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Prescribed k-symmetric curvature
hypersurfaces in de Sitter space

Daniel Ballesteros-Chávez, Wilhelm Klingenberg, and Ben Lambert

Abstract. We prove the existence of compact spacelike hypersurfaces with prescribed k-curvature in

de Sitter space, where the prescription function depends on both space and the tilt function.

1 Introduction

We consider the existence problem for embedded compact spacelike hypersurfaces Σ
in de Sitter space Sn+11 satisfying a prescribed curvature equation of the form

H
1
k

k (λ[A]) = ψ.(1.1)

Here, 1 ≤ k ≤ n is fixed,A is the second fundamental formof Σ, λ[A] = (λ1 , . . . , λn)
are the eigenvalues of the shape operatorAi

j , andHk is the k-th normalised symmetric
polynomial in λ, that is,

Sk(λ) ∶= ∑
1≤i1<⋯<ik≤n

λ i1⋯λ ik , Hk ∶= (n
k
)−1Sk .

Furthermore, we will choose our prescription function ψ to depend on both
position in Sn+11 and the tilt, τ, which is ameasure of how spacelike Σ is at the position;
see (2.7). We note that as every compact embedded spacelike surface in Sn+11 can be
written as a graph, (1.1) can be rewritten as a fully nonlinear elliptic second order
partial differential equation in the graph function. Our main result is that, assuming
some natural structural assumptions onψ, the prescribed curvature equation (1.1) has
a smooth spacelike solution Σ.

�e existence of solutions of such equations was studied in [4] by L. Caffarelli,
L. Nirenberg and J. Spruck. In [5], they proved the existence of star-shaped hyper-
surfaces in Euclidean space with prescribed k-symmetric curvature using an priori
C2,α estimate needed to carry out the continuity method. Curvature estimates for
star-shaped hypersurfaces with given k-symmetric curvature have been established
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2 D. Ballesteros-Chávez, W. Klingenberg, and B. Lambert

for various ambient Riemannianmanifolds. For hypersurfaces in the sphere, the lower
order and the curvature estimate are given in [2] by M. Barbosa, L. Herbert, and V.
Oliker. �ese were used to prove the existence result by Y. Li and V. Oliker in [16]
via a degree theory argument. �e curvature estimate and the existence result for
prescribed curvature hypersurfaces in the hyperbolic space was proved by Q. Jin and
Y. Li in [13] using similar arguments of W. Sheng, J. Urbas, and X. Wang in [17].

For spacelike hypersurfaces in Lorentz manifolds, less is known. �e case of
prescribed mean curvature was studied by C. Gerhardt [8, 9] and R. Bartnik and
L. Simon [3]. C. Gerhardt [7] also studiedmore general curvature functionals, but was
forced to only consider a comparatively restrictive class of curvature functionals due
to a problematic sign on a term in the curvature estimates (in particular, all of these
functionals are zero on the boundary of the positive cone, Ŵ+). Urbas [18] obtained
curvature estimates for prescribed symmetric curvature under the assumption that
the mean curvature was in Lp for sufficiently large p. Y. Huang [12] noted that
over compact domains Minkowski space, if the prescription function is additionally
required to depend on the tilt and satisfies certain structural assumptions, then the
problematic term in the curvature estimatesmay be cancelled and curvature estimates
may be obtained.D. Ballesteros-Chávez [1] extended this result to compact domains in
de Sitter space. We note that similar prescribed curvature problems with prescription
function depending on the normal have also been studied in Eulidean spaces by P.
Guan, J. Li, and Y. Li [10] and by P. Guan, C. Ren, and Z. Wang [11].

We will prove the following theorem.

�eorem 1.1 Suppose that ψ ∶ Sn+11 ×R+ → R is a smooth positive function satisfying
structural conditions (i)–(v) (see Assumptions on ψ) and let 1 ≤ k ≤ n.�en there exists
a smooth embedded k-admissable spacelike hypersurface Σ ⊂ Sn+11 satisfying (1.1).

In Section 2, we will collect all required definitions and some preliminary calcula-
tions. In Sections 3 and 4, wewill prove the requiredC0 andC1 estimates, respectively.
In Section 5, we extend earlier results [1, 12] to give the curvature estimates (and
therefore C2 estimates). In Section 6, we prove the existence of a solution via a
regularity result of Evans and Krylov [6, 14] and the degree theory of Y. Li [15].

We now state our structural assumptions on the prescription ψ.

Assumptions on ψ We impose the following structural assumptions on ψ ∶ Sn+11 ×[1.∞)→ R:

(i) (Barrier conditions) �ere exist constants 0 < R1 < R2 < ∞ such that

tanh(r) > ψ(Y(r, ξ), cosh(r)) forall ξ ∈ Sn , r < R1 ,

tanh(r) < ψ(Y(r, ξ), cosh(r)) forall ξ ∈ Sn , r > R2 ,

where Y is as in equation (2.3).
(ii) (Differential inequality) For all x ∈ Sn+11 and τ ∈ [1,∞),

ψτ(x , τ)τ ≥ ψ(x , τ).
(iii) (Asymptotics)

ψ(x ,τ)
τ
→∞ as τ →∞ for all x ∈ Sn+11 .
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Prescribed k-symmetric curvature hypersurfaces in de Sitter space 3

(iv) (C1 bound) Taking coordinates (x 1 , . . . , xn+1) = (r, ξ1 , . . . , ξn) on Sn+11 as in (2.3),
we have that there exists a uniform C > 0 such that for all x ∈ Sn+11 and τ ∈ R,

∣∂ψ(x , τ)
∂x i

∣ ≤ Cψ(x , τ).
(v) (Convexity in τ) ψττ(x , τ) ≥ 0 for all x ∈ Sn+11 and τ ∈ [1,∞).
Remark 1.2 Assumption (i) is simply to ensure the existence of suitable barriers.
�e relevance of the rate tanh(r) is that this is curvature of the natural foliation of
totally umbillic hypersurfaces in de Sitter space.

Remark 1.3 We note that condition (ii) already implies that ψ(x , τ) ≥ τψ(x , 1), so
(iii) can be considered as the smallest possible increase in growth on top of this
assumption.

Remark 1.4 Condition (iv) is used to estimate the space derivative of ψ with respect
to a multiple of ψ. �is is a necessary condition in our tilt estimates, as the derivative
may be vastly larger with respect to τ; for example, if in local coordinates ψ(x , τ) =
τ2 + x 1eτ , then at x 1 = 0,

∂ψ(x ,τ)
∂x 1

cannot be estimated by ψ.

Remark 1.5 �ere are an abundance of functions ψ that satisfy the structure
conditions (i)–(v) (see also Lemma 3.2). Our model function is ψ(x , τ) = Ψ(x)τp
where p > 1 and Ψ is a smooth bounded function satisfying the conditions of
Lemma 3.2.

2 Preliminaries

2.1 Subspace Geometry in Lorentzian Manifolds

To avoid confusion with signs, we now collect some geometric formulae for hyper-
surfaces in Lorentzian manifolds.

Let {∂1 , . . . , ∂n ,N} be a basis for a Lorentzianmanifold (M , g) andM a Lorentzian
(not necessarily spacelike) hypersurface with induced metric g such that {∂ i} span
TM, and letN be the unit normal field toM and put ε = g(N ,N). When the induced
metric is positive definite, then we say thatM is a spacelike hypersurface; then g can
be represented by the matrix g i j = g(∂ i , ∂ j) with inverse denoted by g i j .

�e Gauss formula for X ,Y ∈ TΣ reads

DXY = ∇XY + ε h(X ,Y)N .

Here, D is the connection on M, ∇ is the induced connection on M , and the second
fundamental form h is the normal projection of D. In coordinate basis we write

h i j = h(∂ i , ∂ j).
�e shape operator obtained by raising an index with the inverse of the metric

h i
j = g

i khk j .
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4 D. Ballesteros-Chávez, W. Klingenberg, and B. Lambert

�e principal curvatures of the hypersurface Σ are the eigenvalues of the symmetric
matrix (h i

j).�e tangential projection of the covariant derivative of the normal vector

field N on Σ, ∇ jN = (D∂ j
N)⊺, is related to the second fundamental form by the

Weingarten equation

∇ jN = −h
i
j∂ i = −g

i khk j∂ i .(2.1)

�e curvature tensor is defined for X ,Y , Z ∈ TΣ as

R(X ,Y)Z = ∇Y∇XZ −∇X∇YZ +∇[X ,Y]Z .

Contracting with the metric

R i jk l = g(R(∂ i , ∂ j)∂k , ∂ l) = g lmRm
i jk .

To relate curvature and second fundamental form, we have the Codazzi equations

⟨R i jk ,N⟩ = ∇ jh i k −∇ih jk .

and the Gauss equation

R i jk l = R i jk l − ε(h i kh j l − h i l h jk).
Note that if T is a symmetric tensor, then the following Ricci identity holds:

∇k∇lTi j −∇l∇kTi j = Rk l jrTir + Rk l irTr j .(2.2)

2.2 The Geometry of de Sitter Space

We now consider manifolds Σ ⊂ Sn+11 ⊂ Rn+2
1 where

• R
n+2
1 = (Rn+2 , g) isMinkowski space with metric

g = −dx21 + dx22 +⋯+ dx2n+2
and covariant derivative D;

• Sn+11 is a de Sitter space, defined by

Sn+11 = {x ∈ Rn+2
1 ∶ −x21 + x

2
2 +⋯+ x

2
n+2 = 1}

with the induced Lorentzian metric g, covariant derivative D, unit normal N and
second fundamental form h;

• Σ ⊂ Sn+11 is a embedded spacelike hypersurface of Sn+11 with induced Riemannian
metric g, covariant derivative ∇, unit normal ν and second fundamental form A.

Let Sn be the standard round sphere. �en de Sitter space can be parametrised by
Y ∶ Sn ×R→ Sn+11 given by

Y(r, ξ) = sinh(r)E1 + cosh(r)ξ,(2.3)
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Prescribed k-symmetric curvature hypersurfaces in de Sitter space 5

and in these coordinates, the induced metric is

g = −dr2 + cosh2(r)σ ,
where σ is the round metric on S

n . We note that as ∣Y ∣2 = 1, we have that Y = N is a
unit normal to Sn+11 and (as 0 = ⟨Yαβ ,Y⟩ + ⟨Yα ,Yβ⟩)

hαβ = −gαβ ,(2.4)

(where 1 ≤ α, β ≤ n + 1), and so using the Gauss equation, we have

R
Sn+11

αβγδ = gαγ gβδ − gαδ gβγ ,

where we used that Minkowski space is flat. �is implies that on Σ (which has a
timelike normal), we have that

∇ih jk = ∇ jh i k ,(2.5)

R i jk l = A i lA jk − A i kA j l + g i k g j l − g i l g jk .(2.6)

We define the tilt function on Σ to be the function

τ = ⟨ν, E1⟩,(2.7)

where ν is a unit normal to Σ that has been chosen so that τ is positive.
We now represent Σ as a graph; that is, we take u ∶ Sn → R so that Σ is parametrised

by X ∶ Sn → Sn+11 given by X(ξ) = Y(u(ξ), ξ). We will use ∇̃ to denote the standard
covariant derivative for themetric σ on Sn , and our indices ∂ i , ∂ j , . . . , etc., take values
from 1 to n, except for the vector field ∂r , which will be considered separately. �e
tangent space of the hypersurface at a point Y ∈ Σ is spanned by the tangent vectors
Yj = u j∂r + ∂ j ; the covariant derivative ∇ corresponding to the induced metric on Σ
is given by

g i j = −u iu j + cosh
2(u)σi j .

We write

τ̃ =
cosh2(u)√

cosh2(u) − ∣∇̃u∣2
where ∇̃u = σ i ju j∂ i and ∣∇̃u∣ ∶= σ i ju iu j (we will see shortly that τ̃ = τ). Σ is spacelike
at a point if g i j is invertable, which is equivalent to τ̃ being finite at that point. Since
Σ is spacelike, we calculate the inverse of g i j to be

g i j = cosh−2(u)[σ i j
+ τ̃2

σ i lu l σ
jmum

cosh4(u) ].(2.8)

A unit normal vector to Σ at the point Y can be obtained by solving the equation
g(Yα , n̂) = 0, and then we get

ν = −
cosh2(u)∂r + ∇̃u√

cosh4(u) − cosh2(u)∣∇̃u∣2
= cosh−3(u)τ̃( cosh2(u)∂r + ∇̃u).
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6 D. Ballesteros-Chávez, W. Klingenberg, and B. Lambert

We note that

cosh(u)∂r = E1 + sinh(u)Y ,
and so we see that

τ = ⟨E1 , ν⟩ = τ̃,
as claimed. �e second fundamental form is the projection of the second derivatives
of the parametrisation DYα

Yβ on the normal direction. Writing Ŵ̃ for the Christoffel
symbols of the metric σ , we have

D∂r ∂r = 0, D∂r∂ j = tanh(r)∂ j , D∂ i
∂ j = cosh(r) sinh(r)σi j∂r + Ŵ̃

k

i j∂k ,

and using these identities, we compute

DYi
Yj = Du i ∂r+∂ i

(u j∂r + ∂ j)
= u ju jD∂r∂r + u iD∂r∂ j + u i j∂r + u jD∂ i

∂r + D∂ i
∂ j .

It follows that A i j = g(DYi
Yj , ν) is given explicitly by

A i j = cosh
−1(u)τ(∇̃2

i ju − 2 tanh(u)u iu j + sinh(u) cosh(u)σi j).(2.9)

Finally, we define a notion of partial derivatives for ψ on Sn+11 . Suppose we have a
function f ∶ Sn+11 ×R→ R; then we define the partial derivative on Sn+11 and Σ by

Dx f =
∂ψ

∂xα
gαβ∂β , ∇

xψ = (Dx f )⊺ .
Similarly, we can define second derivatives of f in the usual tensorial way.

2.3 Curvature Functionals and Admissability

�roughout this section we fix 1 ≤ k ≤ n. As described above, we will consider
functions

F[A] ∶= H 1
k

k (λ[A]),
where λ[A] = (λ1 , . . . , λn) are the eigenvalues of the symmetric matrix A, and we

will define f ∶ Rn → R by f = H
1
k

k . We define the admissable cone of Hk to be Ŵk that
is defined to be the connected component of H−1k ({x ∈ R∣x > 0}) that contains the
positive cone

Ŵ
+
= {λ ∈ Rn ∣ λ i > 0,∀i = 1, 2, . . . , n}.

We have that for all λ ∈ Ŵk , fλ i (λ) > 0 and f is concave in Ŵk . Since f ∈ C2(Ŵk) ∩
C0(Ŵk), it follows that F[A] is elliptic and concave if the eigenvalues of A lie in Ŵk .

A spacelike hypersurface Σ ⊂ Sn+11 will be called k-admissable if for all p ∈ Σ the

eigenvalues of the shape operator A
j
i = A i k g

k j are in Ŵk .
A function u ∈ C2(Sn) will be called k-admissable if the graph of u is a spacelike

admissable hypersurface. We note that this implies that u is positive, as if there is a
negative minimum of u at p ∈ Σ, the shape operator is negative definite so λ[A] ∉ Ŵk .
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As is standard, and we will write

F i j
∶=

∂F

∂A i j
, F i j,k l

∶=
∂2F

∂A i j∂Ak l

.

3 A Priori C0 Estimate

Considering Σ graphically, any solution u ∈ C2 (Sn) of (1.1), the barrier conditions
(3.1) will ensure that R1 ≤ u(ξ) ≤ R2 for all ξ ∈ Sn . �e proof follows maximum
principle arguments similar to [2, Lemma 3.1].

Lemma 3.1 Let 1 ≤ k ≤ n and let ψ ∶ (0,∞) × Sn × [1,∞)→ R is a continuous posi-
tive function such that there exist constants 0 < R1 < R2 < ∞ such that

tanh(r) > ψ(r, ξ, cosh(r)), for ξ ∈ Sn , r < R1 ,

tanh(r) < ψ(r, ξ, cosh(r)), for ξ ∈ Sn , r > R2 .
(3.1)

�en u ∈ C2 (Sn) is a solution of (1.1) then for all ξ ∈ Sn , u satisfies

R1 ≤ u(ξ) ≤ R2 .

Proof Suppose there is a point ξ0 ∈ S
n where the maximum of u is attained, say

R2 < r0 = u(ξ0).�en at themaximum, we have ∇̃u=̇0 and ∇̃2u≤̇0. Substituting these
into the equations of the previous section, the inverse of the metric, the tilt, and the
second fundamental form at ξ0 are

g i j=̇
1

cosh2(r0)σ
i j , τ=̇ coshu(u) = cosh(r0), A i j≤̇ sinh(r0) cosh(r0)σi j ,

respectively. At ξ0, the shape operator therefore satisfies

Ai
j ≤ tanh(r0)δ ij ,

and so λ i ≤ tanh(r0) for 1 ≤ i ≤ n. Substituting into (1.1),
ψ(r0 , ξ0 , cosh(r0))=̇F[Ai

j] ≤ tanh(r0) < ψ(r0 , ξ0 , cosh(r0)),
which is a contradiction, and so u ≤ R2. An analogous argument at the minimum
completes the proof. ∎

Observe that we can impose a few fairly mild assumptions on ψr to ensure that
barriers exist.

Lemma 3.2 Let ψ ∶ [0,∞) × Sn × [1,∞)→ R be a uniformly bounded in C2 that is
positive for r > 0. We give conditions for upper and lower barriers:

Lower Barriers: If for all ξ ∈ Sn

ψ(0, ξ, 1) = 0 and ψr(0, ξ, 1) < 1,
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8 D. Ballesteros-Chávez, W. Klingenberg, and B. Lambert

then a lower barrier exists; that is, there exists an 0 < R1 such that for all ξ ∈ Sn and
r < R1,

tanh(r) > ψ(r, ξ, cosh(r)).
Upper Barriers Suppose ψ satisfies the structural condition ψττ > ψ and let γ(r) be

any smooth monotonic function s.t. γ(r)→∞ as r →∞. Suppose additionally that for
all ξ ∈ Sn and r > R̃,

ψr(r, ξ, cosh(r)) > [γ′(r) − tanh(r)]ψ ;

then an upper barrier exists; that is, there exists an 0 < R2 such that for all ξ ∈ Sn and
r > R2,

tanh(r) < ψ(r, ξ, cosh(r)).
Proof We fix ξ and consider the function

Ψ(r, ξ) = ψ(r, ξ, cosh(r))
tanh(r) .

Finding a lower barrier is equivalent to showing that for all ξ ∈ Sn , there exists a
R1 > 0 such that for all 0 < r < R1, Ψ(r, ξ) < 1. By the assumptions, Ψ is continuous up
to r = 0, and so by compactness, there exists a δ > 0 such that for all ξ ∈ Sn , Ψ(0, ξ) <
1 − δ. By continuity and compactness, there exists an R1 such that Ψ(r, ξ) < 1 for all
0 < r < R1 , as claimed. Finding an upper barrier is equivalent to showing that for all
ξ ∈ Sn , there exists a R2 > 0 such that for all r > R2, Ψ(r, ξ) > 1. We calculate that

d

dr
Ψ(r, ξ) = − 1

sinh2(r)ψ(r, ξ, cosh(r)) + coth(r)(ψr + ψτ sinh(r))
≥ [1 − 1

sinh2(r)]ψ + coth(r)ψr

≥
γ′(r)

tanh(r)Ψ

for r > R̂(R̃) sufficiently large depending on R̃. Since tanh(r) < 1, we see that
d

dr
Ψ(r) > γ′(r)Ψ

which implies Ψ(ξ, r) > Ψ(R̂, ξ)eγ(r). Since Sn is compact, and γ(r) →∞ as r →∞,
this implies that the claimed upper barrier conditions are met. ∎

Remark 3.3 A function ψ satisfying lower barrier conditions in Lemma 3.2 allows
the solution to (1.1) given by u ≡ 0. As noted earlier, this solution is inadmissable,
as we require strictly positive u for the shape operator to be in the admissible cone
everywhere.
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4 Tilt Estimate

We now demonstrate a strict spacelikeness estimate by estimating the tilt function τ.
�e height function is defined by

η ∶= −⟨Y , E1⟩,
and we note that in terms of the graph function, η = sinh(u). We now demonstrate
the following identities.

Proposition 4.1 �e tilt and height functions satisfy the following identities:

(i) ∇2
i jη = τA i j + ηg i j ;

(ii) ∇ jτ = A
i
j∇iη;

(iii) ∇ j∇iτ = ∇kA i j∇
kη + τA2

i j + A i jη,

where A2
i j ∶= Ak jA

k
i .

Proof Using (2.4) and the Gauss formula, we have that

∇
2
i jη = Yj(Yiη) − (∇Yi

Yj)η
= Yj(Yiη) − (DYi

Yj − h i jN + A i j n̂)η
= D

2

YjYi
η + (h i jN − A i jν)η

= τA i j + ηg i j ,

where we used that X(η) = − ⟨X , E1⟩ and D
2
η = 0.

Using the Weingarten equation (2.1), we obtain

∇ jτ = ⟨∇ jν, E1⟩ = −g i kAk j⟨Yi , E1⟩ = −g i kAk j∇i⟨Y , E1⟩ = g i kAk j∇iη,

and from this we have

∇
2
i jτ = ∇ j(gmnAni∇mη)
= gmn

∇ jAni∇mη + g
mnAni∇m jη

= gmn
∇nA i j∇mη + τAm j g

mnAni + A i jη,

where we used (2.5) on the third line. ∎

Proposition 4.2 Suppose that ψ ∶ Sn+1 ×R→ R is smooth and positive and satisfies
assumptions (iii) and (iv) above. Suppose that u ∈ C3(Sn) satisfies (1.1) so that there
exist R1 , R2 > 0 such that,

0 < R1 < u(ξ) < R2

for all ξ ∈ Sn .�en there exists a constant Cτ , depending only on n, k, R1, R2 and ψ such
that τ < Cτ .

Proof We have that

F i j
∇ j∇iτ = ∇

kF∇kη + τF
i jAm jA

m
i + Fη
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10 D. Ballesteros-Chávez, W. Klingenberg, and B. Lambert

= ⟨∇xψ,∇η⟩ + ψτ ⟨∇τ,∇η⟩ + τF i jA2
i j + ψη.

Due to structural assumption (iv) on ψ, we have that

∣ ⟨∇xψ,∇η⟩ ∣ ≤ Cτ2ψ.
Furthermore, following [18, equation 3.8] and using Newton’s inequalities [19] (which
are valid for Sk outside Ŵk),

F i jA2
i j ≥ H

1
k

k H1 ≥ H
2
k

k = ψ
2 .(4.1)

Substituting this into the above equation, we see that at a maximum of τ, as ∇τ = 0
and ∇i∇ jτ ≤ 0, we have that

0 ≥ −Cτ2ψ + ψη + τψ2 ,

which implies, by using the C0 estimates, that

ψ ≤ Cτ .

�e C0 estimates imply that the solution stays in a compact region of Sn+11 and so, due
to structural assumption (iii) on ψ, there exists a uniform τ0 such that for all x in this
region and for all τ > τ0, τ <

ψ
2C
. �is yields a contradiction to τ > τ0 and proves the

lemma. ∎

5 A Priori C2 Estimate

From [1] we have the following curvature estimates over domains Ω ⊂ Sn .

�eorem 5.1 (Ballesteros–Chávez 2019) LetΩ ⊂ Sn be a domain in the round sphere,
and let u ∈ C4(Ω) ∩ C2(Ω) an admissible solution of the boundary value problem

⎧⎪⎪⎨⎪⎪⎩
F(A) = H 1

k

k (λ(A)) = ψ(Y , τ) in Ω,

u = φ on ∂Ω,

where A is the second fundamental form of a spacelike surface Σ in de Sitter space given
by (2.9) and ψ is a smooth positive function satisfying (ii) and (v). Assume additionally
that there exists a R1 , R2 ,Cτ > 0 such that

R1 < u(ξ) < R2 , τ(ξ) < Cτ .

�en

supΩ ∣A∣ ≤ C ,
where C depends on n, ∣φ∣C 1(Ω), R1, R2, Cτ , ∣ψ∣C2([R1 ,R2]×Ω×[1,Cτ]) and sup∂Ω ∣A∣.

We will now extend this result to all of Sn , or, equivalently, obtain estimates on all
of Σ.

�eorem 5.2 Suppose that ψ is a smooth positive function that satisfies (ii) and (v).
Suppose u ∈ C4(Sn) is a solution of (1.1) such that there exist constants 0 < R1 < R2 and
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Prescribed k-symmetric curvature hypersurfaces in de Sitter space 11

Cτ > 0 such that for all ξ ∈ S
2,

R1 < u(ξ) < R2 , τ(ξ) < Cτ .

�en there exists a constant CA = CA(k, n, R1 , R2 ,Cτ , ∣ψ∣C2([R1 ,R2]×Sn×[1,Cτ))) so that
∣A∣ < CA.

Proof Suppose first that k = 1. In this case, (2.8) and (2.9) imply that if we write (1.1)
in terms of the graph function u, we obtain a quasilinear equation that is uniformly
elliptic if we have a uniformbound on τ.�erefore, if we have the assumed bounds, we
see that this equation is uniform ellipticity with uniform C1 estimates on the solution.
We can therefore apply De Giorgi–Nash–Moser estimates and Schauder estimates to
imply uniform C2 estimates. In this case, the theorem is therefore proven.

Suppose now that k ≥ 2.We begin by proving a Simon’s-type identity for the second
fundamental form. At an arbitrary point p ∈ Σ, we choose coordinates so that A i j is
diagonal and g i j = δ i j . In these coordinates, F i j is also diagonal.

�e Codazzi equation (2.5) and the Ricci identity (2.2) imply that

∇i∇ jAkk =∇i∇kAk j

=∇k∇iAk j + R i kkrA
r
j + R i k jrA

r
k

=∇k∇kA i j + R i kkrA
r
j + R i k jrA

r
k ,

where we only sum over indices where one is raised and one is lowered. Choosing
i = j in the above, and applying the Gauss equation (2.6), we obtain

∇ j∇ jAkk = ∇k∇kA j j + R jkkrA
r
j + R jk jrA

r
k

= ∇k∇kA j j + (A jrAkk − A jkAkr + g jk gkr − g jr gkk)Ar
j

+ (A jrAk j − A j jAkr + g j j gkr − g jr gk j)Ar
k

= ∇k∇kA j j + A
2
j jAkk − A jkA

2
k j + g jkA jk − A j j gkk

+ A2
jkAk j − A j jA

2
kk + g j jAkk − Ak j gk j

= ∇k∇kA j j + A
2
j jAkk − A j j gkk − A j jA

2
kk + g j jAkk .

We therefore see that

F i j
∇i∇ jAkk =

n∑
j=1

F j j
∇ j∇ jAkk

= F i j
∇k∇kA i j + AkkF

i jA2
i j − F

i jA i jA
2
kk + Akk trF

i j
− F i jA i j

= F i j
∇k∇kA i j + AkkF

i jA2
i j − ψA

2
kk + AkktrF

i j
− ψ,

and so writing H = nH1 = ∑n
k=1 Akk , we have that

F i j
∇i∇ jH = F

i j∆A i j +HF i jA2
i j +HtrF i j

− ψ(n + ∣A∣2),
where ∆ is the Laplace–Beltrami operator. To estimate the first term on the right-hand
side, we note that differentiating (1.1) twice gives

∆ψ = F i j∆A i j + F
i j,k l
∇tA i j∇

tAk l ≤ F
i j∆A i j,
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12 D. Ballesteros-Chávez, W. Klingenberg, and B. Lambert

where we used the well known concavity of F.
We have that

∇l∇kψ = ∇
x
l ∇

x
kψ +∇

x
kψτ∇l τ +∇

x
l ψτ∇kτ + ψτ∇l∇kτ + ψττ∇l τ∇kτ

= Dx
l D

x
kψ − A l kD

x
n̂ψ +∇

x
l ψτ∇kτ + ψτ∇l∇kτ + ψττ∇l τ∇kτ.

Since H2 = 2S2 + ∣A∣2, so if λ[A] ∈ Ŵk , ∣A∣ < H, and so

∆ψ = gk lDx
l D

x
kψ −HDx

n̂ϕ + 2 ⟨∇xψτ ,∇τ⟩ + ψτ∆τ + ψττ ∣∇τ∣2
= ψτ[ ⟨∇η,∇H⟩ + τ∣A∣2 +Hη] + ψττ ∣∇τ∣2
−HDx

n̂ψ + 2 ⟨∇xψτ ,∇τ⟩ + gk lDx
l D

x
kψ

≥ ψτ ⟨∇η,∇H⟩ + ψττ∣A∣2 − C1H − C2 ,

where used structural assumption (v) of ψ and estimated using the bounds on τ and
u in compactness arguments to estimate derivatives of ψ. Overall, we have that

F i j
∇i∇ jH ≥ HF i jA2

i j +HtrF i j
+ (ψττ − ψ)∣A∣2

+ ψτ ⟨∇η,∇H⟩ − C1H − C2 − nψ .

Using (4.1) and the structural assumption (ii) on ψ we have that

F i j
∇i∇ jH ≥

1

n
H2ψ +HtrF i j

+ ψτ ⟨∇η,∇H⟩ − C1H − C2 − nψ.

Using the bounds on u, there exists a small constant δ > 0 such that ψ > δ, and so at a
maximum point of H,

0 ≥ F i j
∇i∇ jH

≥
δ

n
H2
− C1H − C3 ,

and so H is bounded. �is implies a uniform bound on H and a uniform bound on∣A∣ now follows as k ≥ 2. ∎

6 Proof of Existence

We now prove existence of solutions to (1.1), following the proof of V. Oliker and Y.
Li [16]. �roughout this section, Σ will be considered in graphical coordinates with
graph function u. Consider for 0 < α < 1, the subset of functions in C4,α(Sn) that are
k-admissible, denoted by C4,α

ad (Sn). �e idea is to consider a one parameter family of
prescription functions ψt where

ψt(ξ, u, τ) ∶= tψ(ξ, u, τ) + (1 − t)Ψ(ξ, u, τ),
where Ψ(ξ, u, τ) is to be chosen shortly. We define Φ ∶ C4,α

ad (Sn) × [0, 1]→ C2,α , by

Φ(u, t) ∶= H 1
k

k (ut) − ψt(ξ, ut , τ(ut))(6.1)

for all t ∈ [0, 1]. We will apply degree theory to ensure that there exists at least one
solution to Φ(ut , t) = 0 for all t ∈ [0, 1]. As in [16], to be able to apply the beautiful
degree theory of Y. Li [15], we need to verify the following three steps:
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Step 1(a): Show that there exists a unique solution to

H
1
k

k (u0) = Ψ(x , u0 , τ(u0)).
Step 1(b): Show that at u0 the linearisation of Φ is invertible.
Step 2: Define a suitable set of admissible functions and show that all solutions of

(6.1) stay in this set.
Step 3: Verify that we may apply degree theory to ensure that the degree of Φ(⋅, 1)

is not zero, and so a solution exists, as claimed.
We choose Ψ to be

Ψ(ξ, u, τ) = τpu tanh(u)
for some p > 1.

Proof of Step 1(a) We can easily verify that a solution exists to Φ(u0 , 0) = 0, by
considering constant functions.�e hypersurfaces corresponding to u0 = λ are totally

umbillic with principal curvatures tanh(λ), and so H
1
k

k = tanh(λ). We can see that

on such a hypersurface, τ = cosh(λ), and so if λ satisfies λ coshp(λ) = 1, then u0

is a solution. Clearly, such a λ exists as, writing the continuous function φ(x) ∶=
x coshp(x), φ(0) = 0 and φ(1) > 1.

Suppose that there exists another u ∈ C4,α
a (Sn) satisfying Φ(u, 0) = 0. Suppose,

furthermore, that maxu = u(ξ0) = λ0 > λ. As in the proof of the C0 estimates, we
have that at ξ0,

ψ(ξ0 , u(ξ0), τ(ξ0)) = coshp(λ0)λ0 tanh(λ0) = H 1
k

k ∣ξ0 ≤ tanh(ξ0),
which is a contradiction, as x coshp(x) is a monotonically increasing function.
�erefore, maxu ≤ λ. An identical argument implies minu ≥ λ, implying that
u(ξ) = u0. ∎

Proof of Step 1(b) Considering τ,Ak
i as algebraic functions of ξ, u, ∇̃u, ∇̃

2u, which
we will write with the variables x, r, pi , z i j, respectively, then Ak

i = A
k
i (x , r, p, z) and

τ = τ(x , r, p). �en the linearisation of the above in direction v is given by

0 =
d

ds
([H 1

k

k − ψt](u + sv))(6.2)

= F i
k

∂Ak
i

∂z i j
∇̃i jv + [F i

k

∂Ak
i

∂pk
− ψτ

∂τ

∂pk
]∇̃kv + [F i

k

∂Ak
i

∂r
− ψr − ψτ

∂τ

∂r
]v ,

From equations (2.8) and (2.9), we have that

Ak
i = τ(σ i j

+ τ2
u l σ

l iumσ
m j

cosh4(u) )
∇̃i ju − 2 tanh(u)u iu j + sinh(u) cosh(u)σi j

cosh3(u) ,

and so we see that

∂Ak
i

∂r
∣
(x ,u ,∇̃u ,∇̃2u)

=

∂τ
∂r

τ
Ak

i − 3 tanh(u)Ak
i + τ

cosh2(u) + sinh2(u)
cosh3(u) δki

+ u lum[ bounded terms],
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14 D. Ballesteros-Chávez, W. Klingenberg, and B. Lambert

and

∂τ

∂r
∣
(x ,u ,∇̃u ,∇̃2u)

= tanh(u)τ + ∣∇̃u∣2[ bounded terms].
We are interested in (6.2) when t = 0, that is, when u = λ > 0 and ψ = Ψ =
τpu tanh(u). In this case, we have that

τ = cosh(u), Ak
i = tanh(u)δki , H

1
k

k = tanh(u), F i
k =

1

n
δ ik .

At such a u, the linearisation becomes

0 = a i j∇̃i jv + b
i
∇̃iv + cv ,

where a is elliptic, b is bounded, and

c =
∂τ
∂r

τ
H

1
k

k − 3 tanh(u)H 1
k

k + τ
cosh2(u) + sinh2(u)

cosh3(u) trF i j
− ψr − ψτ

∂τ

∂z

= cosh−2(u) − u coshp−2(u)
− coshp(u) tanh(u) − p cosh(u)p−1u tanh(u) sinh(u).

We recall that u = λwas chosen so that λ coshp λ = 1, which implies that u coshp−2 u =
cosh−2(u), and so we see that c < 0.�e strong maximum principle now implies that
the only solution v ∈ C4,α(Sn) of Φu(⋅, 0)(v) = 0 is v = 0.�is implies that ker(Φu) ={0}, and so, the standard theory of second order elliptic equations implies that Φu is
invertable, as required. ∎

Proof of Step 2 By assumption, we have that ψ(ξ, z, cosh(z)) < tanh(z) for z < R1

and ψ(ξ, z, cosh(z)) > tanh(z) for z > R2. Similarly, we see directly that there exists
RΨ
1 , R

Ψ
2 > 0 such that Ψ(ξ, z, cosh(z)) < tanh(z) for z < RΨ

1 and ψ(ξ, z, cosh(z)) >
tanh(z) for z > RΨ

2 . Setting R1 =min{R1 , R
Ψ
1 } and R2 =max{R2 , R

Ψ
2 }, then for all

t ∈ [0, 1], ψt(ξ, z, cosh(z)) < tanh(z) for z < R1 and ψt(ξ, z, cosh(z)) > tanh(z) for
z > R2. Lemma 3.1, therefore yields uniform C0 estimates

0 < R2 ≤ ut ≤ R2 <∞.

Proposition 4.2, in addition to giving a C1 estimate, implies uniform spacelikeness,
and so we can apply �eorem 5.2 to yield ∣λ i ∣ < CA, which implies uniform C2

estimates in this situation. Uniform parabolicity of the equation now follows, and so
due to the classical regularity theory for uniformly elliptic equations and the Evans–
Krylov theorem [6, 14], we obtain

∥ut∥C4,α(Sn) < C ,

for any admissible solution ut ∈ C
4,α
ad (Sn), where the constant C depends on

k, n, R1 , R2 and ∥ψ∥C2,α(Sn).
Due to compactness and the above estimates, there exists a constant δ > 0 such

that δ < ψt(ξ, u(ξ), τ(u)) for all ξ ∈ Sn . We define the bounded open set

V ∶= {λ ∈ Ŵk ∶ H
1
k

k (λ) ≥ δ, ∣λ∣ <√nCA} ⊂ Ŵk ,
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and we define the bounded set

B = {u ∈ C4,α(Sn) ∣
1

2
R1 < u < 2R2 , ∥u∥C4,α(Sn) < C and λ(A[u(ξ)]) ∈ V ∀ ξ ∈ Sn}.

Clearly the arguments of the previous paragraphs imply that any admissable solution
ut ∈ C

4,α
ad (Sn) is contained inB, and ∂B ∩Φ−1(⋅, t) = ∅ for all t ∈ [0, 1]. ∎

Proof of Step 3 �is step now follows exactly as in [16]. Due to Step 2 and [15,
Definition 2.2, Proposition 2.2], the degree is defined and constant for t ∈ [0, 1]. By
[15, Proposition 2.3, Proposition 2.2],

deg(Φ(⋅, 0),B, 0) = deg(Φu(⋅, 0), B1 , 0),
where B1 is the open unit ball in C4,α(Sn). However, Step 1 and [15, Proposition
2.4] imply that deg(Φ(⋅, 0),B, 0) = ±1 = deg(Φ(⋅, 1),B, 1), and we conclude that a
k-admissable solution u1 to Φ(u1 , 1) = 0 exists. Standard elliptic estimates imply that
u1 is smooth, and therefore, the proof of �eorem 1.1 is complete. ∎
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