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Abstract We present the new version of OpenLoops, an
automated generator of tree and one-loop scattering ampli-
tudes based on the open-loop recursion. One main novelty of
OpenLoops2 is the extension of the original algorithm from
NLO QCD to the full Standard Model, including electroweak
(EW) corrections from gauge, Higgs and Yukawa interac-
tions. In this context, among several new features, we dis-
cuss the systematic bookkeeping of QCD–EW interferences,
a flexible implementation of the complex-mass scheme for
processes with on-shell and off-shell unstable particles, a
special treatment of on-shell and off-shell external photons,
and efficient scale variations. The other main novelty is the
implementation of the recently proposed on-the-fly reduction
algorithm, which supersedes the usage of external reduction
libraries for the calculation of tree–loop interferences. This
new algorithm is equipped with an automated system that
avoids Gram-determinant instabilities through analytic meth-
ods in combination with a new hybrid-precision approach
based on a highly targeted usage of quadruple precision with
minimal CPU overhead. The resulting significant speed and
stability improvements are especially relevant for challeng-
ing NLO multi-leg calculations and for NNLO applications.

1 Introduction

Scattering amplitudes at one loop are a mandatory ingredi-
ent for any precision calculation at high-energy colliders. At
next-to-leading order (NLO), the calculation of hard cross
sections requires one-loop matrix elements with hard kine-
matics, while next-to-next-to leading order (NNLO) predic-
tions require one-loop amplitudes with one additional unre-
solved particle. Nowadays, thanks to a variety of modern
techniques [1–9], one-loop calculations can be carried out
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with a number of automated and widely applicable programs
[10–20] that have strongly boosted the field of precision phe-
nomenology. Most notably, such tools have extended the
reach of NLO calculations to highly non-trivial multi-particle
processes [21–25] and have opened the door to the automa-
tion of multi-purpose Monte Carlo generators at NLO [26–
32].

In this paper we present the new version of OpenLoops,1

an automated tool for the calculation of tree and one-loop
scattering amplitudes within the Standard Model (SM). The
OpenLoops algorithm is based on a numerical recursion2

that generates loop amplitudes in terms of cut-open loop dia-
grams [9,33]. Such objects, called open loops, are charac-
terised by a tree topology but depend on the loop momentum.

In the original version of the algorithm [9], implemented in
OpenLoops1 [16], loop amplitudes are built in two phases. In
the first phase, Feynman diagrams are constructed in terms
of tensor integrals using the open-loop recursion, while in
the second phase, loop amplitudes are reduced to scalar inte-
grals using external libraries such as Collier [19] or Cut-
Tools [10]. The main strengths of this approach are the high
speed of the open-loop recursion and the possibility of cur-
ing numerical instabilities through the tensor-reduction tech-
niques [4,34] implemented in Collier [19].

In the original open-loop algorithm [9], the rank of open
loops increases at each step of the recursion. As a conse-
quence, the CPU time required for their processing, the mem-
ory footprint, and also numerical instabilities, tend to grow
rather fast with the number of scattering particles. For these

1 The original version of the algorithm was presented in a letter [9], and
its public implementation was only documented online [16] so far. Thus
this paper provides the first thorough description of the OpenLoops

program.
2 This type of recursion was first proposed in the context of off-shell
recurrence relations for colour-ordered gluon-scattering amplitudes [8].
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reasons, in OpenLoops 2 the construction of loop ampli-
tudes and their reduction have been unified in a single recur-
sive algorithm [33] that makes it possible to avoid high-rank
objects at all stages of the amplitude calculations. This is
achieved by interleaving single steps of the construction of
open loops with reduction operations at the integrand level
[2]. The implementation of this method, called on-the-fly
reduction, is one of the main novelties of OpenLoops2. So
far it is restricted to tree–loop interferences at NLO, while
squared loop amplitudes are still processed in the same way
as in OpenLoops1.

The on-the-fly reduction algorithm in OpenLoops 2 is
equipped with an automated system that avoids numerical
instabilities in a highly efficient way. This stability system
makes use of analytic techniques that have been introduced in
[33] and have meanwhile been extended in various directions,
and supplemented by a novel hybrid-precision system. The
latter monitors the level of stability by exploiting informa-
tion on the analytic structure of the reduction identities, and
residual instabilities are stabilised on-the-fly through quadru-
ple precision (qp). This system is implemented at the level of
individual operations. In this way, the usage of qp is restricted
to a minimal part of the calculations, which results in a huge
speed-up as compared to complete qp re-evaluations. Thanks
to these features, the on-the-fly reduction method makes it
possible to achieve an unprecedented level of numerical sta-
bility, both for multi-leg NLO calculations with hard kine-
matics and for NNLO applications with unresolved partons.

The structure of the open-loop recursion [9,33] is model
independent, and the explicit form of its kernels depends only
on the Lagrangian of the model at hand. The original imple-
mentation [16] was applicable to any SM process at NLO
QCD, and the other major novelty of OpenLoops 2 is the
extension of NLO automation to the full SM [35,36], includ-
ing any correction effect of O(αs) and O(α).3 In this respect,
in this paper we present a detailed discussion of the interplay
of QCD and EW effects in scattering amplitudes with more
than one quark chain, which are relevant for LHC processes
with two or more light jets. In that case, Born amplitudes con-
sist of towers of terms of order α

p
s αq with fixed total power

p + q but variable powers in the QCD and EW couplings.
In such cases, as is well known, QCD and EW interactions
mix through interference effects and, in general, NLO terms
of fixed order αP

s αQ involve correction effects of QCD and
EW kind. However, as we will point out, each NLO term of
order αP

s αQ is always dominated either by QCD corrections
to Born terms of order αP−1

s αQ or by EW corrections to
Born terms of order αP

s αQ−1.
In this paper the renormalisation of the SM and its imple-

mentation in OpenLoops are discussed in detail. In the QCD

3 In the following, by O(α) or EW corrections we mean the full set of
NLO corrections in the EW, Higgs and Yukawa couplings.

sector, quark masses and Yukawa couplings can be renor-
malised in the on-shell and MS schemes, and the αs countert-
erm can be flexibly adapted to any flavour-number scheme.
The renormalisation of masses and couplings at O(α) is
based on the on-shell scheme [37] and its extension to com-
plex masses [38] for off-shell unstable particles. More pre-
cisely, in OpenLoops2 these two approaches are unified in
a generic scheme that can address processes with combi-
nations of on-shell and off-shell unstable particles, such as
for pp → t t̄�+�−, where Z -bosons occur as internal reso-
nances, while top quarks are on-shell external states. Besides
UV counterterms, OpenLoops 2 implements also Catani–
Seymour’s I-operator for the subtraction of infrared (IR) sin-
gularities at O(αs) [39,40] and O(α) [36,41–44].

For the definition of EW couplings, three different
schemes based on the the input parameters α(0), α(M2

Z )

and Gμ are supported. Moreover, OpenLoops2 implements
an automated system for the optimal choice of the coupling
of on-shell and off-shell external photons. Concerning the
choice of αs and the renormalisation scale μR, a new auto-
mated scale-variation mechanism makes it possible to re-
evaluate scattering amplitudes for multiple values of αs and
μR with minimal CPU cost.

The OpenLoops 2 program can be combined with any
other code by means of its native Fortran and C/C ++ inter-
faces, which allow one to exploit its functionalities in a flex-
ible way. Besides the choice of processes and parameters,
the interfaces support the calculation of LO, NLO, and loop-
induced matrix elements and building blocks thereof, as well
as various colour and spin correlators relevant for the subtrac-
tion of IR singularities at NLO and NNLO. Additional inter-
face functions give access to the SU(3) colour basis and the
colour flow of tree amplitudes. Besides its native interfaces,
OpenLoops offers also a standard interface in the BLHA
format [45,46].

The OpenLoops program can be used as a plug-in by the
Monte Carlo programs Sherpa [26,47], Powheg- Box [27],
Herwig ++ [32], Geneva [48], and Whizard [49], which
possess built-in interfaces that control all relevant Open-

Loops functionalities in a largely automated way, requiring
only little user intervention. Moreover, OpenLoops is used
as a building block of Matrix [50] for the calculation of
NNLO QCD observables. In this context, the automation of
EW corrections in OpenLoops 2 opens the door to ubiq-
uitous NLO QCD+NLO EW simulations in Sherpa [51,52]
and NNLO QCD+NLO EW calculations in Matrix [53].

The OpenLoops2 code is publicly available on the Hep-
forge webpage

https://openloops.hepforge.org
and via the Git repository

https://gitlab.com/openloops/OpenLoops.
It consists of a process-independent base code and a pro-
cess library that covers several hundred partonic processes,
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including essentially all relevant processes at the LHC. The
desired processes can be easily accessed through an auto-
mated download mechanism. The set of available processes
is continuously extended, and possible missing processes can
be promptly generated by the authors upon request.

The paper is organised as follows. Section 2 presents the
structure of the original open-loop recursion and the new
on-the-fly reduction algorithm. Numerical instabilities and
the new hybrid-precision system are discussed in detail. Sec-
tion 3 deals with general aspects of NLO calculations and
their automation inOpenLoops. This includes the bookkeep-
ing of towers of terms of variable order α

p
s αq , the treatment

of input parameters, optimal couplings for external photons,
the renormalisation of the SM at O(αs) and O(α), the on-
shell and complex-mass schemes, and the I-operator. Sec-
tion 4 provides instructions on how to use the program, start-
ing from installation and process selection, and including
the various interfaces for the calculation of matrix elements,
colour/spin correlators, and tree amplitudes in colour space.
Technical benchmarks concerning the speed and numerical
stability of OpenLoops2 are presented in Sect. 5. A detailed
description of the syntax and usage of the OpenLoops inter-
faces can be found in the appendices.

While the paper as a whole serves as a detailed documenta-
tion of the algorithms implemented in OpenLoops2, Sect. 4
together with Appendix A can be used alone as a manual.

2 The OPENLOOPS algorithm

The calculation of loop amplitudes in OpenLoops proceeds
through the recursive construction of open loops and their
reduction to master integrals. In this section we outline two
variants of this procedure: the original open-loop method [9],
which was used throughout in OpenLoops1 and is still used
for loop-induced processes in OpenLoops 2, and the new
on-the-fly reduction method [33] used for tree–loop interfer-
ences in OpenLoops2.

2.1 Scattering amplitudes and probability densities

The main task carried out by OpenLoops is the computation
of the colour and helicity-summed scattering probability den-
sities

W00 = 〈M0|M0
〉 = 1

Nhcs

∑

hel

∑

col

|M0|2, (2.1)

W01 = 2 Re 〈M0|M1
〉 = 1

Nhcs

∑

hel

∑

col

2 Re[M∗
0M1],

(2.2)

W11 = 〈M1|M1
〉 = 1

Nhcs

∑

hel

∑

col

|M1|2, (2.3)

which consist of the various interference terms that involve
the Born amplitude M0 and the one-loop amplitude M1 for
a certain process selected by the user. The usual summa-
tions and averaging over external helicities4 and colours, as
well as symmetry factors for identical particles, are included
throughout and implicitly understood in the bra–ket notation
in (2.1)–(2.3). The relevant average factors are encoded in

Nhcs =
⎛

⎝
∏

p∈Pout

n p!
⎞

⎠

⎛

⎝
∏

i∈Sin

Nhel,i Ncol,i

⎞

⎠ , (2.4)

whereSin denotes the set of initial-state particles, while Nhel,i

and Ncol,i are the number of helicity and colour states of
particle i . The symmetry factors depend on the number n p

of identical final-state particles. They are applied to all types
of final-state particles, p ∈ Pout, treating particles and anti-
particles as different types.

For standard processes with M0 �= 0, leading-order (LO)
cross sections involve only squared tree contributions W00,
while at next-to-leading order (NLO) virtual one-loop con-
tributions W01 and real-emission contributions of type W00

with one additional parton are needed. The squared one-loop
probability density W11 is the main LO building block for
loop-induced processes, i.e. processes with M0 = 0. For the
calculation of such processes at NLO alsoW11-type densities
with one additional parton are needed. Otherwise W11 is rel-
evant as ingredient of next-to-next-to-leading order (NNLO)
calculations.

In OpenLoops, L-loop matrix elements ML are com-
puted in terms of Feynman diagrams, whose structures are
generated with Feynarts [54]. The Feynman diagrams are
expressed as helicity amplitudes,

ML(h) =
∑

I∈ΩL

ML(I, h) =
∑

I∈ΩL

C(I)AL(I, h), (2.5)

for L = 0, 1. Here ΩL is the set of all L-loop Feynman
diagrams, h describes a specific helicity configuration of
the external particles, and each diagram I is factorised into
a colour factor C(I) and a colour-stripped diagram ampli-
tude5 AL(I, h). The colour structures C(I) are algebraically
reduced to a standard colour basis {Ci } (see Sect. 4.5),

C(I) =
∑

i

ai (I) Ci , (2.6)

4 In OpenLoops it is also possible to select polarisations of external
particles in (2.1)–(2.3), i.e. to perform a sum only over a subset of the
helicity configurations.
5 Quartic gluon couplings involving three different colour structures are
split into colour-factorised contributions which are treated as separate
diagrams.
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where scattering amplitudes take the form

ML(h) =
∑

i

Ci A(i)
L (h), (2.7)

and colour-summed interferences in (2.1)–(2.3) are built by
means of the colour-interference matrix

Ki j =
∑

col

C†
i C j . (2.8)

In the following we focus on the construction of the colour-
stripped amplitudes AL(I, h).

2.2 Tree amplitudes

At tree level, each colour-stripped Feynman diagram is built
by contracting two subtrees that are connected through a cer-
tain cut propagator,6

A0(I, h) = wa wb

= wσa
a (ka, ha) δσaσb

w̃σb

b (kb, hb) .

(2.9)

Here ka = −kb and σa, σb are the momenta and spinor/
Lorentz indices of the subtrees, while ha, hb denote the helic-
ity configurations of the external particles connected to the
respective subtrees.7 The tilde in w̃b marks the absence of
the cut propagator, which is included in wa . All relevant sub-
trees are generated through a numerical recursion that starts
from the external wave functions and connects an increasing
number of external particles through operations of the form

wσa
a (ka, ha) = σa wa

= σa

wb

wc

=
Xσa

σbσc
(kb, kc)

k2
a − m2

a

wσb

b (kb, hb) wσc
c (kc, hc) .

(2.10)

The tensor Xσa
σbσc corresponds to the triple vertex that con-

nects wa, wb, wc, combined with the numerator of the prop-
agator attached to wa . For quartic vertices an analogous
relation is used. Each step needs to be carried out for all

6 The Feynman diagrams in this paper are drawn with Axodraw [55].
7 See [33] for more details.

independent helicity configurations hb, hc. The resulting tree
recursion is implemented in an efficient way by caching the
amplitudes of subtrees that contribute to multiple Feynman
diagrams.

2.3 One-loop amplitudes

Renormalised one-loop amplitudes are split into three build-
ing blocks,

M1(h) = M1,4D(h) + M1,R2(h) + M1,CT(h), (2.11)

where M1,CT denotes UV counter-terms, while bare one-
loop amplitudes are decomposed into a contribution that is
computed with four-dimensional loop numerator (M1,4D)
plus a so-called R2 rational term stemming form the (D−4)-
dimensional part of loop numerators (M1,R2 ). The latter is
reconstructed via R2 counter-terms [56–63], and M1,R2 +
M1,CT are generated in a similar way as tree amplitudes.

The remaining part, M1,4D, is constructed in terms of
colour-stripped loop diagrams,

A1(IN , h) = ∫
dDq̄ Tr[N (IN ,q,h)]

D̄0 D̄1···D̄N−1

=

wN−1wN

w1 w2

D0

D1

D2

DN−1

q ,

(2.12)

with four-dimensional numerators N (IN , q, h) and denom-
inators D̄i (q̄) = (q̄ + pi )2 − m2

i , where the bar is used for
quantities in D dimensions, and the (D−4)-dimensional part
of the loop momentum is denoted q̃ = q̄ − q. The trace rep-
resents the contraction of spinor/Lorentz indices along the
loop, and the index IN stands for the N -point topology at
hand.

The numerator is computed by cut-opening the loop at
a certain propagator, which results into a tree-like structure
consisting of a product of loop segments,

[
N (q, h)

]βN

β0

=

wN

w1

βN

β0

=
[
S1(q, h1)

]β1

β0

[
S2(q, h2)

]β2

β1

· · ·
[
SN (q, hN )

]βN

βN−1

,

(2.13)
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where β0, βN are the spinor/Lorentz indices of the cut propa-
gator. Loop segments that are connected to the loop via triple
vertices have the form

[
Si(q, hi)

]βi

βi−1

=
βi−1

wi

ki

Di

βi

=

{[
Y i

σi

]βi

βi−1

+
[
Zi

ν;σi

]βi

βi−1

qν

}
wσi

i (ki, hi) ,

(2.14)

where an external subtree wi is connected to a loop vertex
and to the adjacent loop propagator. The latter correspond
to a rank-one polynomial in the loop momentum with coef-
ficients Y and Z . A similar relation is used for quartic ver-
tices.

The loop numerator is constructed by attaching the various
segments to each other through recursive dressing steps,

Nk(q, ĥk) = Nk−1(q, ĥk−1)Sk(q, hk), (2.15)

for k = 1, . . . , N , starting from the initial condition N0 = 1.
The labels hk and ĥk correspond, respectively, to the helicity
configuration of the external legs entering the kth segments
and the first k segments. The partially dressed numerator
(2.15) is called an open loop. Schematically it can be repre-
sented as

Nk(q, ĥk) =
k∏

i=1

Si(q, hi)

= β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN

(2.16)

where blue and grey blobs correspond, respectively, to those
loop segments that are already dressed and remain to be
dressed. Each open loop is a polynomial in q,

Nk(q, ĥk) =
R∑

r=0

N (k)
μ1...μr

(ĥk) q
μ1 · · · qμr , (2.17)

and all dressing steps are implemented at the level of the
open-loop tensor coefficients N (k)

μ1...μr .

2.4 Reduction to master integrals

In OpenLoops the reduction of loop amplitudes to master
integrals is carried out with two different methods. Squared

loop amplitudes and tree-loop interferences in the Higgs
Effective Field Theory (HEFT)8 are handled along the lines
of the original open-loop approach [9], where the reduction is
performed a posteriori of the dressing recursion. Since every
dressing step can increase the tensor rank by one (see Fig. 1 a),
this generates intermediate objects of high tensor rank, i.e.
high complexity, with a negative impact on CPU speed. In
contrast, all other tree–loop interferences are computed with
the on-the-fly reduction approach [33], where dressing steps
are interleaved with integrand reduction steps in such a way
that the tensor rank, and thus the complexity, remain low at
all stages of the calculation (see Fig. 1b).

2.4.1 A posteriori reduction

The a posteriori reduction to scalar integrals is done by means
of external tools. By default, the reduction is performed at
the level of tensor integrals,

Tμ1···μR
N =

∫
dDq̄

qμ1 · · · qμR

D̄0 D̄1 · · · D̄N−1
, (2.18)

using the Collier library [19], which implements the
Denner–Dittmaier reduction techniques [4,34] as well as the
scalar integrals of [64]. Alternatively, the reduction can be
performed at the integrand level usingCutTools [10], which
implements the OPP reduction method [5], in combination
with the OneLOop library [65] for scalar integrals.

2.4.2 On-the-fly reduction

In the on-the-fly approach, the dressing of open loops is inter-
leaved with reduction steps. The latter are applied in such a
way that the tensor rank never exceeds two.

For objects with more than three loop propagators,
D0, D1, D2, D3, . . ., the tensor rank is reduced using an
integrand-reduction identity [2] of the form

qμqν =
3∑

i=−1

(Aμν
i + Bμν

i,λ qλ)Di , (2.19)

with

Di =
{

1 for i = −1,

(q + pi )2 − m2
i for i ≥ 0,

(2.20)

where the coefficients Aμν
i and Bμν

i,λ depend on the inter-
nal masses and external momenta. The four-dimensional

8 By HEFT we mean effective Higgs–gluon and Higgs–quark interac-
tions in the heavy-top limit.
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Fig. 1 Evolution of the tensor
rank and the number of
open-loop tensor coefficients
(right vertical axis) as a function
of the number k of dressed
segments during the open-loop
recursion. The red diagonal
lines illustrate the dressing
steps, and the blue vertical lines
the reduction steps
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Di terms on the rhs of (2.20) are cancelled against the D-
dimensional loop denominators. This gives rise to q̃2 depen-
dent terms, Di/D̄ j = 1 − q̃2/D̄ j , which are consistently
taken into account and result into rational contributions of
kind R1 [2,33]. Note that the reduction (2.20) and the pinch-
ing of propagators can be carried out as soon as rank two
is reached, irrespective of which loop segments are still
undressed. Every reduction step generates four new pinched
sub-topologies, and the proliferation of pinched objects is
avoided by means of the merging approach described in
Sect. 2.5.

Rank-two open loops with only three loop denominators
can be reduced on-the-fly in a similar way as open loops with
more than three propagators [33]. The remaining reducible
integrals have the following number of propagators N and
tensor rank R: N ≥ 5 and R = 1, 0; N = 4, 3 and
R = 1; N = 2 and R = 2, 1. For their reduction to mas-
ter integrals we use a combination of integral reduction and
OPP reduction identities [33]. Master integrals are evalu-
ated with Collier [19], which is the default in double pre-
cision, or OneLOop [65], which is the default in quadruple
precision.

2.5 Tree–loop interference

In the following we outline the calculation of tree–loop inter-
ferences (2.2) according to the original open-loop algorithm
and with the on-the-fly approach [33]. The latter is used by
default inOpenLoops2. In both cases, the colour treatment is
based on the factorisation of colour structures at the level of
individual loop diagrams, M1(I, h) = C(I)A1(I, h). This
makes it possible to cast the interference of loop diagrams
with the Born amplitude into the form

2
∑

col

M∗
0(h)M1(I, h) = U0(I, h)A1(I, h), (2.21)

where A1(I, h) is the colour-stripped loop amplitude, and
the colour information is entirely absorbed into the colour-
summed interference factor

U0(I, h) = 2

(
∑

col

M∗
0(h) C(I)

)

= 2
∑

i, j

[A(i)
0 (h)]∗ Ki j a j (I), (2.22)

where a j (I), A(i)
0 (h), and Ki j are defined in (2.6)–(2.8). In

this way, as detailed below, the full tree–loop interference can
be constructed in terms of colour-stripped or colour-summed
objects.

2.5.1 Parent-child algorithm

In the original open-loop approach, tree–loop interference
contributions of type (2.21) are constructed as follows.

(i) The numerator of a colour-stripped N -point loop dia-
gram (2.12) is constructed as outlined in Sect. 2.3, i.e.
starting from N0 = 1 and applying N dressing steps
of type (2.15).

(ii) In general, open loops with higher number N of loop
propagators do not need to be built from scratch, but can
be constructed starting form pre-computed open loops
with lower N exploiting parent–child relations [9] as
illustrated in Fig. 2. The efficiency of the parent–child
approach is maximised by means of cutting rules that
set the position of the cut propagator and the dressing
direction in a way that favours parent–child matching
(for details see [9,33]).

(iii) After the last dressing step, the loop numerator is closed
by taking the trace and, for every helicity state h, the
colour-summed Born interference (2.21) is built as
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Nk(IN ) =

w1 wk wk+1 wk+2

Nk(ĨN−1) =

w1 wk wk+1 wk+2

Fig. 2 Example of parent-child relation between open loops. The parent N -point diagram IN and the child (N − 1)-point diagram ĨN−1 share
the first k segments (blue blobs). Thus Nk(IN , q) and Nk(ĨN−1, q) are identical and need to be constructed only once

U(IN , q, h) = U0(IN , h)Tr
[
N (IN , q, h)

]
. (2.23)

(iv) Helicity sums are performed, and the set of loop dia-
grams with the same one-loop topology t = {D0, . . .,
DN−1}, denoted ΩN (t), is combined to form a single
numerator,

V(t, q) =
∑

h

∑

IN∈ΩN (t)

U(IN , q, h). (2.24)

(v) The corresponding loop integral,

W01(t) =
∫

dDq̄
V(t, q)

D̄0 D̄1 · · · D̄N−1
, (2.25)

is reduced to master integrals as described in Sect. 2.4.1,
and all topologies are summed.

All operations in (i)–(v) are performed at the level of open-
loop tensor coefficients.

2.5.2 On-the-fly algorithm

The on-the-fly construction of Born-loop interferences pro-
ceeds through objects of type

Uk(IN , q, ȟk) =
∑

ĥk

U0(IN , h)Nk(IN , q, ĥk), (2.26)

where the partially dressed open loops, Nk(IN , q, ĥk), are
always interfered with the Born amplitude, summed over
colours, and also over the helicities ĥk of all segments that
are already dressed. The helicities of the remaining undressed
segments are labelled with the index ȟk . As outlined in the
following, the algorithm interleaves dressing, merging and
reduction operations in a way that keeps the tensor rank
always low and avoids the proliferation of pinched objects
that arise from the reduction. For a detailed description see
[33].

(i) The generalised open loops (2.26) are constructed through
subsequent dressing steps

Uk(IN , q, ȟk) =
∑

hk

Uk−1(IN , q, ȟk−1)Sk(q, hk),

(2.27)

starting from U0(IN , q, ȟ0) = U0(IN , h). The summa-
tion over the helicities hk is performed on-the-fly after the
dressing of the related segment. This results in a reduction
of helicity degrees of freedom, and thus of the number of
required operations, at each dressing step.

(ii) Before each new dressing step, the set ΩN = {I(n)
N } of

open loops with the same loop topology and the same
undressed segments is combined into a single object,

Vk(ΩN , q, ȟk) =
∑

n

Uk(I(n)
N , q, ȟk). (2.28)

In this way, the remaining dressing operations for the
objects in ΩN need to be performed only once. This pro-
cedure, called on-the-fly merging, is illustrated in Fig. 3.
It plays an analogous role as the parent-child approach
in Sect. 2.5.1, and its efficiency is maximised by means
of cutting rules tailored to the needs of merging.

(iii) Open-loop objects of type (2.28) with more than three
loop propagators are reduced on-the-fly using the inte-
grand-reduction identity (2.20). This generates new open
loops of the form

Vk(Ω
k
N , q̄)

D̄0 · · · D̄3 · · · D̄N−1
=

3∑

j=−1

Vk(Ω
k
N [ j], q̄)

D̄0 · · · /̄Dj · · · D̄3 · · · D̄N−1
,

(2.29)

where
/̄
Dj denotes a pinched propagator. This reduction

is applied to rank-two objects directly before dressing
steps that would otherwise increase the rank to three. In
order to avoid the proliferation of new objects, pinched
open loops are merged on-the-fly with other open loops
stemming from lower-point Feynman diagrams or from
other pinched open loops [33]. The numerators in (2.29)
have the form

Vk(Ω, q̄)=
∑

s,r

Vs
k;μ1...μr

(Ω) qμ1 · · ·qμr (q̃2)s, (2.30)

where q̃2 terms that arise from pinched propagators (see
Sect. 2.4.2) are retained in all UV divergent integrals and
lead to R1 rational terms.
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Vk(ΩN ) =

ŵ1 ŵk
wk+1 wN

=
n

U0(I(n)
N )

w(n)
1 w(n)

k
wk+1 wN

Fig. 3 Schematic representation of on-the-fly merging. Open loops with the same loop topology and the same undressed segments (grey blobs)
are combined in a single object

Steps (i)—(iii) are iterated until the loop is entirely
dressed.9

(iv) At this stage, the loops are closed by taking the trace,
and the resulting loop integrals,

W01(Ω) =
∫

dDq̄
Tr [V(Ω, q̄)]

D̄0 D̄1 · · · D̄N−1
, (2.31)

are reduced to master integrals upon extraction of R1

terms, as described at the end of Sect. 2.4.2. Finally, all
topologies are summed.

As demonstrated in Sect. 5, the on-the-fly approach yields
significant efficiency improvements wrt the original open-
loop algorithm. Moreover, based on the one-the-fly reduction
algorithm, OpenLoops 2 has been equipped with an auto-
mated stability system that cures Gram-determinant instabil-
ities with unprecedented efficiency (see Sect. 2.7).

2.6 Squared loop amplitudes

As outlined in the following, the calculation of squared loop
amplitudes (2.3) is organised along the same lines of the
parent-child algorithm of Sect. 2.5.1 but with a different
colour treatment.

(i) The numerators of colour-stripped loop diagrams are
constructed with the dressing recursion (2.15) exploit-
ing parent–child relations.

(ii) After the last dressing step, loop numerators are closed
by taking the trace, and colour-stripped diagrams
expressed in terms of integrals Tμ1···μr

N (2.18),

A1(IN , h) =
∫

dDq̄
Tr
[
N (IN , q, h)

]

D̄0 D̄1 · · · D̄N−1

=
∑

r

Tr
[
Nμ1...μr (IN , h)

]
Tμ1···μr
N ,

(2.32)

which are then computed with Collier. While the
Nμ1...μr (IN , h) coefficients need to be evaluated for

9 Note that it is also possible to apply only (i)–(ii). This leads to the
same objectsV(t, q) as in (2.24), which can then be reduced a posteriori.

every helicity state h, the reduction is done only once
– and thus very efficiently – at the level of the h-
independent tensor integrals.

(iii) Individual colour-stripped diagram amplitudes are
combined with the corresponding colour structure and
converted into colour vectors in the colour basis {Ci },

M1(IN , h) = C(IN )A1(IN , h)

=
∑

i

Ci A(i)
1 (IN , h). (2.33)

Then, summing all diagrams yields the full one-loop
colour vector

A(i)
1 (h) =

∑

I
A(i)

1 (I, h). (2.34)

(iv) Finally, the helicity/colour summed squared loop ampli-
tude is built though the colour-interference matrix (2.8)
as

W11 = 1

Nhcs

∑

h

∑

col

M∗
1(h)M1(h)

= 1

Nhcs

∑

h

∑

i, j

Ki j
[
A(i)

1 (h)
]∗A( j)

1 (h). (2.35)

2.7 Numerical stability

The reduction of one-loop amplitudes to scalar integrals suf-
fers from numerical instabilities in exceptional phase-space
regions. Such instabilities are related to small Gram deter-
minants of the form

Δ1...n = Δ(p1, . . . , pn) = det
(
pi · p j

)
i, j=1,...,n, (2.36)

where pk are the external momenta in the loop propagators
Dk . In regions where rank-two and rank-three Gram determi-
nants become small, the objects that result from the pinching
of propagators can be enhanced by spurious 1/Δ singulari-
ties. At the end, when all pinched objects are combined and
the integrals evaluated, such singularities disappear. How-
ever, this cancellation can be so severe that all significant
digits are lost, and the amplitude output can be inflated in an
uncontrolled way by orders of magnitude. This calls for an
automated system capable of detecting and curing all relevant
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instabilities in a reliable way. This is especially important for
multi-particle and multi-scale NLO calculations, and even
more for NNLO applications, which require high numeri-
cal accuracy in regions where one external parton becomes
unresolved, thereby inflating spurious poles.

In principle, numerical accuracy can be augmented through
quadruple precision (qp) arithmetic. But the resulting CPU
overhead, of about two orders of magnitude, is often pro-
hibitive. In OpenLoops, numerical instabilities are thus
addressed as much as possible in double precision (dp) using
analytic methods. InOpenLoops1, as detailed below, numer-
ical instabilities are avoided by means of the Collier library
[19] in combination with a stability rescue system that makes
use of CutTools [10] in qp. In OpenLoops2, loop-induced
processes are handled along the same lines, while standard
NLO calculations are carried out with the new on-the-fly
reduction algorithm, which is equipped with its own stability
system (see Sect. 2.7.2). The latter combines analytic tech-
niques together with a new hybrid-precision system that uses
qp in a highly targeted way, requiring only a tiny CPU over-
head as compared to a complete qp re-evaluation.

An additional source of numerical instabilities originates
from the violation of on-shell relations or total momentum
conservation of external particles, i.e. due to the quality of
the provided phase-space point. To this end before ampli-
tude evaluation on-shell conditions and momentum con-
servation are checked. A warning is printed when these
conditions are violated beyond a certain relative threshold,
which can be altered via the parameter psp_tolerance
(default = 10−9). Additionally, we apply a “cleaning proce-
dure” which ensures kinematic constraints of the phase-space
up to double precision, rsp. qp where applicable.

2.7.1 Stability rescue system

In the original open-loop algorithm – which was used
throughout in OpenLoops1 and is still used in OpenLoops

2 for squared loop amplitudes and tree–loop interferences in
the HEFT – the reduction to scalar integrals is entirely based
on external libraries, and the best option is to carry out the
reduction of tensor integrals using the Collier library [19].
In the vicinity of spurious poles, Collier cures numerical
instabilities by means of expansions in the Gram determi-
nants and alternative reduction methods [4,34]. Such ana-
lytic techniques are applied in a fully automated way, and the
resulting level of numerical stability is generally very good.
Alternatively, the reduction can be performed at the integrand
level using CutTools [10], but this option is mainly used
as rescue system in qp, since CutTools does not dispose of
any mechanism to avoid instabilities in dp.

In the calculation of tree–loop interferences, numerical
instabilities are monitored and cured by means of an auto-
mated rescue system based on the following strategy.

(i) The stability of tensor integrals is assessed by compar-
ing the two independent Collier implementations of
the tensor reduction, Coli-Collier (default) and DD-
Collier. This test can be applied to all phase-space
points or restricted to a certain fraction of points with
the highest virtual K -factor10 Given the desired frac-
tion, the points to be tested are automatically selected
by sampling the distribution in the K -factor at runtime.

(ii) Points that are classified as unstable are re-evaluated in
qp using CutTools and OneLOop.

(iii) In CutTools, numerical instabilities can remain sig-
nificant even in qp. Their magnitude is estimated
through a so-called rescaling test, where one-loop
amplitudes are computed with rescaled masses, dimen-
sionful couplings and momenta and scaled back accord-
ing to the mass dimensionality of the amplitude.

In this approach, the re-evaluation of the amplitude for
stability tests causes a non-negligible CPU overhead. More-
over, additional re-evaluations of the full amplitude in qp are
very CPU intensive. Fortunately, thanks to the high stability
of Collier, they are typically needed only for a tiny frac-
tion of phase-space points. However, the usage of qp strongly
depends on the complexity of the process, and for challeng-
ing multi-scale NLO calculations and NNLO applications it
can become quite significant.

In the case of squared loop amplitudes, the qp rescue with
CutTools is disabled, because of the inefficiency of OPP
reduction for loop-squared amplitudes. This is due to the fact
that all helicity and colour configurations must be reduced
independently. Thus the above stability system is restricted to
stage (i). Moreover, due to the fact that a K -factor is not avail-
able for loop-squared amplitudes, the comparison of Coli-
Collier versus DD-Collier to assess numerical stability is
extended to all phase-space points. Details on the usage of
the stability rescue system can be found in Sect. 4.6.

2.7.2 On-the-fly stability system

The on-the-fly reduction methods [33] implemented in
OpenLoops 2 are supplemented by a new stability system,
which is based on the analysis of the analytic structure of
spurious singularities in the employed reduction identities.
In general, the reduction of loop objects with four or more
propagators, D0, D1, D2, D3 . . . , can give rise to spurious
singularities in the rank-three Gram determinant Δ123, and
in the rank-two Gram determinants Δ12, Δ13 and Δ23. In the
case of the on-the-fly reduction (2.19), the reduction coeffi-
cients associated with a Di pinch generate spurious singu-
larities of the form

10 This approach allows one to trigger the most extreme instabilities,
where the K -factor is altered by O(1) or more.
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Aμν
i = 1

Δ12
aμν
i ,

Bμν
i,λ = 1

Δ2
12

1√
Δ123

[
b(1)
i,λ

]μν + 1

Δ12

[
b(2)
i,λ

]μν

, (2.37)

with a clear hierarchical pattern: very strong instabilities in
Δ12, mild instabilities in Δ123, and no instability in Δ13 and
Δ23. The on-the-fly reduction of objects with only three loop
propagators involve only Δ12 and yields similar spurious sin-
gularities as in (2.37), but without the Δ123 term.

Rank-two Gram determinants Instabilities from rank-two
Gram determinants are completely avoided in OpenLoops2.
In topologies with four or more propagators, this is achieved
via permutations of the loop denominators, (D1, D2, D3) →
(Di1 , Di2 , Di3), in the reduction identities. Such permuta-
tions are applied on an event-by-event basis in order to guar-
antee

|Δi1i2 | = max {|Δ12|, |Δ13|, |Δ23|} , (2.38)

so that the reduction is always protected from the smallest
rank-two Gram determinant.

In this way, rank-two Gram instabilities are delayed to
later stages of the reduction, where three-point objects with
a single Gram determinant Δ12 are encountered. In this case,
instabilities at small Δ12 are cured by means of an analytic
Δ12-expansion, which have been introduced in [33] for the
first few orders in Δ12 and are meanwhile available to any
order [66].

Such expansions have been worked out for those topolo-
gies and regions that can lead to Δ12 → 0 in hard scattering
processes. This can happen only in t-channel triangle config-
urations, where two external momenta k1, k2 are space-like,
and (k1+k2)

2 = 0. The relevant virtualities are parametrised
as k2

1 = −Q2 and k2
2 = −(1 + δ)Q2, where Q2 is a (high)

energy scale, and the Gram determinant is related to δ via√
Δ12 = Q2 δ/2. The corresponding three-point tensor inte-

grals are expanded in δ based on covariant decompositions
of type

Cμ1...μr (−p2,−p2(1 + δ), 0,m2
0,m

2
1,m

2
2)

=
∑

i

Ci (δ) L
μ1...μr
i , (2.39)

where Lμ1...μr
i are Lorentz structures made of metric tensors

and external momenta. Their coefficients Ci (δ) are reduced
to scalar tadpole, bubble and triangle integrals,

T 1
0 (δ) = A0(m

2
0),

T 2
0 (δ) = B0(−p2(1 + δ),m2

0,m
2
1),

T 3
0 (δ) = C0(−p2,−p2(1 + δ), 0,m2

0,m
2
1,m

2
2), (2.40)

i.e.

Ci (δ) =
3∑

N=1

cNi (δ) T N
0 (δ), (2.41)

where cNi (δ) are rational functions containing 1/δK poles,
while the Ci (δ) coefficients are regular at δ → 0. Numeri-
cally stable δ-expansions for Ci (δ) are obtained via Taylor
expansions of the scalar integrals. The required coefficients,

SNk = 1

k!
(

∂

∂δ

)k

T N
0 (δ)

∣∣∣∣
δ=0

, (2.42)

have been determined to any order k in the form of analytic
recurrence relations [33] for all mass configurations of type
(m0,m1,m2) = (0, 0, 0), (0,m,m), (m, 0, 0), (m, M, M),
which cover all possible QCD amplitudes with massless par-
tons and massive top and bottom quarks. Recently, such any-
order expansions have been extended to all mass configura-
tions that can occur at NLO EW.11

To stabilise the tensor coefficients (2.41), singular terms
of the form δ−K T N

0 (δ) are separated via partial fractioning
and replaced by

δ−K T N
0 (δ) = T N ,K

0,sing(δ) + T N ,K
0,fin (δ), (2.43)

with

T N ,K
0,fin (δ) =

∞∑

k=K

SNk δk−K . (2.44)

The singular parts cancel exactly when combining the contri-
butions from A0, B0 and C0 functions as well as the rational
terms. Thus only the finite series T N ,K

0,fin (δ) need to be eval-
uated. The fact that all tensor integrals are stabilised using
only C0 and B0 expansions makes it possible to expand with
excellent CPU efficiency up to very high orders in δ, thereby
controlling a broad δ-range. In practice, the δ-expansions are
applied for δ < δthr, with a threshold δthr that is large enough
to avoid significant instabilities for δ > δthr, while below δthr

the expansions are carried out up to a relative accuracy of
10−16 (10−32) in dp (qp). By default δthr is set to 10−2.

Rank-three Gram determinants The on-the-fly reduction
coefficients (2.37) associated with Di pinches with i =
1, 2, 3 are proportional to 1/

√
Δ123 and read [33]

11 The implementation of such NLO EW expansions is in progress and
will be completed in a future update of the code. In the meanwhile,
Gram-determinant instabilities for which no expansion is implemented
are cured by means of the hybrid-precision system (see below).
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K1 = p3 · (�1 − α1�2)

p3 · �3
, K2 = p3 · (�2 − α2�1)

p3 · �3
,

K3 = 2
�1 · �2

p3 · �3
, (2.45)

where αi = p2
i /[p1 · p2(1 + √

δ)], and �
μ
1,2,3 are aux-

iliary momenta used to parametrise the loop momen-
tum [33]. In topologies with more than four propagators,
D0, D1, D2, D3, D4, . . ., such rank-three Gram instabilities
are avoided by performing the reduction in terms of four of
the first five propagators, Di0 Di1 Di2 Di3 , which are chosen by
first maximising |Δi1i2 |, to avoid rank-two instabilities, and
by subsequently minimising max{|Ki1 |, |Ki2 |, |Ki3 |}. In this
way, small rank-three (-two) Gram determinants can largely
be avoided until later stages of the recursion, where box (tri-
angle) topologies have to be reduced.

OPP reduction The OPP method, used for five- and higher-
point objects of rank smaller than two, is based on the same
auxiliary momenta �i mentioned above. Related rank-two
Gram instabilities are avoided by permuting the propagators
of the resulting scalar boxes according to (2.38).

IR regions In order to mitigate numerical instabilities in
the context of NNLO calculations, OpenLoops implements
additional improvements targeted at phase-space regions
where one external parton becomes soft or collinear. Such
improvements include:

– global and numerically stable implementation of all kine-
matic quantities, including the basis momenta �

μ
i used for

the reduction, in special regions;
– analytic expressions for renormalised self-energies to

avoid numerical cancellations between bare self-energies
and counterterms in the limit of small p2. This is rele-
vant for self-energy insertions into propagators that are
connected to two external partons via soft or collinear
branchings.

Such dedicated treatments for unresolved regions will be
documented in [66] and further extended in the future.

Hybrid precision system In order to cure residual instabilities
that cannot be avoided with the methods described above, the
on-the-fly reduction is equipped with a hybrid-precision (hp)
system [66] that monitors all potentially unstable types of
reduction identities and switches from dp to qp dynamically
when a numerical instability is encountered. This system is
fully automated and acts locally, at the level of individual
operations. This makes it possible to restrict the usage of
qp to a minimal part of the calculation, thereby obtaining a

speed-up of orders of magnitude as compared to brute-force
qp re-evaluations of the full amplitude. Typically, the extra
time spent in qp is only a modest fraction of the standard dp
evaluation time. The main features of the hp system are as
follows.

– Quad precision is triggered and used at the level of indi-
vidual reduction steps, based on the kinematics of the
actual phase-space point and the loop topology of the
individual open-loop object that is being processes at a
given stage of the recursion.

– Reduction steps that are identified as unstable and all
consecutive connected operations are carried out in quad
precision until spurious singularities are cancelled. Quad
precision is thus used for all subsequent operations
(dressing, merging, reduction, master integrals) that are
connected to an instability.

– For each type of reduction step, the magnitude of poten-
tial instabilities is estimated based on the actual kinemat-
ics and the analytical form of the reduction identity. This
information leads to an error estimate that is attributed
to each processed object and is propagated and updated
through all steps of the algorithm.

– Quad precision is triggered when the cumulative error
esimate for a certain object exceeds a global accu-
racy threshold, which can be adjusted by the user (see
Sect. 4.6) depending on the required numerical accuracy.

The hp system is based on two parallel dp/qp channels for
each generic operation (reduction, dressing, merging) and a
twofold dp/qp representation of each object that undergoes
such operations. By default the dp channel is used, and when
an instability is detected the object at hand is moved to the
qp channel, which is used for all its subsequent manipula-
tions. At the end, when spurious singularities are cancelled,
qp output is converted back to dp.

The efficiency of the hp system strongly benefits from
the above mentioned analytical treatments of Gram determi-
nants and soft regions, which avoid most of the instabilities
and delay the remaining ones to later stages of the recur-
sion, minimising the number of subsequent qp steps. As a
result, for one-loop calculations with hard kinematics qp is
typically needed only for a tiny fraction of the phase-space
points, and for a very small part of the calculation of an
amplitude. The usage of qp can become significantly more
important in NNLO calculations, especially when local sub-
traction methods are used. In this case, one-loop amplitudes
need to be evaluated in deep IR regions, where new types of
instabilities occur for which no analytic solution is available
at the moment. Such instabilities are automatically detected
and cured by the hp system. This may lead, depending on
the process and kinematic region, to a significant CPU over-
head. In such cases, the accuracy threshold parameter should
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be tuned such as to achieve an optimal trade-off between
performance and numerical stability.

Technical details and usage of the on-the-fly stability sys-
tem are described in Sect. 4.6.

External libraries Finally, OpenLoops 2 benefits from
improvements in Collier 1.2.3 [19], which is used for dp
evaluations of scalar integrals and for tensor reduction in
loop-induced processes, as well as in OneLOop [65], which
is used to evaluate scalar integrals in qp.

3 Automation of tree- and one-loop amplitudes in the
full SM

3.1 Power counting

In the Standard Model, scattering amplitudes can be classi-
fied based on power counting in the strong and electroweak
coupling constants,12 gs = √

4παs and e = √
4πα. At LO

in QCD, tree amplitudes have the simple form

M0

∣∣∣
LO QCD

= gns e
mM(0)

0 , (3.1)

where n and m are, respectively, the maximally allowed
power in gs and the minimally allowed power in e. The total
coupling power is fixed by the number of scattering parti-
cles, n +m = Np − 2, where Np is the number of scattering
particles.

In the SM, the general coupling structure of scattering
amplitudes depends on the number nqq̄ of external quark–
antiquark pairs. For processes with nqq̄ ≤ 1, the LO QCD
term (3.1) is the only tree contribution, while processes with
nqq̄ ≥ 2 involve also sub-leading EW contributions of order
gp

s eq with p + q = Np − 2 and variable power q > m.
Such contributions reflect the freedom of connecting quark
lines either through EW or QCD interactions. As a result, tree
amplitudes consist of a tower of QCD–EW contributions,

M0 = gns e
m

ñqq̄∑

k=0

(
e

gs

)2k

M(k)
0 , (3.2)

where

ñqq̄ =
{
nqq̄ − 1 for nqq̄ ≥ 1,

0 for nqq̄ = 0.
(3.3)

12 For simplicity, here we regard Yukawa and Higgs couplings as
parameters of order e, keeping in mind that a separate power count-
ing in λY and λH is possible.

For nqq̄ ≥ 2, the Born amplitude (3.2) involves nqq̄ terms,
while the squared Born amplitude consists of a tower of
2nqq̄ − 1 terms,

W00 = 〈M0|M0〉

= (4παs)
n(4πα)m

2ñqq̄∑

r=0

(
α

αs

)r
W(r)

00 . (3.4)

Each term of fixed order in αs and α in (3.4) results from the
interference between Born amplitudes of variable order,

W(r)
00 =

smax∑

s=smin

〈
M(r−s)

0 |M(s)
0

〉
for 0 ≤ r ≤ 2ñqq̄ , (3.5)

where smin = max(0, r− ñqq̄) and smax = min(r, ñqq̄). Con-

tributions
〈
M(k)

0 |M(k′)
0

〉
with k′ �= k and k′ = k are denoted,

respectively, as Born–Born interferences and squared Born
terms. The former are typically strongly suppressed with
respect to the latter. This is due to the fact that physi-
cal observables are typically dominated by contributions
involving propagators that are enhanced in certain kinematic
regions. Squared amplitudes that involve such propagators
are thus maximally enhanced. In contrast, since the propaga-
tors of Born amplitudes with k′ �= k are typically peaked in
different regions, Born–Born interferences tend to be much
less enhanced. In addition, the interference between diagrams
with gluon and photon propagators, which are enhanced in
the same regions, turn out to be suppressed as a result of
colour interference.

Based on these considerations, it is interesting to note that
each term (3.5), with fixed order in αs and α, contains at most
one squared-Born contribution with r − s = s. In fact this
is possible only for even values of r . Thus the tower (3.4)
consist of an alternating series of nqq̄ squared Born terms13

with r = 2R,

W(2R)
00 ⊃ 〈M(R)

0 |M(R)
0

〉
for 0 ≤ R ≤ ñqq̄ , (3.6)

and (nqq̄ − 1) pure interference terms with r = 2R + 1,

W(2R+1)
00 ⊃ interference only for 0 ≤ R ≤ ñqq̄ − 1.

(3.7)

The tower of Born terms (3.4) is illustrated in the upper row
of Fig. 4. Squared Born terms are shown as large dark grey
blobs, while interference terms are depicted as smaller light
grey blobs.

13 In the following, for convenience, we refer to the the full amplitude
M(2R)

0 as squared Born term.
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Fig. 4 Schematic representation of the towers of mixed QCD–EW
terms at LO and NLO. The first row represents the LO tower (3.4)–
(3.6), which consists of an alternating series of dominant squared Born
terms (dark grey blobs) and sub-leading pure interference terms (light
grey blobs). The second row corresponds to the NLO tower (3.14)–
(3.24). Each LO term is connected to two NLO terms via QCD (red) and

EW (blue) corrections, while each NLO term is connected to a unique
squared Born term either via QCD or EW corrections. Apart from the
outer most NLO terms of pure QCD and pure EW kind, QCD (EW)
corrections to squared Born terms mix with EW (QCD) corrections to
adjacent interference terms

At one loop, for processes that are not free from external
QCD partons,14 the leading QCD contributions have the form

M1

∣∣∣
NLO QCD

= gn+2
s emM(0)

1 . (3.8)

Here NLO QCD should be understood as the O(αs) correc-
tion wrt the LO QCD term (3.1). For processes with nqq̄ ≥ 2,
the leading QCD terms are accompanied by a tower of sub-
leading EW contributions, and the general form of one-loop
SM amplitudes is

M1 = gn+2
s em

ñqq̄+1∑

k=0

(
e

gs

)2k

M(k)
1 . (3.9)

Here and in the following, the inclusion of all counterterm
contributions of UV and R2 kind as in (2.11) is implicitly
understood. One-loop terms of fixed order in gs and e in
(3.9) can be regarded either as the result of O(g2

s ) or O(e2)

insertions into corresponding Born amplitudes. In this per-
spective, denoting matrix elements of fixed order as

M(P,Q)
L = ML

∣∣∣
gPs eQ

, (3.10)

we can define

δQCDM(p,q)
0 ≡ M(p+2,q)

1 ,

δEWM(p,q)
0 ≡ M(p,q+2)

1 , (3.11)

where δQCD and δEW should be understood as operators that
transform anO(gp

s eq) Born matrix element into the complete

14 In the absence of extenal quarks and gluons, tree and one-loop ampli-
tudes have a trivial purely EW coupling structure, M0 = emM(0)

0 and

M1 = em+2M(1)
1 .

one-loop matrix elements of O(gp+2
s eq) and O(gp

s eq+2),
respectively. For processes with nqq̄ ≤ 1, only one Born
term and two one-loop terms exist, and the latter can unam-
biguously be identified as NLO QCD and NLO EW correc-
tions,

M1 = M(n+2,m)
1 + M(n,m+2)

1

= δQCD M(n,m)
0 + δEW M(n,m)

0 for nqq̄ ≤ 1. (3.12)

In contrast, processes with nqq̄ ≥ 2 involve ñqq̄ + 1 = nqq̄
terms of variable order gP

s eQ , which can in general be
regarded either as QCD corrections to Born terms of rela-
tive order g−2

s or EW corrections to Born terms of relative
order e−2, i.e.

M(P,Q)
1 = δQCD M(P−2,Q)

0 = δEW M(P,Q−2)
0 (3.13)

for nqq̄ ≥ 2. More precisely, one-loop terms with maximal
QCD order, Pmax = n + 2, represent pure QCD corrections,
since Born terms of relative order e−2 do not exist. Similarly,
one-loop terms of maximal EW order, Qmax = m+2+2ñqq̄ ,
are pure EW corrections, since Born terms of relative order
g−2

s do not exist. In contrast, the remaining nqq̄−2 terms with
P < Pmax and Q < Qmax have a mixed QCD–EW charac-
ter, in the sense that they involve corrections of QCD and
EW type, which coexist at the level of individual Feynman
diagrams, such as in loop diagrams where two quark lines are
connected by a virtual gluon and a virtual EW boson. This
kind of one-loop terms cannot be split into contributions of
pure QCD or pure EW type. Thus, in general only the full set
of one-loop diagrams containing all mixed QCD–EW terms
of order gP

s eQ represents a well defined and gauge-invariant
perturbative contribution. Keeping this in mind, as far as the
terminology is concerned, it is often convenient to refer to
(3.13) either as QCD correction wrt to O(gP−2

s eQ) or EW
correction wrt O(gP

s eQ−2).
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Squaring one-loop amplitudes with nqq̄ ≥ 2 results in
a similar tower of 2nqq̄ − 1 mixed QCD–EW terms as in
(3.4)–(3.5). In contrast, the interference of tree and one-loop
amplitudes yields a tower of 2nqq̄ terms,

W01 = 2Re 〈M0|M1〉

= (4παs)
n+1 (4πα)m

2ñqq̄+1∑

r=0

(
α

αs

)r
W(r)

01 . (3.14)

Each term of fixed order in αs and α involves the interference
between Born and one-loop terms of variable order,

W(r)
01 = 2Re

tmax∑

t=tmin

〈
M(r−t)

0 |M(t)
1

〉
(3.15)

for 0 ≤ r ≤ 2ñqq̄ + 1, where tmin = max(0, r − ñqq̄) and
tmax = min(r, ñqq̄+1).15 In general, the one-loop amplitudes
that enter (3.15) consist of mixed QCD–EW corrections in
the sense of (3.13), i.e.

M(k)
1 = δQCD M(k)

0 = δEW M(k−1)
0 for nqq̄ ≥ 2. (3.16)

In practice, as discussed above, the one-loop terms with max-
imal QCD or maximal EW order consist of pure QCD or pure
EW corrections. In (3.14)–(3.15) they correspond to r = 0
and r = 2ñqq̄ + 1, and they read

W(0)
01 = 2Re

〈
M(0)

0 |M(0)
1

〉 = 2Re
〈
M(0)

0 |δQCD M(0)
0

〉
,

(3.17)

and

W(2ñqq̄+1)

01 = 2Re
〈
M(ñqq̄ )

0 |M(ñqq̄+1)

1

〉

= 2Re
〈
M(ñqq̄ )

0 |δEW M(ñqq̄ )

0

〉
. (3.18)

These contributions are shown as the outer most blobs in
the second row of Fig. 4. They emerge as pure O(αs) and
pure O(α) corrections as indicated by the red and blue
arrows respectively. The remaining (2nqq̄ − 2) terms can-
not be regarded as pure QCD or pure EW corrections. Nev-
ertheless, due to the fact that the squared Born tower is an
alternating series consisting of nqq̄ squared Born terms and
(nqq̄ − 1) pure interference terms, see (3.4)–(3.6), the tree–
loop interference (3.14) corresponds to an alternating series
of nqq̄ + nqq̄ terms that can be interpreted, respectively, as
QCD and EW corrections with respect to squared Born terms.

15 In [67] the contributions W(r)
tree and W(r)

01 are rsp. denoted as LOr+1
and NLOr+1.

Specifically, the terms (3.15) with even indices, r = 2R with
0 ≤ R ≤ nqq̄ − 1, can be written in the form

W(2R)
01 = 2Re

tmax∑

t=tmin

〈
M(2R−t)

0 |δQCD M(t)
0

〉
, (3.19)

where the terms with t = R,

〈
M(R)

0 |δQCD M(R)
0

〉 ⊂ W(2R)
01 , (3.20)

represent QCD corrections to squared Born amplitudes. In
contrast, the alternative representation

W(2R)
01 = 2Re

tmax∑

t=tmin

〈
M(2R−t)

0 |δEW M(t−1)
0

〉
, (3.21)

where 2R−t �= t−1 for all t , shows that EW corrections arise
only in connection with interference Born terms, which are
typically strongly sub-leading. Vice versa, for terms with odd
indices, r = 2R + 1 with 0 ≤ R ≤ ñqq̄ , the representation

W(2R+1)
01 = 2Re

tmax∑

t=tmin

〈
M(2R+1−t))

0 |δEW M(t−1)
0

〉
(3.22)

involves terms with t = R + 1,

〈
M(R)

0 |δEW M(R)
0

〉 ⊂ W(2R+1)
01 , (3.23)

which represent EW corrections to squared Born amplitudes,
while writing

W(2R+1)
01 = 2Re

tmax∑

t=tmin

〈
M(2R+1−t))

0 |δQCD M(t)
0

〉
, (3.24)

where 2R + 1 − t �= t for all t , shows that QCD correction
effects enter only through pure interference Born terms and
are typically suppressed.

In summary, apart from the leading QCD and EW terms,
NLO SM contributions at a given order αn+1−r

s αm+r cannot
be regarded as pure QCD or pure EW corrections. Neverthe-
less, the orders r = 2R and 2R + 1 are typically dominated,
respectively, by QCD and EW corrections to the squared Born
amplitude W2R

00 ∼ 〈
MR

0 |MR
0

〉
. Thus, keeping in mind that

all relevant EW–QCD mixing and interference effects must
always be included, each NLO order can be labelled in a nat-
ural and unambiguous way either as QCD or EW correction
as illustrated in Fig. 4.

As detailed in Sect. 4.2, OpenLoops supports the calcu-
lation of tree and one-loop contributions of any desired order
in αs and α. In practice, scattering probability densities at
different orders in αs and α,
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W(P,Q)

LL ′ = WLL ′
∣∣∣
αP

s αQ
, (3.25)

are treated as separate subprocesses. Squared Born terms
W(p,q)

00 and squared one-loop terms W(p,q)
11 are selected by

specifying the QCD order p or the EW order q. Fixing q
selects also the related NLO QCD tree–loop interferences,
W(p+1,q)

01 , while fixing p yields their NLO EW counter-

part,W(p,q+1)
01 . Alternatively, tree-loop interferences of order

αP
s αQ can be selected directly through the corresponding

one-loop powers P or Q.

3.2 Input schemes and parameters

In this section we discuss the different input schemes and
the SM input parameters that are used for the calculation
of scattering amplitudes in OpenLoops. All parameters are
initialised with physical default values, and can be adapted by
the user by calling the Fortran routine set_parameter
or the related C/C ++ functions as detailed in Appendix A.2.
Table 10 in Appendix C summarises input parameters and
switchers that can be controlled through set_parameter.
Parameters with mass dimension should be entered in GeV
units. The values of specific parameters inOpenLoops can be
obtained by calling the routine get_parameter, and the
full list of parameter values can be printed to a file by calling
the function printparameter (see Appendix A.2).

Masses andwidths TheOpenLoopsparametersmass(PID)
and width(PID) correspond, respectively, to the on-shell
mass Mi and the width Γi of the particle with PDG particle
number PID (see Table 6). Masses and widths are treated as
independent inputs. For unstable particles, when Γi > 0, the
complex-mass scheme [38] is used. In this approach, parti-
cle masses are replaced throughout by the complex-valued
parameters

μ2
i = M2

i − iΓi Mi . (3.26)

This guarantees a gauge-invariant description of resonances
and related off-shell effects. By default, Γi = 0 and μi =
Mi ∈ R for all SM particles, i.e. unstable particles are treated
as on-shell states, while setting Γi > 0 for one or more
unstable particles automatically activates the complex-mass
scheme for the particles at hand. By default, Mi > 0 only for
i = W, Z , H, t .

For performance reasons, the public OpenLoops libraries
are typically generated with me = mμ = mτ = 0 and
mu = md = ms = mc = 0, while generic mass parame-
ters mq are used for the heavy quarks q = b, t . By default,
heavy-quark masses are set to mb = 0 and mt = 172 GeV,
but their values can be changed by the user as desired. Dedi-
cated process libraries with additional fermion-mass effects

(any masses at NLO QCD and finite mτ at NLO EW) can be
easily generated upon request. For efficiency reasons, when
mQ is set to zero for a certain heavy quark, whenever possi-
ble amplitudes that involve Q as external particle are inter-
nally mapped to corresponding (faster) massless amplitudes.
To this end the desired fermion masses have to be specified
before any process is registered, see Sect. 4.2.

Strong coupling The values of αs(μ
2
R) and the renormali-

sation scale μR can be controlled through the parameters
alphas and muren, respectively. These parameters can be
set dynamically on an event-by-event basis,16 and Open-

Loops 2 implements a new automated scale-variation sys-
tem that makes it possible to evaluate the same scattering
amplitude at multiple values of μR and/or αs(μ

2
R) with high

efficiency (see Sect. 4.3).

Number of colours By default, in OpenLoops colour effects
and related interferences are included throughout, i.e. scat-
tering amplitudes are evaluated by retaining the exact depen-
dence on the number of colours Nc. In addition, dedicated
process libraries with large-Nc expansions can be generated
by the authors upon request. When available, leading-colour
amplitudes can be selected at the level of process registration
(see Sect. 4.2) via the parameter leading_colour = 1
(default=0).

EW gauge couplings The U(1) and SU(2) gauge couplings
g1, g2 are derived from

g1 = e

cos θw
, g2 = e

sin θw
, (3.27)

where e = √
4πα and θw denotes the weak mixing angle.

The latter is always defined through the ratio of the weak-
boson masses [68],

cos2 θw = μ2
W

μ2
Z

. (3.28)

If ΓW = ΓZ = 0, then cos θw = MW /MZ is real valued.
But in general the mixing angle is complex valued. For the
electromagnetic coupling three different definitions are sup-
ported:

(i) α(0)-scheme: as input for α the parameter alpha
_qed_0 is used, which corresponds to the QED cou-
pling in the Q2 → 0 limit. This scheme is appropriate
for pure QED interactions at scales Q2 � M2

W , and
for the production of on-shell photons (see below).

16 For historical reasons their default values are μR = 100 GeV and
αs = 0.1258086856923967.
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Table 1 Available EW input schemes and corresponding values of the
ew_scheme selector. For each scheme the default values of the corre-
sponding input parameter is indicated. Note that instead of α(M2

Z ) =
1/127.94 [69] we use 1/128. Assuming the default weak-boson mass

values MW = 80.399 GeV, MZ = 91.1876 GeV and ΓW = ΓZ = 0.
For the weak mixing angle, sin2 θw = 0.22262651564387248 in all
three schemes, while the derived value of α|Gμ is reported in the table

ew_scheme Scheme Input parameter Default input Value of α

0 α(0) alpha_qed_0 1/137.035999074 Idem

1 (default) Gμ Gmu 1.16637 · 10−5 GeV−2 1/132.34890452162441

2 α(M2
Z ) alpha_qed_mz 1/128 Idem

(ii) Gμ-scheme: the input value of α is derived from the
matching condition
∣∣∣

8√
2
Gμ

∣∣∣
2 =

∣∣∣
g2

2

μ2
W

∣∣∣
2
, (3.29)

which relates squared matrix elements for the muon
decay in the Fermi theory to correspondingW -exchange
matrix elements in the low-energy limit. This results
into17

α|Gμ =
√

2

π
Gμ

∣∣∣μ2
W sin2 θw

∣∣∣. (3.30)

As input for α|Gμ the parameter Gmu is used, which
corresponds to the Fermi constantGμ. TheGμ-scheme
resums large logarithms associated with α(M2

Z ) as
well as universal M2

t /M2
W enhanced corrections asso-

ciated with the ρ parameter. This guarantees an optimal
description of the strength of the SU(2) coupling, i.e.
W -interactions, at the EW scale.

(iii) α(M2
Z)-scheme: as input for α the parameter alpha

_qed_mz is used, which corresponds to the QED cou-
pling at Q2 = M2

Z . This scheme is appropriate for hard
EW interactions around the EW scale, where it guar-
antees an optimal description of the strength of QED
interactions and a decent description of the strength of
weak interactions.

The choice of α-input scheme is controlled by the Open-
Loops parameter ew_scheme as detailed in Table 1, where
also the default input values are specified. Note that α(0)

and α(M2
Z ) are described by means of two distinct parame-

ters in OpenLoops. Depending on the selected scheme, the
appropriate parameter should be set.

External photons The high-energy couplings α|Gμ and
α(M2

Z ) are appropriate for the interactions of EW gauge

17 In the literature, the coupling α in the Gμ-scheme is often defined as
α|Gμ = √

2/π GμRe
(
μ2
W sin θ2

w

)
, where the truncation of the imag-

inary part is an ad-hoc prescription aimed at keeping α ∈ R in the
complex-mass scheme. However, from the matching condition (3.29)
it should be clear that (3.30) is the natural way of defining α|Gμ as
real-valued parameter.

bosons with virtualities of the order of the EW scale. In con-
trast, the appropriate coupling for external high-energy pho-
tons is α(0) [70]. More precisely, for photons of virtuality
Q2

γ the coupling α(Q2
γ ) should be used. For initial- or final-

state on-shell photons this corresponds to α(0). However,
in photon-induced hadronic collisions, initial-state photons
inside the hadrons effectively couple as off-shell partons with
virtuality Q2

γ = μ2
F , where μF is the factorisation scale of

the parton distribution functions (see Appendix A.3 of [36]),
Thus, at high μ2

F the high-energy couplings α|Gμ or α(M2
Z )

should be used.
Based on these considerations, for processes with n on-

shell and n∗ “off-shell” hard external photons plus a possible
unresolved photon,

A → B + nγ + n∗γ ∗ (+γ ), (3.31)

the scattering probability densitiesW = W00,W01,W11 are
automatically rescaled as18

W →
[
R(on)

γ

]n [
R(off)

γ

]n∗
W, (3.32)

with LSZ-like coupling correction factors

R(on)
γ = α(0)

α
and R(off)

γ = αoff

α
. (3.33)

Here α should be understood as the QED coupling in the
input scheme selected by the user, while the value of α(0)

correspond to the parameter alpha_qed_0 and is indepen-
dent of the scheme choice. The coupling of off-shell external
photons and the resulting R(off)

γ factor are set internally as

αoff =
{

α|Gμ if α = α(0),

α if α = α|Gμ or α = α(M2
Z ),

(3.34)

which implies

R(off)
γ =

{
α|Gμ

α(0)
if α = α(0),

1 otherwise.
(3.35)

18 In the case of NLO EW contributions W01, the rescaling factors are
renormalised according to (3.91).

123



Eur. Phys. J. C           (2019) 79:866 Page 17 of 56   866 

In this way αoff is guaranteed to be a high-energy coupling.
Note that unresolved photons, i.e. additional photons emit-
ted at NLO EW, need to be treated in a different way. In this
case, in order to guarantee the correct cancellation of IR sin-
gularities, real and EW corrections should be computed with
the same QED coupling. This implies that the coupling α of
unresolved photons should not receive any Rγ rescaling.

The relevant information to determine the number of on-
shell and off-shell external photons in (3.32) should be pro-
vided by the user on a process-by-process basis. To this
end, when registering a process with external photons (see
Sect. 4.2), unresolved photons should be labelled with the
standard PDG identifier PID = 22, while for on-shell and
off-shell hard photons, respectively, PID = 2002 and PID
= −2002 should be used. In order to guarantee an optimal
choice of α, external photons should be handled according
to the following classification.

– Unresolved photons (iPDG = 22): extra photons (absent
at LO) in NLO EW bremsstrahlung.

– Hard photons of on-shell type (iPDG = 2002): standard
hard final-state photons that do not undergo γ → f f̄
splittings at NLO EW, or initial-state photons at photon
colliders;

– Hard photons of off-shell type (iPDG= −2002): hard
final-state photons that undergo γ → f f̄ splittings at
NLO EW, or initial-state photons from QED PDFs in
high-energy hadronic collisions.

Here “hard” should be understood as the opposite of “unre-
solved”, i.e. it refers to all photons that are present as external
particles starting from LO.

By default, the R(on)
γ and R(off)

γ rescaling factors in (3.32)–
(3.33) are applied to all on-shell and off-shell photons. They
can be deactivated independently of each other by setting,
respectively,onshell_photons_lsz=0 (default=1) and
offshell_photons_lsz=0 (default=1).

Yukawa and Higgs couplings The interactions of Higgs
bosons with massive fermions is described by the Yukawa
couplings

λ f =
√

2 μ f,Y

v
with v = 2μW sin θw

e
. (3.36)

Here v corresponds to the vacuum expectation value, while
μ f,Y is a Yukawa mass parameter. At LO and NLO QCD,
the complex-valued Yukawa masses can be freely adapted
through the parametersyuk(PID) andyukw(PID), which
play the role of real Yukawa masses Mi,Y and widths Γi,Y.
More explicitly, in analogy with (3.26),

μ2
f,Y = M2

f,Y − iΓ f,Y M f,Y. (3.37)

At NLO QCD, as discussed in Sect. 3.3.1, Yukawa couplings
can be renormalised in the MS scheme or, alternatively, as
on-shell fermion masses.

By default, according to the SM relation between Yukawa
couplings and masses, the Yukawa masses μ f,Y are set
equal to the complex masses μ f in (3.26). More precisely,
each time that mass(PID) and width(PID) are updated,
the corresponding Yukawa mass parameters yuk(PID)
and yukw(PID) are set to the same values. Thus, mod-
ified Yukawa masses should always be set after physi-
cal masses. This interplay, can be deactivated by setting
freeyuk_on = 1 (default = 0). In this case, yuk(PID)
and yukw(PID) are still initialised with the same default
values as mass parameters, but are otherwise independent.
This switcher acts in a similar way on the Yukawa renormal-
isation scale μ f,Y in (3.52). At NLO EW, modified Yukawa
masses are not allowed.19

The triple and quartic Higgs self-couplings are imple-
mented as

λ
(3)
H = κ

(3)
H

3μ2
H

v
, λ

(4)
H = κ

(4)
H

3μ2
H

v2 , (3.38)

where μH denotes the Higgs mass. By default κ
(3,4)
H = 1,

consistently with the SM. At NLO QCD, and also at NLO
EW for processes that are independent of λ

(3,4)
H at tree level,

the Higgs self-couplings can be modified through the naive
real-valued rescaling parameters lambda_hhh ≡ κ

(3)
H and

lambda_hhhh ≡ κ
(4)
H .

Wherever present, the imaginary parts of μ f , μH , μW and
sin θw are consistently included throughout in (3.36)–(3.38).

Higgs effective couplings Effective Higgs interactions in the
Mt → ∞ limit are parametrised in such a way that the Feyn-
man rule for the vertices with two gluons and n Higgs bosons
read

Vμν
ggHn = λggHn

(
gμν p1 · p2 − pν

1 p
μ
2

)
, (3.39)

where

λggHn = 1

n

g2
s

4π2

( −ie

6μW sin θw

)n

, (3.40)

and p1, p2 are the incoming momenta of the gluons. The
power counting in the coupling constants is done in e and gs

as in the SM. In the Higgs Effective Field Theory, only QCD
corrections are currently available.

19 More precisely, Yukawa masses are always renormalised like physi-
cal masses at O(α). Moreover, when μ f,Y �= μ f for any particle during
process registration NLO EW process libraries cannot be loaded and if
μ f,Y �= μ f is set at a later stage a warning is printed.
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CKM matrix The OpenLoops program can generate scat-
tering amplitudes with a generic CKM matrix Vi j . However,
for efficiency reasons, most process libraries are generated
with a trivial CKM matrix, Vi j = δi j . Process libraries with
a generic CKM matrix are publicly available for selected
processes, such as charged-current Drell-Yan production in
association with jets, and further libraries of this kind can be
generated upon request. When available, such libraries can
be used by setting ckmorder=1 before the registration of
the process at hand (see Sect. 4.2). In this case the default
values of Vi j remain equal to δi j , but the real and imaginary
parts of the CKM matrix can be set to any desired value by
means of the input parameters VCKMdu, VCKMsu, VCKMbu,
VCKMdc, VCKMsc, VCKMbc, VCKMdt, VCKMst, VCKMbt
for Re(Vi j ) and VCKMIdu, VCKMIsu, etc. for Im(Vi j ).

3.3 Renormalisation

Divergences of UV and IR type are regularised in D = 4−2ε

dimensions and are expressed as poles of the formCε μ2ε
D /εn ,

where μD is the scale of dimensional regularisation, and

Cε = (4π)ε

Γ (1 − ε)
= 1 + ε

[
ln (4π) − γE

]+ O(ε2) (3.41)

is the conventional MS normalisation factor. For a systematic
bookkeeping of the different kinds of divergences, UV and
IR poles are parametrised in terms of independent dimen-
sional factors (εUV, εIR) and scales (μUV, μIR). Thus, one-
loop matrix elements involve three types of poles,

Cε

(
μ2

UV

)εUV

εUV
= Cε

[
1

εUV
+ ln(μ2

UV)

]
+ O(εUV),

Cε

(
μ2

IR

)εIR

εIR
= Cε

[
1

εIR
+ ln(μ2

IR)

]
+ O(εIR),

Cε

(
μ2

IR

)εIR

ε2
IR

= Cε

[
1

ε2
IR

+ 1

εIR
ln(μ2

IR) + 1

2
ln2(μ2

IR)

]

+ O(εIR). (3.42)

Renormalised one-loop amplitudes computed by Open-

Loops are free of UV divergences. Yet, bare amplitudes with
explicit UV poles can also be obtained (see Sect. 4.3). The
remaining IR divergences are universal and can be cancelled
through appropriate subtraction terms (see Sect. 3.4).

For the renormalisation of UV divergences we apply the
following generic transformations of masses, fields and cou-
pling parameters,

μ2
i,0 = μ2

i + δμ2
i , (3.43)

ϕi,0 =
(

1 + 1

2
δZϕiϕ j

)
ϕ j , (3.44)

gi,0 = gi + δgi = (1 + δZgi

)
gi , (3.45)

where μ2
i,0, ϕi,0, gi,0 denote bare quantities, and δμ2

i , δZϕiϕ j ,
δZgi the respective counterterms.

For unstable particles, as discussed in Sect. 3.3.2, Open-
Loops implements a flexible combination of the on-shell
scheme [37] and the complex-mass scheme [38]. In this
approach, the width parameters Γi of the various unstable
particles can be set to non-zero or zero values independently
of each other. Depending on this choice, the correspond-
ing particles are consistently renormalised as resonances
with complex masses or as on-shell external states with real
masses.

In the following, we discuss the various counterterms
needed at NLO QCD and NLO EW. In general, as discussed
in Sect. 3.1, one-loop contributions of O(αP

s αQ) can require
O(αs) counterterm insertions in Born terms of O(αP−1

s αQ)

as well as O(α) counterterm insertions in Born terms of
O(αP

s αQ−1).

3.3.1 QCD renormalisation

The SM parameters that involve one-loop counterterms of
O(αs) are the strong coupling, the quark masses, and the
related Yukawa couplings.

Strong coupling The renormalisation of the strong coupling
constant is carried out in the MS scheme, and can be matched
in a flexible way to the different flavour-number schemes
that are commonly used in NLO QCD calculations. To this
end, the full set of light and heavy quarks that contribute to
one-loop amplitudes and counterterms is split into a sub-
set of active quarks (q ∈ Qactive) and a remaining sub-
set of decoupled quarks (q /∈ Qactive). Active quarks with
mass mq ≥ 0 are assumed to contribute to the evolution of
αs(μ

2
R) above threshold. Thus they are renormalised via MS

subtraction at the scale μ = max(μR,mq). The remaining
heavy quarks (q /∈ Qactive) are assumed to contribute only to
loop amplitudes and counterterms, but not to the running of
αs(μ

2
R). Thus, they are renormalised in the so-called decou-

pling scheme, which corresponds to a subtraction at zero
momentum transfer.

The explicit form of the gs counterterm reads

δgs

gs
= αs

4π

{

−11

6
CA

[
Cε

εUV
+ ln

(
μ2

UV

μ2
R

)]

+2

3
TF
∑

q

[
Cε

εUV
+ Lq(μD, μR, μq)

]}

, (3.46)

where CA = 3 and TF = 1/2, while μR and μUV are
the renormalisation and dimensional regularisation scales for
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UV divergences, respectively. The logarithmic terms associ-
ated with quark loops read

Lq(μD, μR, μq) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln

(
μ2
D

μ2
R

)
if q ∈ Qactive and
μR > mq ,

Re ln

(
μ2
D

μ2
q

) if q ∈ Qactive and
μR < mq
or if q /∈ Qactive.

(3.47)

The number of active and decoupled quarks included in
(3.46) is determined as explained in the following.

Choice of flavour-number scheme In NLO QCD calcula-
tions, the logarithms of μR in the counterterm (3.46)–(3.47)
should cancel the leading-order μR dependence associated
with αs(μ

2
R). To this end, the number Nq,active of active quark

flavours in (3.46) should be set equal to the number NF cor-
responding to the flavour-number scheme of the calculation
at hand. More precisely, when using a running αs(μ

2
R) with

NF quark flavours, the user20 should set Nq,active = NF.
In variable-flavour number schemes, NF corresponds to the
maximum number of quark flavours in the evolution, and
typically NF = 4, 5 or 6.21

In practice, the number of active quarks in OpenLoops is
determined as

Nq,active = max(NF, Nq,m=0), (3.48)

where NF corresponds to the desired flavour-number scheme
and can be specified by the user through the parameter
nf_alphasrun, while Nq,m=0 is determined from the
number of quarks with mq = 0 at runtime. By default
nf_alphasrun=0, and all massless quarks are treated as
active, while massive quarks are decoupled. In contrast, if
nf_alphasrun is set to a value NF > Nq,m=0, the first
NF massless or massive quarks are treated as active above
threshold, and only the remaining heavy quarks are decou-
pled. For example, whenmb = 0 the default value of Nq,active

is 5, and nf_alphasrun should be set to 6 in case a 6-
flavour αs is used. In contrast, for mb �= 0 the default value
of Nq,active is 4, and nf_alphasrun should be set to NF

in case a NF-flavour αs with NF > 4 is used.

Total number of quark flavours By default, most public
OpenLoops libraries involve quark-loop contributions with

20 Note that αs(μ
2
R) and μR are separate input parameters controlled

by the user, i.e. OpenLoops does not control the evolution of αs(μ
2
R)

but only the related counterterm. Thus it is the role of the user to set
Nq,active to the correct value NF.
21 In case the running of αs is obtained from LHAPDF the information
about the number of quark flavours contributing to the evolution of αs
is available in the PDF info file as the tag NumFlavors for LHAPDF
versions ≥ 6.0.

Nq,loop = 6 quark flavours. Such libraries can be used for
NLO calculations in any flavour-number scheme with NF =
Nq,loop or NF < Nq,loop. In the latter case, heavy-quark loop
contributions that do not contribute to the evolution of αs(μ

2
R)

are consistently accounted for by the Nq,loop −NF decoupled
quarks in the one-loop matrix elements.

Extra libraries without top-quark loops (Nq,loop = 5)
can be easily generated upon request and are publicly avail-
able for selected processes. When available, libraries with
Nq,loop < 6 can be used by setting the parameter nf
(default=6) to the desired value of Nq,loop at the moment
of the process registration.

Quark masses At NLO QCD, quark masses can be renor-
malised in the on-shell scheme (default) or in the MS scheme.
The general form of mass counterterms is

δμq

μq
= −3 αs

4π
CF

[
Cε

εUV
+ ln

(
μ2

UV

μ2
q

)

+ X (μq ,Λq)

]

,

(3.49)

where CF = 3/4, and logarithms of the complex mass μq

are complex valued when Γq > 0. The scheme- dependent
finite part reads

X (μq ,Λq) =

⎧
⎪⎪⎨

⎪⎪⎩

4
3

in the on-shell scheme
(Λq = 0),

ln

(
μ2
q

Λ2
q

)
in the MS scheme (Λq >
0).

(3.50)

Here Λq denotes the MS renormalisation scale for the mass
of the quark q. This scale is controlled by the (real-valued)
parameter LambdaM(PID), which plays also the role of
scheme setter for the mass counterterm of the quark at hand.
For Λq = 0 (default) the on-shell scheme is used, while
setting Λq > 0 activates the MS scheme.

Yukawa couplings According to (3.36), Yukawa couplings
are defined in terms of related Yukawa masses. Their ratio
μq,Y/λq = v/

√
2 depends only on the vacuum expectation

value, which does not receiveO(αs) corrections. This implies
the trivial counterterm relation
δλq

λq
= δμq,Y

μq,Y
. (3.51)

Similarly as for the quark masses μq , also Yukawa masses
can be renormalised on-shell (default) or via MS subtraction.
The counterterms read

δμq,Y

μq,Y
= −3 αs

4π
CF

[
Cε

εUV
+ ln

(
μ2

UV

μ2
q,Y

)

+ X (μq,Y,Λq,Y)

]
, (3.52)
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with X (μq,Y,Λq,Y) as defined in (3.50). The MS renormali-
sation scale Λq,Y for the Yukawa mass of the quark q is con-
trolled by the independent parameter LambdaY(PID). By
default Λq,Y = 0, and the on-shell counterterm is used, while
setting Λq,Y > 0 activates the MS renormalisation. Similarly
as for Yukawa masses (3.37), the values of Λq,Y are auto-
matically synchronised with Λq when the latter is changed,
but not vice versa. Thus the order in which LambdaM(PID)
andLambdaY(PID) are set matters. As for Yukawa masses,
this interplay can be deactivated by setting freeyuk_on=1
(default = 0).

Wave functions The QCD counterterms for gluon and quark
wave functions read

δZg = αs

4π

[
5

3
CA Δ(0) − 4

3
TF
∑

q

Δ(μq)

]
, (3.53)

and

δZq = − αs

4π
CF

{
Δ(μq) +

[
2

(
Cε

εIR
+ Re ln

(
μ2

IR

μ2
q

))

+ 4

]
Θ(Mq)

}
, (3.54)

where μIR is the dimensional regularisation scale for IR
divergences, Θ(M) is the step function with Θ(0) = 0, and

Δ(μq) =

⎧
⎪⎪⎨

⎪⎪⎩

Cε

εUV
− Cε

εIR
+ ln

(
μ2

UV
μ2

IR

)
for μq = 0,

Cε

εUV
+ Re ln

(
μ2

UV
μ2
q

)
otherwise.

(3.55)

Higgs effective couplings The QCD counterterm associated

with the Higgs effective vertex (3.39)–(3.40) reads

δgggHn

gggHn
= 2

δgs

gs
+ δZg + 11

4π
αs, (3.56)

where the last term originates from the two-loop matching of
the Higgs effective coupling [71,72]. For double- (and multi-)
Higgs production at the same order as the NLO QCD correc-
tions also double-operator insertions with the same total num-
ber of Higgs bosons contribute. In OpenLoops these contri-
butions are automatically included as pseudo-counterterms
together with the virtual amplitudes.

Renormalisation and regularisation scalesAt the level of the
user interface, the UV and IR regularisation scales are treated
as a common scale μD = μUV = μIR, and the logarithms of
μ2

UV/μ2
IR in (3.55) are set to zero. In the literature, also the

logarithms of μ2
UV/μ2

R in (3.46)–(3.47) are often omitted by
assuming μUV = μR in the MS scheme. On the contrary, in
OpenLoops the values of μD and μR are controlled by two

independent parameters, mureg and muren, respectively.
Their default values are μD = μR = 100 GeV. For conve-
nience it is possible to simultaneously set μR = μD = μ

by means of the auxiliary OpenLoops parameter mu. As
described in Sect. 4.3, variations of μR and αs(μ

2
R) can be

carried out in a very efficient way in OpenLoops2.

3.3.2 EW renormalisation

The renormalisation of UV divergences in the EW sector is
based on the scheme of [37] for on-shell particles, and on
the complex-mass scheme [38] for the treatment of off-shell
unstable particles. In OpenLoops 2 these two schemes are
combined into a flexible renormalisation scheme that makes
it possible to deal with processes such as pp → t t̄�+�−,
where some unstable particles (t, t̄) are treated as on-shell
external states, while other ones (Z ) play the role of inter-
mediate resonances. This is achieved through a refined def-
inition of field-renormalisation constants, and by adapting
the mass-renormalisation prescriptions for unstable particles
on a particle-by-particle basis, depending on whether the
individual width parameters Γi are set to non-zero values
or not by the user. As explained in the following, the O(α)

renormalisation in OpenLoops involves also a non-standard
treatment of Δα(M2

Z ) and special features related to external
photons.

Counterterms for complex masses The propagators of unsta-
ble particles with Γi �= 0 are renormalised in the complex-
mass scheme [38], where the renormalised self-energy is
defined as

Σ̂ i (p2) = Σ i (p2) − δμ2
i with δμ2

i = Σ i
(
p2
) ∣∣∣

p2=μ2
i

.

(3.57)

The counterterm δμ2
i associated with the complex mass

(3.26) corresponds to a subtraction of the full complex-valued
self-energy at p2 = μ2

i . In particular, the counterterm δμ2
i

includes also the imaginary part of the self-energy, which is
related to the width through

Im Σ i (M2
i ) = Γi Mi , (3.58)

and is already included in the imaginary part of μ2
i . Thus the

subtraction of Im Σ in the complex-mass scheme is manda-
tory in order to avoid double counting. Since the renor-
malised self-energy (3.57) vanishes at p2 → μ2

i , the tree-
level and one-loop propagators have the same resonant form
1/(p2 −M2

i + iΓi Mi ), where width effects are controlled by
the user-defined width parameter Γi .
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For convenience, the relevant 2-point integrals with
complex-valued momenta p2 = μ2

i = M2 − iΓi Mi can
be obtained through a first-order expansion in Γi/Mi around
p2 = M2

i [38]. In this context, self-energy graphs involv-
ing massless photons require a special treatment due to the
presence of a threshold at p2 = μ2. In this case, the correct
expansion of the scalar two-point function reads

B0(p
2, μ2, 0)

∣∣∣∣
p2=M2−iΓ M

= B0(M
2, M2, 0)

− iΓ MB ′
0(M

2, μ2, 0) − iΓ

M
+ O

(
Γ 2

M2

)
, (3.59)

where the additional −iΓ/M term accounts for the non-
analytic behaviour at p2 = μ2. The related expansion for-
mula for generic self-energies reads

Σ i
(
μ2
i

) ∣∣∣∣
p2=M2−iΓ M

= Σ i
(
M2

i

)

− iΓi Mi Σ
′i (M2

i

)
+ ici M

2
i + O

(
Γ 2
)

, (3.60)

where the non-analytic expansion coefficient is given by

ci = α

π
Q2

i
Γi

Mi
, (3.61)

and depends only on the electromagnetic charge Qi of the
particle at hand. This is due to the fact that (3.61) originates
only from photon-exchange diagrams and is related to the
presence of an infrared singularity in B ′

0 at p2 → μ2
i .

The expanded mass counterterms for Higgs (i = H ) and
vector bosons (i = V = W, Z ) read

δμ2
H = ΣH

(
μ2
H

)

= ΣH
(
M2

H

)
− iΓHMH Σ ′H (M2

H

)
, (3.62)

and

δμ2
V = ΣV

T

(
μ2
V

)

= ΣV
T

(
M2

V

)
− iΓV MV Σ ′V (M2

V

)
+ icV M

2
V ,

(3.63)

where ΣT denotes the transverse part of the gauge-boson
propagator. The renormalisation of fermion masses depends
on the following combination of left-handed (L), right-
handed (R) and scalar (S) self-energy contributions,

Σ
f

LRS

(
p2
)

= Σ
f

L

(
p2
)

+ Σ
f

R

(
p2
)

+ 2 Σ
f

S

(
p2
)

, (3.64)

and the expanded counterterm reads

δμ f = μ f

2
Σ

f
L RS

(
μ2

f

)

= μ f

2

[
Σ

f
LRS

(
M2

f

)
− iM f Γ f Σ

′ f
LRS

(
M2

f

)
+ ic f

]
.

(3.65)

Counterterms for real masses When Γi is set to zero, unsta-
ble and stable particles are described as on-shell states with
a real-valued mass parameter, μi = Mi . In this case a con-
ventional on-shell renormalisation is applied,

Σ̂ i (p2) = Σ i (p2) − δM2
i (3.66)

with

δμ2
i = δM2

i = R̃e Σ i
(
p2
) ∣∣∣

p2=M2
i

. (3.67)

Here the subtraction is restricted to the real part of the self-
energy, while the Im Σ contribution must be retained, since it
is not included in the renormalised parameter M2

i . More pre-
cisely, the R̃e operator in (3.66) truncates only the imaginary
parts associated with the UV-finite absorptive parts of two-
point integrals,22 while, in order to ensure a consistent can-
cellation of UV divergences, all other imaginary parts asso-
ciated with complex-valued couplings or complex masses
inside the loop are kept throughout. The explicit on-shell
mass counterterms for Higgs or vector bosons and fermions
read

δμ2
H = δM2

H = R̃e ΣH
(
M2

H

)
, (3.71)

δμ2
V = δM2

V = R̃e ΣV
T

(
M2

V

)
, (3.72)

22 In practice, the truncation of absorptive contributions is implemented
at the level of the scalar two-point integrals through

R̃e B0(p
2,m1,m2) =

{
Re B0(p2,m1,m2), if p2 > m2

1 + m2
2,

B0(p2,m1,m2), otherwise,

(3.68)

and in the same way for B ′
0. For the derivative of self-energies also the

following formulas for B1 and B ′
1 functions are used

R̃e B1(p
2,m1,m2) = m2

2 − m2
1

2p2

[
R̃e B0(p

2,m1,m2) (3.69)

− B0(0,m1,m2)
]

− 1

2
R̃e B0(p

2,m1,m2),

R̃e B ′
1(p

2,m1,m2) = −m2
2 − m2

1

2p4

[
R̃e B0(p

2,m1,m2) (3.70)

− B0(0,m1,m2)
]
+m2

2−m2
1− p2

2p2 R̃e B ′
0(p

2,m1,m2).
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δμ f = δM f = M f

2
R̃e Σ

f
LRS

(
M2

f

)
. (3.73)

Yukawa couplings At NLO EW, Yukawa couplings (3.36)
are always related to fermion masses as predicted by the SM.
Thus Yukawa masses and physical fermion masses, as well
as the respective counterterms, are equal to each other. This
implies

δλ f

λ f
= δμ f,Y

μ f,Y
= δμ f

μ f
. (3.74)

For the renormalisation of the fermion masses μ f only the
on-shell scheme, or its complex-mass scheme variant, are
supported.

Wave functions The wave-function renormalisation con-
stants (WFRCs) δZi j are defined in a way that one-loop
propagators do not mix, and their residues are normalised
to one. Thus renormalised amplitudes correspond directly to
S-matrix elements and do not require additional LSZ factors.
On the one hand, due to the presence of absorptive contribu-
tions and complex parameters, in the complex-mass scheme
the δZi j constants can acquire complex values. On the other
hand, the WFRCS for on-shell particles are usually defined as
real parameters [37]. As explained in detail below, in Open-

Loops these two approaches are reconciled by implementing
WFRCs in a way that is consistent with [37] when the width
parameters Γi are set to zero for all particles, while imagi-
nary δZi j contributions are taken into account wherever they
are strictly needed for the consistency of the complex-mass
scheme at O(α).

At NLO, the renormalisation of the field ϕi associated
with a certain external leg yields

∣∣∣∣
(
δi j + 1

2

∑

j

δZi j

)
M( j)

0

∣∣∣∣

2

=
(

1 + Re (δZii )
)∣∣∣M(i)

0

∣∣∣
2

+
∑

j

Re
[(

M(i)
0

)∗
δZi jM( j)

0

]
+ O(α2). (3.75)

Since the imaginary parts of the diagonal WFRCs δZii con-
tribute only at O(α2), in OpenLoops we omit them by defin-
ing

δZAA = −Re Σ ′A
T (0) ,

δZZZ = −Re Σ ′Z Z
T

(
M2

Z

)
,

δZWW = −Re Σ ′W
T

(
M2

W

)
,

δZH = −Re Σ ′H (M2
H

)
. (3.76)

In contrast, the non-diagonal WFRCs associated with γ –Z
mixing are defined as

δZZ A = 2
R̃e Σ AZ

T (0)

μ2
Z

, (3.77)

δZAZ = −2 R̃e
Σ AZ

T

(
μ2
Z

)

μ2
Z

= −2
R̃eΣ AZ

T

(
M2

Z

)

μ2
Z

+ 2i
ΓZ

MZ
Σ ′AZ

T

(
M2

Z

)
, (3.78)

where Σ AZ
T (Q2) denotes the transverse part of the γ –Z mix-

ing energy. Here the imaginary part of μZ in the denomi-
nator is retained in order to ensure UV cancellations in the
complex-mass scheme, while absorptive parts are truncated23

in order to match the conventional on-shell scheme when all
Γi are set to zero. For δZAZ the mixing energy at p2 = μ2

Z is
expressed through an expansion around p2 = M2

Z neglecting
terms of O(Γ 2/M2). However, in practice this expansion is
irrelevant, since δZAZ only contributes for processes with
external Z -bosons, where ΓZ = 0 is required.

At NLO EW, the independent renormalisation of left- and
right-chiral fields corresponds to a diagonal renormalisation
matrix in chiral space,

δZ f = δZ fRωR + δZ fLωL with ωR,L = 1

2
(1 ± γ5).

(3.79)

For massless fermions, the matrix (3.79) is diagonal also in
helicity space, and imaginary parts can be amputated simi-
larly as for the diagonal WFRCs (3.76). In contrast, for mas-
sive fermions the matrix (3.79) mixes left- and right-handed
helicity states. Thus, in this case imaginary parts are treated
in a similar way as for the non-diagonal WFRCs (3.77). Thus
the explicit form of the fermionic WFRCs δZ fR,L reads

δZ fλ

=
{

−Re Σ
′ f
λ (0) , for M f = 0,

−R̃e Σ
f

λ (M2
f ) − M2

f R̃e Σ
′ f
LRS(M2

f ) for M f > 0.

(3.80)

Variations of the complex-mass scheme Certain aspects of
the complex-mass scheme at O(α) can be changed using
the parameter complex_mass_scheme as detailed in the
following.

(i) complex_mass_scheme=1 (default) corresponds
to the implementation described above: the complex-
mass counterterms (3.62)–(3.65) are used when Γi > 0,
and the on-shell mass counterterms (3.71)–(3.73) are

23 Note that R̃e Σ AZ
T (0) = Σ AZ

T (0) since Σ AZ
T (0) is free from absorp-

tive parts.
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used when Γi = 0, while for WFRCs the generic for-
mulas (3.76)–(3.80) are applied. As discussed above,
this flexible approach guarantees a consistent one-loop
description of processes like pp → t t̄�+�−, where
unstable particles occur both as internal resonances and
as on-shell external states.

(ii) complex_mass_scheme=0 keeps the complex
masses (3.26) unchanged but deactivates the complex-
mass scheme at the level of all O(α) counterterms: for
mass counterterms the on-shell formulas (3.71)–(3.73)
are used throughout; moreover, the R̃e operations in
(3.71)–(3.73) and (3.76)–(3.80) are replaced by a com-
plete truncation of the imaginary parts at the level of
the full counterterms. This option is implemented for
validation purposes. Depending on the process, it can
result in incomplete pole cancellations or other inconsis-
tencies, in particular when internal or external particles
with Γi > 0 are present.

(iii) complex_mass_scheme=2 corresponds to the
implementation of the complex-mass scheme inRecola
[20]. In this case all mass counterterms are evaluated
with the complex-mass scheme formulas (3.62)–(3.65),
while all Re and R̃e operators are removed from (3.76)–
(3.80), i.e. all imaginary parts of WFRCs are kept exact.

Light-fermion contributions to Δα(M2
Z ) The O(α) correc-

tions to processes with on-shell external photons involve
the renormalisation constant δZAA defined in (3.76), which
is related to the photon vacuum polarisation Πγγ (Q2) at
Q2 → 0 via

δZAA = −Re Σ ′AA
T (0) = −Πγγ (0). (3.81)

Terms involving Πγγ (0) occur also in the α(0) counterterm
(3.87), which contributes to any process that is parametrised
in terms ofα(0) at tree level. In the presence of Πγγ (0) terms,
high-energy cross sections become sensitive to large loga-
rithms of the light-fermion masses, m f = {me, mμ, mτ , mu ,
md , ms , mc, mb}. In OpenLoops such a dependence is sys-
tematically avoided by replacing Πγγ (0) through Δα(M2

Z )

via

Πγγ (0) = Π
γγ
heavy(0) + Π

γγ
light

(
M2

Z

)

+
[
Π

γγ
light(0) − Π

γγ
light

(
M2

Z

)]

= Π
γγ
heavy(0) + Π

γγ
light

(
M2

Z

)
+ Δα(M2

Z ). (3.82)

Here Πγγ (Q2) is split into a “heavy” contribution due to
W -boson and top-quark loops, plus a remnant “light” contri-
bution. The latter is subtracted at Q2 = M2

Z . In this way the
sensitivity to light-fermion masses is isolated in Δα(M2

Z ),
which describes the running of α from Q2 = 0 to M2

Z .

The explicit light-fermion mass dependence is avoided by
expressing Δα(M2

Z ) as

Δα(M2
Z ) = 1 − α(0)

α(M2
Z )

, (3.83)

where α(0) and α(M2
Z ) are evaluated using the numerical val-

ues of the parametersalpha_qed_0 andalpha_qed_mz
introduced in Sect. 3.2. By default, (3.83) is used throughout
apart for the Δα(M2

Z ) terms associated with external off-
shell photons. In that case, as discussed in the context of
eq. (3.94), the following explicit expression with dimension-
ally regularised mass singularities is used,

Δα(reg)(M2
Z) = Π

γγ
light(0) − Π

γγ
light(M

2
Z)

= α

2π
γγ

[
Cε

εIR
+ ln

(
μ2

IR

M2
Z

)

+ 5

3

]

− α

3π

∑

f ∈Fm

NC, f Q
2
f

[

ln

(
m2

f

M2
Z

)

+ 5

3

]

. (3.84)

Here γγ = γ
QED
γ is the anomalous dimension defined in

Table 3, and Fm is the set of light fermions with 0 < m f <

MZ. For later convenience, we also define the Δα conversion
term

Dα(reg)(M2
Z ) = Δα(reg)(M2

Z ) − Δα(M2
Z ). (3.85)

Concerning Δα(M2
Z ) contributions to processes that do

not involve external off-shell photons, if the α-input scheme
is chosen as recommended in Sect. 3.2, all Δα(M2

Z ) terms
drop out in renormalised matrix elements, and the treatment
of Δα(M2

Z ) is irrelevant. Instead, for alternative choices
of the α-input scheme that yield Δα(M2

Z ) corrections, the
prescription (3.83) becomes relevant and guarantees sound
physical results irrespectively of them f input values, i.e. also
in the case of vanishing light-fermion masses, where Πγγ (0)

is formally divergent.

EW coupling counterterms The renormalisation of the EW
gauge couplings (3.27) is implemented through counterterms
for the photon coupling e and the weak mixing angle θw. The
latter is defined in terms of the weak-boson masses by impos-
ing the relation (3.28) to all orders. The resulting counterterm
reads

δ cos2 θw

cos2 θw
= − δ sin2 θw

cos2 θw
= δμ2

W

μ2
W

− δμ2
Z

μ2
Z

. (3.86)

Here, for ΓW,Z > 0 and ΓW,Z = 0, the mass countert-
erms δμ2

W,Z are computed according to (3.63) and (3.72),
respectively. As discussed in Sect. 3.2, in OpenLoops the
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photon coupling e can be defined according to three differ-
ent schemes, which correspond to different renormalisation
conditions. The form of the related counterterm δZe in the
various schemes is as follows.

(i) α(0) -scheme: the parameter α is identified with the
strength of the photon coupling at Q2 → 0. The result-
ing counterterm reads

δZe|α(0) = −1

2
Re

(
δZAA + sW

cW
δZZ A

)

= 1

2
Re

[
Π

γγ
heavy(0) + Π

γγ
light

(
M2

Z

)

+ Δα(M2
Z ) − 2sW

cW

Σ AZ
T (0)

μ2
Z

]
. (3.87)

(ii) Gμ-scheme: the QED coupling is related to the Fermi
constant through (3.30). This relation can be connected
to the α(0)-scheme via

α|Gμ∣∣s2
Wμ2

W

∣∣ =
√

2Gμ

π
= α(0)

∣∣∣∣∣
1 + Δr

s2
Wμ2

W

∣∣∣∣∣
, (3.88)

where Δr represents the radiative corrections to the
muon decay, i.e. to the Fermi constant, in the α(0)-
scheme [37]. This leads to the Gμ-scheme counterterm

δZe|Gμ = δZe|α(0) − 1

2
Re (Δr)

= 1

2
Re

{
δs2

W

s2
W

+ δμ2
W − ΣW

T (0)

μ2
W

− α

πs2
W

[
Cε

εUV
+ ln

(
μ2

UV

μ2
Z

)

+ 3

2

+7 − 12s2
W

8s2
W

ln

(
μ2
W

μ2
Z

)]}
. (3.89)

Note that, since α|Gμ is effectively defined at the
EW scale, its counterterm (3.89) does not depend on
Πγγ (0).

(iii) α(M2
Z)-scheme: the photon coupling is defined as the

strength of the pure QED interaction at Q2 = M2
Z . This

corresponds to the counterterm

δZe|α(M2
Z )

= δZe|α(0) − Δα(M2
Z )

2
= 1

2
Re

[
Π

γγ
heavy(0)

+ Π
γγ
light(M

2
Z ) − 2sW

cW

Σ AZ
T (0)

μ2
Z

]
. (3.90)

Also in this case Πγγ (0) drops out.

InOpenLoops the appropriate counterterm δZe is selected
automatically based on the choice of the α-input scheme. The
latter is controlled by the parameter ew_scheme as detailed
in Table 1.

External photons In processes with external photons, the
renormalisation of e is automatically adapted to the cou-
pling rescaling factors (3.32)–(3.33) for on-shell and off-shell
external photons. To this end, the coupling e is renormalised
in two steps. First, each factor e that is present at tree level is
renormalised with a standard δZe counterterm corresponding
to the α-scheme selected by the user. Then, a finite renormal-
isation of the rescaling factors (3.32)–(3.33) is applied,

R(on/off)
0,γ = R(on/off)

γ

(
1 + δZ (on/off)

γ

)
, (3.91)

which yields an extra counterterm δZ (on/off)
γ for each cou-

pling α associated with external photons. Combined with
the standard photon-coupling and wave-function countert-
erms 2δZe + δZAA, this results in a renormalisation factor

δK (on/off)
γ = 2 δZe + δZ (on/off)

γ + δZAA, (3.92)

for each external photon.

(i) For on- shell photons the coupling α(0) is used. Thus,

δZ (on)
γ = 2

[
δZe|α(0) − δZe

]
, (3.93)

and δK (on)
γ = 2 δZe|α(0) + δZAA yields the correct cou-

pling counterterm δZe|α(0). Note that, as a result of the
choice of a low-energy coupling, the Δα(M2

Z ) contribu-

tions to δZAA and δZe|α(0) cancel out in δK (on)
γ .

(ii) For off- shell photons the high-energy coupling αoff

defined in (3.34) is used. As a result, the Δα(M2
Z ) con-

tribution to δZAA remains uncancelled, and the renor-
malised scattering amplitude depends on large loga-
rithms of the light-fermion masses. In photon-induced
hadronic collisions, such logarithmic mass singularities
are cancelled by collinear singularities associated with
virtual γ → f f̄ splitting contributions to the photon-
PDF counterterm [36] (see Sect. 3.4). The latter are typ-
ically handled in dimensional regularisation with mass-
less light fermions, which results in collinear singulari-
ties of the form 1/εIR. For consistency, the same regu-
larisation must be used also for the related light-fermion
contributions from Δα(M2

Z ). To this end, the finite
renormalisation factor for off-shell photons is defined as

δZ (off)
γ = 2

[
δZe|αoff − δZe

]− Dα(reg)(M2
Z ), (3.94)

where the counterterm δZe|αoff corresponds to the renor-
malisation scheme associated with αoff according to
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Table 2 PDG identifiers for photons and switchers that control the
coupling factors and renormalisation constants for the different types
of external photons introduced in Sect. 3.2. The high-energy coupling
αoff is defined in (3.34). If the switchers are set to zero (default = 1)

the standard user-defined coupling α is used, and the related δZ (on/off)

factors are deactivated. As indicated in the last column, contributions
from collinear γ → f f̄ splittings are included in Catani–Seymour’s
I-operator (see Sect. 3.4) only for off-shell photons

Photon type iPDG Switcher (1 = on, 0 = off) Coupling Δα γ → f f̄

Unresolved 22 α Δα(M2
Z ) Off

On-shell 2002 onshell_photons_lsz α(0) Δα(M2
Z ) off

Off-shell −2002 offshell_photons_lsz αoff Δαreg(M2
Z ) on

(3.34)–(3.35), while Dα(reg)(M2
Z ), defined in (3.85),

converts Δα(M2
Z ) into its dimensionally regularised

variant (3.84). The resulting overall renormalisation fac-
tor for off-shell photons reads

δK (off)
γ = 2δZe|αoff + δZ (reg)

AA , (3.95)

with

δZ (reg)

AA = δZAA − Dα(reg)(M2
Z )

= −
[
Π

γγ
heavy(0)+Π

γγ
light

(
M2

Z

)
+Δ(reg)α(M2

Z )
]
.

(3.96)

In OpenLoops, the counterterms δZ (on/off)
γ are automat-

ically adapted to the settings that control the type of exter-
nal photons and their tree-level couplings as summarised in
Table 2.

For the various Δα(M2
Z ) terms that enter the factors

δZe, δZAA and δZ (on/off)
γ associated with external photons,

depending on the type of photon, either the numerical expres-
sion (3.83) or the dimensionally regularised form (3.84)
are used as explained above. Alternatively, it is possible to
enforce the usage of α(reg)(M2

Z ) in all terms associated with
external photons by setting all_photons_dimreg=1
(default=0).

3.4 Infrared subtraction

One-loop matrix elements with on-shell external legs involve
divergences of IR (soft and collinear) origin, which take the
form of double and single 1/εIR poles in D = 4−2εIR dimen-
sions. In OpenLoops such divergences can be subtracted
through an automated implementation of Catani–Seymour’s
I-operator that accounts for QCD singularities [39,40] as
well as for singularities of QED origin [36,41–44]. The sin-
gular part of the I–operator is universal and can be used to
check the cancellation of IR poles in any one-loop calcula-
tion. Moreover, the full I–operator provides a useful build-
ing block for NLO calculations based on Catani–Seymour’s
dipole subtraction.

In addition to the I-operator, as documented in Sect. 4.3
and Appendix A.5, OpenLoops provides also routines for
more general building blocks of IR divergences, namely
colour- and gluon-helicity correlated Born matrix elements
for QCD singularities, and corresponding charge- and photon-
helicity correlations for QED singularities.

In OpenLoops it is possible to calculate the I-operator
contributions that are required for the NLO corrections
to conventional processes with M0 �= 0 and for loop-
induced processes. The relevant OpenLoops functions are
evaluate_iop and evaluate_iop2 (see Appendix
A.5). At a certain order αP

s αQ , their output corresponds to

W(P,Q)
00,I-op = 〈M0|I({p}; εIR)|M0

〉
∣∣∣∣
αP

s αQ
,

W(P,Q)
11,I-op = 〈M1|I({p}; εIR)|M1

〉
∣∣∣∣
αP

s αQ
, (3.97)

where the I-operator consists of the following IR insertions
of order αs and α into LO contributions of order αP−1

s αQ

and αP
s αQ−1,

〈Mi |I({p}; εIR)|Mi
〉
∣∣∣∣
αP

s αQ

= − αs

2π
Cε

∑

j,k∈S
k �= j

VQCD
jk (εIR) 〈Mi | T QCD

jk |Mi
〉
∣∣∣∣
αP−1

s αQ

− α

2π
Cε

∑

j,k∈Sk �= j

VQED
jk (εIR) 〈Mi | T QED

jk |Mi
〉
∣∣∣∣
αP

s αQ−1
.

(3.98)

Here, helicity/colour sums and symmetry factors are as
in (2.1)–(2.3). The indices j and k represent so-called emitter
and spectator partons, respectively. They are summed over
the full setS = Sin ∪Sout of initial (Sin) and final-state (Sout)
partons. By default both αs and α insertions are activated,
but for processes with less than two external qq̄ pairs only
one of them contributes. Via the switch ioperator_mode
(default = 0) either only αs (ioperator_mode=1) or only
α insertions (ioperator_mode=2) can be selected. The
O(αs) contribution involves the colour correlator
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T QCD
jk =

⎧
⎪⎨

⎪⎩

T a
j T a

k

T 2
j

if j and k are gluons or (anti-)
quarks,

0 otherwise,

(3.99)

where T a
i denotes the SU(3) generator24 acting on the exter-

nal leg i , and T 2
j = T a

j T
a
j . The corresponding charge corre-

lator at O(α) is defined as

T QED
jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q j Qk

Q2
j

if j and k are charged (anti-)fermions
or W± bosons,

− 1
nI, j

if j is an off-shell photon and k ∈
Sin\{ j},

0 if j is an on-shell photon or any other
neutral parton.

(3.100)

Here Qi denotes the electromagnetic charge of parton i ,
while nI, j is the number of initial-state partons in Sin\{ j}.
By definition, on-shell photons do not undergo collinear split-
tings at NLO. Thus, T QED

jk vanishes when the emitter j is an
on-shell photon. Vice versa, off-shell photons are subject to
final-state γ → f f̄ and initial-state f → f γ splittings at
NLO. The related −1/nI, j term in (3.100) is such that the
recoil of the collinear radiation is shared by all initial-state
partons that belong to Sin\{ j} [36].

The functionsV jk(εIR) in (3.98) contain single and double
poles in εIR. They depend on the kinematic quantities s jk =
|2p j pk | and

v jk =
√√√√1 − 4

M2
j M

2
k

s2
jk

, q2
jk = s jk + M2

j + M2
k ,

Ω
(i)
jk = (1 − v jk)s jk + 2M2

i

(1 + v jk)s jk + 2M2
i

. (3.101)

Using the constants defined in Table 3, they can be written
as [40]

VQCD/QED
i j (εIR)

= Q2,QCD/QED
j

{
1

2v jk

[ ∑

i= j,k

V (i)
S, jk(εIR, Mi )

]

+ VQCD/QED
NS, jk − π2

3

}
+ γ

QCD/QED
j

[
Uj (εIR, Mj )

+ ln

(
μ2

IR

s jk

)]
+ KQCD/QED

j . (3.102)

24 Here all SU(3) generators as well as electromagnetic charges should
be understood in terms of incoming charge flow.

The singularities are contained in the functions

Uj (εIR, Mj ) =
⎧
⎨

⎩

1
εIR

+ 1 if Mj = 0,

2
3

1
εIR

− 1
3 ln

(
μ2

IR
M2

j

)
− 1

3 if Mj > 0,

(3.103)

and

V (i)
S, jk(εIR, Mi ) = ln

(
Ω

(i)
jk

) [ 1

εIR
+ ln

(
μ2

IRq
2
jk

s2
jk

)

− 1

2
ln
(
Ω

(i)
jk

) ]
− π2

6
(3.104)

for Mi > 0, while for Mi = 0 we have

V (i)
S, jk(εIR, 0)

= 1

ε2
IR

+ 1

εIR
ln

(
μ2

IRq
2
jk

s2
jk

)

+ 1

2
ln2

(
μ2

IRq
2
jk

s2
jk

)

.

(3.105)

The functionsVNS, jk are free from poles and vanish for Mj =
Mk = 0. For gluon and photon emitters

VQCD/QED
NS, jk

∣∣∣∣
j=g,γ

= γ̂
QCD/QED
j

[
ln

(
s jk
q2
jk

)

− 2 ln

(
q jk − Mk

q jk

)
− 2Mk

q jk + Mk

]
− Li2

(
s jk
q2
jk

)

+ π2

6
, (3.106)

with γ̂
QCD
g = γ

QCD
g
CA

and25 γ̂
QED
γ = γ

QED
γ . For quarks,

charged leptons and W± emitters we have

VQCD/QED
NS, jk

∣∣∣∣
j=q,�,W

= γ
QCD/QED
j

Q2,QCD/QED
j

ln

(
s jk
q2
jk

)

+ 1

v jk

[
ln(Ω jk) ln(1 + Ω jk) + 2Li2(Ω jk) − π2

6

− Li2(1 − Ω
( j)
jk ) − Li2(1 − Ω

(k)
jk )

]

+ ln

(
q jk − Mk

q jk

)
− 2 ln

⎛

⎝
(
q jk − Mk

)2 − M2
j

q2
jk

⎞

⎠

25 Due to our recoil conventions for (off-shell) photon emitters
in (3.100), γ̂ QED

γ contributions are only relevant for massive initial-state
spectators.
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Table 3 Here N f,u , N f,d , N f,l are the numbers of massless up-type
quarks, down-type quarks and leptons, respectively, while N f =
N f,u + N f,d . Since massive external legs induce only soft singularities,

external W±-bosons are treated in the same way as massive fermions
with mass MW and charge ±1

Interaction j Q2,QCD/QED
j γ

QCD/QED
j KQCD/QED

j

QCD Quark CF
3
2CF ( 7

2 − π2

6 )CF

QCD Gluon CA
11
6 CA − 2

3TRN f ( 67
18 − π2

6 )CA − 10
9 TRN f

QED Fermion or W± Q2
j

3
2 Q

2
j ( 7

2 − π2

6 )Q2
j

QED γ 0 − 2
3

[
NC
(
N f,u Q2

u + N f,d Q2
d

)+ N f,l Q2
l

]
5
3 γ

QED
γ

− 2M2
j

s jk
ln

(
Mj

q jk − Mk

)
− Mk

q jk − Mk

+ 2Mk
(
2Mk − q jk

)

s jk
+ π2

2
, (3.107)

where Ω jk = (1−v jk)

(1+v jk)
.

4 Overview of the program

This section describes various aspects that are relevant for the
usage of OpenLoops in the context of external programs.
Once installed and linked to an external program, Open-
Loops can be controlled through its native interfaces for
Fortran and C/C ++ codes, or using the standard BLHA inter-
face [45,46]. In the following, we introduce various function-
alities of the OpenLoops interfaces, such as the registration
of processes, the setting of parameters, and the evaluation
of different types of matrix elements. In doing so we will
always refer to the names of the relevant Fortran interface
functions. The corresponding C functions are named in the
same way with an extra ol_ prefix.

Further technical aspects, such as the signatures of the
interfaces, can be found in Appendix A and Appendix B.
As discussed there, the multi-purpose Monte Carlo pro-
grams Munich/Matrix [50], Sherpa [26,47], Herwig ++

[32], Powheg- Box [27], Whizard [49] and Geneva [48]
dispose of built-in interfaces that control all relevant Open-
Loops functionalities in a largely automated way requiring
only little user intervention. Besides the Fortran and C/C ++

interfaces the OpenLoops package also contains a Python

wrapper and a command line tool. Further details and exam-
ples of the Python interface are given in Appendix B.4.

The OpenLoops program itself is written in Fortran

and consists of process-independent main code and process-
dependent code provided in the form of process libraries,
which can be downloaded and automatically installed within
the OpenLoops program for a wide range of processes in the
Standard Model (SM) and Higgs effective theory (HEFT),
as detailed in the following. The process libraries are auto-

matically generated based on a (private) process generator
implemented in Mathematica.

4.1 Download and installation

4.1.1 Installation of the main program

This section describes the installation of the process-
independent part of the OpenLoops program, which is
denoted as base code. The calculation of specific scatter-
ing amplitudes requires additional process-specific libraries,
denoted as process code. Their installation is discussed in
Sect. 4.1.2.

Prerequisites To install OpenLoops a Fortran compiler
(gfortran 4.6 or later, or ifort) and Python2.7 or 3.5
or later are needed.

Download The process-independent part of the OpenLoops

program is available on the Git repository https://gitlab.
com/openloops/OpenLoops. The latest release version can
be found in the master branch and downloaded via
git clone https://gitlab.com/openloops/OpenLoops.git

Older and newer versions are available as git tags. The
latest beta version available in the branch “public_beta” that
can be downloaded via

git clone -b public_beta \
https://gitlab.com/openloops/OpenLoops.git

Current and older OpenLoops versions can be also be
downloaded from the hepforge webpage

http://openloops.hepforge.org
where the user can also find a detailed list of the available
process libraries and extra documentation, as well as an up-
to-date version of this paper.

Installation The compilation of the process-independent
OpenLoops library is managed by the SCons build sys-
tem26 and is easily carried out by running

26 A version of SCons (“scons-local”) is shipped with Open-

Loops, but a system-wide installation may be used as well.
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./scons

in the OpenLoops directory. By default, Scons utilises
all available CPU cores, while running ./scons -j<n>
restricts the number of employed cores to <n>. The com-
piled library is placed in the lib subdirectory.27

The default compiler is gfortran, alternatively ifort
can be used. To change the compiler and set various other
options, rename the sample configuration file
openloops.cfg.tmpl in the OpenLoops directory to
openloops.cfg and set the options in there. The sample
configuration file lists various available options and describes
their usage.

4.1.2 Installation of process libraries

The calculation of scattering amplitudes for specific pro-
cesses requires the installation of corresponding process
libraries. The available collection of OpenLoops process
libraries supports the calculation of QCD and EW correc-
tions for a few hundred different partonic reactions, which
cover essentially all interesting processes at the LHC, as well
as several lepton-collider processes. This includes pp → jets,
t t̄+jets,V+jets,VV+jets, HV+jets, H+jets and various other
classes of processes with a variable number of extra jets.
Process libraries for a large variety of loop-induced pro-
cesses such as gg → ����+jets, gg → HV+jets, gg →
HH(H)+jets, etc. are also available.

New processes libraries, especially with EW corrections,
are continuously added to the collection by the authors. More-
over, extra processes libraries can be easily made available
upon request, either through an online form on the Open-

Loops webpage or by contacting the authors. In particular
this allows for the generation of dedicated process libraries
tailored to specific user requirements. For example, it is possi-
ble to generate dedicated process libraries with special filters
for the selection of certain classes of diagrams/topologies
or various approximations related to the treatment of heavy-
quark flavours, the expansion in the number of colours, the
selection of resonances, non-diagonal CKM matrix elements,
and so on.

Download and installation The web page
https://openloops.hepforge.org/process_library.php

provides a complete list of process libraries available in the
public process repository, with a description of their content
and the relevant process-library names to be used for down-
load. The needed process libraries can be downloaded and
compiled via

./openloops libinstall <processes> <options>

27 An installation routine to move the library to a different location is
currently not available.

where <processes> is either a predefined process col-
lection (see below) or a list of white-space or comma sep-
arated names of process libraries. A single process library
typically contains the full set of parton-level scattering ampli-
tudes that is needed for the calculation of a certain family of
hadron-collider processes, either at NLO QCD or including
EW corrections. For instance, the libraries named ppllll
and ppllll_ew include, respectively, the NLO QCD and
NLO EW matrix elements for the production of four leptons,
i.e. the processes pp → �+

i �−
i �+

k �−
k , �+

i �−
i �+

k νk , �+
i �−

i ν̄k�
−
k ,

�+
i �−

i ν̄kνk , �+
i νi�

+
k νk , �+

i νi ν̄k�
−
k , ν̄i�

−
i ν̄k�

−
k , �+

i νi ν̄kνk , and
ν̄i�

−
i ν̄kνk , with lepton flavours i �= k or i = k.
Each process library includes all relevant LO and NLO

ingredients for the partonic processes at hand, i.e. all Born,
one-loop and real-emission amplitudes at the specified order.
More precisely, NLO QCD libraries contain LO contribu-
tions of a given order α

p
s αq and corrections of order α

p+1
s αq ,

while NLO EW libraries contain the full tower of LO and
NLO contributions apart from the NLO terms with the high-
est possible order in αs. Real-emission matrix elements are
available throughout, but are not installed by default. This
can be changed by using the option compile_extra=1
(default = 0) when installing the process. This option can
also be set in the openloops.cfg file in order to enable
real corrections for every process installation.

With the libinstall command it is also possible to
install pre-defined or user-defined process collections. The
pre-defined collection lhc.coll covers the most relevant
LHC processes. 28 In particular, it includes matrix elements
for V + jets, VV + jets, t t̄ + jets, HV + jets and H + jets
(for finite and infinite mt ), where V stands for photons as
well as for the various leptonic decay products of off-shell
Z and W± bosons. Additional user-defined collections can
be created as plain text files with the file extension .coll,
listing the desired process-library names, one per line.

Updates When a new version of OpenLoops is available, it
is recommended to update both the base code and the process
code.29 If OpenLoops was installed from Git, this is easily
achieved by running

28 The collection all.collmakes it possible to download the full set
of available processes libraries at once. However, due to the large overall
number of processes and the presence of several complex processes,
this is requires a very large amount of disk space and very long CPU
time for compilation. Thus all.coll should not be used for standard
applications.
29 In general, base code and process code can be combined in a rather
flexible way, but care must be taken that they remain mutually con-
sistent. The API compatibility between base code and process code is
typically guaranteed across many sub-versions, both in the forward and
backward directions. To this end, all mutually consistent versions are
labelled with the same (internal) API version number, and OpenLoops

accepts to use only combinations of process code and base code that
belong to the same API version.
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./openloops update

while git pull && ./scons would update only the
base code. Instead, if OpenLoops was not installed from
Git, the installed processes can be updated by running

./openloops update --processes

while the base code should be updated manually.

4.2 Selection of processes and perturbative orders

The OpenLoops program supports the calculation of scatter-
ing probability densities for a variety of processes at different
orders in αs and α. Before starting the calculations, the user
should register all needed scattering amplitudes, which are
automatically labelled with integer identifiers for the book-
keeping of the various partonic channels and perturbative
orders. As described in detail below, each desired matrix ele-
ment should be registered in two steps. First, the user should
select the desired order in the QCD and EW couplings, model
parameters and specify possible approximations. In the sec-
ond step, called process registration, the user should spec-
ify the list of external scattering particles, and select one of
the available types of perturbative contributions. The three
possible types, denoted in the following as amplitude types
(amptype), are specified in Table 4 together with the list
of corresponding objects of LO and NLO kind that can be
evaluated in OpenLoops. As explained in the following, the
classification into LO and NLO kinds is relevant for the selec-
tion of the desired order in αs and α. Note that squared-loop
objects are classified as LO quantities, since they are assumed
to describe loop-induced processes.

Selection of QCD and EW power As discussed in Sect. 3.1,
the general form of scattering probability densities in the
SM is a tower of terms of order α

p
s αq with fixed perturbative

order p+q but variable powers p, q in the QCD and EW cou-
plings. In OpenLoops, contributions with different orders in
αs and α should be registered as separate (sub)processes.
Under each amptype, the various objects that can be cal-
culated are classified into output of LO and NLO kind as
indicated in Table 4. All objects of LO type are evaluated at a
certain power α

p
s αq , while all NLO objects are evaluated at

a related power αP
s αQ . The desired powers p, q, P, Q, and

the relation between (p, q) and (P, Q), can be controlled in
four alternative ways by setting one of the power selectors
listed in Table 5.

(a) Setting order_ew = q selects contributions of fixed
EW order, i.e. LO terms of O(α

p
s αq) and NLO QCD

corrections of O(α
p+1
s αq). In this case, the QCD order

p is automatically fixed according to p + q = Np − 2.
(b) Similarly, order_qcd = p selects a fixed QCD

order, i.e. LO terms of O(α
p
s αq) and NLO EW cor-

rections of O(α
p
s αq+1). In this case, q is automatically

derived from p + q = Np − 2.
(c) Alternatively, NLO terms of O(αP

s αQ) can be selected
by setting loop_order_qcd = P or loop
_order_ew = Q. This option is supported only for
the evaluation of tree-loop interferences (amptype=
11). In that case, the output includes also the domi-
nant underlying Born contribution of O(α

p
s αq), which

is chosen between O(αP
s αQ−1) and O(αP

s αQ−1) as
indicated in Fig. 4. When the loop order P or Q is
specified, the complementary order Q or P is fixed
internally according to P + Q = Np − 1.

The desired order parameter should be set through the
set_parameter routine before the registration of the pro-
cess at hand. As explained above, it is sufficient to specify
the QCD or the EW order, and only one of the order selectors
in Table 5 should be used. If more than one order parameter
is set by the user only the last setting before registration is
considered.

Before registering a process, also various approximations
can be specified by setting OpenLoops parameters such as
nf, to control the number of active quarks, ckmorder, to
activate non-diagonal CKM matrix elements, etc. A list of
such parameters can be found in Table 9 (see Appendix C).

Process registration Each (sub)process should be registered
by means of the native interface function30 register
_process, which automatically assigns a unique process
identifier, as detailed in Appendix A.3. The syntax to specify
the external particles of a generic n → m scattering process
with n ≥ 1 is

PIDi,1 . . . PIDi,n -> PID f,1 . . . PID f,m (4.1)

The particle identifier (PID) can be specified either using the
PDG numbering scheme [69] or the string identifiers listed
in Table 6

Together with the external particles, also a specific type
of perturbative output (amptype) should be selected. As
summarised in Table 4, the available options correspond to
the various scattering probability densities defined in (2.1)–
(2.3), i.e. squared tree amplitude (W00) tree–loop interfer-
ence (W01), and squared one-loop amplitude (W11), but each
amptype supports also the calculation of various related
objects.

30 The registration procedure through the BLHA is explained
in Appendix B.1.
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Table 4 Values of amptype to register different types of perturba-
tive contributions and corresponding probability densities that can be
computed by OpenLoops. Objects of LO and NLO kind are evalu-
ated at order α

p
s αq and αP

s αQ , respectively, according to the values

p, q, P, Q of the LO and NLO power selectors in Table 5. The sym-
bols B and C stand for the various spin and colour/charge correlators
defined in Sect. 4.4

amptype Amplitude type LO output NLO output

1 Tree–tree W(p,q)
00 , C(p,q)

00,LO, B(p,q)
00,LO,

11 Tree–loop W(p,q)
00 W(P,Q)

01 , W(P,Q)

00,I-op, C(P,Q)
01,NLO, B(P,Q)

01,NLO

12 Loop–loop W(p,q)
11 , C(p,q)

11,LO, B(p,q)
11,LO, W(P,Q)

11,I-op

Table 5 Selection of the orders α
p
s αq and αP

s αQ for the LO and
NLO objects defined in Table 4. Each selector takes one of the powers
p, q, P, Q as input and derives all other powers as indicated in columns
2–5. The QCD and EW coupling powers at LO and NLO are related
through p+q = Np −2 and P +Q = Np −1, where Np is the number

of external particles. The loop_order selectors are supported only
for amptype=11. They return the desired loop–tree interference of
O(αP

s αQ) together with the dominant underlying squared Born term
of O(α

p
s αq ) whose powers, (p, q) = (pBorn, qBorn) = (P − 1, Q) or

(P, Q − 1), are selected in a unique way as indicated in Fig. 4

Power selection\derived powers LO power α
p
s αq NLO power αP

s αQ

order_qcd = p p Np − p − 2 p q + 1

order_ew = q Np − q − 2 q p + 1 q

loop_order_qcd = P pBorn qBorn P Np − P − 1

loop_order_ew = Q pBorn qBorn Np − P − 1 Q

Table 6 Particle identifiers
(PID) for process specification
in OpenLoops. The numerical
and string PID representations
can be mixed. As explained in
Sect. 3.2, for an optimal
treatment of the coupling of
on-shell and off-shell hard
external photons the special
PIDs ±2002 should be used

Particle qd/q̃d qu/q̃u qs/q̃s qc/q̃c qb/q̃b qt/q̃t

PID 1/-1 2/-2 3/-3 4/-4 5/-5 6/-6

String-PID d/d ∼ u/u ∼ s/s ∼ c/c ∼ b/b ∼ t/t ∼
Particle le/l̃e νe/ν̃e lμ/l̃μ νμ/ν̃μ lτ /l̃τ ντ /ν̃τ

PID 11/-11 12/-12 13/-13 14/-14 15/-15 16/-16

String-PID e-/e+ ve/ve ∼ mu-/mu+ vm/vm ∼ ta-/ta+ vt/vt ∼
Particle g γ On-/off-γ Z W± Higgs

PID 21 22 2002/-2002 23 24/-24 25

String-PID g a aon/aoff z w+/w- h

4.3 Evaluation of scattering amplitudes

In this section we introduce various OpenLoops interface
functions for the evaluation of the scattering probability den-
sities (2.1)–(2.3), the I-operators (3.97), and some of their
building blocks.

The input required by the various interface functions con-
sists of a phase-space point together with the integer identifier
for the desired (sub)process. The output is always returned
according to the normalisation conventions of Eqs. (2.1)–
(2.3), i.e. symmetry factors, external colour and helicity
sums, and average factors are included throughout. This
holds also for the interface functions discussed in Sects. 4.4–
4.5. The syntax of the various interfaces is detailed in
Appendix A.

In general, the output depends on the values of all relevant
physical and technical input parameters (see Sects. 3.2–3.3)
at the moment of calling the actualOpenLoops interface rou-
tine. All parameters and settings are initialised with physi-
cally meaningful default values, which can be updated at any
moment by means of set_parameter. In principle, all
parameters can be changed before any new amplitude evalu-
ation. As explained below, thanks to a new automated scale-
variation system, scattering amplitudes can be re-evaluated
multiple times with different values of μR and αs in a very
efficient way.

The calculation of the probability densities (2.1)–(2.3) is
supported by the following interfaces.

Squared born amplitudes W00 = 〈M0|M0
〉

are evaluated
by the function evaluate_tree.
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Tree–loop interferences W01 = 2 Re 〈M0|M1
〉

are eval-
uated by evaluate_loop, which yields a UV renor-
malised result. The output is returned in the form of an array
{W(0)

01 ,W(1)
01 ,W(2)

01 } consisting of the coefficients of the Lau-
rent expansion,

W01 = Cε

(
W(2)

01

ε2 + W(1)
01

ε
+ W(0)

01

)

+ O(ε), (4.2)

where ε = εUV = εIR. In general, the W(1) residues
receive contributions from IR and UV divergences, but UV-
renormalised results contain only IR poles. By default, the
normalisation factor Cε is defined as in (3.41), which corre-
sponds to the BLHA convention [45]. Alternatively, by set-
ting polenorm=1 (default = 0) it can be changed into31

C̃ε = (4π)εΓ (1 + ε) = Cε + π2

6
ε2 + O(ε3), (4.3)

which results in a modified Laurent series, W̃01 = W01 −
W(2)

01
π2

6 . The output of evaluate_loop consists of the
sum of a bare contribution with four-dimensional loop
numerator, a standard UV counterterm, a counterterm of type
R2 and, optionally, also the contribution of the related I-
operator (3.97),

W01 = W01,4D + W01,CT + W01,R2

(+W00,I-op
)
. (4.4)

The I-operator can be activated by setting iop_on=1
(default = 0). The counterterm and the R2 contributions can
be deactivated by setting, respectively, ct_on=0 (default =
1) and r2_on=0 (default = 1). The various divergent build-
ing blocks of (4.4) are Laurent series of the form (4.2). For
efficiency reasons, in OpenLoops they are constructed as
single-valued objects

W01,k(Δ2,Δ1) = W(2)
01,k Δ2 + W(1,IR)

01,k Δ1,IR

+ W(1,UV)
01,k Δ1,UV + W(0)

01,k, (4.5)

where the IR and UV poles are replaced by numerical con-
stants32 (Cε/ε

2
IR → Δ2, Cε/εIR → ΔIR,1, Cε/εUV →

ΔUV,1) and W(1,IR)
01,k + W(1,UV)

01,k = W(1)
01,k . A posteriori, the

three coefficients W(i)
01 can be reconstructed through three

evaluations of (4.5) with different Δi values. However, the
most efficient approach it to restrict the calculation of the

31 This corresponds to the normalisation convention used by the Col-
lier [19] library.
32 The values of Δ2, ΔIR,1 and ΔUV,1 are controlled internally by
OpenLoops. For validation purposes they can be changed using the
parameters pole_IR2, pole_IR1 and pole_UV1, respectively.
However such modifications may jeopardise the calculation of UV and
IR divergent quantities.

most CPU expensive objects to their finite parts by setting all
Δi = 0 (default), and to reconstruct the poles by exploiting
the fact that UV and IR subtracted results are finite. In prac-
tice, when the I-operator is active, all poles are simply set to
zero in (4.4), and only finite parts are computed. Also when
the I-operator is switched off in (4.4), only the finite part of
the right-hand-side of (4.4) is explicitly computed, while IR
poles are reconstructed from the I-operator, i.e.

W(i)
01

∣∣∣
i=1,2

=
{

−W(i)
00,I-op for iop_on=0 (default),

0 for iop_on=1.
(4.6)

The explicit calculation of all poles in W01 through multiple
evaluations of (4.5) can be enforced by settingtruepoles_
on=1 (default = 0). Thus, the correct cancellation of
UV and IR poles can be explicitly checked by calling
evaluate_loop with truepoles_on=1 and iop_on
=1.

The individual building blocks of W01 can be evaluated
by various dedicated interfaces:

(i) The bare loop amplitudes W01,4D, with four- dimen-
sional numerator, are evaluated by evaluate_
loopbare, which returns a Laurent series similar
to (4.2). As for evaluate_loop, pole residues are
derived from the related UV and IR counterterms
(default) or explicitly reconstructed, depending on the
value of truepoles_on.

(ii) The UV counterterms W01,CT are evaluated by
evaluate_loopct, which returns a Laurent series
similar to (4.2). In this case, UV pole coefficients are
always obtained via two-fold evaluation. The more effi-
cient function evaluate_ct restricts the calculation
of the counterterm to its finite part W(0)

01,CT.
(iii) The R2 rational part W01,R2 is free from UV and IR

divergences. It is evaluated by evaluate_r2, which
returns a single-valued output.

(iv) Tree–tree I -operator insertions, W00,I-op = = 〈M0|
I({p}; εIR)|M0

〉
, are evaluated by the function

evaluate_iop. The output is a Laurent series simi-
lar to (4.2).

(v) The poles of all divergent building blocks of (4.4) can
be accessed with a single call of evaluate_poles,
which returns the residues of the 1/εUV, 1/εIR and 1/ε2

IR
poles for each building block. In this case, irrespec-
tively of the value of truepoles_on, all residues
are always computed explicitly.

Note that, for efficiency reasons, the combination (4.4)
should always be computed via a call of evaluate_loop
rather than separate calls for its building blocks.
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Squared loop amplitudes W11 = 〈M1|M1
〉

are evalu-
ated by the function evaluate_loop2. Since we assume
that it is used for loop-squared processes, which are free
from UV and IR divergences at LO, evaluate_loop2
returns a single-valued finite output. The calculation of I-
operator insertions in loop-squared amplitudes, W11,I-op =
〈M1|I({p}; εIR)|M1

〉
, is supported by evaluate_

loop2iop. Since we assume loop-induced processes, the
output is a Laurent series of type (4.2) with poles up to order
1/ε2. In general, W11 and W11,I-op are evaluated using only
the finite part of M1, and possible UV and IR poles are sim-
ply amputated at the level of M1.

Efficient QCD scale variations OpenLoops2 implements a
new automated system for the efficient assessment of QCD
scale uncertainties. This system is designed for the case
where scattering amplitudes are re-evaluated multiple times
with different values of μR and αs, while all other input and
kinematic parameters are kept fixed. This type of variations
are automatically detected by keeping track, on a process-
by process basis, of the pre-evaluated phase-space points,
and possible variations of parameters. For each new phase-
space point, matrix elements are computed from scratch and
stored in a cache, which is used for (μR, αs) variations. In
that case, the previously computed bare amplitude is reused
upon appropriate rescaling of αs, and only the μR-dependent
QCD counterterms are explicitly recomputed. This mech-
anism is implemented for both types of loop contributions
(2.2)–(2.3).

4.4 Colour- and spin-correlators

This section presents interface functions for the evaluation
of colour- and helicity-correlated quantities that are needed
in the context of NLO and NNLO subtraction methods, both
for tree- and loop-induced processes. For efficiency reasons,
colour/spin correlations are always computed in combina-
tion with the related squared tree or loop matrix elements, in
such a way that the former are obtained with a minimal CPU
overhead.

Colour and charge correlators The exchange of soft gluon-
s/photons between two external legs, j and k, gives rise to
colour/charge correlations of the form

C(p,q| jk)
LL ,LO QCD = 〈ML |T a

j T
a
k |ML

〉
∣∣∣∣
α
p
s αq

, (4.7)

C(p,q| jk)
LL ,LO QED = 〈ML |Q j Qk |ML

〉
∣∣∣∣
α
p
s αq

, (4.8)

where T a
i and Qi denote SU(3) and charge operators act-

ing on the i-th external particle.33 Tree–tree correlators
correspond to LL = 00 in (4.7)–(4.8) and can be eval-
uated by the interface functions evaluate_ccmatrix
andevaluate_ccewmatrix, which return the full matri-
ces C (p,q| jk)

00 as two-dimensional arrays. Alternatively, the
N (N − 1)/2 independent colour correlators in (4.7) can
be obtained in the form of one-dimensional arrays using
evaluate_cc. Loop–loop correlators (LL = 11) can be
evaluated in a similar way using the functions
evaluate_ccmatrix2, evaluate_ccewmatrix2
and evaluate_cc2.

In amptype = 11 mode, also the tree–loop colour cor-
relators

C(P,Q| jk)
01,NLO QCD = 2Re 〈M0|T a

j T
a
k |M1

〉
∣∣∣∣
αP

s αQ ,finite
(4.9)

are available. They are evaluated by the functionsevaluate
_loopccmatrix andevaluate_loopcc, which return
only the finite part, i.e. a term corresponding to W(0)

01 in the
Laurent series (4.2).

Spin-colour correlators The emission of soft-collinear radi-
ation off external gluons/photons generates also spin-correla-
tion effects. For their description we use the notation

〈λ, j |M〉 = ε
μ
λ (p j ) 〈μ, j |M〉, (4.10)

where M is a generic helicity amplitude, and j is a gluon
or photon emitter with helicity λ. The helicity states of all
other external particles are kept implicit. With this notation,
unpolarised squared matrix elements can be expressed as

〈M|M〉 =
∑

λ

〈M|λ, j〉 〈λ, j |M〉

= −〈M|μ, j〉 〈μ, j |M〉, (4.11)

where the normalisation conventions of Eqs. (2.1)–(2.3) are
implicitly understood. Spin-correlation effects arise as terms
of type 〈M|Pj |M〉 with spin correlators of the form

Pj = Pμν
j |μ, j〉〈ν, j |. (4.12)

They can be evaluated in a convenient way in terms of the
spin-correlation tensor

Bμν
j = 〈M|μ, j〉 〈ν, j |M〉

=
∑

λ,λ′
〈M|λ, j〉 ε

μ
λ (p j ) ε∗ ν

λ′ (p j ) 〈λ′, j |M〉, (4.13)

33 As usual, the corresponding SU(3)×U(1) quantum numbers should
be understood in terms of incoming charge flow, in such a way that∑

k T
a
k |M〉 =∑k Qk |M

〉 = 0.
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which allows one to write

〈M|Pj |M〉 = 〈M|μ, j〉 Pμν
j 〈ν, j |M〉 = Pμν

j B j,μν.

(4.14)

Alternatively, spin correlations can be implemented in a
more efficient way by exploiting the fact that, in NLO calcu-
lations, they arise only through operators of the form

G j = gμν |μ, j〉〈ν, j | (4.15)

and

Pj (k⊥) = −
(
kμ
⊥kν⊥
k2⊥

)

|μ, j〉〈ν, j |

= − 1

k2⊥
|k⊥, j〉〈k⊥, j |, (4.16)

where kμ
⊥ is a certain vector34 with k⊥ · p j = 0. Since

〈M|G j |M〉 = −〈M|M〉, all non-trivial spin-correlation
effects can be encoded into the scalar quantity

B j (k⊥) = 〈M|Pj (k⊥)|M〉 = −kμ
⊥kν⊥
k2⊥

B j,μν

= − 1

k2⊥
〈M|k⊥, j〉 〈k⊥, j |M〉, (4.17)

where 〈k⊥, j |M〉 corresponds to the helicity amplitude
(4.10) with ε

μ
λ (p j ) replaced by kμ

⊥.
In NLO calculations, spin correlations arise in combina-

tion with colour correlations through operators of the type
T a
j T

a
k |k⊥, j

〉〈
k⊥, j |, where j and k are called emitter and

spectator. In OpenLoops, such spin-colour correlators are
implemented in the form

B(p,q| jk)
LL ,LO (k⊥) = − 1

k2⊥
〈ML |T SC

jk |k⊥, j
〉〈
k⊥, j |ML

〉
∣∣∣∣
α
p
s αq

,

(4.18)

with

T SC
jk =

⎧
⎪⎨

⎪⎩

T a
j T

a
k if j is a gluon,

1 if j is a photon,

0 otherwise,

(4.19)

which corresponds to the scalar representation (4.17). Tree–
tree (LL = 00) and loop–loop (LL = 11) correlators of
this kind are evaluated by the functions evaluate_sc

34 Explicit expression for kμ
⊥ in the dipole subtraction formalism are

for example listed in Tab. 1 of [73] for all relevant splittings.

and evaluate_sc2, respectively. An alternative imple-
mentation with the form of the spin-colour-correlation tensor
(4.13),

B(p,q| jk|μν)
LL ,LO = 〈ML |T SC

jk |μ, j
〉〈
ν, j |ML

〉
∣∣∣∣
α
p
s αq

, (4.20)

is available through the functions evaluate_sctensor
(for LL = 00) and evaluate_sctensor2 (for LL =
11). Furthermore the spin-correlation tensor according to the
Powheg- Box [27] convention, i.e. without colour insertions

B(p,q| j |μν)
LL ,LO = 〈ML |μ, j

〉〈
ν, j |ML

〉
∣∣∣∣
α
p
s αq

, (4.21)

is available via the functions evaluate_stensor (for
LL = 00) and evaluate_stensor2 (for LL = 11). All
implementations (4.18)–(4.21) are well suited for the sub-
traction of IR singularities with the Catani–Seymour [39,40]
and FKS [74] methods. The tensor representations (4.20)–
(4.21) are more general, while the scalar form (4.18) is more
efficient, but should be used only if k⊥ · p j = 0 is fulfilled.35

In amptype = 11 mode, also the tree–loop spin correla-
tors

B(P,Q| jk)
01,NLO (k⊥)

= − 2

k2⊥
Re 〈M0|T SC

jk |k⊥, j
〉〈
k⊥, j |M1

〉
∣∣∣∣
αP

s αQ ,finite
,

(4.22)

B(P,Q| jk|μν)
01,NLO = 2 Re 〈M0|T SC

jk |μ, j
〉〈
ν, j |M1

〉
∣∣∣∣
αP

s αQ ,finite

(4.23)

and

B(P,Q| j |μν)
01,NLO = 2 Re 〈M0|μ, j

〉〈
ν, j |M1

〉
∣∣∣∣
αP

s αQ ,finite
(4.24)

are available. They are evaluated by the functionsevaluate
_loopsc, evaluate_loopsctensor and evaluate
_loopsctensor respectively, which return only the finite
part, similarly as for (4.9).

4.5 Tree-level amplitudes in colour space

Besides calculating squared matrix elements, OpenLoops
also provides full tree-level colour information at the ampli-
tude level. Such information is relevant in the context of
parton-shower matching in order to determine the probabil-
ities with which a parton shower should start from a specific

35
OpenLoops automatically amputates possible non-orthogonal parts

of k⊥ by projecting kμ
⊥ onto ε

μ
±(p j ).
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colour configuration. Moreover it can be used to determine
colour correlations with more than two colour insertions, as
needed within NNLO subtraction schemes.

Colour vector As indicated in (2.7), any tree-level ampli-
tude is represented as a vector {A(i)

0 (h)} in the colour space
spanned by the colour basis elements {Ci },

M0 =
∑

i

A(i)
0 (h) Ci . (4.25)

For a process with n external gluons and m external qq̄ pairs,
each element of the basis has the general colour structure

Ci ≡
(
Caσ1 ...aσn
i

) j̄β1 ... j̄βm

iα1 ...iαm
, (4.26)

where the particle labels αk , βk , σk , and the corresponding
colour indices iαk , j̄βk , aσk , are attributed according to the
labelling scheme defined in Table 7.

Trace basis InOpenLoops the colour basis is chosen as a so-
called trace basis, where each basis element (4.26) is a prod-
uct of chains of fundamental generators and traces thereof.
More precisely, each basis element is a product of building
blocks of type

L(β, α) = δ
j̄β
iα

, (4.27)

L(k, . . . , l, β, α) = (T ak · · · T al
) j̄β
iα

, (4.28)

L(k, . . . , l) = Tr
(
T ak · · · T al

)
. (4.29)

As indicated on the lhs of the above equations, each build-
ing block is uniquely identified through a sequence of
integer particle labels. Sequences terminating with gluon
labels and antiquark–quark labels correspond, respectively,
to traces (4.29) and chains (4.27)–(4.28). Products of chains
and traces are represented as

L(x1, . . . xk, 0, y1, . . . ) = L(x1, . . . xk)L(y1, . . . ), (4.30)

i.e. the individual sequences are concatenated using zeros
as separators. With this notation each element of the colour
basis can be encoded as an array of integers. For instance,
for qq̄ → γ qq̄ Zggg (see Table 7) we have

L (8, 2, 5, 0, 7, 9, 0, 4, 1) = (
T a8
) j̄2
i5

Tr(T a7T a9) δ
j̄4
i1

.

(4.31)

The explicit colour basis for a given scattering process
can be accessed through the interface functions tree_

colbasis_dim and tree_colbasis. The former
yields the number of elements of the basis, as well as the
number of helicity configurations, while tree_colbasis
returns the basis vectors in a format corresponding to (4.27)–
(4.30). The complex-valued colour vector {A(i)

0 (h)} in (4.25)
can be obtained through the function evaluate_tree_
colvect. Using {A(i)

0 (h)} it is possible to calculate the LO
probability density (2.1) as

W00 = 1

Nhcs

∑

h

∑

i, j

[
A(i)

0 (h)
]∗

Ki j A( j)
0 (h), (4.32)

where Ki j is the colour-interference matrix defined in (2.8).

Colour-flow basis For the purpose of parton shower match-
ing in leading-colour approximation, it is more convenient
to use the colour-flow representation [75,76], where gluon

fields are handled as 3 × 3 matrices
(
Aμ

) j̄
i = 1√

2
Aa

μ (T a)
j̄
i ,

and the colour structures of tree amplitudes with m external
quark–antiquark pairs and n external gluons take the form

C ≡ C j̄β1 ... j̄βN
iα1 ...iαN

, (4.33)

with N = m+n. The elements of the colour-flow basis have
the form

Cflow
i = δ

j̄β1
iα̃1

. . . δ
j̄βN
iα̃N

, (4.34)

where αk → α̃k = π(αk) is a permutation of the quark par-
ticle labels, which encodes the colour connections between
antiquarks (βk) and quarks (α̃k) in (4.34).

A basis element of the form (4.34) is represented by an
array of Np integer pairs defined as

(αk, 0) for an incoming quark (outgoing anti-quark)

with particle label αk,

(0, α̃k) for an incoming anti-quark (outgoing quark)

with particle label βk,

(αk, α̃k) for a gluon with particle label αk,

(0, 0) for an uncoloured particle. (4.35)

The pairs are ordered according to the sequence of scatter-
ing particles as registered by the user. Each non-zero index
will appear twice, indicating which particles are colour con-
nected.

In leading-colour approximation, the trace and colour-
flow bases are related through the identities

(
T a1T a2 · · · T aM−1T aM

) j̄β
iα
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Table 7 Particle and colour numbering scheme. The external particles
are labelled through consecutive integers 1, 2, . . . , Np according to the
ordering (4.1) specified through the process registration. The symbols
σk are used in (4.26)–(4.29) to represent the integer labels of exter-
nal gluons, while aσk are the corresponding colour indices. Similarly,
αk (βl ) represent the integer labels of incoming quarks (antiquarks)
or outgoing antiquarks (quarks), and their colour indices are iαk ( j̄βl ).

For the process considered in the table, qq̄ → γ qq̄ Zggg, we have
(α1, α2) = (1, 5), (β1, β2) = (2, 4), (σ1, σ2, σ3) = (α3, α4, α5) =
(7, 8, 9). The last row illustrates the notation of the colour-flow basis. In
this case, as explained in the text, the antiquark indices βk are replaced
by a permutation α̃k = π(αk) of the quark indices according to the
actual colour flow. Moreover, gluons are represented by a pair of indices
(αk , α̃k ) corresponding to a quark–antiquark pair

External particles q q̄ → γ q q̄ Z g g g

Integer labels 1 2 3 4 5 6 7 8 9

α1 β1 β2 α2 σ1 σ2 σ3

α3 α4 α5

SU(3) indices i1 j̄2 j̄4 i5 a7 a8 a9

Colour flow (α1,0) (0,α̃1) (0,0) (0,α̃2) (α2,0) (0,0) (α3,α̃3) (α4,α̃4) (α5,α̃5)

= 2−M/2 δ
j̄β
ia1

δ
j̄a1
ia2

. . . δ
j̄aM−1
iaM

δ
j̄aM
iα

+ sublead. colour,

Tr
(
T a1T a2 · · · T aM−1T aM

)

= 2−M/2 δ
j̄aM
ia1

δ
j̄a1
ia2

. . . δ
j̄aM−1
iaM

+ sublead. colour, (4.36)

which imply a one-to-one correspondence between the ele-
ments of the two bases, i.e.

Ci = Cflow
i + sublead. colour. (4.37)

Squared colour vector In leading-colour approximation, the
colour-correlation matrices in the trace and colour-flow basis
are equivalent to each other and proportional to the identity
matrix,

Ki j =
∑

col

C†
i C j =

∑

col

(
Cflow
i

)†
Cflow
j + sublead. colour

= δi j 2−n Nn+m
c + sub-leading colour, (4.38)

where n and m are defined as above. Thus the LO probability
density (4.32) can be written as

W00 = Nn+m
c

2nNhcs

∑

i

∣∣A(i)
0

∣∣2 + sublead. colour, (4.39)

with36

∣∣A(i)
0

∣∣2 =
∑

h

[
A(i)

0 (h)
]∗

A(i)
0 (h). (4.40)

This squared colour vector can be evaluated through the inter-
face function evaluate_tree_colvect2. Since each

36 Note that (4.40) is computed in the trace basis excluding off-diagonal
Ki j terms but including any other sub-leading-colour contributions.

component of (4.40) is associated with a given colour flow
according to (4.37), in the context of parton-shower matching
the ratio

p(i) =
∣∣A(i)

0

∣∣2

∑
i

∣∣A(i)
0

∣∣2
(4.41)

can be used as the probability with which the shower starts
from the colour-flow configuration Cflow

i .
The explicit form of the colour-flow basis for a given

process can be accessed through the interface function
tree_colourflow, which returns an array of basis ele-
ments {Cflow

i } in a format corresponding to (4.35).
The interface functions described in this section are sup-

ported under amptype=1,11. So far they are implemented
in a way that guarantees consistent results only for leading-
QCD Born quantities, i.e. terms of order α

p
s αq with maximal

power p, which involve a single Born term of order gp
s eq .

4.6 Reduction methods and stability system

As discussed in Sect. 2.7, tree–loop interferences and squared
loop amplitudes are computed using different methods for
the reduction to scalar integrals and the treatment of related
instabilities.

For all types of amplitudes, OpenLoops chooses default
settings for the stability system that require adjustments only
in very rare cases.

On-the-fly stability system For tree–loop interferences, with
the only exception of the Higgs Effective Field Theory, the
reduction to scalar integrals is based on the on-the-fly method
and the stability system described in Sect. 2.7.2. Each pro-
cessed object carries a cumulative instability estimator37 that

37 This estimate is based on the analytic form of all presently known
spurious singularities. So far it was found to be quite reliable. However,
it may have to be improved if new types of instabilities are encountered.
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is propagated through the algorithm and updated when nec-
essary. If the estimated instability exceeds a threshold value,
the object at hand and all subsequent operations connected to
it are processed through the qp channel. The stability thresh-
old is controlled by the interface parameter hp_loopacc,
which plays the role of target numerical accuracy for the
whole Born–loop interference W01. Its default value is 8 and
corresponds to δW01/W01 ∼ 10−8.

In order to find an optimal balance between CPU perfor-
mance and numerical accuracy, certain aspects of the stability
system can be activated or deactivated using the parameter
hp_mode. Setting hp_mode=1 (default) enables all sta-
bility improvements described in Sect. 2.7.2 and is recom-
mended for NLO calculations with hard kinematics. Setting
hp_mode=2 activates qp also for additional types of rank-
two Gram-determinant instabilities that occur exclusively in
IR regions. This mode is supported only for QCD corrections
and is recommended for real–virtual NNLO calculations.
Finally,hp_mode=0 deactivates the usage of qp through the
hybrid-precision system, while keeping all stability improve-
ments of analytic type in dp.

Stability rescue system For tree–loop interferences in the
Higgs Effective Field Theory, the reduction to scalar integrals
is based on external libraries. The primary reduction library
redlib1 (default: Coli-Collier) is used to evaluate all
points in dp. The fraction stability_triggerratio
(default: 0.2, meaning 20 %) of the points with the largest K -
factor is re-evaluated with the secondary reduction library
redlib2 (default: DD-Collier). If the relative devia-
tion of the two results exceeds stability_unstable
(default: 0.01, meaning 1 %), the point is re-evaluated in
qp with CutTools including a qp scaling test to estimate
the resulting accuracy. If the estimated relative accuracy
δW01/W01 in qp is less than stability_kill (default:
1, meaning 100 %), the result is set to zero, otherwise the
smaller of the scaled and unscaled qp results is returned.
The accuracy argument of the matrix element routines (e.g.
evaluate_loop) returns the relative deviation of the
Coli-Collier and DD-Collier results or, if qp was trig-
gered, of the scaled and unscaled qp result. In case of a single
dp evaluation, the accuracy argument is set to −1.

Also squared loop amplitudes are reduced to scalar inte-
grals using external libraries. To asses related instabili-
ties, for all phase-space points the reduction is carried
out twice, using redlib1 and redlib2. The option
stability_kill2 (default: 10) sets the relative devi-
ation of the two results beyond which the result is set to
zero. Due to the double evaluation of all points, an accuracy
estimate is always returned by the matrix element routine
evaluate_loop2.

Setting redlib1 and redlib2, as well as various other
options to control the stability system, is only possible in the
so-called “expert mode”. Further details can be obtained from
the authors upon request.

5 Technical benchmarks

In this section we present speed and stability benchmarks
obtained with OpenLoops2 and compare them with the per-
formance of OpenLoops1.

5.1 CPU performance

The speed at which one-loop matrix elements are evaluated
plays a key role for the feasibility and efficiency of non-trivial
NLO Monte Carlo simulations. In Table 8 we present CPU
timings for the calculation of one-loop QCD and EW correc-
tions for several processes of interest at the LHC. Specifically,
we consider the production of single W bosons, W+W−
pairs and t t̄ pairs in association with a variable number of
additional gluons and quarks. For W production we consider
final states with on-shell bosons and, alternatively, off-shell
�ν decay products.

The observed timings are roughly proportional to the
number of one-loop Feynman diagrams, which ranges from
O(10) for the simplest 2 → 2 processes to O(105) for the
most complex 2 → 5 processes. Absolute timings corre-
spond to OpenLoops 2 with default settings, i.e. with all
stability improvements in dp plus the hybrid-precision sys-
tem with a target accuracy of 8 digits. Augmenting the tar-
get accuracy to 11 digits causes a CPU overhead of 1% to
50%, depending on the process, while we have checked that
switching off hybrid precision (hp_mode=0) yields only a
speed-up of order one percent.

Comparing QCD to EW corrections, for processes with-
out leptonic weak-boson decays we observe timings of the
same order. More precisely, the QCD (EW) corrections tend
to be comparatively more expensive in the presence of more
external gluons (weak bosons). In contrast, in processes with
off-shell weak bosons decaying into leptons EW corrections
are drastically more expensive than QCD corrections. This
is due to the fact that, for each off-shell W/Z decay to lep-
tons, at NLO EW the maximum number of loop propagators
increases by one, while at NLO QCD it remains unchanged.
Due to Yukawa interactions, also the presence of massive
quarks tends to increase the CPU cost of EW corrections.

Timings of OpenLoops 2 are compared against Open-
Loops1 with recommended stability settings (preset = 2,
preset is deprecated in OpenLoops 2) and, alternatively,
with the stability rescue system switched off (“no stab”) in
OpenLoops 1. The difference reflects the cost of stability
checks in OpenLoops1, which is significantly higher than in
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Table 8 Runtimes for the calculation of the NLO QCD and NLO EW
virtual corrections (with respect to the leading QCD Born order) for
various partonic processes at the LHC. Timings are given per phase-
space point, including colour and helicity sums, and averaged over a
sample of random points generated with Rambo [77] at

√
s = 1 TeV

without cuts. The measurements have been carried out on a single Intel
i7-4790K @ 4.00GHz core using gfortran 7.4.0. The reference Open-

Loops 2 timings (tdef
OL2) correspond to the on-the-fly approach with

default stability settings, while t11 digits
OL2 illustrates the CPU overhead

caused by augmenting the hybrid-precision target accuracy from 8 to
11 digits. Default OpenLoops 1 timings (tpreset2

OL1 ) correspond to the
recommended stability setting (preset=2), where tensor reduction is
done with Coli-Collier and compared against DD-Collier for 20%
of the points with the largest K -factor; differences beyond one percent
betweenColi-Collier andDD-Collier trigger qp re-evaluations with
CutTools +OneLOop and a further stability test via qp-rescaling. For
comparison, also OpenLoops1 timings with disabled stability system
(tno stab

OL1 ) are shown within parentheses

Process tdef
OL2 [ms] t11digits

OL2 /tdef
OL2 tpreset2

OL1 (tno stab
OL1 )/tdef

OL2

QCD EW EW
QCD QCD EW QCD EW

gg → t t̄ 0.80 1.17 1.46 1.01 1.01 1.82 (1.67) 2.22 (2.02)

gg → t t̄ g 21.4 24.0 1.12 1.04 1.07 1.68 (1.56) 2.16 (2.10)

gg → t t̄ gg 600 582 0.97 1.15 1.22 2.18 (2.17) 2.64 (2.59)

gg → t t̄ ggg 21,145 16,928 0.80 1.09 1.14 2.59 (2.55) 3.06 (3.06)

uū → t t̄ 0.23 0.43 1.87 1.0 1.02 1.22 (0.93) 1.65 (1.37)

uū → t t̄ g 3.1 8.0 2.58 1.06 1.08 1.28 (1.19) 1.36 (1.28)

uū → t t̄ gg 73 176 2.41 1.16 1.19 1.45 (1.45) 1.64 (1.63)

uū → t t̄ ggg 2085 4862 2.33 1.26 1.28 1.88 (1.88) 2.05 (2.04)

bb̄ → t t̄ 0.22 0.92 4.18 1.01 1.01 1.78 (1.53) 2.01 (1.73)

bb̄ → t t̄ g 3.53 18.1 5.13 1.04 1.07 2.04 (1.90) 1.92 (1.84)

bb̄ → t t̄ gg 95 415 4.37 1.18 1.23 2.15 (2.05) 2.49 (2.40)

dū → W−g 0.33 0.71 2.15 1.03 1.03 0.96 (0.79) 1.45 (1.17)

dū → W−gg 5.6 12.9 2.30 1.05 1.10 0.99 (0.92) 1.14 (1.05)

dū → W−ggg 134 269 2.01 1.16 1.22 1.33 (1.28) 1.44 (1.44)

dū → W−gggg 3760 7442 1.98 1.14 1.18 1.41 (1.41) 1.69 (1.68)

dū → e−ν̄e 0.024 0.23 9.58 1.02 1.02 1.60 (0.92) 1.98 (1.37)

dū → e−ν̄eg 0.29 1.40 4.83 1.04 1.11 1.00 (0.81) 1.31 (1.09)

dū → e−ν̄egg 4.0 13.3 3.33 1.13 1.27 0.80 (0.75) 1.11 (1.11)

uū → W+W− 0.19 3.34 17.6 1.00 1.00 1.47 (1.19) 1.42 (1.36)

uū → W+W−g 6.7 25.7 3.84 1.16 1.06 1.31 (1.24) 1.46 (1.40)

uū → W+W−gg 154 379 2.46 1.19 1.15 1.63 (1.60) 2.03 (2.01)

uū → W+W−ggg 3660 8606 2.35 1.17 1.15 2.18 (2.18) 2.44 (2.44)

dd̄ → e−ν̄eμ
+νμ 0.19 9.02 47.5 1.02 1.68 0.80 (0.58) 1.67 (1.34)

dd̄ → e−ν̄eμ
+νμg 5.6 42.2 7.54 1.23 1.85 0.57 (0.51) 1.36 (1.15)

OpenLoops2. Note that this cost depends very strongly on
the kinematics of the considered phase-space sample, and the
values reported in Table 8 should be understood as a lower
bound.

Apart from few exceptions, OpenLoops2 is similarly fast
or significantly faster thanOpenLoops1. In particular, for the
most complex and time consuming processes the new on-the-
fly approach yields speed-up factors between two and three.

5.2 Numerical stability

As discussed in Sect. 2.7, the stability of one-loop amplitudes
in exceptional phase-space regions is of crucial importance
for challenging multi-particle and multi-scale NLO calcula-

tions, as well as for NNLO applications. In the following we
present OpenLoops 2 stability benchmarks for NLO QCD
and NLO EW virtual corrections. The level of numerical sta-
bility is quantified by comparing output in double (dp) or
hybrid (hp) precision (Wdp/hp

01 ) against quadruple-precision
(qp) benchmarks (Wqp

01). The latter are obtained usingOpen-
Loops2 in combination with the OneLOop library for scalar
integrals. More precisely, we define the numerical instability
of a certain result W X

01 as

AX = log10

∣∣∣∣∣
W X

01 − Wqp
01

Wqp
01

∣∣∣∣∣
, (5.1)

which corresponds, up to a minus sign, to the number of
stable digits. For the case of qp benchmark results (X = qp)
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Fig. 5 Probability of finding an
instability A > Amin as a
function of Amin in a sample of
106 events for gg → t t̄ gg at
NLO QCD (upper plot) and
ūu → e+e−μ+μ− at NLO EW
(lower plot). The stability of
quad-precision benchmarks
(blue) is compared to different
variants of the OpenLoops2
on-the-fly reduction (green,
black, red) and to the
OpenLoops1 algorithm
interfaced with Collier

(yellow) or CutTools
(turquoise). For OpenLoops2,
besides default stability settings
(black) we show the effect of
increasing the hybrid-precision
target from 8 to 11 digits
(hp_loopacc=11, red), or
disabling the hybrid precision
system (hp_mode=0, green).
The OpenLoops1 curves
correspond to the level of
stability that is obtained in dp
without full re-evaluations of
unstable points in qp
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the accuracy estimate (5.1) corresponds to the result of a
so-called rescaling test, see Sect. 2.7.1(iii).

The numerical stability of OpenLoops 2 in the hard
regions is illustrated in Fig. 5 for two non-trivial 2 → 4
processes at NLO QCD and NLO EW. The plots corre-
spond to 106 homogeneously distributed Rambo points at√
s = 1 TeV with pi,T > 50 GeV and ΔRi j > 0.5 for all

massless final-state particles. As demonstrated by the refer-
ence qp curve, runningOpenLoops2 in pure qp makes it pos-
sible to produce one-loop results with up to 32 stable digits.
Such high-precision qp benchmarks can be obtained as a by-
product of the hybrid-precision system and allow one to quan-
tify the level of stability with better than 16-digit resolution in
the full phase space. The results of OpenLoops1 with Cut-

Tools in dp illustrate the impact of Gram-determinant insta-
bilities, which result in a probability of one percent of finding
less than two stable digits in gg → t t̄ gg.38 Using Collier

38 In the tail of theCutTools curve (not shown) numerical instabilities
can reach and largely exceed O(1010).

reduces this probability by 3–4 orders of magnitudes, while
OpenLoops2 with one-the-fly reduction and hp-system leads
to a further dramatic suppression of instabilities by four
orders of magnitude, which corresponds to five extra stable
digits. The effect of hybrid-precision alone corresponds to
about two digits or, equivalently, a factor 100 suppression of
the tail. The EW corrections to ūu → e+e−μ+μ− feature a
qualitatively similar behaviour but a generally lower level of
instability, which is most likely a consequence of the lower
tensor rank.

Example stability benchmarks relevant for 2 → 2 cal-
culations at NNLO are shown in Fig. 6 for the case of the
real-virtual QCD corrections to t t̄ and W+W− hadron pro-
duction. The instability A is estimated using a sequence of
gg → t t̄ g and uū → W+W−g samples with increasing
degree of softness and collinearity, defined as

ξsoft = E j

Q
, ξcoll = θ2

i j . (5.2)
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Fig. 6 Relative numerical
accuracy A for gg → t t̄ g (upper
plot) and uū → W+W−g
(lower plot) at NLO QCD versus
the degree of collinear (ξcoll) or
soft singularity (ξsoft) as defined
in (5.2). For each value of
ξcoll/soft the numerical accuracy
is estimated with a sample of
104 randomly distributed
underlying 2 → 2 hard events.
The plotted central points and
variation bands correspond,
respectively, to the average and
99.9% confidence interval of A.
Quad-precision benchmarks
(blue) are compared to
OpenLoops2 with additional
hybrid-precision improvements
for IR regions (hp_mode=2,
red) and also to OpenLoops1
with Collier (yellow) or
CutTools (turquoise) in dp
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Here Q denotes the center-of-mass energy, E j is the energy
of the soft particle, and θi j is the angle of a certain collinear
branching. The parameters ξsoft/coll are defined in such a way
that the denominators of soft and collinear enhanced propaga-
tors scale like (pi + p j )

2 ∝ ξsoft/coll Q2. In practice, starting
from a sample of 104 hard 2 → 2 events with Q = 1 TeV,
we have supplemented each event by an additional soft or
collinear emission with ξsoft/coll = 10−1, 10−2, . . . , 10−9.

In Fig. 6 the average level of instability and its spread are
plotted versus ξcoll in gg → t t̄ and ξsoft in uū → W+W−g.
The stability of qp benchmarks is again very high in the
whole phase space. In the deep IR regions numerical insta-
bilities grow at a speed that depends on the process, the
type of region (soft/collinear), and the employed method.
For initial-state collinear radiation in gg → t t̄ g, CutTools
loses three digits per order of magnitude in ξcoll, resulting in
huge average instabilities of O(1010) in the deep unresolved
regime. Using the Collier library in dp we observe a more
favourable scaling, with losses of only one digit per order
of magnitude in ξcoll, and an average of three stable digits
in the tail. Thanks to the hybrid-precision system, the level

of stability of OpenLoops 2 is even much higher. It stays
always above 10 digits and is roughly independent of ξcoll.
For soft radiation in uū → W+W−g, apart from the fact that
numerical instabilities are generally milder, the various tools
behave in a qualitatively similar way.

Similar tests of the OpenLoops 2 stability system as
the ones presented here have been carried out for various
2 → 3, 4, 5 hard processes and 2 → 3 processes with an
unresolved parton, finding similar stability curves as shown
here, and not a single fully unstable result, i.e. one with zero
correct digits. A more comprehensive study on numerical
instabilities will be presented in a follow-up paper [66].

6 Summary and conclusions

We have presented OpenLoops 2, the latest version of the
OpenLoops tree and one-loop amplitude provider based on
the open-loop recursion. This new version introduces two
significant novelties highly relevant for state-of-the art pre-
cision simulations at high-energy colliders. First, the original
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algorithm has been extended to provide one-loop amplitudes
in the full SM, i.e. including, besides QCD corrections, also
EW corrections from gauge, Higgs and Yukawa interactions.
The inclusion of EW corrections becomes mandatory for
the control of cross sections at the percent level, and even
more importantly in the tails of distributions at energies well
above the EW scale. Second, the original algorithm has been
extended to include the recently proposed on-the-fly reduc-
tion method, which supersedes the usage of external reduc-
tion libraries for the calculation of tree–loop interferences.
In this approach, loop amplitudes are constructed in a way
that avoids high tensorial rank at all stages of the calcula-
tion, thereby preserving and often ameliorating (by up to a
factor of three) the excellent CPU performance of Open-

Loops1. The on-the-fly reduction algorithm has opened the
door to a series of new techniques that have reduced the level
of numerical instabilities in exceptional phase-space regions
by up to four orders of magnitude. These speed and stabil-
ity improvements are especially significant for challenging
multi-leg NLO calculations and for real-virtual contributions
in NNLO computations.

In this paper we have presented the algorithms imple-
mented in OpenLoops 2 for the calculation of squared
tree, tree–loop interference and squared loop amplitudes.
This entails a summary of the on-the-fly reduction method
[33] and its stability system, which automatically identifies
and cures numerical instabilities in exceptional phase-space
regions. This is achieved by means of Gram-determinant
expansions and other analytic methods in combination with a
hybrid double-quadruple precision system. The latter ensures
an unprecedented level of numerical stability, while making
use of quadruple precision only for very small parts of the
amplitude construction. Details of these stability improve-
ments and hybrid precision system will be presented in an
upcoming publication [66].

In the context of the extension to calculations in the full
SM, we presented a systematic discussion of the bookkeeping
of QCD–EW interferences and sub-leading one-loop contri-
butions, which are relevant for processes with multiple final-
state jets. We also detailed the input parameter schemes and
one-loop O(αs) and O(α) renormalisation as implemented
in OpenLoops2. Here we emphasised crucial details in the
implementation of the complex-mass scheme for the descrip-
tion of off-shell unstable particles. The flexible implementa-
tion of the complex-mass scheme in OpenLoops2 is appli-
cable to processes with both on-shell and off-shell unstable
particles at NLO. We also introduced a special treatment of
processes with external photons, handling photons of on-
shell and off-shell type in different ways, which is inherently
required by the cancellation of fermion-mass singularities
associated with the photon propagator and with collinear
splitting processes.

While this manuscript as a whole provides detailed docu-
mentation of the algorithms implemented in OpenLoops 2,
Sect. 4 together with Appendix A can be used as a manual,
both in order to use OpenLoops2 as a standalone program or
to interface it to any Monte Carlo framework. Calculations at
NLO and beyond require, besides squared amplitude infor-
mation, also spin and colour correlators for the construction
of infrared subtraction terms. To this end we documented
the available correlators and conventions available in Open-

Loops 2, which comprise tree-tree and loop-loop correla-
tors as well as tree-loop correlators. The former are neces-
sary for the construction of NLO subtraction terms for stan-
dard and loop-induced processes. The latter are necessary in
NNLO subtraction schemes. Furthermore, conventions and
interfaces for the extraction of full tree amplitude vectors in
colour space are given. These are necessary ingredients for
parton shower matching at NLO.

The new functionalities of OpenLoops2 and their future
improvement will open the door to a wide range of new pre-
cision calculations in the High-Luminosity era of the LHC.
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Appendix A: Native FORTRAN and C/C++ interfaces

OpenLoops can easily be integrated into Monte Carlo tools
via its native interfaces in Fortran and C or via the BLHA
interface [45,46]. The C interface can of course be used
from C ++ as well. We recommend to use the native inter-
face, because it is easier to use, provides more functional-
ity and does not require exchanging files between the tools.
In this Appendix we present the various functionalities of
the native OpenLoops interface. In doing so we will always
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refer to the names of the relevant Fortran interface func-
tions. The corresponding C functions are named in the same
way with an extra ol_ prefix. In Appendix A.1 we detail
necessary modules to be loaded (Fortran) and required
header files (C/C ++) together with conventions for the for-
mat of phase-space points for the evaluation of scattering
amplitudes. In Appendix A.2 the setting of parameters is
discussed and in Appendix A.3 the registration of processes.
In Appendix A.4-Appendix A.8 we detail the various inter-
faces for the evaluation of squared scattering amplitudes,
amplitude correlators and amplitude colour vectors. Finally,
in Appendix A.9 we give a basic example for the usage of
the native OpenLoops interface in Fortran and C.

The implementation of the BLHA interface and the usage
of OpenLoops together with Sherpa and Powheg- Box are
discussed in Appendix B.

Appendix A.1: Generalities

Fortran interface In order to use the native Fortran inter-
face, the module openloops must be included with

use openloops

The module files are located in the directory lib_src/
openloops/mod, which should be added to the include
path of the Fortran compiler.
Floating point numbers used in the interface are in double
precision, denoted here by the kind type dp which can be
obtained as follows:

integer , parameter : : dp = selected_real_kind(15)

Phase space points p_ex are passed as two-dimensional
arrays declared as

real (dp) : : p_ex(0:3 ,N)

Here and in the following N stands for the number of incom-
ing plus outgoing external particles of the considered process.
External particles are numbered from 1 to N and are inter-
preted as incoming or outgoing according to the process reg-
istration. See (4.1) and below. The entries p_ex(i,K) cor-
respond to the energy (i=0) and the three physical momen-
tum components (i=1, 2, 3) of particle K in GeV units.

C interface The C interface is declared in the the header
file include/openloops.h and can be included in C
and C ++ code. Phase space points pp are passed as one-
dimensional arrays with 5N components, where every fifth
component is the mass of the corresponding external particle
(BLHA convention), i.e. phase-space points in the C interface
are declared as

double pp[5∗N];

The fifth component is currently not used withinOpenLoops.

Appendix A.2: Parameter setting

In order to set the OpenLoops parameter with name key to
the value val, call

Fortran

subroutine set_parameter(key, val , err)
character(∗) , intent ( in ) : : key
TYPE, intent ( in) : : val
integer , intent ( out) , optional : : err

where TYPE isinteger,real(dp) or character(*)
depending on the type of the parameter. It is possible to set
parameters of integer or real(dp) type by passing the
value in string representation. The error code err will be
zero on success.

In C, the function to set a parameter depends on the param-
eter type:

C/C ++

void ol_setparameter_int ( const char ∗key, int val ) ;
void ol_setparameter_double( const char ∗key, double val ) ;
void ol_setparameter_string ( const char ∗key, const char ∗val ) ;

ol_setparameter_string() may be used to set
integer or double precision values given in string represen-
tation. The functions do not return an error code, but it may
be retrieved by calling

C/C ++

int ol_get_error ( ) ;

right after setting a parameter. A return value of 0 means that
no error occured in the preceeding call.

With the default settings, the program will terminate in
case of an error. This can be changed by adjusting the warning
level using the function

Fortran

subroutine set_init_error_fatal ( level )
integer , intent ( in) : : level

C/C ++

void ol_set_init_error_fatal ( int level )

where level=0 means that errors are silently ignored,
level=1 means that a warning message is printed, and
level=2 (default) means that the program will be termi-
nated on error.
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The current value of a parameter can be retrieved by calling

Fortran

subroutine get_parameter(key, val , err)
character(∗) , intent ( in ) : : key
TYPE, intent ( out) : : val
integer , intent ( out) , optional : : err

C/C ++

void ol_getparameter_int( const char ∗key, int ∗val ) ;
void ol_getparameter_double( const char ∗key, double ∗val ) ;

Retrieving parameter values is only supported for integer
and double precision parameter types.
A list of all parameters can be written to a file

Fortran

subroutine printparameter ( f i le )
character(∗) , intent ( in ) : : f i le

C/C ++

void ol_printparameter( const char ∗f i le ) ;

For an empty file name, i.e. file=””, the output is written
to stdout.

Appendix A.3: Process registration

As detailed in Sect. 4.2 before evaluation a process has to be
registered. This proceeds via

Fortran

function register_process (process , amptype)
integer : : register_process
TYPE, intent ( in ) : : process
integer , intent ( in) : : amptype

which takes theprocess as a string in the format “PIDi,1 . . .

PIDi,n -> PID f,1 . . . PID f,m” for a n → m process, where
the various particle identifiers (PID) are enetered in either of
the two particle labelling schemes specified in Table 6. Alter-
natively, 2 → N − 2 processes can be registered by entering
process as an array of integers of length N , where the first
two entries are interpreted as initial-state particles. Addition-
ally the amplitude type amptype has to be passed as argu-
ment. For the possible values of amptype see Table 4. The
function register_process returns the process ID to
be used in the routines to evaluate matrix elements, where it
is denoted as id.

In the corresponding C interface for process registration

C/C ++

int ol_register_process ( const char ∗process , int amptype) ;

the process can only be passed as a string. Again, the
process ID is returned.

When all processes are registered the following function
must be called before calculating matrix elements.

Fortran

subroutine s tar t ()

C/C ++

void ol_start ( ) ;

When the calculation is finished, i.e. no more matrix elements
will be calculated, the following function should be called.

Fortran

subroutine finish ()

C/C ++

void ol_finish ( ) ;

While these calls are not strictly necessary, if log files are
used, the files may not be updated at the end of the run and
therefore lack information. Additionally, dynamically allo-
cated memory will be deallocated upon the finish call.

Appendix A.4: Scattering amplitudes

The following interface functions evaluate the scattering
probability densities (2.1)–(2.3) and their building blocks
described in Sect. 4.3. The required inputs are the integer
identifier id of the desired process and the phase-space point
p_ex (Fortran) / pp (C ++), as defined in Appendix A.1.

Tree-level amplitudes The functionevaluate_tree eval-
uates the tree–tree probability density (2.1) returning as out-
put m2l0 = W00.

Fortran

subroutine evaluate_tree ( id , p_ex, m2l0)
integer , intent ( in) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0

C/C ++

void ol_evaluate_tree ( int id , const double ∗pp,
double ∗m2l0) ;

One-loopNLOamplitudes The functionevaluate_loop
evaluates the UV renormalised Born–one-loop interference
(2.2) returning m2l0 = W00 and m2l1 = {W(0)

01 ,W(1)
01 ,

W(2)
01 } as output. The three values in m2l1 represent the finite

part, and the coefficients of the IR single and double poles39

39 For performance reasons, by default the (negative) IR poles of the
I-operator, Eq. (3.98), are returned as IR poles in m2l1. The true poles
of the virtual amplitudes can be obtained by setting the parameter
truepoles=1. Alternatively setting truepoles=2 sums the vir-
tual amplitude including its true poles and the I-operator including its
finite part and poles, which allows for easy pole cancellation checks.
See more details in Sect. 4.3.
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of the Born–one-loop interference, as defined in Eq. (4.2).
Together with the one-loop amplitude an accuracy estimate
is returned (depending on the employed stability system) as
acc with acc = −1 in case no stability estimate is avail-
able. When available, acc quantifies the relative accuracy
δW(0)

01 /W(0)
01 , and acc = 10−a corresponds to an estimated

accuracy of a decimal digits.

Fortran

subroutine evaluate_loop( id , p_ex, m2l0, m2l1, acc)
integer , intent ( in) : : id
real (dp) , intent ( in) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2l1(0:2)
real (dp) , intent ( out) : : acc

C/C ++

void ol_evaluate_loop( int id , const double ∗pp,
double ∗m2l0, double ∗m2l1,
double ∗acc ) ;

As documented in Sect. 4.3, various technical parame-
ters permit to activate and deactivated the different building
blocks of one-loop amplitudes and to change the normalisa-
tion convention for UV and IR poles.

Bared=4amplitudes The functionevaluate_loopbare
evaluates the unrenormalised Born–one-loop interference
without UV and R2 counterterm contributions (i.e. with
d = 4 loop numerator) as defined in (4.4), returning
m2l0 = W00, m2l1bare = {W(0)

01,4D,W(1)
01,4D,W(2)

01,4D}
and an accuracy estimate (see above) acc as output. The
three values in m2l1bare represent the finite part and the
coefficients of the (UV and IR) single and the double poles.40

Fortran

subroutine evaluate_loopbare( id , p_ex, m2l0, m2l1bare , acc)
integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2l1bare(0:2)
real (dp) , intent ( out) : : acc

C/C ++

void ol_evaluate_loopbare( int id , const double ∗pp,
double ∗m2l0, double ∗m2l1bare ,
double ∗acc ) ;

40 For performance reasons, by default the (negative) IR poles of the
I-operator and UV counterterm are returned as poles in m2l1bare.
The true poles of the bare virtual amplitudes can be obtained by setting
the parameter truepoles=1.

UV counterterms The function evaluate_loopct eval-
uates the UV counterterm matrix element, as defined in (4.4)
returning m2l0 = W00 and m2ct = {W(0)

01,CT,W(1)
01,CT,

W(2)
01,CT} as output. The three values in m2ct represent the

finite part and the coefficients of the (UV) single and double
poles, where the latter is always zero.

Fortran

subroutine evaluate_loopct ( id , p_ex, m2l0, m2ct)
integer , intent ( in) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2ct(0:2)

C/C ++

void ol_evaluate_loopct( int id, const double *pp,
double *m2l0 , double *m2ct);

For performance reasons we also provide the function
evaluate_ct, which evaluates only the finite part of
the UV counterterm, defined in (4.4), returning m2ct0 =
W(0)

01,CT and m2l0 = W00 as output.

Fortran

subroutine evaluate_ct ( id , p_ex, m2l0, m2ct0)
integer , intent ( in) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2ct0

C/C ++

void ol_evaluate_ct ( int id , const double ∗pp,
double ∗m2l0, double ∗m2ct0) ;

R2 countertermsThe function evaluate_r2 evaluates the
R2 counterterm matrix element defined in (4.4), returning
m2r2 = W01,R2 and m2l0 = W00.

Fortran

subroutine evaluate_r2( id , p_ex, m2l0, m2r2)
integer , intent ( in) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2r2

C/C ++

void ol_evaluate_r2( int id , const double ∗pp,
double ∗m2l0, double ∗m2ct) ;

Pole residues The function evaluate_poles evaluates
the residues of the UV and IR poles of all ingredients
to a Born–one-loop interference defined in (4.4) includ-
ing also the I-operator. As output it returns m2l0 =
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W00, m2bare = {W(1,UV)
01,4D ,W(1,IR)

01,4D ,W(2,IR)
01,4D }, m2ct =

{W(1,UV)
01,CT ,W(1,IR)

01,CT ,W(2,IR)
01,CT }, m2ir = {W(1,UV)

00,I-op ,W(1,IR)
00,I-op,

W(2,IR)
00,I-op} andm2sum = m2bare+m2ct+m2ir. The three

values inm2bare,m2ct,m2ir,m2sum correspond respec-
tively to the residues of the 1/εUV, 1/εIR and 1/ε2

IR poles. For
automated pole cancellation checks the output of this routine
can automatically be printed to the screen upon amplitude
registration when the parameter check_poles = 1 is set.

Fortran

subroutine evaluate_poles ( id , psp , m2l0, m2bare,
m2ct, m2ir , m2sum)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2bare(0:2)
real (dp) , intent ( out) : : m2ct(0:2)
real (dp) , intent ( out) : : m2ir(0:2)
real (dp) , intent ( out) : : m2sum(0:2)

C/C ++

void ol_evaluate_poles ( int id , const double ∗pp,
double ∗m2l0, double ∗m2bare,
double ∗m2ct, double ∗m2ir ,
double ∗m2sum);

Squared one-loop amplitudes The function evaluate_
loop2 evaluates the squared one-loop matrix element (2.3)
returning m2l2 = W11 and a relative accuracy estimate
acc = δW11/W11 (depending on the stability settings) as
output.

Fortran

subroutine evaluate_loop2( id , p_ex, m2l2, acc)
integer , intent ( in) : : id
real (dp) , intent ( in) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l2
real (dp) , intent ( out) : : acc

C/C ++

void ol_evaluate_loop2( int id , const double ∗pp,
double ∗m2l2, double ∗acc ) ;

Appendix A.5: I-operator

Tree–tree I-operator insertions The function evaluate_
iop evaluates the I-operator insertion into a squared Born
amplitude, as defined in (3.97), returning m2l0 = W00 and
m2ir = {W(0)

00,I-op,W
(1)
00,I-op,W

(2)
00,I-op}. The three values in

m2ir represent the finite part and the coefficients of the (IR)
single and double poles.

Fortran

subroutine evaluate_iop( id , p_ex, m2l0, m2ir)
integer , intent ( in) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2ir(0:2)

C/C ++

void ol_evaluate_iop( int id , const double ∗pp,
double ∗m2l0, double ∗m2ir) ;

Loop-loop I-operator insertions The function evaluate_
loop2iop evaluates the I-operator insertion into a squared
one-loop amplitude as defined in (3.97), returning m2l2 =
W11 and m2l2ir = {W(0)

11,I-op,W
(1)
11,I-op,W

(2)
11,I-op}. The

three values in m2l2ir represent the finite part and the coef-
ficients of the (IR) single and double poles in a Laurent series
similar to (4.2).

Fortran

subroutine evaluate_loop2iop( id , p_ex, m2l2, m2l2ir)
integer , intent ( in) : : id
real (dp) , intent ( in) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l2
real (dp) , intent ( out) : : m2l2ir(0:2)

C/C ++

void ol_evaluate_loop2iop( int id , const double ∗pp,
double ∗m2l2, double ∗m2l2ir ) ;

Appendix A.6: Colour and charge correlators

Tree–tree colour correlators The function evaluate_
ccmatrix returns the full matrix of colour-correlated
squared tree amplitudes as defined in (4.7), returning
m2l0 = W00 and a two-dimensional array m2cc

matrix(i,j) = C(p,q|i j)
00,LO QCD (Fortran) or a one-dimensi-

onal array m2ccmatrix[(i − 1) ∗ N + j − 1] = C(p,q|i j)
00,LO QCD

(C).m2ewcc is reserved for the associated charge-correlated
born amplitude, but is currently not in use.

Fortran

subroutine evaluate_ccmatrix( id , p_ex, m2l0,
m2ccmatrix, m2ewcc)

integer , intent ( in) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2ccmatrix(N,N)
real (dp) , intent ( out) : : m2ewcc

C/C ++

void ol_evaluate_ccmatrix( int id , const double ∗pp,
double ∗m2l0, double ∗m2ccmatrix,
double ∗m2ewcc) ;
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Alternatively the function evaluate_cc evaluates only
the N (N − 1)/2 independent colour-correlated squared tree
amplitudes (4.7) in the BLHA convention, returningm2l0 =
W00 and m2cc(i+(j-1)(j-2)/2) = C(p,q|i j)

00,LO QCD (For-

tran) rsp. m2cc[i+(j-1)(j-2)/2-1] = C(p,q|i j)
00,LO QCD

(C) with 1 ≤ i < j ≤ N .

Fortran

subroutine evaluate_cc( id , p_ex, m2l0, m2cc, m2ewcc)
integer , intent ( in ) : : id
real (dp) , intent ( in) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2cc(N∗(N−1)/2)
real (dp) , intent ( out) : : m2ewcc

C/C ++

void ol_evaluate_cc( int id , const double ∗pp,
double ∗m2l0, double ∗m2cc,
double ∗m2ewcc) ;

Tree–tree charge correlators The function evaluate_
ccewmatrix returns the full matrix of charge-correlated
squared tree amplitudes, as defined in (4.8), returning
m2l0 = W00 and a two-dimensional arraym2ccewmatrix
(i,j) = C(p,q|i j)

00,LO QED (Fortran) or a one-dimensional array

m2ccewmatrix[(i − 1) ∗ N + j − 1] = C(p,q|i j)
00,LO QED (C).

Fortran

subroutine evaluate_ccewmatrix( id , p_ex, m2l0,
m2ccewmatrix)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2ccewmatrix(N,N)

C/C ++

void ol_evaluate_ccewmatrix( int id , const double ∗pp,
double ∗m2l0,
double ∗m2ccewmatrix) ;

Loop–loop colour correlators The function evaluate_
ccmatrix2 returns the full matrix of colour-correlated
squared loop amplitudes as defined in (4.7), returning
m2l2 = W11 as a two-dimensional array m2ccmatrix

(i,j) = C(p,q|i j)
11,LO QCD (Fortran) or as a one-dimensional

array m2ccmatrix[(i − 1) ∗ N + j − 1] = C(p,q|i j)
11,LO QCD

(C).m2ewcc is reserved for the associated charge-correlated
loop-squared amplitude, but is currently not in use.

Fortran

subroutine evaluate_ccmatrix2( id , p_ex, m2l2,
m2ccmatrix, m2ewcc)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l2
real (dp) , intent ( out) : : m2ccmatrix(N,N)
real (dp) , intent ( out) : : m2ewcc

C/C ++

void ol_evaluate_ccmatrix2( int id , const double ∗pp,
double ∗m2l2,
double ∗m2ccmatrix,
double ∗m2ewcc) ;

Similarly as for the colour-correlated Born correlators
(see above), the function evaluate_cc2 evaluates only
the independent colour-correlated loop-squared amplitudes
in the BLHA convention returning m2l2 = W11 and
m2cc(i+(j-1)(j-2)/2) = C(p,q|i j)

11,LO QCD (Fortran) rsp.

m2cc[i+(j-1)(j-2)/2-1] = C(p,q|i j)
11,LO QCD (C) with 1 ≤

i < j ≤ N .

Fortran

subroutine evaluate_cc2( id , p_ex, m2l2, m2cc, m2ewcc)
integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2cc(N∗(N−1)/2)
real (dp) , intent ( out) : : m2ewcc

C/C ++

void ol_evaluate_cc2( int id , const double ∗pp,
double ∗m2l2, double ∗m2cc,
double ∗m2ewcc) ;

Loop–Loop charge correlators The function evaluate_
ccewmatrix2 computes the full matrix of charge-
correlated squared loop amplitudes as defined in (4.8). As
output it returns m2l2 = W11 and a two-dimensional array
m2ccewmatrix(i,j) = C(p,q|i j)

11,LO QED (Fortran) or a one-
dimensional array m2ccewmatrix[(i − 1) ∗ N + j − 1] =
C(p,q|i j)

11,LO QED (C).

Fortran

subroutine evaluate_ccewmatrix2( id , p_ex, m2l2,
m2ccewmatrix)

integer , intent ( in ) : : id
real (dp) , intent ( in) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l2
real (dp) , intent ( out) : : m2ccewmatrix(N,N)

C/C ++

void ol_evaluate_ccewmatrix2( int id , const double ∗pp,
double ∗m2l2,
double ∗m2ccewmatrix) ;
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Tree–loop colour correlators The function evaluate_
loopccmatrix2 returns the full matrix of the finite
parts of the colour-correlated Born–loop interferences, as
defined in (4.9), returning m2l0 = W00, m2l1 =
{W(0)

01 ,W(1)
01 ,W(2)

01 } and a two-dimensional array m2cc

matrix(i,j) = C(P,Q|i j)
01,NLO QCD (Fortran) or as a one-

dimensional array m2ccmatrix[(i − 1) ∗ N + j − 1] =
C(P,Q|i j)

01,01,NLO QCD (C). m2ewcc is reserved for the associated
charge-correlated Born–loop interference, but is currently
not in use.

Fortran

subroutine evaluate_loopccmatrix( id , p_ex, m2l0,
m2l1, m2ccmatrix, m2ewcc)

integer , intent ( in) : : id
real (dp) , intent ( in) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l2
real (dp) , intent ( out) : : m2l1(0:2)
real (dp) , intent ( out) : : m2ccmatrix(N,N)
real (dp) , intent ( out) : : m2ewcc

C/C ++

void ol_evaluate_loopccmatrix2( int id , const double ∗pp,
double ∗m2l0, double ∗m2l1,
double ∗m2ccmatrix,
double ∗m2ewcc) ;

Similarly as for the colour-correlated Born correlators
(see above), the function evaluate_loopcc evaluates
only the independent colour-correlated Born–loop interfer-
ence amplitudes (finite parts only) in the BLHA conven-
tion returning m2l0 = W00, m2l1 = {W(0)

01 ,W(1)
01 ,W(2)

01 }
and m2cc(i+(j-1)(j-2)/2) = C(i j)

01,NLO QCD (Fortran)

rsp. m2cc[i+(j-1)(j-2)/2-1] = C(i j)
01,NLO QCD (C) with

1 ≤ i < j ≤ N .

Fortran

subroutine evaluate_loopcc( id , p_ex, m2l2, m2cc,
m2ewcc)

integer , intent ( in) : : id
real (dp) , intent ( in) : : p_ex(4 ,N)
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2l1(0:2)
real (dp) , intent ( out) : : m2cc(N∗(N−1)/2)
real (dp) , intent ( out) : : m2ewcc

C/C ++

void ol_evaluate_loopcc2( int id , const double ∗pp,
double ∗m2l0, double ∗m2l1,
double ∗m2cc, double ∗m2ewcc) ;

Appendix A.7: Spin correlators

Tree–tree spin correlators The function evaluate_sc
evaluates the colour-spin-correlated squared tree amplitudes

(4.18) for a given gluon/photon emitter j and polarisa-
tion vector polvect = k⊥ fulfilling k⊥ · p j = 0. It returns

m2sc(k) = B(p,q| jk)
LL ,LO (k⊥) (Fortran), rsp. m2sc[k-1] =

B(p,q| jk)
LL ,LO (k⊥) (C) with 1 ≤ k ≤ N .

Fortran

subroutine evaluate_sc( id , p_ex, emitter , polvect ,
m2sc)

integer , intent ( in) : : id
real (dp) , intent ( in ) : : p_ex
integer , intent ( in) : : emitter
real (dp) , intent ( in ) : : polvect(4)
real (dp) , intent ( out) : : m2sc(N)

C/C ++

void ol_evaluate_sc( int id , const double ∗pp,
int emitter , double ∗polvect ,
double ∗m2sc) ;

The function evaluate_sctensor evaluates the
colour-spin-correlated squared tree tensor (4.20) for an
emitter j returning m2l0 = W00 and as a N×4×4 array
m2munu(k,mu,nu) = B(p,q| jk|μν)

00,LO (Fortran), rsp. a
vector of length (16N ), m2munu[(k-1)*N+(mu-1)*4+
(nu-1)] = B(p,q| jk|μν)

00,LO (C), with 1 ≤ k ≤ N and
1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_sctensor ( id , p_ex, emitter ,
m2l0, m2munu)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex
integer , intent ( in ) : : emitter
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2munu(N,4 ,4)

C/C ++

void ol_evaluate_sctensor( int id , const double ∗pp,
int emitter , double ∗m2l0,
double ∗m2munu) ;

The function evaluate_stensor evaluates the spin-
correlated squared tree tensor (4.21) (Powheg- Box conven-
tion) for anemitter j returningm2l0 = W00 and as a 4×4
array m2munu(mu,nu) = B(p,q| j |μν)

00,LO (Fortran), rsp. a
vector of length 16, m2munu[(mu-1)*4+(nu-1)] =
B(p,q| j |μν)

00,LO (C), with 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_stensor ( id , p_ex, emitter , m2l0,
m2munu)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex
integer , intent ( in ) : : emitter
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2munu(4 ,4)
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C/C ++

void ol_evaluate_stensor ( int id , const double ∗pp,
int emitter , double ∗m2l0,
double ∗m2munu) ;

Loop–loop spin correlators The function evaluate_sc2
evaluates the colour-spin-correlated loop-squared ampli-
tudes (4.18) for a given gluon/photonemitter j and polari-
sation vectorpolvect = k⊥ fulfilling k⊥·p j = 0. It returns

an array of length N , m2sc(k) = B(p,q| jk)
11,LO (k⊥) (Fortran),

rsp. m2sc[k-1] = B(p,q| jk)
11,LO (k⊥) (C) with 1 ≤ k ≤ N .

Fortran

subroutine evaluate_sc2( id , p_ex, emitter , polvect ,
m2sc)

integer , intent ( in) : : id
real (dp) , intent ( in) : : p_ex
integer , intent ( in) : : emitter
real (dp) , intent ( in) : : polvect(4)
real (dp) , intent ( out) : : m2sc(N)

C/C ++

void ol_evaluate_sc2( int id , const double ∗pp,
int emitter , double ∗polvect ,
double ∗m2sc) ;

The function evaluate_sctensor2 evaluates the
colour-spin-correlated loop-squared tensor (4.21) (Powheg-

Box convention) for an emitter j returning m2l2 = W11

and as a N×4×4 arraym2munu(k,mu,nu) = B(p,q| jk|μν)
11,LO

(Fortran), rsp. a vector of length 16N , m2munu[(k-1)
*N+(mu-1)*4+(nu-1)] = B(p,q| jk|μν)

11,LO (C) with 1 ≤
k ≤ N and 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_sctensor2( id , p_ex, emitter ,
m2l2, m2munu)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex
integer , intent ( in ) : : emitter
real (dp) , intent ( out) : : m2l2
real (dp) , intent ( out) : : m2munu(N,4 ,4)

C/C ++

void ol_evaluate_sctensor2( int id , const double ∗pp,
int emitter , double ∗m2l2,
double ∗m2munu) ;

Alternativelyevaluate_stensor2 evaluates the spin-
correlated loop-squared tensor (4.20) (Powheg- Box con-
vention) for an emitter j returning m2l2 = W11 and as
a 4 × 4 array m2munu(mu,nu) = B(p,q| j |μν)

11,LO (Fortran),
rsp. a vector of length 16, m2munu[(mu-1)*4+(nu-1)]
= B(p,q| j |μν)

11,LO (C) with 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_stensor2( id , p_ex, emitter ,
m2l2, m2munu)

integer , intent ( in) : : id
real (dp) , intent ( in) : : p_ex
integer , intent ( in) : : emitter
real (dp) , intent ( out) : : m2l2
real (dp) , intent ( out) : : m2munu(4 ,4)

C/C ++

void ol_evaluate_stensor2( int id , const double ∗pp,
int emitter , double ∗m2l2,
double ∗m2munu) ;

Tree–loop spin correlators The function evaluate_
loopsc evaluates the colour-spin-correlated Born–loop
interference (finite part) (4.22) for a given gluon/photon
emitter j and polarisation vector polvect = k⊥ fulfill-
ing k⊥ · p j = 0. It returns an array of length N , m2sc(k) =
B(P,Q| jk)

01,NLO (k⊥) (Fortran), rsp. m2sc[k-1] = B(P,Q| jk)
01,NLO (k⊥)

(C) with 1 ≤ k ≤ N .

Fortran

subroutine evaluate_loopsc( id , p_ex, emitter ,
polvect , m2sc)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex
integer , intent ( in ) : : emitter
real (dp) , intent ( in ) : : polvect(4)
real (dp) , intent ( out) : : m2sc(N)

C/C ++

void ol_evaluate_loopsc( int id , const double ∗pp,
int emitter , double ∗polvect ,
double ∗m2sc) ;

The function evaluate_loopsctensor evaluates
the colour-spin-correlated Born–loop interference tensor
(finite part) (4.23) (Powheg- Box convention) for an
emitter j returning as output m2l0 = W00, m2l1 =
{W(0)

01 ,W(1)
01 ,W(2)

01 } and a N×4×4 array m2munu(k,mu,

nu) = B(P,Q| jk|μν)
01,NLO (Fortran), rsp. a vector of length 16N ,

m2munu[(k-1)*N+(mu-1)*4+(nu-1)]=B(P,Q| j |μν)
11,NLO

(C) with 1 ≤ k ≤ N and 1 ≤ mu,nu ≤ 4.
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Fortran

subroutine evaluate_loopsctensor( id , p_ex, emitter ,
m2l0, m2l1, m2munu)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex
integer , intent ( in ) : : emitter
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2l1(0:2)
real (dp) , intent ( out) : : m2munu(N,4 ,4)

C/C ++

void ol_evaluate_loopsctensor( int id ,
const double ∗pp, int emitter ,
double ∗m2l0, double ∗m2l1,
double ∗m2munu) ;

Alternatively the function evaluate_loopstensor
evaluates the spin-correlated Born–loop interference ten-
sor (finite part) (4.24) (Powheg- Box convention) for an
emitter j returningm2l0 = W00,m2l1 = {W(0)

01 ,W(1)
01 ,

W(2)
01 } and a 4×4 array m2munu(mu,nu) = B(P,Q| j |μν)

01,NLO

(Fortran), rsp. a vector of length 16,m2munu[(mu-1)*4
+(nu-1)] == B(P,Q| j |μν)

11,NLO (C) with 1 ≤ mu,nu ≤ 4.

Fortran

subroutine evaluate_loopstensor ( id , p_ex, emitter ,
m2l0, m2l1, m2munu)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex
integer , intent ( in ) : : emitter
real (dp) , intent ( out) : : m2l0
real (dp) , intent ( out) : : m2l1(0:2)
real (dp) , intent ( out) : : m2munu(4 ,4)

C/C ++

void ol_evaluate_loopstensor ( int id ,
const double ∗pp, int emitter ,
double ∗m2l0, double ∗m2l1,
double ∗m2munu) ;

Appendix A.8: Colour basis and tree amplitudes in colour
space

Besides calculating squared and colour-summed matrix ele-
ments, OpenLoops also provides tree-level amplitudes with
full colour information, see Sect. 4.5, required for the match-
ing of parton showers to matrix elements. In the following we
describes how to retrieve the colour basis used for a process
and the amplitude as a vector in the colour space which is
spanned by these basis elements.

Dimension of colour basis and number of helicities The
colour basis elements are encoded as integer arrays and must
be retrieved once for each process. First one must obtain the
following information:

– ncolb: the number of basis elements,
– colelemsz: the size of the longest basis element,
– nheltot: the total number of helicity configurations

(including vanishing configurations).

These are returned by the function tree_colbasis_dim
for a given process.

Fortran

subroutine tree_colbasis_dim(id , ncolb , colelemsz ,
nheltot )

integer , intent ( in) : : id
integer , intent ( out) : : ncolb , colelemsz , nheltot

C/C ++

void ol_tree_colbasis_dim( int id , int ∗ncolb ,
int ∗colelemsz ,
int ∗nheltot ) ;

Trace basis The function tree_colbasis returns the
actual colour basis as a trace basis in a format correspond-
ing to (4.27)–(4.30), encoded as a two-dimensional integer
array of the size basis(colelemsz,ncolb) (Fortran)
rsp. basis[ncolb][colelemsz] (C). Trailing zeros
should be ignored. The two-dimensional arrayneeded indi-
cates if a certain colour interference contributes to the squared
amplitude or not. If needed[i][j]=1, the interference of
basis elements i and j contributes, if needed[i][j]=0
it does not.

Fortran

subroutine tree_colbasis ( id , basis , needed)
integer , intent ( in) : : id
integer , intent ( out) : : basis (colelemsz , ncolb) ,

needed(ncolb , ncolb)

C/C ++

void ol_tree_colbasis ( int id , int ∗basis ,
int ∗needed) ;

Colour-flow basis Alternatively the function tree_
colourflow returns the basis in colour flow representa-
tion, as defined in Eq. (4.35). The format of the basis is
flowbasis
(2,N,ncolb) (Fortran) rsp. flowbasis[ncolb][N]
[2] (C), defining ncolb colour flows.

Fortran

subroutine tree_colourflow(id , flowbasis)
integer , intent ( in) : : id
integer , intent ( out) : : flowbasis(2 ,N, ncolb)
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C/C ++

void ol_tree_colourflow( int id , int ∗flowbasis ) ;

Tree amplitudes in colour space Now, the function
evaluate_tree_colvect returns the (complex) tree-
level amplitude amp = {A(i)

0 (h)}, defined in (4.25), as
a vector in the colour space spanned by the colour basis
elements for each of the nhelnonv non-vanishing helic-
ity configurations, which may be smaller than the total
number of helicity configurations nheltot returned by
tree_colbasis_dim(). In Fortran amp(:,h) for
h=1..nhelnonv is an array of ncolb complex num-
bers such that the element amp(i,h) corresponds to the
colour basis element basis(:,i). In C amp[h] for
h=0..nhelnonv-1 is an array of 2*ncolb real num-
bers such that the elements amp[h][2*i] and amp[h]
[2*i+1] are the real and imaginary parts of the amplitude
which corresponds to the colour basis element basis[i].
Note that colour and helicity average factors and symmetry
factors must still be applied when the squared amplitude is
built from these results. See (4.32) and (4.39)–(4.40).

Fortran

subroutine evaluate_tree_colvect ( id , p_ex, amp,
nhelnonv)

integer , intent ( in ) : : id
real (dp) , intent ( in ) : : p_ex
complex(dp) , intent ( out) : : amp(ncolb , nheltot )
integer , intent ( out) : : nhelnonv

C/C ++

void ol_evaluate_tree_colvect ( int id , const
double ∗pp,
double ∗amp,
int ∗nhelnonv) ;

Squared tree amplitudes in colour space Finally, the func-
tion evaluate_tree_colvect2 evaluates the squared
amplitudes for the colour basis elements, i.e. the diagonal
elements of the colour interference matrix (4.40), returning
a vector of ncolb elements as m2arr(i) = ∣∣A(i)

0

∣∣2 (For-

tran), rsp. m2arr[i − 1] = ∣∣A(i)
0

∣∣2 (C). This is meant to
calculate the probability with which a matched parton shower
should start from the corresponding colour flow. Note that the
results are only correct to leading colour approximation and
may contain (or even be purely) sub-leading colour contri-
butions.

Fortran

subroutine evaluate_tree_colvect2 ( id , psp , m2arr)
integer , intent ( in) : : id
real (dp) , intent ( in) : : psp
real (dp) , intent ( out) : : m2arr(ncolb)

C/C ++

void ol_evaluate_tree_colvect2 ( int id , const
double ∗pp, double ∗m2arr) ;

Appendix A.9: Basic examples

Here we give a basic example, both for Fortran and
C, which illustrates the usage of the native OpenLoops

interface. In these examples the process dd̄ → Zuū is
registered via order_ew=1, i.e. the leading tree-level
order corresponds to O(α2

s α) and the one-loop order cor-
responds to the O(α3

s α) NLO QCD corrections. Similar
examples are shipped with the OpenLoops installation as
./examples/OL_fortran.f90 and ./examples/
OL_cpp.cpp respectively.

Fortran

program main
use openloops
implicit none
integer : : id
real ( selected_real_kind(15)) : : muren = 100, alpha_s = 0.1 ,

sqrts=1000
real ( selected_real_kind(15)) : : p_ex(0:3 ,5) , m2_tree ,

m2_loop(0:2) , acc

call setparameter_int ("order_ew" , 1)
id = register_process ("1 −1 −> 23 2 −2" , 11);
! or id = register_process([1,−1,23,2,−2], 11)
! register more processes as needed
call s tar t ( ) ;
! calculate matrix elements , e .g.
i f ( id > 0) then
! generate a random phase−space point with Rambo
call phase_space_point( id , sqrts , p_ex)

! set strong coupling
call set_parameter ("alpha_s" , alpha_s)
! set renormalisation scale
call set_parameter ("muren" , muren)

! evaluate tree matrix element and print result
call evaluate_tree ( id , p_ex, m2_tree)
print ∗ , "evaluate_tree"
print ∗ , "Tree: " , m2_tree

! evaluate loop matrix element and print result
call evaluate_loop( id , p_ex, m2_tree , m2_loop(0:2) , acc)
print ∗ , "evaluate_loop"
print ∗ , "Tree: " , m2_tree
print ∗ , "Loop ep^0: " , m2_loop(0)
print ∗ , "Loop ep^−1: " , m2_loop(1)
print ∗ , "Loop ep^−2: " , m2_loop(2)
print ∗ , "accuracy : " , acc

end if

call finish ( ) ;
end program main
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C/C ++

# include "openloops .h"

int main() {
double sqrts = 1000., muren = 100. , mZ = 91.2, alphas = 0.1;
double m2_tree , m2_loop[3] , acc ;

ol_setparameter_int ("order_ew" , 1);
int id = ol_register_process ("1 −1 −> 23 2 −2" , 11);
/∗ register more processes as needed ∗/
ol_start ( ) ;
/∗ calculate matrix elements , e .g. ∗/
i f ( id > 0) {
/∗ Set parameter: strong coupling ∗/
ol_setparameter_double("alpha_s" , alphas ) ;
/∗ Set parameter: renormalisation scale ∗/
ol_setparameter_double("muren" , muren) ;

/∗ generate a random phase−space point with Rambo ∗/
double pp[5∗ol_n_external ( id ) ] ;
ol_phase_space_point( id , sqrts , pp) ;

/∗ evaluate tree matrix element and print result ∗/
ol_evaluate_tree ( id , pp, &m2_tree) ;
std : : cout << "ol_evaluate_tree" << std : : endl ;
std : : cout << "Tree: " << m2_tree << std : : endl ;

/∗ evaluate loop matrix element and print result ∗/
ol_evaluate_loop( id , pp, &m2_tree , m2_loop, &acc ) ;
std : : cout << "ol_evaluate_loop" << std : : endl ;
std : : cout << "Tree: " << m2_tree << std : : endl ;
std : : cout << "Loop ep^0: " << m2_loop[0] << std : : endl ;
std : : cout << "Loop ep^−1: " << m2_loop[1] << std : : endl ;
std : : cout << "Loop ep^−2: " << m2_loop[2] << std : : endl ;
std : : cout << "Accuracy: " << acc << std : : endl ;

}

ol_finish ( ) ;
return 0;

}

Appendix B: Other interfaces

OpenLoops has been integrated in a number of Monte
Carlo frameworks. In particular OpenLoops can be used in
conjunction with Sherpa [26,47], Munich/Matrix [50],
Herwig ++ [32], Powheg- Box [27], Whizard [49] and
Geneva [48]. In Appendix B.1 we detail the BLHA interface
within OpenLoops, and in Appendix B.2 and Appendix B.3
the usage of OpenLoops within Sherpa and Powheg- Box

respectively. Finally in Appendix B.4 we briefly introduce
the OpenLoops Python command line tool.

Appendix B.1: BLHA interface

OpenLoops offers an interface in the Binoth-Les-Houches-
Accord in both versions BLHA1 [45] and BLHA2 [46].
In order to use the Fortran BLHA interface, the module
openloops_blha must be included with

Fortran

use openloops_blha

The module files are located in the directory lib_src/
openloops/mod, which should be added to the include
path of the Fortran compiler. In a C/C ++ program the
openloops.h header has to be included. In the following
we list the scope of the BLHA interface within a C ++ program.
Usage within a Fortran program proceeds analogous.

Within a C ++ program an BLHA contract file is read by
OpenLoops via

C/C ++

OLP_Start( char ∗contract_file_name , int ∗error ) ;

The answer file is either written to the same file or in a file
specified in the contract file via

Extra AnswerFile ole_answer_file_name

Parameters are either set via the contract file or directly
via the procedure

C/C ++

OLP_SetParameter( char ∗name,
double ∗real_value ,
double ∗imag_value ,
int ∗error ) ;

Furthermore a list of the actual parameter settings can be
written to a file filename via

C/C ++

OLP_PrintParameter( char ∗filename ) ;

At runtime the tree and loop amplitudes for a phase-space
point of N external particles with momenta pp, as specified
in the BLHA1/BLHA2 standards, are obtained via

C/C ++

OLP_EvalSubProcess( int ∗id , const double ∗pp,
double ∗muren, double ∗alphaS ,
double ∗result ) ;

Here,id is the ID of the corresponding subprocess (speci-
fied in the answer file), muren the renormalisation scale and
alphaS the strong coupling constant. The result is written
into the array result, where result[3] gives the tree
amplitude and result[2] the finite part, result[1] the
single pole and result[0] the double pole of the one-loop
amplitude W01.
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A corresponding routine of the BLHA2 standard is also
implemented:

C/C ++

OLP_EvalSubProcess2( int ∗id , double ∗pp,
double ∗mu, double ∗result , double ∗acc ) ;

Here, additionally an accuracy measure of the correspond-
ing amplitude is returned as acc. When not available acc=-
1 is returned. For further details see the specification of the
BLHA1 [45] and BLHA2 [46] standards. An example illus-
trating the usage of the BLHA interface with OpenLoops is
shipped as ./examples/OL_blha.cpp.

Appendix B.2: Sherpa

OpenLoops can be used as a plug-in of Sherpa 2.1.0 or
later. Within upcoming releases of Sherpa also the EW sub-
traction [44] will become publicly available. For the installa-
tion of Sherpa and the usage of Sherpa+OpenLoops please
also refer to the Sherpa documentation available at https://
sherpa.hepforge.org.

In order to use OpenLoops together with Sherpa the
Sherpa+OpenLoops interface has to be compiled together
with Sherpa passing the --enable-openloops option
together with the OpenLoops installation path to the Sherpa
configure script. The OpenLoops installation path can be
modified at runtime by setting (in the Sherpa run card or
command line):

OL_PREFIX=PATH_TO_OPENLOOPS

In order to run Sherpa in combination with OpenLoops

it is sufficient to add to the Sherpa run card the statement

ME_SIGNAL_GENERATOR Comix Amegic OpenLoops;

which includes OpenLoops in the list of available matrix
element generators, and to set in the processes section of the
Sherpa run card the flag

Loop_Generator OpenLoops;

Sherpa will now automatically use the one-loop matrix
elements from OpenLoops when for example a parton-
shower matched simulation is requested via (in the processes
section of the run card)

NLO_QCD_Mode MC@NLO;

For details on these modes and many other options we
refer to the Sherpa documentation.

An example run card illustrating the use of
Sherpa+OpenLoops can be found within the installation
of Sherpa in the file

PATH_TO_SHERPA/AddOns/OpenLoops/example/Run.dat

Additional examples of Sherpa+OpenLoops run cards
can be found in the Sherpa manual.

In general Sherpa automatically handles all the neces-
sary parameter initialisation of OpenLoops. However, user-
defined parameters can be passed from the Sherpa run card
(or command line) to OpenLoops via

OL_PARAMETERS FIRST_PARAM_NAME FIRST_PARAM_VAL
SECOND_PARAM_NAME SECOND_PARAM_VAL ...;

Appendix B.3: POWHEG-BOX

Internally the Powheg- Box+OpenLoops framework auto-
matically compiles, loads and manages all required Open-

Loops amplitude libraries. The interface provides the sub-
routines openloops_born, openloops_real, and
openloops_virtualwith interfaces identical to the cor-
responding Powheg- Box routines setborn, setreal,
and setvirtual including colour- and spin-correlated
tree-level amplitudes in the format required by the Powheg-

Box. Additionally, the interface provides the routines open
loops_init, openloops_borncolour and open
loops_realcolour. The former synchronises all param-
eters betweenOpenLoops and thePowheg- Box and should
be called at the end of the init processes subroutine of
the Powheg- Box. The latter two provide colour informa-
tion required for parton-shower matching, i.e. they return a
colour-flow of the squared Born and real matrix elements in
leading-colour approximation, on a probabilistic basis. Fur-
ther details are given in Appendix A.3 of [78].

Appendix B.4: Python

OpenLoops provides a Python module openloops.py
in the directory pyol/tools that wraps a subset of the
functionality of the native interface. Its main application is
to provide a simple command line tool to evaluate matrix
elements. The documentation of the command line tool can
be obtained via

./openloops run --help

For example the following command evaluates the tree
and one-loop amplitudes for n = 10 random phase-space
points with a center-of-mass energy

√
ŝ = 500 GeV for the

process uū → Zgg using MZ = 91 GeV and prints the
result to the screen:

./openloops run "u u˜ > Z g g" order_ew
=1 mass\(23\)=91 -e 500 -n 10

The random phase-space points are generated with Rambo

[77].
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Appendix C: List of input parameters

In Tables 9, 10, 11 we list all input parameters and switches
available in OpenLoops. Within the general purpose Monte
Carlo frameworks (e.g. Sherpa, Powheg- Box and Her-

wig ++) these parameters are synchronised automatically.

In Table 9 input parameters relevant for the process reg-
istration are listed, in Table 10 model input parameters are
listed and in Table 9 input parameters relevant for the stability
system are summarised.

Table 9 Available input parameters and switches in OpenLoops relevant for the process registration. Possible input types include int: integer or
str: string. For details see Sect. 4.2

Parameter Type/options Description

Process registration

order_ew int, defaul t = −1 Requested fixed (Born & one-loop) power of the

Electromagnetic coupling at the squared-amplitude level

order_qcd int, default = −1 Requested fixed (Born & one-loop) power of the

Strong coupling at the squared-amplitude level

loop_order_ew int, default = −1 Requested one-loop power of the electromagnetic coupling

Constant at the squared-amplitude level (any Born)

loop_order_qcd int, default = −1 Requested one-loop power of the strong coupling

Constant at the squared-amplitude level (any Born)

int, default = 6 Number of active quark flavours

ckmorder 0 (default) Diagonal CKM matrix

1 Non-diagonal CKM matrix

model str, default = ”sm” Model selection. Available models: “sm”, “heft”

install_path str, default =”” Set installation path of process libraries if different from

OpenLoops default installation

approx str, default = ”” Approximation

allowed_libs str, default = ”” Whitespace separated list of allowed libraries

check_poles int, default = 0 1: print pole cancellation checks upon amplitude registration

Table 10 Available model input parameters and switches in OpenLoops. Possible input types include dp: double, dp+: positive double, int: integer,
and b: integer 0 or 1. For details see Sects. 3.2–3.3

Parameter Type/options Description

Model input parameters

muren dp+ Renormalisation scale μR

mureg dp+ Dimensional regularisation scale μD

alphas dp+ Strong coupling constant αs

nf_alphasrun int, default = 0 Minimum number of quark flavours that contribute to the running of αs

ew_scheme int, default = 1 0: α(0)-scheme for electromagnetic couplings,

1: Gμ-scheme for electromagnetic coupling,

2: α(M2
Z )-scheme for electromagnetic coupling

alpha_qed_0 dp+ α(0): electromagnetic coupling constant in the Thomson limit

alpha_qed_mz dp+ α(M2
Z ): electromagnetic coupling constant at MZ

gmu dp+ Gμ: Fermi constant as input for electromagnetic coupling constant in Gμ-scheme

mass(PID) dp+ Mass of particle with given PID

width(PID) dp+ Width of particle with given PID

lambdam(PID) dp+ MS renormalisation scale for mass of particle PID

yuk(PID) dp+ Yukawa mass of particle with given PID (only NLO QCD)
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Table 10 continued

Parameter Type/options Description

yukw(PID) dp+ Imaginary part of Yukawa mass of particle with given PID (only NLO QCD)

lambday(PID) dp+ MS renormalisation scale for Yukawa mass of particle PID

freeyuk_on int, default = 0 Switch to allow for Yukawa masses (yuk/yukw/lambday) independent of masses

VCKMXY dp CKM matrix elements (real part),

dp XY={du, su, bu, dc, sc, bc, dt, st, bt}

VCKMIXY dp CKM matrix elements (imaginary part),

dp XY={du, su, bu, dc, sc, bc, dt, st, bt}

kappa_hhh dp Coupling multiplier for trilinear Higgs coupling λ
(3)
H

kappa_hhhh dp Coupling multiplier for quartic Higgs coupling λ
(4)
H

complex_mass_scheme int, default = 1 0: on-shell scheme, 1: mixed on-shell–complex-mass-scheme,

2: pure complex-mass-scheme

onshell_photons_lsz b, default = 1 Switch for rescaling/shift of external on-shell photons to α(0)-scheme

offshell_photons_lsz b, default = 1 Switch for rescaling/shift of external off-shell photons including regularisation prescription

all_photons_dimreg b, default = 0 Switch to treat all photons in dimensional (1) instead of numerical (0) regularisation

Table 11 Available input parameters and switches in OpenLoops relevant for the stability system. Possible inputs include dp+: positive double,
int: integer, str: string. For details see Sect. 4.6

Parameter Options Description

Stability system: general

psp_tolerance dp+, default = 10−9 Tolerance for warnings triggered by phase-space consistency

checks (momentum conservation and on-shell conditions)

Stability system: born–loop interferences

hp_mode 1 (default) Hybrid precision mode for hard regions

2 Hybrid precision mode for IR regions (restricted to NLO QCD)

0 Hybrid precision mode turned off

hp_loopacc dp+, default = 8. Target precision in number of correct digits

Stability system: HEFT and loop–loop
interferences

stability_triggerratio dp+, default = 0.2 The fraction of points with the largest K -factor

to be re-evaluated with the secondary reduction

library

stability_unstable dp+, default = 0.01 Relative deviation of two Born-loop interference

results for the same point above which the

qp evaluation is triggered

stability_kill dp+, default = 1 Accuracy below which an unstable point is discarded

after qp evaluation for Born-loop interferences

stability_kill2 dp+, default = 10 Accuracy below which an unstable point is

discarded in loop-loop interferences

stability_log 0 (default) No stability logs are written

1 Stability logs written on finish() call

2 Stability logs written adaptively

3 Stability logs written for every phase-space point

stability_logdir str Set the (relative) path for the stability log files
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