+l +r;).
Finally, for ¢ € [Ry7|, Ri7| + i) + 51711 we let C(¢) interpolate linearly between
C(Rr)) and 0. The definition of the function C is probably clearest from a picture:
we draw a tree with branch lengths corresponding to lifetimes of individuals in the
system, and traverse it (with backtracking) at speed one. C(#) measures how “high”
we are in the tree at time ¢ (Fig. 1).
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1012 E. Powell

2.3 Martingales

Suppose that D C R? is bounded satisfying a uniform exterior cone condition, and
P, (X(t))r>o0, 7P and ptD are as in Sect. 2.1. Then by (2.2), and using the fact that
the eigenfunctions {¢;} form an orthonormal basis of L?(D) we see that for any
feL*D)andr >0

P (f(X)Lpooyy) = Y exp(—Ait)gi (x) (i, f) 2.5)
1

where we write (f, g) 1= f p J(x)g(x) dx here and throughout the paper. In particular,

P [0 (X ()1 oo py] = e g (x) (2.6)

for all x € D. One consquence of this is that the process

(exp(xr)go(x(t))]l{,0>,})lzo (2.7)

is a (positive) martingale under P*. Furthermore, this single-particle martingale
implies the existence of a martingale for the entire branching diffusion under P*.
Indeed, a straightforward application of the Markov property for the branching diffu-
sion and Lemma 2.4 yields the following.

Lemma 2.6 The process

M, = PN " (X, (1))

ueN; >0
is a positive martingale under P*, for each x € D. It therefore converges P* —almost
surely as t — oo to an almost surely finite limit M.

This martingale is the natural analogue of the well-known martingale (Z,,/m™),en
for Galton—Watson processes (with offspring mean m). Variants of the martingale
for general branching processes have been studied extensively in the literature: see
for example [11,37] for the branching random walk case and [16,20,25,26,35] for
branching Brownian motion, among many others.

2.4 Spine theory

It turns out that a helpful approach in many parts of this paper will be to study the
behaviour of the system under a change of measure. Precisely, the change of measure
defined by the P* martingale (M;),>o from the previous section. To give a useful
description of this, we need to view our process on a yet larger state space: the space
of marked trees with spines. This is a classical technique first introduced in [16], and
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since used extensively by many authors [24,26,28,43]. For a thorough exposition of
the subject, we refer the reader to [24], and the overview in this section will closely
follow that given in [24,28].

Suppose we have a marked tree (7,1, X) € 7J. A spine ¢ on (7, [, X) is a subset
of T U () (where we recall that () is an isolated cemetery point) such that:

e eyand |y N(N,UC(T))| =1 forall ¢,

e v € ¥ and u < v implies that u € ; and

e if v € ¥ and A, > 0, then there exists a unique 1 < j < A, withvj € . If
Ay, =0,then ¥ NN, =@ forall t > s,.

We write
T = {(T,1,X,¥):(T,l,X) €T, and ¥ is aspine on (7, [, X)}

for the space of marked trees with spines. Given (7,1, X, ) € T we let Y == v be
the unique element v € ¥ N (N; U (})) and write & := X, (¢) for its position. With a
slight abuse of notation, we set X, (t) = (}) if & = (}) and also in this case say that
u < Y ifu € Ny and u = 5 for some s < t.

2.4.1 Filtrations

There are several different filtrations we can place on T. We give brief descriptions of
each of these below : see [43] for more rigorous definitions.

e (J);>0 is the natural filtration of the branching process as before, and does not
contain any information about spines. We write Fo, := 0 (U;>03;).

° (3;t)tzo is the natural filtration of the branching process plus the spine. We write
Foo 1= 0 (Usz0F7).

e (G1)i>0 := (0(& : s < 1)), is the filtration generated by the spatial motion of the
spine. We write G := 0 (U;>09;).

° (ét),zo =o0(G;U{vey; :0=<s <rt}U{A, :u < ¥} is the filtration that
knows everything about the spine until time #: which individuals are in the spine,
their motions, fission times, and family sizes at fission times along the spine. We
write G0 1= 0 (Ur>09:).

2.4.2 Probability measures

We first want to define the probability measure IP* on (T, F o) under which, informally
speaking, the law of the tree (7, [, X) is the same as under P¥, and then the spine is
chosen by picking one of the children uniformly at random at every branching event.
More rigorously, if ¥ is an J;-measurable random variable, then Y can be written [28]
as

> Y ly—y (2.8)

veNU(T)
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1014 E. Powell

where Y (v) is measurable with respect to F;. Given this representation, we define the
measure P* on (‘J' F, ) by setting for each ?t measurable Y:

Py =P )] (Y(v)]‘[ >+Y((T)) > H . Q9

vEN; u<v weD, u<w
where D, := {w € Uy<, N, : A, = 0}. Note that I@”‘|3roc = P*.
2.4.3 Change of measure

Recall from Sect. 2.3 that e*! ‘Wi ('))) 1(;p.y defines a mean-one martingale under P*.
This implies, see [24], that

(A—B(m—1))t (&) l—[ A,

g = ]l{A% >0 Vs<t}]l{rD>t} ¢
& (p(x) v<'l//r

where r%.D is the first time that & leaves the domain D, is a mean-one i—martingale
under P*. =P ({t | 3",). Thus, if we define a new

( 5=
probability measure Q* on (T, Foo) via the martingale change of measure

dQ*
—| =¢ (2.10)
dP F,
then we have, defining Q* := Q* |5, that
dQ* M,
QX =L, (2.11)
dP¥ |5 @(x)

We have the following description for how the branching diffusion with a distinguished
spine behaves under Q* (see for example [16] or [24]):

e we begin with one particle at position x, which is the spine particle;
e the spine particle evolves as if under the changed measure

de =1 b eM (p(él)
dPt g~ T ()]

(2.12)

e the spine particle branches at rate mf and is replaced by a number of children
having the size-biased distribution A, where

" k
P(A=k)=—P(A =k); and
m
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e given that there are k children born at such a branching event, one is chosen
uniformly at random to be the spine and stochastically repeats the behaviour of
its parent. Non-spine particles initiate independent branching diffusions with law
PY, from the point y of fission.

We now make a number of remarks about this. Firstly, note that the spine particle
under Q, never leaves the domain D, and that it always has a positive number of
children. This means that the branching diffusion under @ never becomes extinct, and
that the spine particle is never in the cemetery state. Also note that under the change
of measure (2.12), the spine particle evolves as a diffusion with transition kernel
KtD (x, y): the kernel we defined in Lemma 2.1. Its motion is that of the diffusion
X (t) under P*, but conditioned to remain in D for all time, see [41]. In particular,
Lemma 2.1 tells us that if the domain D is Lipschitz, its position converges quickly
to an equilibrium distribution with density ¢2. Finally, we record that (by an easy
calculation):

(X (1))

A _ gy PX®)
Q" (v = ¥ |F)) ZueN, o(Xa (1)

(2.13)

forv € N;.

3 The phase transition

In this section we will provide a proof of Theorem 1.3.

Proof of Theorem 1.3 First suppose that 8 > A/(m — 1). Then we know by Lemma
2.6 that M; — M almost surely. Thus, by definition of M;, we can conclude the
proof in this case as soon as we can show that P* (M, > 0) > 0. However, for this
it is enough to show that (M;); is uniformly integrable, and in fact, an elementary
calculation using Lemma 2.5 gives that if § > X/(m — 1), then (M;), is uniformly
bounded in LZ(P*). We leave this calculation to the reader.

Next suppose that 8 < A/(m — 1). We write

P* (IN;| > 0) < P* (IN;[) = e™ D P*(zP > 1), (3.1)

where the second equality comes from Lemma 2.4. Observe that by Lemma 2.1, we
also have the existence of a constant C, depending only on D, such that

pP(x,y) < Cox)p(y)e ™ (3.2)

for all + > 1. Since P*(t? > 1) = fD ptD(x, v) dy, this implies that when 8 <
A/(m — 1), the right hand side of (3.1) converges to 0 as t — oo (uniformly in
x € D). Hence we have almost sure extinction in this case.

Finally, we deal with the critical case 8 = A /(m — 1). We make use of the following
lemma, which can be found in [46, Lemma 2.1]. |

Lemma 3.1 ([46]) Forall x € D

P* (IN;| = Oor |N;| — ocast — oo0) = 1.
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The proof we give is the same as that in [46] (we include it only to show that it still
works with our current assumptions on L and D.)

Proof Since |Ny| is integer-valued, and {|N;| = 0} = {|N,| = OVr > 1}, it is
sufficient to prove that P* (|N;| = k i.0.) = O for every k € N. Fix k and define a
sequence of hitting and leaving times (L,, H,),>1, by letting L be the first time ¢
that |N¢| # 1, and H; be the first time (necessarily after L) that |N;| = k. Then
inductively, let L, be the first time after H,_; that |N;| # k, and H, the first time
after L,, that |N;| = k. We have to show that P* (H,, < o0) — 0 asn — o0. Set

v=inf PP <1)>0
yeD

which is strictly positive by Lemma 2.1, and let p > 0 be the probability that
an Exp(B) random variable is bigger than 1. Then we have that P* (H; < 00) <
P*(INL,| > 0) < (1 — pv) (since the probability that the initial particle exits the
domain without branching is greater than or equal to pv). Then inductively, using the
Markov property at each time H;, we see that P* (H, < oo) < P* (INL,,I > O) <
(1 — pv)(1 — (pv)*)*~! — 0. This completes the proof. ]

With this in hand, to prove that we have almost sure extinction in the critical case,
it is enough to show that P*(|N;| — oo ast — o0) = 0. To do this, we use the fact
that M, = ZMGM ©(X,(¢)) converges almost surely to Mo, < 0o. Then the idea is
that if | V; | is very big then M, should be big as well, and this will give a contradiction.

Consider the event A; x g := {{|N;| > R} N {M; < K}}, for R, K > 1. On this
event, by definition of M, it must be the case that N; is non-empty, and that ¢ (X, (1)) <
K /R for some u € N;. In other words, we have A, g r C {ZueN, Tiox,)<k/R} =
1}. We compute that

P Y Lpxaan=k/ry = 1 <P LY Tpoan<k/m)

ueN; UEN;

< e(’”_”ﬁ’/ pP(x, y)dy
yeD:p(y)<K/R

where the second inequality follows from Lemma 2.4. Finally, using (3.2), we see that
this is less than ¢ K /R whenever ¢ > 1, for some constant ¢ depending only on D.
Now we are ready to conclude. We have

P* (IN;| = 00) = P* ({I|N| — 00} N {Me < 00}) (3.3)
=P* (Ux NRUr Ni=7 A1k .R) .

and we have just shown that P* (ﬁ,zTA,,K,R) <P (AT,K,R) <cK/RforallT > 1.
Taking limits on the right hand side of (3.3) we see that P* (|NV;| = oc0) = 0.
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To complete the proof of Theorem 1.3 we must show that the decay of the survival
probability in the critical case is uniform in D. To do this we will show that if we set

PE(IN;| > 0 D
u@J%:()UA> )iiaD (3.4)

then u(x, 1) is a continuous function in D for all + > 0. Then since the u(x, r) are
decreasing in ¢ and converge to the continuous function 0 as r — oo for each x € D,
by Dini’s theorem [44, Theorem 7.13]), the decay must indeed be uniform.

To prove this, first we fix t > 0 and x € D, and show that u(x, ¢) is continuous at
x. Indeed, given any ¢ > 0, we can pick T > 0 such thatif Z ~ Exp(A/(m — 1)) then
P(Z < T) < ¢/4. This means that for any y € D, by conditioning on whether or not
the first branching time is less than or equal to 7', we have

lu(x, 1) —u(y, 1) <e/2 +/D |pR (x, w) — pF (v, w)lu(w, t — T) dw.

Then the continuity follows, since for fixed T the second term on the right hand
side will be less than /2 whenever |y — x| is small enough. This last claim holds
since p? (-, w) is continuous at x for each w € D (e.g. by (2.2)), and by dominated
convergence.

So to complete the proof, we just need to show that u(y,t) — Oasy — 9D.
Howeyver, this follows since

PY (IN;| > 0) < 1 — P (the process becomes extinct before the first branching time)

1-P(Z>s)P'(P <)

=
=

for any s > 0, where Z is the same random variable described above. The last line can

be made arbitrarily small by first taking s to 0, and then y — 8 D. Thus u(-, t) € C(D)

for each t > 0. O
We finish this section by recording a useful lemma in the critical case.

Lemma 3.2 Forany T > O there exists Ct > 0 such that P* (|N,|2) < tCrp(x) for
allt > T and x € D.

Proof This essentially follows from the many-to-two lemma, along with a couple of
estimates that have been developed in this section. In the proof, cr, c/T and c% all
represent constants depending only on 7.

First, by (3.2) we know that there exists ¢y such that forallr > T/2and y € D,

PP > r) <cro(y)e™ . (3.5)
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We can also write, by Lemma 2.5
2 Mpx .D A 2
P (INP) = PEP > 1) 4+~ (B(4D) — E(A)
t
fo I P Ao (PYO Ao, D) ds

where by (3.5) the first term on the right hand side of this expression is bounded by
cr@(x). Furthermore, using (3.5) again, the integrand in the second term is bounded
by C/T(p(x) for some c’T, whenever s > T/2 and t — s > T /2. To conclude, notice
that if s < T/2 then t — s must be > T/2. Therefore, the integrand on this region
is bounded by c7. eM P (p(X()1 {tP=g)) (for some c7.), which is less than or equal to
c’T’(p(x) by (2.6). Finally, if t — s < T /2, then again we must have s > 7/2, and the
integrand on this region (also using that using that e*?~%) < ¢*T ¢ in this case) is
less than e*” (x). Putting all of this together gives the lemma. O

4 Survival at criticality: proof of Theorem 1.4

Throughout this section, we will work in the critical case § = A/(m — 1).

4.1 Asymptotics for the survival probability

We will first prove that the survival probability P* (|N;| > 0) decays asymptotically
like ¢(x)a(t), where

a(t) == fD B (1N > 0) (2) .

In fact, we prove a more general Proposition (see below) from which we will obtain
this as a special case.

Proposition 4.1 Suppose that the conditions of Theorem 1.3 are satisfied. For a mea-
surable function f on D with0 < f < 1, set

HueN, fXu@®) ifNe #0

ap(t) = /Dgg(x)IP’x (1 — f(N,)) dx; f(Ny):= [l if N, = 0.

Then
P (1-fav)

—1l=0 “.1)
p(x)ag(t)

ast — oo, uniformly inx € D and f with0 < f < 1.

A

Remark 4.2 When f = 0 we see that P* (1 - f(Nt)) — P*(IN,| > 0) and write
ap(t) ;= a(r).
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Remark 4.3 Note that ay(t) # 0 for all t > 0. Indeed for any r > 0, 1 — f(Nt) is a
positive (F;-measurable) random Va@able, and for every x € D thereis a set of strictly
positive P* measure on which 1 — f(N;) > 0 (i.e. on the event that | N;| > 0). Thus,
P (1 — f(N,)) > 0 for every x € D. Since this is a measurable function of x, and
@(x) is also measurable and strictly positive in D, we obtain that a(t) > 0.

Proof The idea for the proof of this is to write, recalling the changes of measure from
Sect. 2.4.3,

@(x) > uen, P(Xu (@) > uen, ¢(Xu(®)

see (2.11), and then show that the right hand side essentially does not depend
on x for large t. The intuition behind this is that under @x , the position of the
spine particle will converge very quickly to equilibrium. Moreover, contributions to
(1 - f (N Y e N, 9(Xu (1)) from subprocesses branching off the spine before its
position has become well mixed are unlikely to occur, as these have the law of branch-
ing diffusions under P", which we know are unlikely to survive for a long time.

To turn this into a rigorous proof, we first pick 1 < #y < ¢t (we may assume ¢ > 1)
and decompose

Ny =N'UN?:={ueN :y, <uyU{ueN;: ¥, #ul.

Then we see using (4.2) that

P (1 — f(Nl)> . 1— f(Ntl) o
(x) Yuen) 9Xu(@) =N

_ @ (@ [ <D i
- <Q <mﬂ“"tz=@}|9to>)

where we recall the definition of the o -algebra 910 from Sect. 2.4.1, that knows every-
thing about the spine’s motion (§,),<, and about branching points along the spine up
to time fy. Using the description of the behaviour of the system under Q*, we see that
this is equal to

v
el

- |~ 1— f(N—
¢ Q&O(Z N o {i’)_to») [T @ (Nl =0p™ ] @43)
UueNt— " V=<,

where recalling the notation from Sect. 2.2.3, this product is over all branching points
along the spine before time #y (at times s,, and positions X, (s,) (= &(sy)), with A,
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children being born). Now we make the simple bound

1= > Aysup P (Nl > 0) = [T @ (N, 1 = 0"

V=< weD V=<

which tells us, by independence of &, and ), <V Ay, that (4.3) is greater than or
equal to

~ ~ 1 - f(Ntft )
X ‘510 0 _
[Q (Q (ZMEM,O w(xu(t—zo»)ﬂ ) {1 sup P (1N | > 0) Q (U;%A )}

We make a few observations. Firstly, @x (ZU <V Av> < cty for some constant ¢

depending only on the branching diffusion. Secondly,

- | = 1— f(Ni—y) / PY (1 - f(Nz—zO))
X & 0 — KD , d
¢ (@ 0 (me w(xu(r—ro))» A rTe g

by (4.2) again, and the fact that the spine particle has transition density K (defined
in Lemma 2.1). Using Lemma 2.1, which tells us that KIOD (x, y) converges to o(y)?
exponentially fast, uniformly in x and y, we see that the right hand side of the above
is greater than or equal to (1 — ¢’ e_V"’)af(t — 1p), for another constant 0 < ¢’ < oo,
where y > 0 is the spectral gap for L on D. Overall, we obtain that

pe (1 - f(Nt)) x .
e = T Clo s BTN > 0)+e7)

where we emphasise that the constant C depends only on the branching diffusion, and
noton x or f.

We now move on to the upper bound. This is simpler and we do not need to use the
spine change of measure. Indeed we can write

P (1= fNn) =P (P (1= f V) |F4)) =P (1 - [Ta-pa@(1- f(N,m)))

ueN,O

<P ( > B (1- f(Nt_m))) ,

uEN,O

where the last inequality follows because 0 < f < 1. Then applying the Many-to-one
Lemma 2.4 and dividing through by ¢(x) we obtain

P* (1 - f(N’)) _ /D e p (x. y) ()P (1 — f(Nt—ro)> d

@(x) p(x)p(y)
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Finally, by Lemma 2.1 again, we see this is bounded above by a ¢ (r — o) (1+¢’ e 77",
and so combining the upper and lower bounds we have

IP’x<1—f(N,)>_1 <c<

Vi 4y PY (|N,_ 0 4.4
p(x)ay(t — o) © o sup B (N | > )) @

weD

where again C is a constant not depending on x or f.

From here we can conclude. Because we know by Theorem 1.3 that sup,.p
P*¥ (|Ng| > 0) — 0 as s — oo, we can pick a function 1 < 7y(f) < t (defined
for all # > 1) such that the right hand side of (4.4) tends to 0 as t — oo. Thus, to
complete the proof we need only show thata s (¢) ~ ay(t—19(z)) ast — oo. However,
this follows since

P* (1 - f(N)
af—(t)—l‘ - f Mq o)?dx| (45
ar(t —1o(t)) p \ pxX)ar(t —1o(1))

which converges to 0, uniformly in f, by (4.4) and the choice of #y(7). O

4.2 Asymptotics for a(t)

To complete the proof of Theorem 1.4, we need to show that ap(¢) =: a(t) ~ bt~ !as
t — 00, where
2(m — 1)

1, ¢ (E(AD) — E(A))

(4.6)

The idea is the following: if we write P* (|N;| > 0) = u(x,t) as before, then u
will satisfy a certain partial differential equation in D (this is the FKPP equation if
L = 1 A). This will give us an ordinary differential equation that is satisfied by a(z),
and consequently we will be able to deduce the desired asymptotic. In fact, we will
never explicitly use the fact that u is a solution of this PDE (and instead derive the
equation for a directly) but this is the motivation behind our approach. Again we state
the relevant lemma in a more general setting, as this will be helpful later on. We let

A

up(x,t) =P* (1 — f(N,)) for any measurable 0 < f < 1 on D, and note that u
corresponds to u defined above.

Lemma 4.4 SupposethatO < f < land f € C([)). Thenay(t) = fD Q@)ug(x,t)
is differentiable for allt > 0 and

daf iy = _* Ga De(x)d 47
S == [ @ —ugte) g = Do dr @)

where G(s) = E(s?) is the generating function for A.
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Proof The idea is to rewrite u f(x, 1) = P* (1 — f (N,)), by conditioning on the first
branching time for the system. This gives us that a ¢ (¢) is equal to

/ o) e PX(n{,D>,}(1 — FX@)) dx

o,

The key fact that allows us to simplify this expression is that forall y € D and ¢ > 0
we have [, pP(x, y)o(x) dx = e™ ¢(y) by (2.5) (and (2.2), which shows that p”
is symmetric in x and y). Hence, by Fubini, we have

T P (Lo (1= G(1—up(X(s), t = 5)))) dsdx.

ap(t) = e MG / e = FO))dy

e M Gt 1*“/ / -e D (30 (1 = G — us(y. 5))) dyds
p—
4.8)

where we have also made the change of variables s <> ¢ — s in the integral. Now
we claim that for every y € D, s — uy(y,s) is a continuous function on [0, 00).
Assuming this is true (we will prove it momentarily) we see by dominated convergence
(and the definition of G) that the time integrand in (4.8) is continuous in s. Thus, by
the fundamental theorem of calculus, a 7 (¢) is differentiable and

dar® _ (1., ~ 1-Gd d
T—— <m+ )af(t)+m/D§0(y)( - ( _uf(y’t))) Y.

Writing ar(t) = fD @(x)u y(x, 1) dx to make the right hand side of the above into a
single integral over D, the result follows.

So, we only need to prove the claim concerning continuity. Fix ¢t € [0, oo) and
y € D. Then for any s € [0, 00)

(v 9) = up o0l = [P (F) = )|

P | Lyiw;s150) ]_[ F Xyt N s))

UEN g

~ [T P (f(N\HD)

UENas
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where for the second equality we have conditioned on JF; .. By the triangle inequality
(and using the fact that f < 1), this is less than

P | e =R (Favea)| |- 49)
U€Nips

which we can also write as

S O (]l{rD>tAs}

Xt As5)) = XA (f(Nh—s\)) ])
= [ p20 17 @ B (FNie—a) ) 14z
D

by the many-to-one lemma. Therefore by dominated convergence, since by Lemma
2.1 we can bound prD (v, z) above by something integrable in z, uniformly in r > ¢/2
for example, it is enough to show that

1@ =P (fan)| =0

pointwise inz € D asr — 0.
To do this, we bound

P (f@) = fN)) = (1= D) 4 PP < 1)

+/DPrD(1, w)| f(2) — f(w)|dw, (4.10)

which follows since the probability of the first branching time being less than r is equal
to (1 — e(m’])fl)"), and on this event | f(z) — f(N,)| < 1. Clearly the first two terms
of (4.10) go to 0 as r — 0. Moreover so does the third. Indeed, by continuity of f, for
any ¢ > 0 we can choose = n(¢) such that |w —z| < n = |f(w) — f(2)] < &, and
hence the third term can be made less than ¢ + P*(|X (r) — z| > ). By continuity of
the process X, we can then choose r small enough that this is less than 2e. O

Now let us see how this allows us to conclude the proof of Theorem 1.4.

Proof of Theorem 1.4 First we observe that since A has finite variance, s~2(G(1 —
s)+ms—1) — %(IE[AZ] —E[A]) ass — 0 (by dominated convergence). This means,
by Lemma 4.4, that we can write, for a(t) = ag(¢) and denoting a(t) = ‘é—?(r):

uz(x, 1)
a(t)?

a1 3 71/
Cl(t)z - b (17()0) D(p(-x)

(14 E(x, 1) dx

where E (x, t) — Ouniformly in x as ¢t — oo (here we have also used that the survival
probability decays uniformly to 0 in D). Now by Proposition 4.1, we can conclude
that
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d( ! ): a@) =b" "+ E@)

di\a®)) ~  a)?
where E (t) - Oast — oo. Using the fundamental theorem of calculus, [44, Theorem
6.21] (note we only need integrability of the derivative), we deduce the result. O

5 The conditioned system

Theorem 1.4 allows us to study the law of our branching diffusions conditioned to
survive for a long time in much greater depth. One aspect of the limiting behaviour is
captured by what happens to the law of the process run up to some fixed time 7, if it
is then conditioned to survive until a much larger time ¢. It turns out that this limiting
description is given precisely by the evolution of the process under Q*, as described
in Sect. 2.4.3.

Proof of Proposition 1.5 Recall, we would like to prove that forany T > 0, x € D
and B € Jr, we have that

lim P* (B||N;| > 0) = Q" (B).
11— o0

Conditioning on F7, we see that

P* (1 gP* (|N, 0|F P* (1gY
P* (B||N,| > 0) = (LpP* (IN;| > |T)):: (IgY)
P (IN:| > 0) P (IN:| > 0)
where we have defined, ordering Ny = {u1, ..., u|n;|} (for example with the depth

first order described in Sect. 2.2.3),

INT|
Y =P (NI > 01F7) = Y P (Nig| > 0) [ [TP (Ni—r] = 0)
i=1 j>i

Then, from the asymptotic for the survival probability, Theorem 1.4, and the fact that

# — last — oo, it follows that
1gY ZuENT @(XM(T)) Mt
N Ip=—1p
P* (|N| > 0) 100 @(x) Mo

almost surely, ast — 00. Moreover, wehavethat Y < Y, .y PX«() (N, _7| > 0) <

C IALI—TT for all large enough ¢ and some C > 0 depending only on the diffusion. This
means we can dominate 1Y /P* (|N;| > 0) by an integrable random variable, namely
a constant multiple of M. The dominated convergence theorem then provides the
result. O

Given the asymptotic for the survival probability, it is also not too much work to
prove Theorem 1.6, which gives some limiting information on the positions of particles
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attime ¢, given survival. Recall we would like to show that for any f with ( 12, gp) < o0
(this condition is required because we will apply the many-to-two Lemma in the proof)
we have

Y FXu@) | IN >0 | > Z

ueN,

2(m—1)
A(1,¢3)(E(A%)—E(A))

in distribution as t — oo, where Z ~ Exp(b(p, f yHandb =
before.
We first need an auxilliary Lemma.

as

Lemma 5.1 Recall the definition of ar(t) from Lemma 4.4. Then

1 ( 1 1 ) _1
— — — b,
t \as(®) ar(0)

uniformly over all f € C(D,[0,1)) :={f e C(D) : 0< f < 1}.

Proof Note thata ¢ (t) > 0 forall z, by Remark 4.3. Exactly as in the proof of Theorem

1.4, we obtain that
o (LI PR B
dt \a,;(t)) ~ /

where E (@) — Oast — oo, uniformly in f € C (D, [0, 1)). The uniformity comes
from the fact thatu/ (x, 1) < P* (|N;| > 0) tends to 0 uniformly over D x C(D, [0, 1)),
and that the convergence in Proposition 4.1 is uniform over C (D, [0, 1)). The result
then follows by the fundamental theorem of calculus. O

Proof of Theorem 1.6 We first complete the proof in the special case f = ¢. We will
show that for any o > 0

Pt (o Zuem 4O [y, > 0) .1)

b+«
uniformly in x as t — oo (which is enough, by Lévy’s continuity theorem for the

Laplace transform).
Fix o > 0. To prove (5.1), we first observe that if we define f;(x) = e" 1™ then

P (o Zuen 00 |y 5 0) = 1 - ELVACI
P* (|N:| > 0)

By Proposition 4.1 and Theorem 1.4, we also know that

ug(x, 1) by(x)
7 5] and _
px)ay, (1) tPY (|N:| > 0)
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as t — oo, uniformly in x € D. Note that it doesn’t matter that f; depends on 7,
since the convergence in Proposition 4.1 is uniform over C(D, [0, 1)). Hence, we are
required to show that

1 1 1

— — J—

tag, (1) b+a

as t — oo. However, this follows directly from Lemma 5.1 and the fact that 7(1 —
e vy ap(z) ast — oo forany z € D.

To deal with general f such that (2, ¢) < oo, we write f = f — (¢, f) ¢. We
will show that for any ¢ > 0

P (|t_1 D, T XKD > & | 1N, > o) -0 (5.2)

as 1 — oo, uniformly in x. This clearly implies the result by writing f = f + (¢, )¢
and applying the special case of Theorem 1.6 (with ¢) that we have just proved.

To prove (5.2), it is enough by conditional Markov’s inequality to show that
IE”"((F1 ZueN’ f(Xu(t)))2 | |N/| > O) — 0 as t — oo, uniformly in x. Moreover,
the many-to-two lemma, Lemma 2.5, tells us that

@(x)

B0 D FXu@D? 1IN > 0) = (mrim—s
t

ueN;

C o R(A2)— — 3 2
(em P (FX () ooy + BB (1) o02-s) pr (Lepoy [PX(S)(]I(.[D>,7S)f(X(t —s)))] )ds
X

to(x)
(5.3)

where we know by Theorem 1.4 that the expression outside of the brackets on the right
hand side is uniformly bounded in ¢ (> 1, say) and x. We also know, by (3.2), that for
all » > 1 and some constant C depending only on the branching diffusion, we have

e PY(f(X(r)*Lpo,y)
@(x)

< Clp, ), (5.4)

and by Lemma 2.1, plus Cauchy—Schwarz and the fact that that (¢, f ) = 0, that

e P* (F(Xr) ooy KD 5 5
( ) f EEED 4y Fyedy + f FOe(y) dy
@(x) p o) D

<Ce (g, fHY (5.5)

Finally, we observe that for s > 1, by Cauchy—Schwarz and (3.2) again,
—1lpx X (s) 3 2
)P (Lo [P (Los g F X = 5))]
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—1lpx X (s) 3 2
<o) P (1o PO (1pe,y [f(X(t - s))]
- 2
= () 'P" (11{,%} [Fxan] )
<Ce (g, f?)
where C is another, possibly different, constant. This tells us that

~ 2
S ne e P (1 [PX<S>(]1{,D>,,S}f(X(t — s)))] ) ds
@ (x)t

— 0

as t — 0o, uniformly in x. Using (5.4) and (5.5) on the remaining parts of the second
line of (5.3), together with the fact that

P* (L0290 (X (5))%) < sup |p(w)|[P*(Ip-g@(X () < @(x) sup |p(w)|e™

weD weD
i (5.6)
for all s > 0, it is easy to conclude that P*((+=' 3", . (X, (1))? | IN;] > 0) does
indeed tend to O, uniformly in x. O

We conclude by explaining how one can obtain Corollary 1.7 from here, which
describes the asymptotic distribution of a particle picked at random from the popula-
tion, given survival.

Proof of Corollary 1.7 To prove the Corollary we first show that for any f with
(@, f3) < o0

X, (t
P, (‘ZMGN,J% (1)) . f)

e, @(Xu(0)

>8||N,|>0>—>0 (5.7

as t — oo. Defining f as in the proof of Theorem 1.6, the left hand side of (5.7) is

equal to
p (

<P ) FXu®) > 8[IN| > 0

UueN;

t_l ZL[GN, f(Xu(t))
t! ZueN, P(Xyu (1)) ‘ - € | INt| > 0)

8
+P T Y (@) < <[ IN] >0 (5.8)

UeN;

for any § > 0. From (5.2) and Theorem 1.6, if we take a limit as ¢ — oo on the right
hand side, we are left with simply the probability that an exponential random variable
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is less than §/¢. Taking 6 — 0 proves (5.7). The corollary then follows by applying
the above with both f and the constant function 1, and writing > f(X,(¢))/|N;| =

2 S X)) 2 o(Xu () x 32 @(Xu () /I1N; . m

Note that by (5.2), for any fixed § the first term on the right hand side of (5.8)
converges to 0 uniformly in x. Moreover, by Markov’s inequality we can write

1)
P @) < 2 [INg] > 0 < elf B (e Zuen v | > 0)
&

ueN,

which by (5.1) converges to e/ b(b+8~1)"! ast — oo, uniformly in x. This implies
the following:

Corollary 5.2 For f as in Corollary 1.7, and any ¢ > 0, the convergence to 0 in (5.7)
is uniform in the starting position x.

We will use this to prove a stronger version of Corollary 1.7. Corollary 1.7 tells
us that the average value of f(X,(z)) among all vertices v € N;, given survival,
converges to (f, )/ (1, ¢). The next lemma will tell us that in fact we need only
look at the average over a large enough subset of N, (we will see precisely what this
means in a moment). First we need some notation. Recall from Sect. 2.2 that we can
view our branching diffusion as a marked tree (7,/, X) € J. This means that for
every t such that N; # @, we can write N; = {w (1), wa(?), ..., w)n,|(¢)}, where the
indices correspond to the depth first ordering of the particles (see Sect. 2.2.3). For any
1 < M < |N;| we can then define the set

Ney ={wi(t) 1 1 <i < M},
and have |N; y| = M.

Lemma 5.3 Let f be a bounded measurable function on D. Then for any €, p > 0
andx € D

‘ Suen, y S Xu@®)
" <Btf’ (o) [ IN:] > O) = ({Pf =i {UpISMSNz {‘ = M

) i)

converges to Oast — oo.

Proof (see Fig. 2 for a sketch) We will prove the lemma by looking at the system
conditioned to survive until time 7, and dividing N; into families, depending on whether
or not particles have the same ancestor at some earlier time. This earlier time will be
chosen such that with high probability, the average value of f(X,(¢)) over v in any
one of these families is close to (f, ¢) / (1, ). This already shows that there are many
subsets of N, over which the average value of f(X,(¢)) is close to what we want. To
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0

Fig.2 Sketch of the argument. There are O (g (¢, €)) particles at time t — /g (t, €) with descendants at time
t (marked with dots). Each of these families is likely to be good and has size O(t/g(t, €))

extend this to all large enough subsets of N, (as in the statement of the lemma), we
will show that the size of each of these families is very small compared to .
To do this, fix & > 0 and write

('ZueNr FXu@®) — (f, 9)

(t,8) := sup P*
b p V| )

xeD

8/2' N, > 0),

which by Corollary 5.2, converges to 0 as + — oo. This means that we can choose a
function g(t, ¢) < t such that g(¢, &) — oo ast — oo, but

g, e)p < ,8> -0 (5.9

t
g(t,¢)
ast — 00.3

As mentioned above, we will break up the set N, into families. Two vertices will
be in the same family if they have a common ancestor at time ¢ — #/g(¢, €). For
1 <i < |Ni—t/g(,6)| we define

o (f— f (X (@)
mi = LtveNnt ’/g;’"g))“} ’ for o;:=|{ve N :wi(t—1t/g(t, &) < v}
1

to be the average value of f among the ith of these families. If w; (r —¢/g(¢, €)) has no
descendants at time ¢t we set m; = (f, ¢)/(1, ¢). The key to the proof of this lemma
will be to show that

3 Indeed, since p(t) := sup{p(u, &) : u > t} converges monotonically to 0 as r — oo, we can choose
g(t, &) < J/tbutstill converging to co, such that g (¢, £) p (/1) — O0ast — oo. Thensince p(t/g(t, €), &) <
p(t/g(t, ) < p(4/1), the function g will satisfy (5.9).
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(f, ®)
_— | > &

[Nt—t/g(1.0)]
-
(1, 9)

P* (A | IN] > 0) =P [ [

i=1

/2} IN>0] =0

(5.10)
ast — oo.
To do this, it turns out to be more convenient to look at the unconditioned probability,
and then use Theorem 1.4. We write

P* (A; N {IN;| > 0})) =P* (PX (At N {IN:| > 0} | gjtft/g(t,e)))

which by Theorem 1.4, a union bound, and the definition of p(s, ), yields the inequal-
ity

X " t (t,e)
P* (A; N{IN;| > 0}) < CP* (INi—1/g1,0)]) P (g(t’s),e) g ; (5.11)

for some C depending only on the branching diffusion. Moreover, by Lemma 2.4
and (3.2), we have that P* (|Nt,t/g(t,g)|) < C’¢(x) for some further C’, and so
the expression on the right hand side of (5.11) is less than or equal to a constant
times 1~ lop(x)p(t/g(t, €), €)g(t, €). Finally, dividing left hand side of (5.11) by
P* (IN;| > 0) ~ t~'¢(x) and then applying (5.9), we obtain (5.10).

Now we prove that

[Nt—t1/g(t,e)]

Py (A} | IN;| > 0) :=P, U

}||N,|>0 -0
i=1

t
{“" 7 G enii

(5.12)
as t — oo. For this we apply a similar argument to above. We write

P (A; N {IN:] > 0}) =P* (P* (A; N{IN:| > O} | Fr—r/e0.00))

t
< CP* (|N;— sup PY ( |N > —
< (IN; t/g(t,e)|)y€g <| t/g(t,0)] g(t,8)1/3>

Co(x)
< PTRSLE (5.13)

where the last inequality follows because for any y € D, by Markov’s inequality and
the uniform bound on P (|N,/g(,,s) |2) from Lemma 3.2,

P 2/3
p ! Y (|Nt/g(l s)|2) g(t 8)2/3 g(1,¢)

Y , ) FIO0)
('Nt/g(t,6)| > (t,s)1/3> = 2 <C 2 .

Now dividing through by P* (|N;| > 0) on the right hand side of (5.13) gives (5.12).
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Finally, we are in a position to prove that IEDX(Btf’S(,o) | |[N¢| >0)— Oast — oo.
By the above work, and a union bound it is enough to show that

B/*(p) c A, UA]
for all ¢ large enough. In fact, we will show that
(AN N (AD° N {or <IN} € (B (o))",

for all 7 large enough, which suffices, since by definition (A;,)°N(A})“N{pt > |N;|} C
(B (0)".

So, suppose we are on the event (A;)°N(A))*N{pr < |N;|}and forevery M < |N,|,
set M < k(M) := o009+ 01 + -+ 0i+1, where og := 0, and i is the unique integer
such thatog + -+ +0; < M < 09 + --- + 0i+1. Then because we are on the event
(Ap)¢ we have that

<eg/2

ZueN,,k<M) JXu(@®) . X2
k(M) 1, ¢)

for all pt < M < |N;| simultaneously (in fact, for all 1 < M < |N,|). Furthermore,
since we are on the event (A}), for M > pr we have

ZueN,,M f(Xu(t)) . ZL{EN,J((M) f(Xu (I))

M k(M)
k(M) — M| (| Xuen, s | Xu(0)
- ' M ’ (' k(M) Jrus)telli)lf(w)l
1 (f, 9)
= pgt,e)l/3 <2(1,¢) +2‘;I;|f(w)|).

Thus, for all ¢ large enough, because g(¢, €) — oo, this must be less than ¢/2 for
all M > pt. Consequently, we must be on the event (Btf “(p))E. m|

6 Convergence to the Brownian CRT

From this point onwards, we will assume that ¢ € C 1(D) as in the statement of
Theorem 1.1. In particular this means that all the first order partial derivatives of ¢ are
bounded on D.

Recall from Sect. 2.2.3 that we associate to our branching diffusion (7,/, X) a
continuous plane tree T = T(7', I, X). This is the continuum tree with branch lengths
given by lifetimes of particles in the system. Let us first describe the continuous time
depth first exploration of T; this is very closely related to the continuous exploration
of T used to define the contour function in Sect. 2.2.3, but in this case we do not
“backtrack” along branches of the tree (see Fig.3).
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A
height

Fig. 3 A sketch of the depth first exploration of a continuous tree. Full arrowed lines represent motion at
speed one in the vertical direction. Dotted arrowed lines represent instantaneous jumps

Recall that if |T'| is the total number of individuals in 7, then we can order them
{ug := uo, uy, ..., u 7|} with respect to the depth first order. The depth first explo-
ration is then the continuous time process v; on [0, Zoijfm lu;) :== [0, L(T)), taking
values in T, defined by

vo=w i Y Ly <t <Y Ly 6.1)

j<i j=i

where we recall the definition of the lifetime /, of an individual v from Sect. 2.2.3.
Informally, this process visits the individuals of 7" in depth first order, and spends time
1, visiting individual u. We let k; = Zj<l- luj if vy, = u;, sok; = inf{s <t : vy = vy}
is the time at which the depth first exploration “starts visiting” the individual v;.
Although this depth first exploration takes values in 7, we should think of it as a
continuous exploration of T, where between visiting vertices, the branches of T are
traversed at speed one. See Figure 3 for an illustration: note that we shall always refer
to the exploration as an exploration of T rather than an exploration of 7', in order to
keep the correct intuition.
Now we describe the height function associated to the depth first exploration. This
is defined by
Hy = (50, — L) + (¢ — ), 6.2)

so describes the evolution of height as we traverse, if we think of our depth first
exploration process as described in the previous paragraph (again see Fig. 3). We can
think of this as a “non-backtracking” version of the contour function from Sect. 2.2.3.
The height function will be useful for the proof of Theorem 1.1 for the following
reason:

Remark 6.1 Consider the interval [0, L(T")) on which the depth first exploration is
defined, and for r, w € [0, L(T)) set

d*(r,w) = H, + H, —2 inf  H,. 6.3)

selrAw,rvw]
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Then this defines a pseudo-metric on [0, L(T)): we can have d*(r, w) = 0 if r and w
correspond to two times at which a “branch point” on T is visited. We can therefore
define a metric space by quotienting [0, L(T")) using the equivalence relation r ~*
w <= d*(r,w) = 0. It is easy to check that ([O’,LV#, d*) is P*-almost surely
isometrically equivalent to (T, d).

In fact, for the proof of Theorem 1.1, in the end we will prove that if we look at
([O’i#, %d*) under the law P* (- | |N;| > 0), then these random metric spaces will
converge, in distribution as ¢t — oo, to the Brownian CRT (T, de). Remark 6.1 tells
us that this implies the theorem. The reason we choose to study the height function
rather than the contour function described in Sect. 2.2.3 is because, as we will soon
see, there is a natural way of defining a martingale that is very closely related to the
height function (and as soon as we introduce backtracking into the exploration of the
tree, the martingale structure is lost).

Finally, it should be clear that any time ¢ in our depth first exploration of the
tree is naturally associated with a position in D. That is, if v; has associated motion

Xy, : [sy, — Ly, sy,) = D, then we can write
Vi = Xy, ((sy, — ly,) + (1 — K1) (6.4)

This process V; then describes the evolution of position in D, if we do a continuous
depth first exploration of T, and we follow the motion of an individual u over its
lifetime during the time that we are visiting it.

Now we will start setting up for the proof of Theorem 1.1. A classical technique
in proofs of this sort (see for example [19,36]) is, instead of considering one tree
conditioned to be large, to consider an i.i.d. sequence of trees without any conditioning.
Describing the scaling limit of this process then allows one to also describe the scaling
limit of a single “large” tree.

So, we write P* for the law of a sequence of i.i.d trees (T 14, xhY, (12,12,
X2), ---), where each (Ti, I, Xi) has the same distribution as (7', [, X) under P*.
We concatenate the continuous depth first explorations of the trees in the natural
way, and write H, for the associated concatenation of the height processes. To show
the convergence in Theorem 1.1 it will be important to show that H; when rescaled
appropriately, looks like a reflected Brownian motion. To do this, we introduce a
further process, S;, which will turn out to be a martingale. This can be thought of as
an analogue of the Lukasiewicz path used in [19].

In the following, we write

J
Ap:=inf 4 j>1": ZL(Tj) >t (6.5)
i=1

for the index of the tree being visited at time ¢ in the continuous depth first exploration.
We also write

b= (v, Ay) € TN x {A} € Q@ x N,
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where v, is the individual in 7 being visited at time ¢ in the exploration of the
sequence of trees. We still write V; for the associated position as defined in (6.4).
Finally, we say that for any u, v € Q, w is a younger sibling of u, denoted w <; u, if
there exist j < k € Nand v € Q2 such that u = vj and w = vk. If we have a tree T
and an individual u € T we write

Yu, T)={w e T :w <, v for some v < u}

for the set of younger siblings of ancestors of u.

Definition 6.2 Suppose we have a sequence of trees (77, I/, X' ))i>0. We define for
t>0
Si=o(V) =Y eXhON+ D eXhsh =15, (6.6)

i<A; weY (v;,TNr)

Informally, the process (5,)[20 can be defined as follows. We do our continuous
depth first exploration of the sequence of trees and, until the first “branching” or
“death” time, S; is just equal to —¢(x), plus a term that follows (¢(V;));>o: that s, ¢
applied to the position of the individual we are visiting at time ¢. The initial —¢(x)
term is just included for convenience, so that S’o = 0. As the exploration evolves, we
always keep the term that follows ¢(V;), but also, whenever we pass a branch point*
at time ¢, we add on ¢(V;) times the number of particles born minus 1. Whenever we
reach a leaf (but not the end of a tree) we jump down to the next particle to be visited
in the depth first exploration, and then ¢ of the position of that particle, which was
before included in the third term of (6.6), becomes the ¢(V;) term: the first term of
(6.6). When we reach the end of a tree, we subtract ¢(x), but then start the depth first
exploration of the next tree (so in particular ¢(V;) at such a time becomes ¢(x)).

In fact, (5‘,),20 is very closely related to the martingale (M;);>0 defined in Sect. 2.3.
Essentially they are the same process, but “explored” in different orders, and we will
see that this is enough to preserve the martingale property. The overall idea is that we
would like to approximate the height process (H,);>0 by (S;);>0, and then apply an
invariance principle for the latter, which we can do because it is a martingale. This is
an analogous idea to that used to prove convergence of Galton—Watson processes to
the CRT in [19], where (S’,)lzo here plays the role of the Lukasiewicz path. We first
record a property of this process, which will be essential to showing a relationship
with the height function. It states that a slight modification of (§;);>¢ is equal to a
certain explicit process, that will later turn out to be (roughly) proportional to (H;);>0.

Lemma 6.3 Fort >0, let S| = S, — ¢(V;) and I = info<s<, S.. Then

So:=58-I/= ) eXyGu -1y

weY (v;,TAr)

4 That is, a point on the tree corresponding to one individual dying, and being replaced with a strictly
positive number of offspring.
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Proof Since ¢ is positive, it is clear that I_l’ = — ZiS A, 9(X (ia (0)). This implies the
result. O

Definition 6.4 If we have a single tree (7', X, [), with continuous depth first explo-
ration process (v;);>0, we define the corresponding processes (S;);>0 and (S;);>0
by
S = (V) + ZweY(v,,T) (X (Sw —lw) —ex); t < L(T)
S S ZEO% t > L(T)

and
S, = ZU)EY(U[,T) (X (sw —1lw); t < L(T)
o t > L(T).

Remark 6.5 Note that (S;);>0 is a process that starts and ends at 0 (at time L(7")) and
is positive in between, i.e. an excursion. Moreover, for y > 0 the law of (S;); under
P*, conditioned on {sup, S; > y}, is the same as the law of (Sz)zzo under P*, restricted
to the first excursion in which it exceeds y.

6.1 Martingale convergence
We let (52),20 be defined for each r > 0 by 5", =

o {Uian, (T7 1 XDV AQY' . X' Ay B = (w, Ap). 7 < k),
X0 or € Iy = Itosy = Iy + (= k)]

That is (f_f",)tzo is the filtration that knows everything about the continuous depth
first search of the sequence of trees (77, ', X')); up to time 7. It encodes: (i) which
individuals in which trees are visited and when before time ¢; (ii) their spatial motions
(although for v, only up until the point in its lifetime that has been explored by time
t); and (iii) their progenies, or offspring, (apart from that of v;).

Lemma 6.6 Under P* the process (S‘,),zo is a martingale with respect to (5’}),20.

Before we prove the lemma, we show that (S;);>¢ is locally square integrable,
which will be of technical importance in what follows.

Lemma 6.7 Foreveryx € D and R > 0, sup, < g ]P’x[(S',)Z] < 0.

Proof of Lemma 6.7 Fix R > 0. Since ¢ is bounded it suffices to show that A, and
|Y (vs, As)| have uniformly bounded second moments under P* for + < R.

e For A, we simply note that we can stochastically dominate A, for any + < R by a
geometric random variable with success probability P*(tp > R).

e For |Y|, it is a little more complicated. First observe that, for any ¢ > 0, if we
condition on the time L(TH) + - - -+ L(T 1) that we start exploring the Agh tree
in the sequence, the conditional law of the A}h tree is just that of a single tree under
P*, conditioned on having |N;_; r1)4... ra-1)| > 0. Since the probability of
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this event is bounded below by P* (P > R), and |Y (vs, Ay)] is bounded above
by max{|Y (u, A,)| : u € TM, sl — 1} < R}, itis enough to show that

P [(max{|Y(u,T)| : u €T, s, —1l, <RD?] < o0 (6.7)

(note this is now an expectation for a single branching process). However this
follows from the assumption that A has finite variance. Indeed, consider a pure
(i.e. no spatial motion) branching process in continuous time, that branches at rate
A/(m — 1) and has offspring distribution A’ = A + 1 (so that there is always a
positive number of offspring born). Then if N, is the total size of the population of
this process at time R, it is clear that Nz stochastically dominates max{|Y (u, T)| :
ueT,s, —1I, < R}.Moreover, it is easy to check that Ny has finite variance (for
example, by conditioning on the first branching time).

m}

Proof of Lemma 6.6 Before commencing with the technicalities of the proof, we
would like to emphasise that the reason (S;),0 is a martingale is exactly the same as
the reason that (M;);>o from (1.6) is a martingale. The branching Markov structure
of the process is preserved when we explore in the depth first order, and this means
that (5}),20 being a martingale is equivalent to it having constant expectation. The
fact that it has constant expectation is intuitively clear because, after a small time &,
P*(p(Vs)) ~ e p(x) &~ @(x)(1 — A8) and branching contributes Ad¢(x) to the
expectation (the fact that we are exploring in the depth first order does not affect this).

Let us now be more precise. The first step in the proof is to show that if (S;);>0 is
the process (S})tzo for a single tree (as described in Definition 6.4) then

P[S,]=0 V>0 (6.8)

We will then show how this implies the martingale property.

To see (6.8) we define a sequence of times Rj, R»,...as follows: let Ry = sy, and
given {Ry, ..., Ri} set Rk+1 = Ri + lka . In words, (R )k>0 is the sequence of times
at which the particle we are visiting during the depth first exploration of the tree either
branches or exits the domain. We will prove by induction that for any n > 1

P*[Siar, 1= 0. (6.9)

Then since P*[S;] = P*[Siar, ] + P*[SiLt>r,}] — P*[Siar, Liz>r,}] and the second
two terms tend to 0 as n — oo (by Cauchy—Schwarz, (6.7), and the fact that P(r >
R,) — 0) this implies (6.8).

For the induction, first note that in the case n = 1 we can immediately write
P*[Siar ] = P*[Miar,] — ¢(x) = 0. Then for the inductive step we consider
P*[SiAR,.1 — Star,], and condition on everything that has happened in the depth
first exploration up to time ¢ A R,,. In the case thatt < R, ort > L(T) the conditional
expectation of S;Ag,,; — Siar, 1s clearly equal to 0. Moreover, on the complementary
event we can use exactly the same argument as for the n = 1 case to see that the
conditional expectation is equal to 0. This proves (6.9) for all n > 1.
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Finally, we must use this to prove the martingale property. The idea is that for ¢t > s,
P* (S, — Ss | ?S) can be written as a sum of expectations of the form (6.8): one for
each of the subtrees rooted at the elements of Y (v, Ay) plus one for each (T J>Ass
where the time ¢ in (6.8) is replaced in each expectation by a random time that is
(importantly) independent of the tree/subtree being considered. More precisely, we
can write for0 < s <t

— — — — A A A
PX(S[ _ Ss | g’s)zpvr (S(t—s)) — (p(Vs)+ Z ((waf(swt,lw’) X /.Lw) (So‘(w))
weY (vs,Ay)

—@ (XD (D = 15))) + D (" ® i) (So) — ()

i=1

where ® represents the independent product measure, the (1, are random laws on
times o (w) for each w € Y (vy, Ay), and the u; are random laws on times o; for each
i > 1.9 By (6.8) we see that the right hand side of the above is equal to 0. O

Lemma 6.8 Forany x € D, (S‘,),Zo is a locally square-integrable martingale under
PX. Its predictable quadratic variation is given by

t

S= [ T B2 =24+ DoV +2 Y il (v,

@
()m—l — ) .
i,J

dp 0¢
—(Vy)ds.
0x; 0x;

Proof We already know from Lemmas 6.6 and 6.7 that (S‘,),zo is a locally square-
integrable martingale. To calculate its predictable quadratic variation, let us look at
the definition a little more closely, and try to break up (S;);>¢ into continuous and
jump parts.

It is clear that all the terms in (6.6), apart from the ¢ (V;) term, are constant except
at times where v, (the vertex we are visiting at time ¢ in the depth-first exploration)
changes. It is also clear that ¢ (V) is continuous away from these times. Note that the
number of such times is a.s. finite on any finite time interval (for example, since the

expectation of the number of such times is finite). We write V;_ = limy4, Vi, which
exists since (V;); is cadlag. Similarly, since the process t — v; = (v, A;) is cadlag
with respect to the discrete topology on €2 x N, we can define v, = limg4; v5. By the

above discussion, any discontinuities of S; must occur at times ¢ such that v;_ # v;.
We consider the different possibilities for such times:

(I Vi~ € daD. This means that ¢(V;_) = 0, and so ¢(V;) — ¢(V;~) = ¢(V;). In
this case, there are two further possibilities: (a) A;— = A; and v; = (w, A;_) for
some w € Y (v,—, TA) or (b) ; = (@, A,) with A, # A;—. In case (a) we see
that the third term on the right hand side of (6.6) also decreases by ¢(V;) at time
t, and so §t — S[_ = 0. Similarly, in case (b) the second term on the right hand
side of (6.6) decreases by ¢(x) = ¢(V;) at time ¢, so again S; — S;_ is equal to 0.
Overall, such a situation does not actually correspond to a discontinuity of S;.

5 For example, if w is the oldest younger sibling of v; (so vy = uj and w = u(j + 1) for some j > 1) then
o (w) would be (# — s) minus the minimum of (¢ — s) and the total length of the subtree rooted at vy.
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() V;— ¢ oD but V;_ # V;. Then A,,_ = 0 and again v; satisfies either (a) or (b)
defined above. By the same reasoning, we have that S, —8_ = —o(V,—) =
(Ay_ — Do(V;o).

) V;— = V;butv, # v,_. This corresponds to the continuous depth first exploration
reaching a branching point at time 7 that is not the end of a branch. In this case
we have A, > 1and §; — = (Ay,_ — Do(Vy).

With this is mind, we define

59 = 0(V) —p) = Y (0(Ve) —e(Ve)) and §7 = Y g(Xi(si))(Al — 1)
s<t (w.i)=bs
for some s<k;

(6.10)
Observe that

5 =57 =)0V — (V)= D oXGO) + > @(Xh(sh —15)

s<t i<A; weY (v, TAr)

is equal to the sum of the jumps of ¢(Vy) that occur before time #, plus the sum of
the jumps of S; — ¢(Vy) that occur before time ¢. This implies that (S’t(c) )i>0 is a
continuous process. Moreover, together with our previous considerations, it tells us
that S‘t — S't(c) is equal to S',(j ) for each ¢. Indeed, at times where (I) is satisfied, the two
types of jump that make up S; — S, () cancel each other out, and at times where 1) or
(I1I) is satisfied, the jumps are precisely the jumps of S(/ )

In conclusion, we can write S, = S(L) + S(j ) for ¢ > 0, thus decomposing S into
a continuous process and a jump process. This means that if we write v(w, dt, dx)
for the predictable compensator of S't(j ) (see [32, § II, Theorem 1.8] for the definition)
then we have [32, §II, Proposition 2.29]

t
(S), =[§<C>],+/ /x%(w,ds,dx). 6.11)
0 JR

where [-] denotes the ordinary quadratic variation. Since S is continuous, and its
increments are that of ¢ applied to an L-diffusion in D , we have that

[5©7, —2/ Za”(V)——(V)ds

Moreover, one can check (straight from the definition in [32]) that

A
v(,ds,dx) =Y P(A = k)8x—1)p(v,_ () (dx) x ds. (6.12)
=0 m—1
From this and (6.11), the lemma then follows. m]
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Proposition 6.9 Let

» 2671 Al ¢?)(E(AY) — E(A))
(L) (m —1)(1, 9) '

Then

Sne
(ﬁ>t>0 — (0B);>0

in distribution as n — 00, with respect to the Skorohod topology, where (B;); is a
standard one dimensional Brownian motion.

Remark 6.10 In fact, n need not be an integer here (ie. we can let n — oo in R). We
use the notation 7 so as to clearly distinguish it from the continuous time parameters
used to describe the evolution of the process. The same remark applies to Propositions
6.12 and 6.13 below.

Proof This follows from the functional central limit theorem for martingales [32,
§VIII, Theorem 3.22] once we can show that for all r > 0

(8", > ot (6.13)

in probability as n — oo. Here (S‘”)t>0 (Sn,/f)t>0
To show the convergence (6.13), we observe that we can write

<S‘”)[_i nt— 2 _ 2 lj _g)ﬂ
t _nt/ m—1 E(A 2A+1)¢(V)+2§: (Vy) 7 0, (Vy)ds.

Then, since ¢ and all of its first order derivatives are bounded (recall we are assuming
this in this section), the result follows immediately from Proposition 6.11 below. Indeed
the proposition gives that

(S AE[A® —2A + 1] X ;
> D e g | o) e (o

6 In fact, since (S,"), may have jumps, we also need to verify an extra condition in order to apply the
functional central limit theorem. However this condition, see [32, § VIII, Eq.(3.23)], is simply that we have,
forevery ¢t > 0,

A ! 2 )
m/(; ¢(Vs—(w)) ]E((A — 1) ]]'{(A—l)z(p(vs—(w))2>n£}) ds — 0

almost surely as n — oo (where the expectation E is only over A). Since A has finite variance, this does
indeed hold.
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as t — oo, where the right hand side, by applying (2.1) with v(x) = ¢(x)?, is equal
to

A1, 9%)

Proposition 6.11 Suppose that f is a bounded, measurable function. Then

1 (f.9)
o -—;/O f(Vy)ds — )

in P*-probability as t — oc.

Before we prove Proposition 6.11, let us record some of the consequences of Propo-
sition 6.9.

Proposition 6.12 Under P*, we have the joint convergence

Snt Ay o 0 )
- ,——L 6.14
<ﬁ ﬁ)»ﬁ <a|ﬁt| SH®) (6.14)

asn — 0o, in distribution with respect to the Skorohod topology. Here, B is a standard
Brownian motion started at 0 and L?(,B) is the local time of B at 0.

Proposition 6.13 For any y > 0, under P* (- ] {sup, S; > /ny}) (note that we are
now considering the law of a single tree), we have

Snt (d) >y/o
(«/_ﬁ)eo D (oe; )tzo (6.15)

where (e,zy / 7):=0 is a Brownian excursion conditioned to reach (at least) height y /o.

Proof of Proposition 6.12 From the definition of S’t/ = S, — ¢(V,), we have that
1S/, /0 — Snt/ /1] < |@lloc/~/n for all # > 0 and so Proposition 6.9 implies that

(5) o
Jn >0 B

as n — oo as well. Writing B, = info<,<; By this implies the joint convergence

Snt I_;;z S;zt [_}’/Lt I_l;t (@)
Suo_nt ) (STt it - (6(B, — B,), —0B
(«/ﬁ \/ﬁ >0 «/ﬁ ﬁ t>0 n—o00 (G( ! t) o l)tZO
- (6.16)
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where the right hand side by Lévy’s theorem, see for example [42, §VI, Theorem
VI.2.3], is equal in distribution to

ol aL)(B)
( )

t>0 '
However, we know that A; = — _,’ /o(x), and so (6.14) follows. O

Proof of Proposition 6.13 For this result, we follow [19, Proposition 2.5.2]. It is well
known that you can construct the process €=/ from a standard Brownian motion
by taking

>
ez_y/a = |BG+nAD]

where T = inf{t > 0:|B;| > y/o},G=sup{t <T:p, =0}and D =inf{t > T :
B: = 0}. By the Skorohod representation theorem and (6.14) we also know that there

exists a process
(z0.A") @ (3,2, — 1 Am)
t > t - )
120 NIRRT P

such that

(n) A (1) 0
R (o|ﬂf| preets os))

uniformly on every compact set almost surely. This is because Skorohod convergence
is equivalent to local uniform convergence when the limit is continuous. Define 7" =
inf{t > 0: Z™ > y} for this sequence of processes, and G™, D in the same way
as G and D above. By Remark 6.5 and (6.14), if we can prove that G® — G and
D™ — D almost surely, we will be done. To do this, first note that since 8 must
exceed y/o immediately after time 7', we have that 7™ — T almost surely. This
implies straight away that for all 1 < D we have t < D™ for all n large enough
almost surely. Now we must show that for all > D we have t > D for all n large
enough almost surely. These facts together (along with the corresponding results for
G) are enough to prove the convergence. To see the final claim, we use the convergence
of the local time. For any ¢ > D, we have using basic properties of Brownian local
time that LO > L% = L(%. The convergence of the local time therefore tells us that

t>0

A;") w‘(’ ; LO for all n large enough almost surely. Since

almost surely, this implies that we have also have Ag") A(T"())

almost surely. Using the fact that A® stays constant on [T, D™), we see that
t> DM, |

for all n large enough
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6.1.1 Proof of Proposition 6.11

The rest of this subsection will be devoted to the proof of Proposition 6.11. We begin
by stating some preliminary lemmas that we will need for the proof. The first lemma
gives a lower bound of order 7~!/2 for the probability that a single tree 7 under P*
has total size (as measured by the total length L(T) of the continuous depth first
exploration of T') bigger than 7. This is a consequence (see the proof) of the fact that,
if T is conditioned on reaching height at least s with s large, 7' will have size of order
s2: the same scaling relation that holds for a Brownian excursion. The second and
third say that if we pick a time uniformly in [0, ¢] and look at the height of the particle
visited at this time in the concatenated depth first exploration of a sequence of trees
under P*, then with high probability the height will not be of order bigger than /7, but
it will go to oco. Again this is heuristically what one should expect if Theorem 1.1 is
true, since the same holds for the value of a reflected Brownian motion at a uniformly
chosen time in [0, 7].

Lemma 6.14 For any to > 0, there exists a constant ¢, € (0, 00) such that for all
x€Dandallt >t

@(x)

7

PY(L(T) > 1) = ¢

Now, let U; be a sample from the uniform distribution on [0, ], and write ,u,U for
its law. In the following we write

Ht* = Hy, ; A;k =Ay, and Vt* =Wy, (6.17)
to simplify notation.

Lemma 6.15 Forall x € D
P* @ ul (H;* > cﬁ) =0

as C — o0, uniformly in {t > to} for any ty > 0, where Q represents the independent
product measure.

Lemma 6.16 Fors > 0, define R®(t) > 010 be such that]f”x@)uf] (Ht* < R‘S(t)) = %.
Then R(t) — oo ast — oo for any x € D.

We will now show how we may deduce Proposition 6.11 from these lemmas, and
then go on to prove them. In the following we set N{ = {u € T' : s € [s;, — I}, s5,)}
and N!, ={u e T': {s € [s}, — I, s))} N {(u, T") = ¥, for some r < t}}. In words,
N; is simply the set N for the ith tree, and N;t C Nsi is the set of individuals in
N, é that have been visited in the depth first exploration of the sequence of trees before
time ¢.
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Proof of Proposition 6.11 The main idea of the proof is to view Q; as the “average
value” of f taken over all the positions (V)seo,s] discovered before time ¢ in the
depth first exploration of the i.i.d. sequence of trees. Recall from Corollary 5.2 that
if we take the average value of f over all posiitons of particles at height 7 in a single
tree (conditioned to reach height at least ¢) then this converges to (f, ¢)/(1, ¢) in
probability as # — oo. Roughly speaking, this convergence carries over to the average
0 because the depth first exploration spends most of its time in large trees at relatively
large heights.
To prove this properly, we define

)Y e )

MENH;‘,z

to be the average value of f among the vertices at height H;" of the A;”h tree, that
have been visited before time t in the depth first exploration. Observe that

0 =B @u! (o, X'\ 1Ni20).

This means that if m, converges in P® /xtlj -probability to (f, ¢)/(1, ¢), then it will
also converge in LXP® pL,U) (because f is bounded), and so by conditional Jensen’s
inequality, Q; will converge in L? and hence in probability to (f, ¢)/(1, ¢) as well.
Thus if we can show that for any fixed ¢ > 0,

P ® /,LIU (A) =P ® M,U (‘m, — ((Z’—JIC)) > 8) -0 (6.18)

as t — 00, then Proposition 6.11 will follow.

To do this, also fix a 8§ > 0: we will show that P* ® ,uf] (A;) < ¢ for all large
enough 7, and hence prove (6.18). First, by Lemma 6.15 we can choose C such that
P* @ uV (H} = CV1) < % for all t > 1. We can also define R(r) := R%(r) to be
such that P* ® u,U (H,* < R(t)) = 3, and by Lemma 6.16, we have that R(t) — oo
as t — 00. Now, for the ith tree in our exploration and s, ¢ > 0, let

mls,t = |st"[|71 Zueﬁi f(X;(S))

be the average value of f among the individuals of tree i at height s that are visited
. . . A} Y

before time 7 in the depth first exploration (so that m, = m . ). Also write A, for
to b

the event that |m§’[ — (¢, )/ (@, 1) | > ¢. Then the above considerations tell us that
we can write

_ U 26 Vi
P @u (A) =3 + t[@x /() D Lizantyg Nl ds (6.19)
R(t i=1
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for all + > 1, where we have obtained the expression for the second term on the right
hand side by first conditioning on {H;*, A}}, and then taking expectation over them.
Now by Fubini (since everything is bounded by 1) we can rewrite

_ Cvr 2
Ti<anly | |ds = / P ]1 AL i |N |) ds.
/R Z i< A RO Z i=atal st)

0 = i=1
(6.20)
The idea is, foreachi > 1, to conditionon K; | = o (U< (T7, X7, 17)). Note that
Xi_1 is independent of the ith tree. Moreover, the event {i < A,} and the start time
i = L(TY) 4+ -+ 4+ L(T* 1) of the ith tree, are measurable with respect to K;_1.
Thus we can write, for eachi > 1,

B (Laeantyg, INE [ Kio1) = Laea P (Lasamn Vs = 7))

= Lii=ayP* (Lay—epINs(t — )| | INs| > 0) P* (I Ny| > 0)
6.21)

where the expectation in the final term is now with respect to a single branching
diffusion under P*, Ng(r) := {u € N; : u = vy, for some h < r} is the number of
particles at level s in this tree that are visited before time r in a depth first exploration

of it, and A, (r) = {[INs()I ™! L, 1) FXul9)) = (@, )/ (g, D] > e}is the event
that the average of f among the positions of these particles is more than ¢ away from

(o, NH/(p, D).
We record here that by Theorem 1.4 and Lemma 3.2, there exists a K such that

172
PN 1N > 0] 7 = ke, PN > 0) < K /e (6.22)

for all + > 1. We can also, by Lemma 6.14, choose this K such that
P*(A,) < —— (6.23)

for all + > 1. Indeed, A; can be stochastically dominated by a geometric random
variable, whose success rate is P* (L(T) > t) > c1¢(x)/+/t.

Now, decomposing on whether or not | N (# — ;)| is bigger than §s/6C K 2 (recall
the definition of C from earlier in the proof) we have

P* (L a, =z | N5t — )| INg| > 0)

8s
= 6CK? +P (Ile’E(S/GCKz)'NS(t - Ti)l‘ |Ng| > 0)

8s ‘ U
sz P ('N | "N | > 0) P (33’8(5/601(2)( IN,| > 0)
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where Bsf’g(-) is the event from Lemma 5.3. Using (6.21), (6.22) and the above we
can therefore deduce that (as long as s > 1 and ¢ is big enough that R(¢) > 1)

o i 8 2 f, 2 V2Y or ;
B (1{iSA,}1A§J|N;,|) < <6C—K + K2P¥ (B £(8/6CK?) | INs| > 0) B (i< Ay).
(6.24)
This means that the right hand side of (6.20) is less than

8 s Cf X
% K2 sup {}P’X B, (5/6K )‘ |N|>0 } / A
6CK S=R(1) ( RO Lizan)

However, by Fubini and (6.23), this is less than

o)~ (g +CK3 sup {]P’" (B‘Y(8/6CK2)‘ N, > 0)1/2}> .

s>R(t)

Using Lemma 5.3, and the fact that R(r) — 0o, we see than this is less than % for all
t large enough. Substituting in to (6.19) proves that P* ® /L,U (A;) < é forsucht, and
hence completes the proof. O

Proof of Lemma 6.14 In fact, we will prove a slightly stronger statement, as it will
also be of use later on. We will show that

P*(L(T) < cs* | [Ns| > 0) — 0 (6.25)

as ¢ — 0, uniformly in s > 0 and x € D. Then by choosing ¢ such that P* (L(T) >
cs? ‘ |Ng| > 0) > 1/2 for all s > 0 we can write

P (L(T) > 1) = P* (L(T) >1|IN ol > 0) P <|Nﬁ| > o) > %IP’X <|N\/§| > o)

for all . Applying Theorem 1.4, Lemma 6.14 follows.

To prove (6.25) we will show that for any § > 0 there existsac > O and § > 0
such that P*(L(T) < ¢s?||Ns| > 0) <  forall x € D and s > S. Clearly we
can then redefine ¢ such that this holds for all s > 0 (indeed for all s < S, we have
PY(L(T) < es?||Ng| > 0) < P*(|Ng| > 0)"'P*(L(T) < ¢S?) which tends to 0 as
c— 0).

The idea of the proof is that, conditionally on |Ns| > 0, Ny will have size O(s)
and in fact, O (s) of the particles alive at time s will be well away from the boundary
of D (cf. Theorem 1.6). Then, at least in expectation, each of subtrees rooted at the
individuals of Ny will contribute O(s) to L(T). Putting this together with a law of
large numbers type argument tells us that L(7) > cs? with high probability for small
enough c.

So, we fix 8§ > 0 and also pick some D’ € D (meaning that D’ is compact and
contained in D). We write NXCD/ :={u € Ny : X,,(s) € D’} and first claim that we
can choose n > 0 and S > 0 such that
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p* (|N§D’| < ns|INy| > o) <82 (6.26)
for all x € D and s > S;. To see that this is possible, write
X cD' —LZ 1 . / —1
P (INED'| < s [ING] > 0) = P (o7 Zuews Tixuren) > 1 [N, > 0)

and note that by conditional Markov’s inequality, the right hand side is less than or
equal to

1
e (o7 Tovers Tixuren) [N > 0). 6.27)

Since we know from Theorem 1.6 that (6.27) converges toe(b [, ¢)(b [, o +n~ )"
as s — 0o, uniformly in x (uniformity is a consequence of the proof), we can choose
n > 0 small enough and S; > 0 large enough so that (6.26) holds for all x € D and
s> 8.

Next we pick a > 0 (very large) such that inf ,c p P¥ (|N,|) > 2/an forallr > 0
(which is possible by the many-to-one Lemmas 2.4 and 2.1, and the fact that D’ € D).
Forc > Oandu € Q, weset L = [ [{w € Nyyy : u < w}|dr, so that no matter

what the value of ¢, L(T) > ZueNCD’ LZ’S. This means that we can write

B* ({2, cyerr Lty = es?) NINED'| = ns})
PN, > 0)

P (L(T) < es” | Ny| > 0) s§+

(6.28)
To proceed, we will apply a (conditional) law of large numbers type argument
(in fact in the end we will just use conditional Markov’s inequality) to the random

variables {L¢ ;u € NEP ). For this, we make the following observations:

e conditionally on F;, the random variables {L¢ ; : u € NSCD/} are independent;
e by definition of a they all have conditional mean > 2¢s/n;
e foranyr > r' > l and y € D, by conditioning on &, we have

PY (N, Ny < sup sup B (N ) x P (1N [2)

z€Du>0

which by Lemma 3.2 and the fact that sup,p, sup, .o P* (|N,|) < oo (an easy
consequence of (3.2)) is less than or equal to K’ for some K| not depending on
y,r,r’. From here, an easy integration gives that each of the (L’ ; : u € NEPY,

has conditional variance given J less than Kc3s3a3 for some K < oo not
depending on c or s.

Putting all of this together we see that
P (ZueNscD/ L, < cs?| 9) (6.29)

is the probability that a sum of NSCD, independent positive, random variables (with
means and variances as above) is less than or equal to cs2. Let us suppose that NSCD =
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nandn > ns. Then since the conditional mean of Zue D! L s isbigger than or equal
to 2csn/n, we see that the probability in (6.29) is less than or equal to the conditional
probability that “the absolute value of (ZueNC p L¢ ¢ minus its conditional mean) is

greater than or equal to 2csn/n — cs>”. By conditional Markov’s inequality, using

conditional independence and the upper bound on the conditional variances, we see
that this is less than or equal to

Knc3sda? cKna®
2esn/n —cs?)?2 — 2 -1

n

< cKna3

where for both inequalities we have used the fact that n > ns. Substituting this in, we
see that the second term on the right hand side of (6.28) is less than or equal to % for
all ¢ small enough. This concludes the proof. O

Proof of Lemma 6.15 Pick typ > 0. As explained in the proof of Proposition 6.11,
see (6.23), Lemma 6.14 immediately implies that P* (A,) < I(;(—}[)t for some K =
K(tp) and all x € D, t > ty9. By Theorem 1.4 we can also choose this K such that
P* (|N,| > 0) < Ko(x)/r forall x € D and r > ./f. To proceed, we observe that
P* @ ul (H > C/1) is less than the probability that some tree visited before time ¢
in the depth first exploration has height exceeding C+/7. Thus, by a union bound we
can write

[e¢)
P*euf (H,* > C«ﬁ) <P (Z ]l{iSAz}]l{|Néﬁ|>0}> -

i=1

We will show that we can apply Fubini to the right hand side of the above, and that
the expression we get converges to 0 as C — 00. To do this, we write for eachi > 1,
since the event {i < A;} does not depend on the ith tree,

B ({i < AFN{NL I > 0}) <P (< A)P* (|Nw;| > 0).

Then as long as t > ty and C > 1, our definition of K means that the right hand side
of the above is less than or equal to KP* (i < A;) #&) Therefore by Fubini, since

: : cvr
Y PYG < Ay) =P (M) < KT/p(x), we have

_ K2
P* @ u! (H,* > Cﬁ) <=

forall x € D,t > g and C > 1. This concludes the proof. O

Proof of Lemma 6.16 This follows from the law of large numbers. Indeed, observe
that for any fixed K > 0, the amount of time in [0, #] that the depth first exploration
spends below height K in the ith tree is equal to fOK |]§7,"’t | dr for every i < A;. Thus
by conditioning on the entire sequence of trees, we have
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A
_ _ [1&L rk .
Px@“tU(Hz*SK):PX(—Z/ |N;t|dr>.

4o ’

Moreover, since t > Zi <A, L(Ti), by definition of A;, we can bound

A¢ K A¢ K Ay K i
1 . 1 . o N!|dr
3 LAEFS 3| Nilar < ZizUlo WNIAr -5
tioJo tio o ity LT

However, for each i the random variables fOK |N,i | dr are i.i.d with finite variance (by
Fubini), and the random variables L(7") are i.i.d with infinite mean (by Lemma 6.14).
Since A; — o0 a.s. as t — 00 (each tree is finite almost surely), the strong law of
large numbers allows us to conclude that the right (and therefore left) hand side of
(6.30) converges to 0 almost surely under P*. By dominated convergence (the random
variable on the left hand side of (6.30) is a.s. less than or equal to 1) we therefore have
Pre /L,U (H,* < K) — 0, and hence R(t) — o0 O

6.2 Connection with the height function

In order to make use of the above invariance principle, we will now make the connection
between the height function (H;);>0, and the process (S;);>0 from Definition 6.4,
corresponding to the depth first exploration of a single tree T conditioned to be large.
For a vertex u € T we use the notation

Sw) = Y e(Xulsw — L))

weY u,T)

so that S; = S(v;). We will show that for large #, and for an overwhelming proportion
of the individuals u € N, (given survival), S(«) is close to a constant times ¢. Our
approach will use an ergodicity property for the spine particle in the system under Q*,
and is inspired from [27].

In the following, given n > 0, we will say that a pair (u, ) with u € Ny is n-bad it

_p!

‘S(”) > 7 (6.31)

t

(recalling the definition of b from (4.6)). We also say, for given R > 0 and r > R,
that (u, t) is nr-bad if some (v, s) with R < s <t,v € Ny and v < u is n-bad. That
is, (u, t) is nr-good if all of the ancestors of u after time R are n-good. We have the
following estimate for the proportion of u € N, such that (u, t) is ng-bad:

Proposition 6.17 Fixe, n > 0andwrite N;'® := {u € N; : (u, t) is ng —bad }. Then
we have

N’]R
sup P* <| .| > ¢
>R IN:|

IN;| > 0) -0 (6.32)

as R — oo, for any x € D.
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2 uen, YXu ) L1y is ng—bad)
2 uen, ¢(Xu ()

Proof Wewill first show that forany ¢ > 0, setting £ fe, = {

> ¢}, we have
sup P* (E% , | IN:| > 0) — 0 (6.33)
t>R
as R — oo. The reason for this approach is that it technically more convenient to
work with Efm than {|N,"R |/IN¢] > e} and, as we will see in the end, the events are
essentially the same.
To show (6.33), we will use the description of the system under the mea-
sure @X given in Sect. 2.4.3. Recalling that Q* = @x| T has (dQ*/dP¥)|g, =

p(x)! > uen, P(Xu (1)) we see that

. o [e@ /P AN > 0) .

_ e@/PNI0)
S pen, X )

(i) sup;>p Qx(E;e,z) — 0as R — oo; and

(i) Forevery § > 0, there exists R and K positive, such that Q* (¥, 1y,~x) < & for
allt > R'.

where Y : . To see that this converges to O it is enough to prove that:

Point (i) comes, roughly speaking, from the fact that if ¥, is the spine particle under
Q" attime 7, and t > R, then (v, 1) is very unlikely to be ng-bad for large R. More
precisely, by (2.13), we have that

2 uen, PXu ) Liu.r) is ng—bad)
ZueN, ©(Xyu (1))

= Q" (Y, 1) isng —bad | F;)

and so by Markov’s inequality

Q 0 Xy Ly is r—ba
QX(E%J) ZQX(E%J) SE_IQX (Zuezv,‘/’( ) {(u,1) is y bd})

ZueN, P(Xy, (1))
= ¢ 1Q (Y, 1) is ng — bad).

Moreover, we claim (see explanation below) that

sup Q" (¥, 1) is ng — bad) — 0 (6.34)

t>R

as R — o00. To see this, recall that under @x we know (from Sect. 2.4.3) that the spine
particle evolves as a diffusion conditioned to remain in D, and that at constant rate
—5 ) arandom number of “younger siblings” (see just before Definition 6.2) is born
along its trajectory (each with initial position equal to the position of the spine at the
time that they are born). The random number of younger siblings born at each time is
always independent from everything else and has finite mean (2m)~! (E(A%) —E(A))
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(coming from the description in Sect. 2.4.3 again). On the other hand, we have that for
any r >0, S(¢,) = Zer ©(y), where Y is the set of initial positions (counted with
multiplicity) of younger siblings born along the trajectory of the spine before time r.
Since by Lemma 2.1 and [41], the trajectory of the spine is a Markov process with
invariant density @2, (6.34) follows by a straightforward ergodicity argument. This
proves (i).

Point (ii) essentially says that (¥;);>0 is Q- uniformly integrable (in fact it is, but
we only need the weaker statement). To prove it, one can use the change of measure
between Q* and P* again to write

PY{1Y:| > K} N {IN:| > 0}

=P* (Y, K | |N, 0).
BN 0) (Y] > K | [N,] > 0)

Q (Y lyy,=ky)) =

Since ¢ (x)/(tP,(N; > 0)) is uniformly bounded above for # > 1 (say) by Theorem
1.4, we just need to show that for any § > 0 there exists K and R’ such that

sup P*

t>R’

X,
(M <K | [N/ > 0) <. (6.35)

However, this is a direct consequence of the convergence given by Theorem 1.5, since
we know that for fixed K the probability in (6.35) converges, as ¢t — 00, to the
probability that an exponential random variable is less than 1/K. This completes the
proof of (6.33).

We must now deduce from (6.33) that

N’]R
sup P* <u > ¢
>R | N

|N,|>0>—>OasR—>oo.

The idea behind this is that ZueN, O(Xu () Li(u,r) is ng—bad}/ ZueN, (X, (1)) is a
reasonable approximation to | N, | /| N;| at large times. Roughly speaking they should
at least be proportional, since ¢ is bounded above, and on any subdomain (where most
of the particles will be at large times, given survival) it is also bounded below.

More precisely, by Corollary 1.7 we know that given § > 0, if D, = {y € D :
¢(y) < 1/r}and N,Dr = {u € Ny : X,(t) € D,}, there exists r > 0 such that

sup P* |N’—Dr|>f||N|>0 <52 (6.36)
N 20 - '

for all R large enough. Moreover, we can write |N,"R | < |NZD’ |+ |N,"R \ (N:” N NID’ ),
where we have

|Nan \ (Ntm N NzDr)l - ZueN, (p(Xu(t))]l{(u‘t) is ng —bad}
|N: - D uen, $(Xu (1))

lelloor.
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Finally, by (6.33) we can bound

sup P*

t>R

<|NtTIR \ (Ntﬂt N NtDr)|

N >8/2) < §/2

for all R large enough. Putting this together with (6.36) allows us to conclude. O

Remark 6.18 Now suppose we are given ¢ > 0 and x € D. Then for any ¢ such that
ct Nt >R

P* |NC”IR| N {|N, 0 N, 0
m>8 {IN¢t| > 0} | [N;| >

R ({w . s} A {INy| > 0} N {IN,] > 0})

[Net]
PX(IN:[ > 0)

R

|th P* (IN¢t| > 0)
<P* —_— N {|N, 0 N, 0) ———=
< ({ N > & {IN:| > 0} | |Net| > B (N, = 0)

NJR P~ (|N, 0
Suppx<| s |>8| |NS|>O) (IN¢:| > 0)
s>R [Ny P (IN,| > 0)

F(R NJR
(R) sup P* | |>8||Ns|>0
c s>R [ Ns|

supg= g sb™ ' (x)T'PY (INy| > 0)
infs>p Sbil(P(x)il]Px (INg| > 0)

IA

where

F(R) =

as R — oo, by Theorem 1.4. Note that we are allowing ¢ < 1 here.

The next lemma provides the key connection between (S;);>0 and the height
function (H;);>¢ for a critical branching diffusion under IP*, that is conditioned to
survive for a long time. We write P{ for the law of a tree (7, X, /) under P* plus
a random variable ¢!, which conditionally on (7, X, ) is chosen uniformly from
[0, L(T)) := [0, L).

Lemma 6.19 For any n > 0 we have

lim lim P{((v;1, Hp1) isng — bad | |N;| > 0) — 0.

R—o0t—00
Remark 6.20 In the case that H;1 < R we also say that (v,1, H;1) is ng-bad (with
an abuse of notation; recall we only defined the notion of ng-badness for (u, t) with
t > R). However, since the probability of this event goes to 0 as t — oo for any

fixed R, this will not play a role; we only introduce the convention for notational
convenience.
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Proof By decomposing the probability space into the three disjoint events {L < ar?},
(L > at’}N {Hy1 ¢ [ct, Ct]} and {L > at*} N {H,1 € [ct, Ct]} we can write for any
a,c,C>0

P} ((v1, Hp)is ng —bad | |N;| > 0) < P}(L < ar® | |N,| > 0)
+P{({Hy ¢ [ct, Ct1} N {L > at*} | [N, > 0)

+ P ({(v1, Hp) is ng — bad} N {L > at*} N {H,1 € [ct, Ct1} | |N;| > 0).
(6.37)

We deal with each term separately. To begin, by putting together (6.25) and the fact
that P* (|[N¢;| > 0 | |N;| > 0) — O we see that the first term on the right hand side of
(6.37) converges to 0, uniformly in ¢ > 1 (say), asa — 0 and then ¢ — 0, C — oo.
For the second, by definition of the conditional probability we have

PL(H! < ey (L > ar®} | [N > 0) = B (Ni| > 0) ™" P¥ ((L = ar) 1 {Hy1 < en))
which, by conditioning on Foo = o ((T, I, X)), is equal to
P* (L1202 PI(Hpp < et | Foo))-

Using the lower bound on L from the indicator function, the lower bound on P* (| N;| >
0) that one obtains from Theorem 1.4, and the fact that sup, ;, sup,,.. o P* (| N,]) < o0
(which we saw in the proof of Lemma 6.14) we obtain that the above is less than or

equal to
Jo' INs|ds cK
<
L T ap(x)

P* (IN;| > 0))_1 P (ﬂ{LZatz}

for some finite K and all # > 1. This means that the second term on the right hand side
of (6.37) also converges to 0 uniformly in ¢ > 1,as @ — 0 and thenc — 0, C — oo.
Thus, we are left to prove that for any fixed a, ¢, C

lim lim P ({(v;1, Hp) is ng—bad}n{L > ar*}N{H, € [ct, Ct]} | |N;| > 0)=0.

R—o0t—>00

(6.38)
From now on we assume that cr > R (which is without loss of generality, since we
are letting + — oo first). By conditioning on F, again, we see that

Pi({(v1, Hp) is ng —bad} N {L > at*} N {H,1 € [ct, Ct]} | |N| > 0)

Ct |N77R||N|
=P (1 “ % du | [N >0
( {L>a;2}/ct N L u | |Ne| >

Ct
<84 (ar>)~'P* (/ L, INaldu | INi] > 0) (6.39)
c

°t [Nul
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for any § > 0. Therefore, we just need to prove that the second term in the last
expression of (6.39), for fixed §, converges to 0 as t+ — oo and then R — oo.
However, we can write this term (by Fubini) as

Ct
(atz)*I/ P (|Nu|]l{|N3R|>5} | | N¢| > O) du
ct TNul

which by conditional Cauchy—Schwarz, Remark 6.18, and the assumption that ct > R
is less than

F(R N"]R 1/2 Ct
VIR o (M s v > 0) x @) P* (NN > 0)'? du.
p
NI | N | ct

12 _

Finally, we observe that by (6.22) and Theorem 1.4, we have P* (| Ny 2[|IN;| > 0)
Mu for some constant M = M(c, C’) and for any u € [ct, Ct], ct > R > 1. Hence,
by integrating and applying Proposition 6.17, we obtain (6.38). O

Now we extend this result. Let P be the law of a tree (7', X, ) under P, together

with k random variables (¢!, ..., rF) chosen conditionally independently and uni-
formly at random from [0, L(T)) = [0, L). We also define the k x k matrices

(DF)ij =171 (S() +S(v,;) — 28(v'))) and
(D{N)ij =17 (Hyi + H,; —2h7) (6.40)

where v/ = v, Av,; is the most recent common ancestor of v,i and v,;, and h'/ = s,
is its “death time” (see Sect. 2.2 for definitions of these objects.) The next proposition
says that conditioned on survival up to a large time 7, these matrices are essentially
the same up to a constant.

Proposition 6.21 Letk > 1 and D,S and D,H be as defined above. Then for any ¢ > 0
Py (||b_1D,H ~DS| > 5) IN,| > o) -0 (6.41)

ast — oo, where the distance is the Euclidean distance between k x k matrices.

Proof We prove this in the case k = 2: the general result following by a union bound.
Note that by symmetry, and since (DtH),-i = (Dts)i,- = 0 fori = 1, 2, we need only
control the distance |b_1(D,H)12 — (D[S)12|. Given § > 0, we:

e choose M > 1 such that lim;— o P* (|Np| > 0| |N¢| > 0) < §/4, which is
possible by Theorem 1.4;

e set 7 := ¢/(4M) and pick R large enough that lim;, o P5 ({(v,1, Hy1) is ng —
bad} U {(v;2, Hy2) is ng — bad} | |N;| > 0) < 6/4, which is possible by a union
bound and Lemma 6.19;
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e pick K large enough that lim;_, oo P* ( JEING = K | IN| > 0) < §/4, which is
possible by Theorem 1.5 and Markov’s inequality.

Putting this together, we see that for all ¢ large enough, if we set
A, = {|Nyy| > O}U{/ [Ng| = K}U{(v,1, H;1) is ng —bad}U{(v,2, H,2) is ng —bad}
[0,R]

then P3(A; | |N;| > 0) < 4. This implies that P;(A; | |N;| > 0) — Oast — oo.
Now consider the complementary event A{. Straight from the definitions, we know
that on this event we have

S(v,1) B

1!

S(v,2) B

2

H,y < Mt, Hp < Mt, ‘ b~ b~ <n (6.42)

<7, and '

where n = ¢/(4M). Then there are two possibilities: we are either on the event
B := {h'/ > R} or the event B¢ := {h"/ < R}. We will show that for large enough 7,
B N A{ = B° N Af = §, thus completing the proof.

To do this, observe that on {B N A{}, by definition of A; and “ng-badness”, we
have that
S(UIZ)

-1
h12 b =

h'? < Mt and '

Putting this together with (6.42) gives the deterministic bound

(D1, — b~ Y(DH) <l 4Mt < (BN A}
t )12 tlz_tx Xn=¢& on t

and so we have B N A{ = {J. Furthermore, on the event {B° N A7}, we have Wi <R
and S(vY) < |l¢]lo K (by a very crude bound). This means that

‘S(vu) - b—lhlz‘ <K+ Rb™!

and so

_ e  K+Rb!
(DH) 12 = b7 (D] = 5+ ————.

Since the second term on the right hand side above is less than ¢/2 for all ¢ large
enough, we see that B¢ N AY = ¢ for all such . O

6.3 Convergence to the CRT
6.3.1 Preliminaries on convergence of metric measure spaces

Before we can prove Theorem 1.1, we need to introduce various notions of convergence
for metric spaces, and more generally, for metric measure spaces. Although our aim
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is to prove convergence of conditioned genealogical trees in the sense of Gromov—
Hausdorff distance between metric spaces, it turns out to be helpful to go through the
framework of metric measure spaces. We first recall the definition of the Gromov—
Hausdorff metric on X,: the space of (isometry classes of) compact metric spaces.

Definition 6.22 The Gromov—Hausdorff distance between (X, ry) and (Y, ry) in X,
is given by

dou (X, rx), (Y, ry)) = inf _d7" (gx(X), gy (Y)),
8x.8v.Z

where the infinum is taken over all isometric embeddings gx and gy from X and Y toa
rz)

common metric space (Z, rz), and d;_lz is the usual Hausdorff distance on (Z, ryz).
For us, a metric measure space (X, r, ) will be a compact metric space (X, r)
equipped with a finite Borel measure p. These will be considered modulo the equiva-
lence ~, where (X, r, u) ~ (X', r’, ') if there exists a measure preserving isometry
between X and X’'. We denote the set of (equivalence classes) of these spaces by X.
We will be interested in the Gromov—Prohorov metric and the Gromov—Hausdorff-
Prohorov metric on X. We begin by defining the so-called Gromov-weak topology.

Definition 6.23 [23, Definition 2.3] We will call a function @ : X — R a polynomial

if there exists an £ € N and a bounded continuous function ¢ : [0, c0) ®) — R such
that

O((X, r, 1) =/M®k(d(m,---,xn))¢((r(xznxj'))15i<j5k),

where 1 ®* is the product measure of /1. We write IT for the set of all polynomials.

Definition 6.24 [23, Definition 2.8] A sequence X, € X is said to converge to X € X
with respect to the Gromov-weak topology if and only if ®(X,) converges to & (X)
in R, for all polynomials ® e IT.

It is known, see [23, Theorem 5], that this topology is metrised by the Gromov—
Prohorov metric, that we now define. In the following, if f : X1 — Xjisanembedding
and p is a measure on X1, we write f,u for the image measure of p under f on X»:
defined by fyu(A) = u(f~1(A)) for A C X».

Definition 6.25 The Gromov—Prohorov distance between X = (X, rx, ux) and Y =
(Y, ry, ny) in X is given by

dop(X.Y) = inf Zdéz;’z)«gx)*wx), (gv)«(iy)),

where the infinum is as in Definition 6.22 and d ;,Z’rz ) is the Prohorov distance between
probability measures on (Z,rz).

Finally, we define the Gromov—Hausdorff—Prohorov metric [1,40] on X.
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Definition 6.26 Let X, Y be as in Definition 6.25. The Gromov—Hausdorff~Prohorov
distance between X and Y is defined by

donp(CY) = inf ("7 (@), (@)e(ur) +df " (ex(X), gr (V).
8x.8v.Z

Remark 6.27 Tt is clear from the above definitions that convergence in the Gromov—
Hausdorff—Prohorov metric implies convergence in both the Gromov-Hausdorff
metric and the Gromov—Prohorov metric.

We will need a couple of facts for our proof:

Lemma 6.28 [23, Corollary 3.1] A sequence {P,},en of probability measures on

X converges weakly to a probability measure PP with respect to the Gromov—weak

topology, if and only if

(i) The family {IP,},cN is relatively compact in the space of probability measures on
X.

(ii) For all polynomials ® € I1, P, [®] — P[®] in R asn — oo.

Lemma 6.29 [1, Theorem 2.4], [15, Theorem 7.4.15] A set K C X is relatively
compact with respect to the Gromov—Hausdorff—Prohorov metric if and only if

(i) There is a constant D such that diam(X) < D for all X € K.
(ii) For every § > 0 there exists N = Ng such that for all X € K, X can be covered
by N balls of radius §.
(iii) supyeg Hx(X) < 400

6.3.2 Proof of the main theorem

We first need to reformulate the main theorem into a statement that we are better
equipped to prove. Recall the definitions of d* and ~* from Remark 6.1: in this
remark we observed that (IO’Q#, d*) is P*-almost surely isometrically equivalent to
(T(T, X,1),d(T, X, 1)) asdefined in Sect. 2.2.3. Also write e for a Brownian excursion
conditioned to reach height 1 and € for bo times a Brownian excursion conditioned to
reach height (bo)~! (where o is the constant from Proposition 6.9). Then it is clear
from Brownian scaling that (Te, d¢) is isometrically equivalent to (Tg, dg) (Where as
in Sect. 2.2.3, (T¢, d¢) is the real tree with contour function C).

Therefore, to prove Theorem 1.1, it is enough to prove that if (T}, ) has the
law of ([O’LN#, dt—*) under IP’X(~ | | N¢| > O) then

(T, 4) @ (Te. de) (6.43)

as n — 0o, with respect to the Gromov—Hausdorff topology.

We equip (T, ) with the measure 1"), which is defined to be the push forward
of uniform measure on [0, L(7')) under the equivalence relation ~*. We also equip
(T, dg) with the measure ug, where if 7 is the length of € and (T, dz) = (O’Tf), dp)
as described in Sect. 2.2.3, then g is the push forward of uniform measure on [0, 7)
under ~. For the proof of Theorem 1.1 we then need the following two ingredients:
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Lemma 6.30 The family

@ 4@ @)
(T, d", 1)

t>0
is tight with respect to the Gromov—Hausdorff—Prohorov metric.

Lemma 6.31 (T®, d® u®), converges to (Tg, da, ug) ast — oo, with respect to
the Gromov—Prohorov metric.

Let us first see how this gives Theorem 1.1.

Proof of Theorem 1.1 Since Gromov-Hausdorff-Prohorov convergence implies
Gromov—Prohorov convergence, Lemma 6.31 characterises subsequential limits with
respect to the Gromov—Hausdorff—Prohorov metric. Thus we have the convergence in
distribution

(TO.dD, 1) — (Te. dg. o)

with respect to the Gromov—Hausdorff—Prohorov metric. This then implies (6.43) by
Remark 6.27 (GHP convergence implies GH convergence). O

All that remains therefore is to verify Lemmas 6.30 and 6.31. In the following, we
write P¥ for the law of (T, d"), ;1) and P; for the law of (T¢, dg, i)

Proof of Lemma 6.30 We need to show that for any ¢ > 0 there exists a relatively
compact K C X (with respect to the Gromov—Hausdorff—Prohorov metric) such that

inf PY (T, d®, n@) €K) = 1 —e.

To do this, fix ¢ > 0 and let Kg s be the relatively compact subset of X (by Lemma
6.29), defined by

{(X,r,n) € X:diam(X) < 2R, u(X) =1, Vk
> 1 can cover X with less than 2% M balls of radius 2% }.

We will prove that we can pick R and M large enough such that P¥ (T, d¥, u®)
€ Kr.m) > 1 —¢forall t > 0. The key to the proof is the following claim:

Claim 6.32 For M = M(e) and R = R(¢) large enough, we have

]P’f(diam(T(’)) > 2R) < ¢/2; and (6.44)
Pf({cannot cover (TW, dDy with < 8§~*M balls of radius §} N {diam(T?) < 2R}) <de/2
(6.45)

forall§ > 0andt > 0.
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With this in hand, since 1@ (T®)) = 1 forall r > 0, summing over § = 2% concludes
the proof of tightness.

To prove Claim 6.32, we will reformulate the probabilities in (6.44) and (6.45) as
conditional probabilities under P*(- | |N;| > 0). Recall that the law of (T®), d ()
under P} is that of ([0 L) 4 <) under P* (- | [N¢| > 0). It is therefore immediate
from the definition of d* that

P (diam(7T) > 2R) < P* (INg/| > 0 | |N;| > 0)

and so by Theorem 1.4, we can take R = R(¢) large enough that this is less than /2
for all 7.

Next, we look at (6.45). Fixing R from the previous paragraph, and given § > 0,
we divide [0, 2Rt] into intervals of length 78/2 =: b"% (so there are 4R /8 of them.)
We will show that on the event

{diam (w, dt—*) < 2R} () NP7 His) ) < M(4R53)—1}, (6.46)

~K
where Sj :={u € Njjs : Jw € N(j s Withu < w}, we can cover (w, dt—*)
with fewer than §~*M balls of radius 8. To do this, let S be the set of equivalence
classes of M that contain a point s such that (vy, Hy) = (u, jb"%) for some
ue S;jand j € {0,...,(4R/5) — 1}. On the event (6.46) we have |S| < §M,
and so it suffices to show that any element of ([0 L (T))) has (d*/t) distance less than
8 from some point in S. However, this holds since any point of [0, L(T)) corresponds
to an individual u € T, which must be in N, for some r € [jb" ‘s, (j + Hb" 4, and
0 < j < (4R/S) — 1. Such an individual must be a descendant of an individual
veS;_1(orof #if j = 0), whichin turn corresponds to a point of [0.LT) L(T)) contained
in S. Because u € N, and v € N,» with |r — 1’| < 8¢, the (d* /1) dlstance between the
corresponding points of [&.L (T)) is less than §, as required.

The above cons1deratlons mean that the probability on the left hand side of (6.45)
is less than or equal to

(4R/8)—1 M
P* U {|s,~| > W} | |N; >0 (6.47)

j=0

and hence, we just need to estimate (6.47). For any given j, t, § we can bound, using
Theorem 1.4 and the fact that sup, P* (|N,|) < oo,

P (18;1) =P* (P* (1Sj1 | Fjps)) =P (ZueN 6 PXeGYD) (|Nys| > 0)) <c@es!
jbts

for a constant C that does not depend on j, # or § (and may now change from line
to line). Then by Theorem 1.4 again, conditioning on the event |N;| > 0, we have
P (|S il 1INy > 0) <871, and so by conditional Markov’s inequality,
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2
P* |s‘|>i| IN;| >0 <4RC8.
TTT 4RS3 - M

Finally, by a union bound we can write

(4R/8)—1

) M
P /LJO {|{M€ijt.8 :EIwEN(j-i—l)b”‘S WlthMSU)H >m} | [N/ >0
16R*CS
< Y )
- M

and so choosing M = M(R,¢e) = M(e) such that 16R?CM™! < ¢/2 then gives
(6.45) and proves Claim 6.32. m]

Proof of Lemma 6.31 For this we would like to show that (T, ), 1) converges
to (T, dg, 1ue) in the Gromov—Prohorov metric, or equivalently, with respect to the
Gromov—weak topology. We will consider the latter formulation, in order to use the
characterisation given by Lemma 6.28. Since convergence in the Gromov—Hausdorff—
Prohorov sense implies convergence in the Gromov—Prohorov/Gromov—-weak sense,
Lemma 6.30 already shows that part (i) of the characterisation in Lemma 6.28 (relative
compactness of the laws) is satisfied. Therefore, we need only show that for any poly-
nomial @ € II, we have Pj[®] — P3[P] as t — oc. To do this, we use Proposition
6.13, and Proposition 6.21.
Fix a polynomial

Q((X, r, 1) =/M@’k(d(m,.--,xn))¢((r(xi,xj))lgiqgk),

where ¢ : [0, oo)(g) — R is continuous and bounded. Examining the definitions, we
see that
P[] = P{(¢(DF) | [N/ > 0) (6.48)

where P} and the matrix DtH are defined just before Proposition 6.21.7 Using this

proposition, and also recalling the definition of the matrix D,S, we see that since ¢ is
continuous and bounded,

Pr(p(DH) | [N > 0) = PE(d(BDS) | INi| > 0) — 0 (6.49)

ast — oo. Let us suppose for now that conditioning on {|N;| > 0} is comparable to
conditioning on the event A; := {sup, S; > b~ 1}, in the sense that we have

Pr(p(BDS) | N/ > 0) — Pr(p(dDS) | A;) — 0 (6.50)

7 Interpreting ¢ (DfT) = o (DF)ij)1<i<j<)-
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as t — oo. Then since by (6.15) and Remark 6.10 we have

Pi(¢(bD}) | supS; > b~ 't) — P[]
t

ast — 0o, we can combine (6.48), (6.49) and (6.50) to conclude that P} [®] — Pg[P]
as desired.

Therefore, we are left to justify (6.50). In fact, it is enough (because ¢ is bounded
by assumption) to show that

P*(A; | IN)| >0)— landP* (|N;| >0 | A;) — 1 (6.51)
as t — o0o. For the first statement, observe that

P* (IN;(148)| > 0)

P* (A N, 0)>P* (A N, 0
(Ar | INi] > 0) = P* (A, | [Nii4s)| > 0) P (N, = 0)

for any 6 > 0, where for any 6 > O the first term in the product on the right hand
side converges to 1 as ¢t — oo by Proposition 6.17, and the second converges to
(148 tasr —> o0 by Theorem 1.4. To finish showing (6.51), it is therefore enough
to show that P* (A;) ~ P* (|NV;]| > 0) as t — oo. For this, we observe that we have
an asymptotic for P* (|NV;| > 0) from Theorem 1.4, and also that Proposition 6.12
allows us to compute an asymptotic for P¥(A;), just as in for example
[36, Section 1.4, p. 263]. It is easy to check that these asymptotics agree, and hence
the proof is complete. O
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