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Abstract. In this paper we present some basic uniqueness results for evolutive equations under
density constraints. First, we develop a rigorous proof of a well-known result (among specialists)
in the case where the spontaneous velocity field satisfies a monotonicity assumption: we prove
the uniqueness of a solution for first order systems modeling crowd motion with hard congestion
effects, introduced recently by Maury et al. The monotonicity of the velocity field implies that
the 2−Wasserstein distance along two solutions is λ-contractive, which in particular implies
uniqueness. In the case of diffusive models, we prove the uniqueness of a solution passing
through the dual equation, where we use some well-known parabolic estimates to conclude
an L1−contraction property. In this case, by the regularization effect of the non-degenerate
diffusion, the result follows even if the given velocity field is only L∞ as in the standard Fokker-
Planck equation.

1. Introduction and preliminaries

Recently, modeling crowd behavior has received a lot of attention in applied mathematics.
These models actually are in the heart of many other ones coming from biology (for instance cell
migration, tumor growth, pattern formations in animal populations, etc.), particle physics and
economics (see for example the recently introduced models of Mean Field Games, [21, 22, 23]).
For more details on these models we direct the reader to the non-exhaustive list of works [5, 6,
7, 8, 11, 12, 13, 14, 15]. In all these models the question of congestion can play a crucial role.
Indeed, from the modeling point of view one could have some ‘singularities’ if individuals want
to occupy the same spot. In this paper, we will work with equations which model some type of
congestion effects in crowd motion models (for a more detailed description of these models we
direct the reader to the references [25, 27, 31]). These systems read as

∂tρt − ν∆ρt +∇ · (ρtvt) = 0

ρt ≤ 1, ρ|t=0 = ρ0

vt = Padm(ρt)[ut].

In the above system ρt represents the density of a crowd (at time t) that moves in Ω ⊂ Rd for
a time T > 0 accordingly to the prescribed velocity ut, a given field that everyone would follow
in the absence of the others. ν ∈ {0, 1} is just a parameter: if ν = 0, one deals with first order
systems (the density of the population is just transported by some vector field) introduced in
[25], while for ν = 1 one has a second order system (in addition to the transport, the population
is also affected by some randomness, modeled by a non-degenerate diffusion) studied in [31]. In
order to preserve a density constraint (we suppose that ρt does not exceed a given threshold,
let us say 1), at each moment one modifies ut to vt, a field that is the closest to ut (in the L2

sense) and it is an admissible velocity field, i.e. the set adm(ρt) represents the fields that do not
increase the density on already saturated zones {ρt = 1}.
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In generic congested models a pressure is also acting (Darcy’s law): this pressure is preventing
congestion and, according to various models, it is an increasing function of the density. In the
usual soft congestion models we have some power law of the type p = ρm (porous medium
equation). However this choice cannot prevent ρ to be very high, while it is clear that a crowd
of people cannot have a density higher than a certain threshold (studies say that the maximum
density is 4.5 people/m2), which we put for convenience equal to 1: we will refer to the constraint
ρ ≤ 1 as an hard congestion effect. We shall present later how the pressure field appears in the
models considered in this paper.

Introducing general multivalued monotone operators β, the above systems can be written in
a compact form as

(1.1)


∂tρt +∇ · (utρt) = ∆pt in (0, T )× Ω

(utρt −∇p) · n̂ = 0 on (0, T )× ∂Ω

pt ∈ β(ρt).

The two cases ν = 0 and ν = 1 correspond to two special operators β1 and β2, namely

β1(ρ) =


0 if ρ < 1

[0,+∞] if ρ = 1

+∞ if ρ > 1,

β2(ρ) =


ρ if ρ < 1

[1,+∞] if ρ = 1

+∞ if ρ > 1;

notice in particular that β2(ρ) = β1(ρ) + ρ. The hard congestion effect is due to the fact
that βi(ρ) = +∞ whenever ρ > 1: in fact, this will force ρ to be always less than 1. It
is worthwhile noticing that this problem has some features in common with the Hele-Shaw
model and the Stefan problem (see for instance [17, 18]), namely in both problems there is a
degenerate monotone operator linking the density and the diffusive part. However there are also
big differences: in our case we treat also the convection term, which can depend not smoothly on
the position, while usually in the Hele-Shaw models there is a source term for the mass, which
we do not treat here since we want to model a crowd moving inside a domain Ω. This modeling
assumption is also the reason why we consider the no-flux Neumann boundary condition, since
we want neither people exiting nor entering the domain.

Moreover our equations can be seen also as a quasilinear elliptic-parabolic system with very
degenerate nonlinearity (see [33, 16, 4]), for which the issue of uniqueness is still an open problem
when we add a driving vector field without imposing an entropy condition. In this context we
may write our equations using the variable u = p+ ρ as

∂tg(u) +∇ · (Φ(t, x, u)) = ∆bi(u),

where b1(u) = (u − 1)+, g(u) = u − b1(u), b2(u) = u and Φ(t, x, u) = ut(x)g(u). In the case
i = 1 we have a double degeneracy since both b1 and g have a flat part, instead for the case
i = 2 we have only a degenerate part in g(u). However again the (possibly) rough coefficient
in Φ rules out results already present in the literature. For problems of this form we expect an
L1−contraction result, see for example [4]; notice also that we do not need a concept of entropic
solution since the equation reduces to a linear one in the joint variable (ρ, p) (see the systems
(1.2) below). Thus the usual concept of weak solutions can be considered for our purposes.

In fact, we will be dealing always with the following reformulations of the systems, using the
fact that p ∈ β(ρ) if and only if ρ ≤ 1 and p ∈ H1

ρ (Ω) (see its definition in (1.3)):
(1.2)
∂tρt +∇ · (utρt) = ∆pt in (0, T )× Ω

(utρt −∇p) · n̂ = 0 on (0, T )× ∂Ω

ρt ≤ 1, pt ∈ H1
ρt(Ω).


∂tρt +∇ · (utρt) = ∆(pt + ρt) in (0, T )× Ω

(utρt −∇p−∇ρt) · n̂ = 0 on (0, T )× ∂Ω

ρt ≤ 1, pt ∈ H1
ρt(Ω).
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In Subsection 1.1 we will derive in another way these systems: that derivation justifies also
the regularity assumption of pt.

A very powerful tool to attack these type of macroscopic hard-congestion problems – where we
impose a density constraint on the density of the population – is the theory of optimal transport
(see [38, 37]), as we can see in the recent works [25, 26, 27, 31, 1]. In this framework, the density
of the agents satisfies a continuity, or a Fokker-Planck equation (with a velocity field taking into
account the congestion effects) and can be seen as a curve in the Wasserstein space.

Our aim in this paper is to prove some basic results of uniqueness of the solutions in this
setting. As far as we are aware of, this question is a missing puzzle in full generality in the
models studied in [25, 26, 27, 31]. Let us remark that the uniqueness question is crucial if one
wants to include this type of models into a larger system and one aims to show existence results
by fixed point methods, as it is done for Mean Field Games in general for instance (for example
as in [35]).

We will treat two different cases, with very different approaches: in the first one we simply
consider a crowd driven by a given velocity field and subject to a density constraint. In this case
the assumption that the velocity field is monotone will be crucial in order to prove a λ-contraction
result for the solutions, that will imply uniqueness. In the second case we add a diffusive term,
which models some randomness in the crowd movement (see [31] for recent developments and
existence results in this setting); in this case we prove a standard L1−contraction property
passing to the dual problem and proving there existence for sufficiently generic data. In this
case a major role is played by the regularizing effect of the Laplacian, which allows us to prove
the result even if the velocity field is merely bounded.

Let us underline that the core of both methods is classical in the literature.

(i) On one hand we use the differentiation of the squared Wasserstein distance along two
solutions of continuity-type equations, and then use a Grönwall-type argument to show
a contractive property and hence uniqueness of solutions for these evolution equations.
This type of proof is very common in the optimal transport theory; nevertheless our
analysis requires some finer nontrivial new ideas, mainly because of the appearance of
the new pressure variable which we can formally identify as a term associated to the
subdifferential of the indicatrix function of the (geodesically convex) set {ρ ∈ P(Ω) :
ρ ≤ 1}. Moreover, we believe that by the nature of our problem the machinery of the
L1−contraction through the doubling and re-doubling of the variables (successfully used
for instance in [33] and [4]) seems to be very difficult, complicated and heavy to adapt
to our situation, while the method proposed by us is simple and elegant. In addition, in
this context we give new proofs for some of the used results from the theory of optimal
transport.

(ii) On the other hand, in the second order case (when we add a non-degenerate diffusion
term into the model) the idea to pass to the dual equation to show the uniqueness is very
similar to the techniques developed already in [9] for instance; the method to obtain the
L1−contraction follows the same lines of [3]. However the PDE studied here seems to
be new in this context and the result of uniqueness is per se interesting in the theory of
crowd motion.

We underline moreover that the two methods used in the two models are mutually exclusive:
the W2 distance along two solutions of the second order model would be contractive if the vector
field would be monotone, but we do not require this assumption; the parabolic estimates used for
the second model highly rely on the fact that one has a non-degenerate diffusion in the system,
which is clearly not the case for the first order model.

We remark also that we expect a L1−contraction result also in the first case, since it can be
seen as a doubly degenerate quasilinear elliptic-parabolic equation [33]. In Section 4 we provide
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a sketch of this result in the case in which the velocity field is monotone: we underline that we
use the uniqueness proved in Section 2.

1.1. The density constraint: admissible velocities and pressures. In order to model
crowd movement in the macroscopic setting with hard congestion, we work in a convex bounded
domain Ω ⊂ Rd such that |Ω| > 1. The evolution of the crowd will be analyzed by the evolution
of its density, which is assumed to be a probability measure on Ω. The condition we want to
impose is a bound on the density of the crowd, which is considered to be always less than or
equal to 1. In particular the set of admissible measures will be denoted by

K1 := {ρ ∈P(Ω) : ρ ≤ 1 a.e.}
(here and after we identify ρ with its density with respect to the Lebesgue measure L d).

As for the velocities, we need to impose that the density is not increasing when it is saturated:
informally we would say that v is an admissible velocity for the measure ρ ∈ K1 if ∇ · v ≥ 0 in
the set {ρ = 1} and v · n̂ ≤ 0 on ∂Ω where n̂ is the outward normal. In order to make a rigorous
definition we have to introduce the set of pressures:

(1.3) H1
ρ (Ω) := {p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0 a.e.}.

Then, using the integration by parts formula, formally for p ∈ H1
ρ (Ω) and v admissible one

should have

0 ≤
ˆ

Ω
p∇ · v dx−

ˆ
∂Ω
pv · n̂ dH d−1 = −

ˆ
Ω

v · ∇p dx

and so we can define

adm(ρ) :=

{
v ∈ L2(Ω;Rd) :

ˆ
Ω

v · ∇p dx ≤ 0 for every p ∈ H1
ρ (Ω)

}
.

In the sequel we will denote by Padm(ρ) the L2(Ω,L d;Rd)−projection onto the cone adm(ρ).
Now, in order to preserve the constraint ρ ≤ 1, we impose that the velocity always belongs to

adm(ρ) and so a generic evolution equation with density constraint will be{
∂tρt +∇ · (ρtvt) = 0

ρt ≤ 1, vt ∈ adm(ρt).

One of the simplest such model is when we have a prescribed time-dependent velocity field ut
and we want to impose that the velocity vt is the nearest possible to ut, time by time. This
describes a situation where the crowd wants to have the velocity ut but it cannot, because of
the density constraint, and so it adapts its velocity trying to deviate as little as possible: this
will result in an highly nonlocal and discontinuous effect. The first order problem hence reads
as

(1.4)


∂tρt +∇ · (ρtvt) = 0 in (0, T )× Ω

ρt ≤ 1, ρ|t=0 = ρ0

vt = Padm(ρt)[ut],

where the first equation is meant in the weak sense and the minimal hypothesis in order to
have a well defined projection is u ∈ L2([0, T ]×Ω). In the following lemma we characterize the
projection of the velocity field:

Lemma 1.1. Let ρ ∈ P(Ω) such that ρ ≤ 1 a.e. and let u ∈ L2(Ω;Rd). Then there exists
p ∈ H1

ρ (Ω) such that Padm(ρ)[u] = u−∇p. Furthermore p is characterized by

(i)

ˆ
Ω
∇p · (u−∇p) dx = 0;

(ii)

ˆ
Ω
∇q · (u−∇p) dx ≤ 0, for all q ∈ H1

ρ (Ω).
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Proof. Let us set K = {∇p : p ∈ H1
ρ (Ω)}. It is easy to see that K is a closed cone in L2(Ω;Rd).

Let us recall that the polar cone to K is defined as

Ko :=

{
v ∈ L2(Ω;Rd) :

ˆ
Ω

v · ∇q dx ≤ 0, ∀ ∇q ∈ K
}
.

By the definition of the admissible velocities we have adm(ρ) = Ko. Moreau decomposition
applied to K and Ko gives

u = PK [u] + PKo [u] ∀u ∈ L2(Ω;Rd).

This proves the claims (i) and (ii), since these are precisely the conditions of being the projection
onto a cone. �

Corollary 1.2. Lemma 1.1 (i) implies that

ˆ
Ω
|u|2 dx =

ˆ
Ω
|∇p|2 dx+

ˆ
Ω
|u−∇p|2 dx, and so

in particular we get
ˆ

Ω
|∇p|2 dx ≤

ˆ
Ω
|u|2 dx,

ˆ
Ω
|Padm(ρ)[u]|2 dx ≤

ˆ
Ω
|u|2 dx.

Using Lemma 1.1 we get that if (ρ,v) is a solution to (1.5) then vt = ut −∇pt. Now, using
that ρt∇pt = ∇pt, we have that (ρ, p) is a solution to

(1.5)

{
∂tρt +∇ · (ρtut) = ∆pt, in (0, T )× Ω

ρt ≤ 1, pt ∈ H1
ρt(Ω).

Thus we found again equation (1.2), where we imposed also the no-flux boundary condition,
which is the one expected when we model a crowd in a closed room Ω. Now we are ready to
give the formal definition of solution to our problem:

Definition 1.1. Let u ∈ L2([0, T ]× Ω) and let ρ0 ∈ K1. Then we define a solution to (1.5) to
be a couple (ρ, p) ∈ L∞([0, T ]×Ω)∩AC([0, T ]; (P(Ω),W2))×L2([0, T ];H1(Ω)) with ρ|t=0 = ρ0

and such that:

• for all φ ∈ C∞c (Rd) and for all 0 ≤ r < s ≤ T we have

ˆ s

r

ˆ
Ω

(ut(x)−∇p(x)) · ∇φ(x)ρt(x) dx dt =

ˆ
Ω
φ(x)ρs(x) dx−

ˆ
Ω
φ(x)ρr(x) dx;

• we have 0 ≤ ρ ≤ 1 for L 1 [0, T ]⊗L d Ω-a.e. (t, x) and pt ∈ H1
ρt(Ω) for L 1 [0, T ]-a.e.

t.

Remark 1.2. We remark that the boundary condition implied by our definition is homogeneous
Neumann. Note that we assume for the density ρ to be also an absolutely continuous curve in the
space of probability measures equipped with the Wasserstein distance1. Like this it is meaningful
to assume ρ|t=0 = ρ0.

In [27, 25] and [36] the following regularity hypotheses have been assumed to show the exis-
tence result: u ∈ C1 or u = −∇D for a λ−convex potential D and in both cases no dependence
on time.

1see the subsection on optimal transport below and [2] for further details.
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1.2. The diffusive case. Recently (see [31]) a second order model for crowd motion has been
proposed. In a nutshell, it consists of adding a non-degenerate diffusion to the movement and
imposing the density constraint. This leads to a modified Fokker-Planck equation and, with the
notations previously introduced, it reads as

(1.6)


∂tρt −∆ρt +∇ · (ρtvt) = 0

ρt ≤ 1, ρ|t=0 = ρ0

vt = Padm(ρt)[ut],

where ut is – as before – the desired given velocity field of the crowd. Introducing the pressure
gradient in the characterization of the projection, one can write system (1.6) as

(1.7)

{
∂tρt +∇ · (ρtut) = ∆(pt + ρt)

ρt ≤ 1, ρ|t=0 = ρ0, pt ∈ H1
ρt(Ω)

where, as before we equip the equation with the natural no-flux boundary condition on ∂Ω; the
rigorous definition of solution is similar to that of Definition 1.1. We notice also the fact that
we have in particular pt + ρt ∈ β2(ρt) and so we are in fact solving equation (1.1) with β = β2.

Under the assumption that Ω is convex and u ∈ L∞([0, T ] × Ω) it has been shown (see [31,
Theorem 3.1]) that the system (1.7) admits a solution (ρ, p) ∈ L∞([0, T ]×Ω)×L2([0, T ];H1(Ω)).
In addition [0, T ] 3 t 7→ ρt is an absolutely continuous curve in the 2-Wasserstein space (see
Subsection 1.3). We direct the reader to [31] for further details on this model.

1.3. Optimal trasport. Here we collect some facts about optimal transport that will be needed
in the sequel. Given X1 and X2 two measurable spaces and T a measurable map between them,
we say that the Borel measure µ2 is the push forward of the Borel measure µ1 through T and
we write µ2 = T]µ1, if µ2(A) = µ1(T−1(A)) for every measurable set A ⊆ X2.

Given two measures µ ∈P(X1) and ν ∈P(X2), we define Π(µ, ν) as the set of γ ∈P(X1×
X2) such that (π1)]γ = µ and (π2)]γ = ν, where πi is the projection to the i-th coordinate:
these measures are called transport plans between µ and ν.

A particular example of transport plans is given by the transport maps: whenever we have
a measurable T : X1 → X2 such that T]µ = ν we have that the induced plan γT = (id, T )]µ
belongs to Π(µ, ν). Let us summarize some well-known facts about optimal transport in the
following theorem (see for instance [38] or [37]).

Theorem 1.3. Let Ω ⊂ Rd be an open bounded set and let µ, ν ∈ P(Ω). Let us consider the
following quantities

(P) A(µ, ν) = inf

{ˆ
Ω×Ω
|x− y|2 dγ : γ ∈ Π(µ, ν)

}
(D)

B(µ, ν) = sup

{ˆ
Ω
ϕ(x) dµ+

ˆ
Ω
ψ(x) dν : ϕ,ψ ∈ Cb(Ω), ϕ(x) + ψ(y) ≤ 1

2
|x− y|2 ∀x, y ∈ Ω

}
,

where Cb(Ω) denotes the space of bounded continuous functions on Ω. We will call (P) the
primal and (D) the dual problem.

(i) There exists at least a minimizer for the primal problem (the set of minimizers is denoted
by Πo(µ, ν)) and there exists also a maximizer (ϕ,ψ) in the dual problem.

(ii) A(µ, ν) = 2B(µ, ν) and we will call W 2
2 (µ, ν) the common value.

(iii) We can choose a maximizer (ϕ,ψ) of (D) such that ϕ and ψ are Lipschitz in Ω and also
such that 1

2 |x|
2 − ϕ(x) is a convex function on the convex hull of Ω. If µ� L d then its

gradient is a map T (x) = x−∇ϕ(x) such that T]µ = ν and whose associated plan is the
unique optimal plan, that is Πo(µ, ν) = {γT }.
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(iv) If Ω is convex, P(Ω) endowed with the Wasserstein distance W2 is a geodesic space and
if µ� L d the geodesic between µ and ν is unique and it is described by

[0, 1] 3 t 7→ µt := (id + t(T − id))]µ.

The space of probability measures equipped with the Wasserstein distance W2 is called the
Wasserstein space. We denote it by W2 := (P(Ω),W2).

Structurally, the following two sections contain our main results. Section 2 is devoted to the
uniqueness question for first order models where the main tool is the theory of optimal transport.
In Section 3 we investigate the uniqueness issue for second order models, using PDE techniques.
Finally, in Section 4 we discuss an approach that could lead to an L1−contraction result in the
first order case as well.

2. Monotone vector fields in the first order case

Let Ω ⊂ Rd be a bounded convex domain. In this section we suppose that the desired velocity
field u : [0, T ] × Ω → Rd of the crowd is a monotone vector field in L2([0, T ] × Ω;Rd), i.e. the
following assumption is fulfilled: there exists λ ∈ R such that for all t ∈ [0, T ] there exists a
Borel measurable set At ⊆ Ω (possibly depending on t) with full measure, i.e. L d(Ω \ At) = 0
and

(H1) (ut(x)− ut(y)) · (x− y) ≤ λ|x− y|2, ∀ x, y ∈ At.

The following contractivity results are not very surprising in the Wasserstein context. In
practice we show that (Lemma 2.1)

{−∇p : p ∈ H1
ρ (Ω)} ⊆ ∂W2I1(ρ),

where I1 the indicatrix function of K1 and ∂W2 denotes the Wasserstein subdifferential (see
[2]): then we exploit the geodesic convexity of I1 in order to get the contraction properties.
However, in order to let the reader understand clearly the proofs we will omit the W2 technical
language. It would be interesting to adapt these tools to more general Hele-Shaw problems.

Although a first written version of these results is essentially contained in [30] (Section 4.3.1),
here we simplified and clarified some of the proofs. A key observation is the following lemma
(see also Lemma 4.3.13 in [30]):

Lemma 2.1. Let Ω be a convex bounded domain of Rd and let ρ0, ρ1 ∈ P(Ω) two absolutely
continuous measures such that ρ0 ≤ 1 and ρ1 ≤ 1 a.e. Take a Kantorovich potential ϕ from ρ0

to ρ1 and p ∈ H1
ρ0(Ω). Then

ˆ
Ω
∇ϕ · ∇p dx =

ˆ
Ω
∇ϕ · ∇pdρ0 ≥ 0.

To prove this result we consider the following extra lemma:

Lemma 2.2. Let Ω be a convex bounded domain of Rd and let ρ0, ρ1 ∈ P(Ω) two absolutely
continuous measures such that ρ0 ≤ 1 and ρ1 ≤ 1 a.e. Take a Kantorovich potential ϕ from ρ0

to ρ1 and p ∈ H1(Ω). Let [0, 1] 3 t 7→ ρt be the geodesic connecting ρ0 to ρ1, with respect to the
2-Wasserstein distance W2. Then we have that

d

dt

∣∣∣∣∣
{t=0}

ˆ
Ω
p dρt = −

ˆ
Ω
∇ϕ · ∇p dρ0.
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Proof. We know (using the interpolation introduced by R. McCann, see [29] or Theorem 1.3
(iv)) that ρt = (x− t∇ϕ(x))]ρ0 for all t ∈ [0, 1] and so we have

d

dt

∣∣∣∣∣
{t=0}

ˆ
Ω
p dρt = lim

t→0

ˆ
Ω

p(x− t∇ϕ(x))− p(x)

t
dρ0(x)

= − lim
t→0

ˆ
Ω

1

t

ˆ t

0
∇p(x− s∇ϕ(x)) · ∇ϕ(x) ds dρ0(x)

= − lim
t→0

ˆ
Ω
At(∇p) · ∇ϕdρ0(x),

where the second equality is easy to prove, for fixed t, by approximation via smooth functions
and, for t ∈ [0, 1], we denoted by At : L2(Ω;Rd)→ L2

ρ0(Ω;Rd) the linear operator

At(h)(x) =
1

t

ˆ t

0
h(x− s∇ϕ(x)) ds.

Now as a general fact we will prove that At(h) → h strongly in L2
ρ0(Ω;Rd) as t → 0, for every

h ∈ L2(Ω;Rd). First of all it is easy to see that ‖At‖ ≤ 1: indeed

ˆ
Ω
|At(h)|2 dρ0 ≤

1

t

ˆ
Ω

ˆ t

0
|h(x− s∇ϕ(x))|2 dsdρ0(x)

=
1

t

ˆ t

0

ˆ
Ω
|h|2 dρs(x) ds ≤

ˆ
Ω
|h|2 dx.

Here we used the fact that since ρ0, ρ1 ≤ 1 a.e we have also ρt ≤ 1 a.e. for all t ∈ [0, 1].
Now it is sufficient to note that for every ε > 0 there exists a Lipschitz function hε such that
‖hε − h‖L2 ≤ ε, and so we have

‖At(h)− h‖L2
ρ0
≤ ‖At(h− hε)‖L2

ρ0
+ ‖h− hε‖L2

ρ0
+ ‖At(hε)− hε‖L2

ρ0
≤ 2ε+ tL‖∇ϕ‖L2

ρ0
,

where L is the Lipschitz constant of hε. Taking now the limit as t goes to 0 we obtain
lim supt→0 ‖At(h)− h‖L2

ρ0
≤ 2ε; by the arbitrariness of ε > 0 we conclude.

Now it is easy to finish the proof, since ∇p ∈ L2(Ω) and so

d

dt

∣∣∣∣∣
{t=0}

ˆ
Ω
p dρt = − lim

t→0

ˆ
Ω
At(∇p) · ∇ϕdρ0 = −

ˆ
Ω
∇p · ∇ϕdρ0.

�

Proof of Lemma 2.1. Let [0, 1] 3 t 7→ ρt be the Wasserstein geodesic between ρ0 and ρ1. We
know that ρt ≤ 1 a.e. for all t ∈ [0, 1] and in particular it is true thatˆ

Ω
p dρt ≤

ˆ
Ω
p dx =

ˆ
Ω
p dρ0,

which means that the function [0, 1] 3 t 7→
ˆ

Ω
p dρt has a local maximum in t = 0, hence its

derivative at 0 is non-positive.
Given this, the claim is a consequence of Lemma 2.2. �

We will also need a regularity lemma on the continuity equation: by definition a curve ρt
satisfies a continuity equation with velocity vt if for every φ ∈ C1

0 (Rd)2 the application [0, T ] 3

2we recall that for us C1
0 (Rd) is the closure of C∞

c (Rd) with respect to the norm ‖φ‖1 = ‖φ‖∞ + ‖∇φ‖∞ or,
equivalently, the set of φ ∈ C1(Rd) such that lim|x|→∞ |φ(x)|+ |∇φ(x)| → 0
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t 7→
ˆ
Rd
φ dρt is absolutely continuous and its derivative is

ˆ
Rd

vt · ∇φ dρt for almost every time

t. We will prove that under some integrability assumption there exists a universal full-measure
set of differentiability, even when φ ∈ H1(Rd).

Lemma 2.3. Let ρt be a weakly continuous curve of probability measures on Rd; let us sup-
pose that the continuity equation ∂tρt + ∇ · (ρtvt) = 0 holds with a velocity field vt such thatˆ T

0

ˆ
Rd
|vt|dρt dt < +∞. Then there exists a set Υ ⊂ [0, T ] such that L 1([0, T ] \Υ) = 0 and

(2.1) lim
h→0

1

h

(ˆ
Rd
φ dρt+h −

ˆ
Rd
φ dρt

)
=

ˆ
Rd
∇φ · vt dρt ∀t ∈ Υ

for every φ ∈ C1
0 (Rd). Moreover if we further have that ρt ≤ 1 a.e. and

ˆ T

0

ˆ
Rd
|vt|2 dρt dt < +∞

then we can require that (2.1) also holds for every φ ∈ H1(Rd).

Proof. Let us prove the following general statement: for a given separable Banach space B and
a curve x∗ ∈ L1([0, T ];B∗), there exists Υ ⊂ [0, T ] such that Υ is a set of Lebesgue points for
the map t 7→ x∗t (b) for every b ∈ B, and moreover L 1([0, T ] \ Υ) = 0. This can be proven
easily by choosing a dense subset (bn) ⊂ B and then taking Υn as the set of Lebesgue points of
t 7→ x∗t (bn) and Υ0 as the Lebesgue points of t 7→ ‖x∗t ‖, and then we take Υ =

⋂
n≥0 Υn. For

every b ∈ B and ε > 0 let us consider i ∈ N such that ‖bi − b‖ ≤ ε and then taking t ∈ Υ we
have

1

2δ

ˆ t+δ

t−δ
|x∗s(b)− x∗t (b)| ds ≤ ε

(
‖x∗t ‖+

1

2δ

ˆ t+δ

t−δ
‖x∗s‖ ds

)
+

1

2δ

ˆ t+δ

t−δ
|x∗s(bi)− x∗t (bi)|ds.

Now, taking the limit as δ → 0 and using the properties of Υ we get

lim sup
δ→0

1

2δ

ˆ t+δ

t−δ
|x∗s(b)− x∗t (b)| ds ≤ 2ε‖x∗t ‖

and by the arbitrariness of ε we conclude that t is a Lebesgue point for x∗s(b). Now it is easy to
conclude thanks to the fact that we know thatˆ

Rd
φ dρt+h −

ˆ
Rd
φ dρt =

ˆ t+h

t

ˆ
Rd
∇φ · vs dρs,

and noticing that x∗s : φ 7→
ˆ
Rd
∇φ · vs dρs satisfies the assumption x∗ ∈ L1([0, T ];B∗), when B

is the Banach space C1
0 (Rd) in the first case and H1(Rd) in the second case. Notice that if we

follow the construction of Υ for the case B = C1
0 (Rd), this set of times will work also for H1(Rd)

since C1
0 is dense in H1. �

Now we are in position to prove the main theorem of this section, namely:

Theorem 2.4. Suppose Ω ⊂ Rd is a bounded convex domain, u is a vector field satisfying
Assumption (H1) and let ρ0 ∈ K1 be an admissible initial density. Let us suppose that there
exist (ρ1, p1), (ρ2, p2) two solutions to the system

(2.2)


∂tρt +∇ · (ρt(ut −∇pt)) = 0 in (0, T )× Ω

ρt ≤ 1, pt ≥ 0, (1− ρt)pt = 0 a.e. in [0, T ]× Ω,

ρ|t=0 = ρ0,

pi ∈ L2([0, T ];H1(Ω)) and ρi ∈ P(Ω) for i ∈ {1, 2}, where the first equation is supposed to be
satisfied in duality with C∞c (Rd) (see Definition 1.1) in order to take into account the boundary
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conditions. Then, ρ1 = ρ2 and p1 = p2 a.e. In particular, under the same assumptions, we can
say that there exists a unique pair (ρ, v) that solves (1.4).

Proof. We associate to the two curves ρ1
t and ρ2

t a continuity equation (1.5) with the correspond-

ing vector fields v1
t = u1

t−∇p1
t and v2

t = u2
t−∇p2

t . Let us compute and estimate
d

dt

1

2
W 2

2 (ρ1
t , ρ

2
t );

we refer also to [2, Theorem 8.4.7] for a more general statement, but we prefer to include a sim-
pler proof in this case. We know that t 7→ W 2

2 (ρ1
t , ρ

2
t ) is absolutely continuous: let us consider

a time t for which its derivative exists and also such that t ∈ Υ1 ∩ Υ2, where Υi is the set for
which (2.1) is satisfied for the continuity equation for ρi. Then we know that, for all s ∈ [0, T ]
we have

(2.3)
1

2
W 2

2 (ρ1
s, ρ

2
s) ≥

ˆ
Ω
ϕt dρ1

s +

ˆ
Ω
ψt dρ2

s,

where (ϕt, ψt) is a pair of Kantorovich potentials for ρ1
t and ρ2

t . In particular we have equality
in (2.3) for t = s and so, since both sides are differentiable by hypothesis, their derivatives are
equal. Hence we get

d

dt

1

2
W 2

2 (ρ1
t , ρ

2
t ) =

ˆ
Ω

v1
t · ∇ϕt dρ1

t +

ˆ
Ω

v2
t · ∇ψt dρ2

t ,

where we used the fact that, since Ω is bounded, we can assume ϕt and ψt to be Lipschitz and
in particular they belong to H1, which allows to use Lemma 2.3.

We also know that thanks to Theorem 1.3 there is a pair of optimal transport maps Tt(x) =
x − ∇ϕt(x) and St(y) = y − ∇ψt(y) such that (Tt)]ρ

1
t = ρ2

t and (St)]ρ
2
t = ρ1

t for all t ∈ [0, T ];
moreover Tt is the inverse of St (in the appropriate almost everywhere sense). Using this, we
have ∇ψt(Tt(x)) = −∇ϕt(x) and in particular using the change of variable formula y = Tt(x)
we get ˆ

Ω
∇ψt(y) · ut(y) dρ2

t (y) = −
ˆ

Ω
∇ϕt(x) · ut(Tt(x)) dρ1

t (x).

We can use this to split the formula for the derivative of W 2
2 (ρ1

t , ρ
2
t )/2. We use the result of

Lemma 2.1 and then rewrite the term regarding ut in terms of transport maps and see:

d

dt

1

2
W 2

2 (ρ1
t , ρ

2
t ) =

ˆ
Ω

v1
t · ∇ϕt dρ1

t +

ˆ
Ω

v2
t · ∇ψt dρ2

t

=

ˆ
Ω

ut · ∇ϕt dρ1
t +

ˆ
Ω

ut · ∇ψt dρ2
t −
ˆ

Ω
∇p1

t · ∇ϕt dρ1
t −
ˆ

Ω
∇p2

t · ∇ψt dρ2
t

≤
ˆ

Ω
∇ϕt(x) ·

[
ut(x)− ut(Tt(x))

]
dρ1

t

≤
ˆ

Ω
(x− Tt(x)) ·

[
ut(x)− ut(Tt(x))

]
dρ1

t

≤ λ
ˆ

Ω
|x− Tt(x)|2 dρ1

t ≤ λW 2
2 (ρ1

t , ρ
2
t ).

Grönwall’s lemma implies that

W 2
2 (ρ1

t , ρ
2
t ) ≤ e2λtW 2

2 (ρ1
0, ρ

2
0).

Since ρ1
0 = ρ2

0 = ρ0 a.e., the above property implies that ρ1 = ρ2 a.e. in [0, T ] × Ω. From this
fact we can easily deduce that ∆(p1

t − p2
t ) = 0, for a.e. t ∈ [0, T ] in the sense of distributions. In

particular p1
t − p2

t is analytic in the interior of Ω. Moreover, both p1
t and p2

t vanish a.e. in the
set {ρ1

t < 1} which has a positive Lebesgue measure greater than |Ω| − 1 > 0. Thus, p1 = p2 a.e.
in [0, T ]× Ω. The claim follows. �
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Remark 2.1. The existence result for system (2.2) was obtained in different settings in the
literature. On the one hand, if u = −∇D (for a reasonably regular potential D), the existence and
uniqueness of a pair (ρ, p) can be obtained by gradient flow techniques in W2(Ω) (see [2, 25, 36]),
under the assumption that u is monotone that translates into a λ-convexity for D. On the other
hand, if u is a general field with C1 regularity, the existence result is proven with the help of a
well-chosen splitting algorithm (see [27, 36]).

Nevertheless, combining the techniques developed in [31] on the one hand, and the well-known
DiPerna-Lions-Ambrosio theory on the other hand, we expect to obtain existence result for (2.2)
for more general vector fields with merely Sobolev regularity and suitable divergence bounds.

Remark 2.2. The monotonicity assumption (H1) is not surprising in this setting. We remark
that the same assumption was required in [32] to prove contraction properties for a general class
of transport costs along the solution of the Fokker-Planck equation in Rd

∂tρ−∆ρ+∇ · (Bρ) = 0, ρ|t=0 = ρ0,

where the velocity field B : Rd → Rd was supposed to satisfy the monotonicity property (H1).

We note also the fact that we can allow for moving domains Ωt (considering always a no-flux
boundary condition): in fact our proof never uses that the domains are fixed but uses only
convexity at any fixed time. This generalization has been used in [10] for proving uniqueness for
an evolution equation with density constraint driven only by the boundary of the moving sets.

3. Bounded vector field in the diffusive case

We use Hilbert space techniques (similarly to the one developed in [9, 3, 34]; see also Section
3.1. from [35]) to study the uniqueness of a solution of the diffusive crowd motion model with
density constraints described in Subsection 1.2 (see also [31]). Moreover we can expect that
this holds under more general assumptions in the presence of a non-degenerate diffusion in the
model.

Let u : [0, T ] × Ω → Rd be a given vector field, which represents again the desired velocity
field of the crowd, Ω ⊂ Rd a bounded open set with C1 boundary, ρ0 ∈P(Ω) the initial density
of the population such that 0 ≤ ρ0 ≤ 1 a.e. in Ω and let us consider the following problem

(3.1)

{
∂tρt −∆ρt +∇ · (Padm(ρt)[ut]ρt) = 0, in (0, T )× Ω;

ρ|t=0 = ρ0, 0 ≤ ρt ≤ 1, a.e. in Ω,

equipped with the natural no flux boundary condition. Introducing the pressure variable, equiv-
alently the above system can be written as

(3.2)


∂tρt −∆ρt −∆pt +∇ · (utρt) = 0, in (0, T )× Ω,

ρ|t=0 = ρ0, in Ω

(∇ρt +∇pt − utρt) · n̂ = 0, on ∂Ω, for a.e. t ∈ [0, T ],

for a pressure field pt ∈ H1
ρt(Ω). It has been shown in [31] that under the assumption that

(H2) u ∈ L∞([0, T ]× Ω;Rd)

the systems (3.1) and (3.2) have a solution. More precisely there exist an absolutely continuous
curve [0, T ] 3 t 7→ ρt ∈W2 and pt ∈ H1

ρt(Ω) for a.e. t ∈ [0, T ] (in particular ρ ∈ L∞([0, T ]× Ω)

and p ∈ L2([0, T ];H1(Ω)) such that (p, ρ) solves (3.2) in weak sense (see (3.3)).
Our aim in this section is to show the following theorem:
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Theorem 3.1. Let u satisfy (H2). Then there exists a unique pair (ρ, p) ∈ L∞([0, T ] × Ω) ×
L2([0, T ];H1(Ω)) that solves (3.2) in the weak sense (3.3). Moreover for every solution (ρ1, p1)
and (ρ2, p2) to (3.2) we have the L1−contraction propertyˆ

Ω
|ρ1(T, x)− ρ2(T, x)|dx ≤

ˆ
Ω
|ρ1(0, x)− ρ2(0, x)|dx.

Proof. The existence of a solution (ρ, p) was obtained in [31]. Now let us show the uniqueness of
the solution via an L1−contraction property; notice that this contraction is valid for a general
open set Ω with C1 boundary.

Let us write the weak formulation of (3.2): for every smooth test function φ : [0, T ]×Ω→ R
with ∇φ · n̂ = 0 on [0, T ]× ∂Ω we have

(3.3)

ˆ T

0

ˆ
Ω

[ρ∂tφ+ (ρ+ p)∆φ+ ρu · ∇φ] dx dt+

ˆ
Ω
ρ0(x)φ(0, x) dx =

ˆ
Ω
ρ(T, x)φ(T, x) dx.

By density arguments the above formulation holds for φ ∈W 1,1([0, T ];L1(Ω))∩L2([0, T ];H2(Ω)).
Now, let us consider two solutions (ρ1, p1) and (ρ2, p2) of Problem 3.2, with initial conditions

respectively ρ1
0 and ρ2

0. Writing the weak formulation (3.3) for both of them and taking the
difference we obtain
(3.4)

I(φ, T ) = I(φ, 0) +

ˆ T

0

ˆ
Ω

[
(ρ1 − ρ2)∂tφ+ (ρ1 − ρ2 + p1 − p2)∆φ+ (ρ1 − ρ2)u · ∇φ

]
dx dt,

where I(φ, t) =

ˆ
Ω
φ(t, x)[ρ1(t, x)− ρ2(t, x)] dx. We introduce the following quantities

A :=
ρ1 − ρ2

(ρ1 − ρ2) + (p1 − p2)
and B :=

p1 − p2

(ρ1 − ρ2) + (p1 − p2)
.

Note that 0 ≤ A ≤ 1 and 0 ≤ B ≤ 1 a.e. in [0, T ] × Ω and A + B = 1. To be consistent with
these bounds, we set A = 0 when ρ1 = ρ2, even if p1 = p2 and B = 0 when p1 = p2, even if
ρ1 = ρ2. With these notations the weak formulation for the difference gives

(3.5) I(φ, T ) = I(φ, 0) +

ˆ T

0

ˆ
Ω

((ρ1 − ρ2) + (p1 − p2)) [A∂tφ+ (A+B)∆φ+Au · ∇φ] dx dt.

For a smooth function θ : Ω→ R such that |θ| ≤ 1, let us consider the dual problem

(3.6)

{
A∂tφ+ (A+B)∆φ+Au · ∇φ = 0, in [0, T )× Ω,

∇φ · n̂ = 0 on [0, T ]× ∂Ω, φ(T, ·) = θ a.e. in Ω.

Let us remark that if we are able to find a (reasonably regular) solution φ for this problem
for any θ smooth then, using the maximum principle and then optimizing in θ, we would get
an L1−contraction result for ρ: in particular we get uniqueness for the initial value problem for
ρ and hence also for p (as done in the end of the proof of Theorem 2.4). However, since the
coefficients in (3.6) are not regular, we study a regularized problem. For ε > 0 let us consider
Aε, Bε, uε to be smooth approximations of A, B and u such that

(3.7) ‖A−Aε‖Lr([0,T ]×Ω) + ‖B −Bε‖Lr([0,T ]×Ω) + ‖u− uε‖Lr([0,T ]×Ω) < ε, , ε < Aε, Bε ≤ 1,

for some 1 ≤ r < +∞, the value of which to be chosen later. The regularized problem reads as
follows

(3.8)

{
∂tφε + (1 +Bε/Aε)∆φε + uε · ∇φε = 0, in (0, T )× Ω,

∇φε · n̂ = 0 a.e. on [0, T ]× ∂Ω, φε(T, ·) = θ in Ω.
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For all ε > 0 the above problem is uniformly parabolic and Bε/Aε is continuous and positive.
Moreover θ is smooth, thus by classical results (see for instance [20, 19]) the problem has a
(unique) solution φε ∈ C1([0, T ]× Ω). In particular φε can be used as test function in (3.3). In
the followings we shall use some standard uniform estimates (in ε) on φε given in Lemma 3.2.

In particular, using φε as test function in (3.5) one has

I(φε, T )− I(φε, 0) =

ˆ T

0

ˆ
Ω

(ρ1 − ρ2 + p1 − p2) [A∂tφε + (A+B)∆φε +Au · ∇φε] dx dt

=

ˆ T

0

ˆ
Ω

(ρ1 − ρ2 + p1 − p2) [A∂tφε + (A+B)∆φε +Au · ∇φε] dx dt

−
ˆ T

0

ˆ
Ω

(ρ1 − ρ2 + p1 − p2)A [∂tφε + (1 +Bε/Aε)∆φε + uε · ∇φε] dx dt

=

ˆ T

0

ˆ
Ω

(ρ1 − ρ2 + p1 − p2)(Bε/Aε)(Aε −A)∆φε dx dt

+

ˆ T

0

ˆ
Ω

(ρ1 − ρ2 + p1 − p2)(B −Bε)∆φε dx dt

+

ˆ T

0

ˆ
Ω

(ρ1 − ρ2 + p1 − p2)A(uε − u) · ∇φε dx dt

:= I1
ε + I2

ε + I3
ε

Let us show that |I1
ε | → 0, |I2

ε | → 0 and |I3
ε | → 0 as ε → 0. More precisely, first let us recall

that 0 ≤ ρ1, ρ2 ≤ 1 a.e. in [0, T ] × Ω, hence ρ1, ρ2 ∈ L∞([0, T ] × Ω). On the other hand
p1, p2 ∈ L2([0, T ];H1(Ω)) and by Corollary 1.2 we have thatˆ

Ω
|∇pit|2 dx ≤

ˆ
Ω
|ut|2 dt,

for almost every t ∈ [0, T ]. This implies that (since u is bounded)

ess− supt∈[0,T ]‖∇pit‖L2(Ω) ≤ C.

In addition, pi’s being pressures one has |{pit = 0}| ≥ |{ρit < 1}| ≥ |Ω| − 1 > 0 for a.e. t ∈ [0, T ],
and so by a suitable version of Poincaré’s inequality (since pit vanishes on a set of positive
Lebesgue measure) one obtains pi ∈ L∞([0, T ];H1(Ω)). In particular, by the Sobolev embedding
this implies that pi ∈ L∞([0, T ];Lq(Ω)), i ∈ {1, 2} for all 1 ≤ q ≤ 2∗. Let us fix q ∈ (2, 2∗), where
2∗ = 2d/(d− 2) if d ≥ 3 and 2∗ =∞ if d = 2.

This implies the following estimates

|I1
ε | ≤ ‖ρ1 − ρ2‖L∞([0,T ]×Ω) · ‖(Bε/Aε)1/2(A−Aε)‖L2([0,T ]×Ω) · ‖(Bε/Aε)1/2∆φε‖L2([0,T ]×Ω)

+

ˆ T

0
‖p1 − p2‖Lq(Ω) · ‖(Bε/Aε)1/2(A−Aε)‖Lr(Ω) · ‖(Bε/Aε)1/2∆φε‖L2(Ω) dt

≤ C(1/ε)1/2ε

+ ‖p1 − p2‖L∞(Lq) · ‖(Bε/Aε)1/2(A−Aε)‖L2(Lr) · ‖(Bε/Aε)1/2∆φε‖L2(L2)

≤ Cε1/2 → 0, as ε→ 0

and similarly

|I2
ε | ≤ ‖ρ1 − ρ2‖L∞([0,T ]×Ω) · ‖(Aε/Bε)1/2(B −Bε)‖L2([0,T ]×Ω) · ‖(Bε/Aε)1/2∆φε‖L2([0,T ]×Ω)

+ ‖p1 − p2‖L∞(Lq) · ‖(Aε/Bε)1/2(B −Bε)‖L2(Lr) · ‖(Bε/Aε)1/2∆φε‖L2(L2)

≤ C(1/ε)1/2ε = Cε1/2 → 0, as ε→ 0;
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finally we have

|I3
ε | ≤ ‖ρ1 − ρ2‖L∞(Lq) · ‖u− uε‖L1(Lr) · ‖∇φε‖L∞(L2) ≤ Cε→ 0,

where r > 1 is the exponent such that
1

2
+

1

r
+

1

q
= 1, i.e. r =

2q

q − 2
(recall that q ∈ (2, 2∗). We

used the approximations (3.7) with this specific r. Hence we obtained that

I(φε, T ) = I(φε, 0) + o(1);

now we use the fact that we fixed the final condition θ for all ε, and also that |φε| ≤ 1, that is
implied by the strong maximum principle (see for example Theorem 2.9 in [24]); in particular
we can writeˆ

Ω
θ(x)

(
ρ1(T, x)− ρ2(T, x)

)
dx =

ˆ
Ω
φε(0, x)(ρ1

0 − ρ2
0) dx+ o(1) ≤

ˆ
Ω
|ρ1

0 − ρ2
0| dx+ o(1).

Letting ε→ 0 we finally find

ˆ
Ω
θ(ρ1

T − ρ2
T ) dx ≤ ‖ρ1

0 − ρ2
0‖L1 , and so, optimizing in |θ| ≤ 1, we

proved the L1−contraction. In particular this implies that ρ1 = ρ2 a.e. in [0, T ] × Ω whenever
ρ1

0 = ρ2
0. Then one obtains also that p1 = p2 a.e. in [0, T ] × Ω, as in the end of the proof of

Theorem 2.4. The result follows.
�

Lemma 3.2. Let φε be a solution of (3.8). Then there exists a constant

C = C(T, ‖u‖L∞ , ‖∇θ‖L2(Ω)) > 0

such that we have the following estimates, uniformly in ε > 0:

(i) sup
t∈[0,T ]

‖∇φε(t)‖L2(Ω) ≤ C;

(ii) ‖(Bε/Aε)
1
2 ∆φε‖L2([0,T ]×Ω) ≤ C;

(iii) ‖∆φε‖L2([0,T ]×Ω) ≤ C.

Proof. Let us multiply the first equation in (3.8) by ∆φε and integrate over [t, T ] × Ω for 0 ≤
t < T . We obtain

1

2
‖∇φε(t)‖2L2(Ω) +

ˆ T

t

ˆ
Ω

(1 +Bε/Aε)|∆φε|2 dx dt

=
1

2

ˆ
Ω
|∇θ|2 dx−

ˆ T

t

ˆ
Ω

uε · ∇φε∆φε dx dt(3.9)

Hence by Young’s inequality we have

1

2
‖∇φε(t)‖2L2(Ω) ≤

‖u‖L∞

2δ

ˆ T

t
‖∇φε(s)‖2L2(Ω) ds+

1

2
‖∇θ‖2L2(Ω)

≤ C +
C

2

ˆ T

t
‖∇φε(s)‖2L2(Ω) ds

where the term in |∆φε|2 has been absorbed by the left hand side, and 0 < δ ≤ 2/‖u‖L∞ is a
fixed constant and the constant C > 0 is depending just on ‖∇θ‖L2(Ω) and ‖u‖L∞ . Hence by
Grönwall’s inequality we obtain

1

2
‖∇φε(t)‖2L2(Ω) ≤ Ce

C(T−t),

which implies in particular that sup
t∈[0,T ]

‖∇φε(t)‖L2(Ω) ≤ C. Thus (i) follows.
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On the other hand choosing δ := 2/‖u‖L∞ in Young’s inequality used in (3.9) and using (i),
we obtain ˆ T

t

ˆ
Ω

(Bε/Aε)|∆φε|2 dx dt ≤ C

hence ‖(Bε/Aε)
1
2 ∆φε‖L2([0,T ]×Ω) ≤ C, and thus (ii) follows.

By (3.9), (i) and (ii) easily imply (iii). �

4. About the L1−contraction in the first order case

In the previous section we proved uniqueness in the second order case using an L1−contraction
result. We expect this result to be true also in the first order case; however we expect the treat-
ing of this L1−contraction problem in the most general framework (let us say when u ∈ W 1,1)
to be difficult, since this approach should “include” (in the proof) also the well-posedness in the
Di Perna-Lions theory as a special case. In fact, when one has ∇ · u = 0 and if one starts with
ρ0 ≤ 1 then this condition is preserved without adding the pressure term.

However in the case treated in Section 2 (i.e. with a monotone velocity field) we can try
to sketch a proof of the L1 contraction result using the uniqueness already proved: let us
approximate the solution discretizing in time using the splitting discrete scheme “continuity
equation + Wasserstein projection onto the set {ρ ≤ 1}” (similarly to the scheme introduced in
[31]). Since the vector field is monotone there exists a unique flow, that implies also that there
exists a unique solution to the initial value problem ∂tρt +∇ · (utρt) = 0, ρt0 = ρ; in particular

one can define a function Ψt1
t0

(ρ) := ρt1 , that will satisfy also the semi-group rule Ψs′
t ◦Ψt

s = Ψs′
s .

Let τ be a time step and define recursively ρτ0 = ρ0 and then

ρτn+1 =

{
Ψ

(n+1)τ
nτ (ρτn) if n is even

P(ρn) if n is odd.

Then the L1 distance is preserved through the continuity equation step while it decreases after
the projection thanks to Lemma 4.1. So in particular the L1−contraction is true in the discrete
scheme; once we have that the scheme converges as τ → 0 to our equation, the uniqueness
result gives that this property is preserved in the limit. In order to guarantee convergence
(see [10] for general conditions) the crucial quantity to estimate is W2(Ψt+τ

t (ρ), ρ); using the
Benamou-Brenier formula, two conditions that guarantee a good estimate are:

• u ∈ L2([0, T ];L∞(Rd)): in this case we would have W 2
2 (Ψt+τ

t (ρ), ρ) ≤ τ
´ t+τ
t ‖us‖2L∞ ds;

• (∇ · u)− ∈ L1([0, T ];L∞(Rd)): in this case we would have ‖Ψs
t (ρ)‖L∞ ≤ C‖ρ‖L∞ for

some universal C and in particular we have W 2
2 (Ψt+τ

t (ρ), ρ) ≤ C‖ρ‖L∞τ
´ t+τ
t ‖us‖2L2 ds.

We believe that this general scheme (uniqueness in the Wasserstein framework and approx-
imation with L1−contractive time discrete approximations) could be adapted also with some
other convection terms Φ.

Lemma 4.1. Let us consider the projection operator P : P(Rd)→P(Ω)

(4.1) P(ρ) = argmin{W 2
2 (ρ, η) : η ∈P(Ω), η ≤ 1}.

Then, when ρ1, ρ2 are probability densities we have ‖P(ρ1)− P(ρ2)‖L1 ≤ ‖ρ1 − ρ2‖L1.

Proof. First we see that formula (4.1) let us extend P to measures in M+(Rd) with mass less
than |Ω|. In this context a monotonicity property is true (see for example Theorem 5.1 in [1]),
that is we have P(ρ) ≤ P(η) almost everywhere if ρ ≤ η. Now we can derive the L1 contraction:
let us denote ρ = min{ρ1, ρ2}. First of all we have that

|ρ1 − ρ2| = max{ρ1, ρ2} −min{ρ1, ρ2} = (ρ1 + ρ2 −min{ρ1, ρ2})−min{ρ1, ρ2};
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in particular ‖ρ1 − ρ2‖L1 = 2 − 2
´
ρdx. By the monotonicity we have P(ρi) ≥ P(ρ) and in

particular we have min{P(ρ1),P(ρ2)} ≥ P(ρ) and so

‖P(ρ1)−P(ρ2)‖L1 = 2−2

ˆ
min{P(ρ1),P(ρ2)}dx ≤ 2−2

ˆ
P(ρ) dx = 2−2

ˆ
ρdx = ‖ρ1−ρ2‖L1 ,

which proves the claim. �
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[21] J.-M. Lasry, P.-L. Lions, Jeux à champ moyen I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343

(2006), No. 9, 619-625.
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