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1 Introduction

Testing the properties of the Higgs boson is a central theme of the experimental program

of the LHC and will continue to be so for the foreseeable future. Despite the array of

probes performed so far, as yet no compelling evidence for unexpected couplings of the

Higgs boson to other particles has been discovered. However, as more data is accumulated,

the experiments will be able to test our understanding of the nature of the Higgs boson in

interesting new ways. One such direction is through the production of a Higgs boson at

non-zero transverse momentum, a process mediated primarily by a Higgs boson recoiling

against one or more partons. Such events contribute significantly to the total number of

Higgs boson events that can be observed. This is due to the copious radiation expected from

the initial-state gluons that originate from the lowest-order inclusive production process.

Moreover, as the hardness of the QCD radiation increases, partons are able to resolve the

nature of the loop-induced coupling and the process becomes sensitive to the particles that

circulate in the loop. It is for this reason that measurements of Higgs boson production in

association with QCD radiation constitute a complementary probe of the Higgs boson.

To turn such measurements into compelling information on the nature of the Higgs

boson requires precision theoretical calculations with which to compare the experimental

data. At fixed order the description of such events can be primarily described by the recoil

of a Higgs boson against a single jet, at least in a region of transverse momentum that is

hard enough to be properly described by a jet. In order to achieve a suitable precision, and

a sufficiently small dependence on the unphysical renormalization and factorization scales

that enter the calculation, it is necessary to perform computations up to next-to-next-to-

leading order (NNLO). Over the last five years such predictions have become available

thanks to independent calculations from a number of groups [1–6]. Beyond this, further
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steps have been taken to also account for the effect of the resummation of next-to-next-

to-next-to-leading logarithms (N3LL) to enable a better description at small transverse

momenta [7, 8].

The availability of multiple calculations of Higgs+jet production at NNLO is important

for a number of reasons. First of all, the calculations have been performed with a variety

of different methods for handling soft and collinear divergences in real radiation contri-

butions. The appearance of such divergences leads to considerable complication in the

calculations and, depending on the details of the method, handling them could expose the

calculations to issues of numerical precision or systematic flaws in the methods. Second, to

the extent that independent calculations arrive at the same answer, additional confidence

in the theoretical calculations and methodologies is gained. To understand these issues it

is important to benchmark the calculations appropriately and perform detailed studies of

any apparent disagreement. For the case at hand, a first comparison of results between the

calculations was performed in the context of studies for the LHC Higgs Cross Section Work-

ing Group Yellow Report (“YR4”) [9]. A comprehensive comparison was then performed

by the NNLOJET group [6] that found agreement with the results of refs. [3, 5] but was

unable to confirm the results published in ref. [4]. The latter result was obtained using the

N -jettiness method [10, 11], that relies on a factorization theorem in Soft-Collinear Effec-

tive Theory (SCET) in order to compute a class of unresolved contributions. Therefore the

resulting calculation closely resembles a traditional slicing approach to higher-order correc-

tions and is thus sensitive to the value of a resolution parameter through the effect of power

corrections to the factorization formula. To understand whether or not the difference could

be attributed to such effects, for instance as suggested in ref. [12], and to understand the

effectiveness of the N -jettiness method more generally, requires a detailed reappraisal of the

calculation. This paper aims to shed light on these issues through our own implementation

of the NNLO corrections to Higgs+jet production using the N -jettiness method.

The outline of the paper is as follows. In section 2 we describe the calculation and

the various checks that have been performed on the ingredients. A detailed comparison of

results obtained using our calculation, and those of NNLOJET [2, 6, 8], follows in section 3.

We then compare results, under a different set of cuts, with those of ref. [3] in section 4. In

section 5 we perform a study of the effectiveness of our calculation in the boosted region

and we conclude in section 6.

2 Calculation

Our N -jettiness calculation of Higgs+jet production is embedded in the MCFM code [13,

14], with many ingredients in common with previous NNLO calculations of color-singlet

production [15] and inclusive photon and photon+jet processes [16, 17]. In particular, all

calculations share process-independent beam [18, 19] and jet [20, 21] functions. We use the

soft function calculation of ref. [22], which is in good agreement with two other evaluations

of the same quantity [23, 24]. The remaining ingredient in the SCET factorization theorem

for the below-cut contribution is the hard function, which we implement using the procedure

of ref. [25] to obtain the result up to 2-loop order using the helicity amplitudes of ref. [26].

– 2 –



J
H
E
P
1
0
(
2
0
1
9
)
1
3
6

The resulting hard function has been cross-checked against the result at a fixed kinematic

point that is also given in ref. [25].

The remaining ingredient in the N -jettiness approach is the NLO calculation of the

H + 2 jet process. However, instead of applying the usual jet cuts, only a single jet is

required and additional parton configurations must pass a cut on 1-jettiness. This quantity

is defined by,

T1 =
∑
m

min
i

{
2pi · qm
Pi

}
, (2.1)

where the momenta pi are those of the partons in the initial beam and the (hardest)

jet that is present in the event, and the sum runs over the momenta of all partons, qm.

A number of choices are possible for the normalization factors, Pi. In this paper we

will always use the choice Pi = 2Ei, resulting in a so-called geometric measure [27, 28].

However, we will define T1 both in the hadronic center-of-mass frame (as in previous 1-

jettiness calculations performed using MCFM [15–17, 29–31]) as well as in a boosted frame

in which the system consisting of the Higgs boson and the jet is at rest. As explained in,

for instance, refs. [11, 12], this is a more natural definition that should be less sensitive to

power corrections at large rapidities.

Since the H + 2 jet NLO calculation is used in a slightly different way than normal it

should therefore be scrutinized in detail. In order to validate the helicity amplitudes used in

our calculation we have performed a cross-check of all matrix elements, contributing to both

virtual and real contributions, against those obtained using Madgraph5 aMC@NLO [32]

and found complete agreement. To validate the proper treatment of all singularities we have

performed extensive checks of the subtraction terms in each singular limit. We have also

limited the extent of all dipole subtractions using the introduction of “α parameters” [33]

to test whether counter-terms have been included consistently throughout the calculation.

Up to now, α-independence had typically only been checked for the total cross-section,

usually varying all parameters at the same time. This hides potential deviations in sub-

leading channels and can mask mismatches in color orderings since, for example, in some

channels color orderings do not matter once final-initial and final-final dipoles are summed

over. In order to provide a more stringent check on the calculation we computed the

α-dependence for each partonic initial state and also for each possible α parameter indi-

vidually. These checks revealed a small inconsistency in the subtraction of singularities in

the qq̄ → Hggg channel, and an even smaller discrepancy in qg → Hqqq̄ (identical-quark)

contributions. Together, these effects resulted in α-dependence at a very small level in the

total cross-section that had not been detected previously.

To illustrate the level of α-independence in the code used for the present calculation

we will show the results of cross-checks performed using the following setup:

LHC,
√
s = 13 TeV, µR = µF = mH = 125 GeV,

pjet
T > 20 GeV, ∆R = 0.4 (2.2)

Jets are clustered according to the anti-kT algorithm and, as indicated above, no explicit

cut on their rapidities is applied. The results are shown in figure 1, which indicates the

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
1
3
6

deviation from the default (αII = αIF = αFI = αFF = 1) when each of the dipole

parameters is set to 10−2. The deviation is measured by,

εab =
σ(αab = 1)− σ(αab = 0.01)

σ(αab = 1)
. (2.3)

Note that, when going between these two values of α, the virtual and real contributions

each individually change by an amount that often far exceeds the total cross-section itself

so that the check is a rather stringent one. The results in figure 1 show that the cross-

section is independent of the choice of α parameters, over a wide range, to within the

Monte Carlo statistics indicated for each channel. This corresponds to a check at the 0.1%

level or better for all channels except q̄q̄, where the size of the cross-section is so small that

the check is slightly less strict, at the 0.3% level. Since, in general, the calculation is more

efficient for α < 1 we choose to set αII = αIF = αFI = αFF = 0.01 to obtain all the results

presented hereafter.

Beyond the issues discussed above, the use of the H+2 jet NLO process in a 1-jettiness

calculation requires a number of small further refinements. First, the evaluation of the real

corrections probes partonic configurations that can become highly singular, particularly

for very small values of the 1-jettiness cut. This means that special attention must be

paid to generating phase-space points in this region. Moreover, at NLO it is typical to

implement a technical cut in order to remove extreme phase-space configurations in which

the real emission matrix element and subtraction counter-terms should exactly cancel, but

for which numerical stability can be an issue. In the NNLO calculation it is important to

ensure that any such cut does not impact the result, which typically requires the cuts to

be made at smaller values than in a typical NLO calculation. We have performed detailed

checks to ensure that, with the technical cuts that we have used, points that are removed

do not alter our results. Finally, the NLO code must be modified trivially in order to

properly account for all higher-order corrections to the Wilson coefficient that couples the

Higgs field to two gluons in the effective field theory [34, 35].

3 Comparison with NNLOJET

We now turn to a detailed comparison with the NNLO results provided by NNLOJET [2,

6, 8], employing the setup that was used for the YR4 comparison [9].1 These are summa-

rized here:

LHC,
√
s = 13 TeV, µR = µF = mH = 125 GeV,

pjet
T > 30 GeV, anti−kT algorithm, ∆R = 0.4 (3.1)

PDF set : PDF4LHC15 nnlo 30

Note that this choice of PDF set is used to obtain results both at NLO and NNLO.

By inspecting these cuts one might already anticipate a potential disadvantage to using

1We thank Xuan Chen and Nigel Glover for instigating this comparison and for providing a detailed

breakdown of their results that is used here.
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Figure 1. The dependence of the H+2j cross-section on the α parameters, for each of the different

partonic fluxes. The points represent the deviation from the default (αII = αIF = αFI = αFF = 1)

when the labelled parameter is set to 10−2, according to eq. (2.3). The cross-sections in each

channel, obtained using the default parameters, are indicated in the plots.
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NLO calculation gg qg q̄g qq̄ qq q̄q̄

NNLOJET 4962± 3 546.6± 0.6 231.5± 0.2 −14.61± 0.03 −34.01± 0.13 −6.739± 0.008

MCFM 4960± 2 546.3± 0.4 231.1± 0.1 −14.62± 0.04 −33.94± 0.08 −6.731± 0.011

Table 1. The NLO contribution δNLO, defined in eq. (3.2), broken down into individual partonic

channels, as computed by NNLOJET and MCFM (dipole subtraction). Cross-sections are shown

in femtobarns.

the jettiness slicing method for the calculation of NNLO corrections. This is because

neither the jet nor the Higgs boson is required to satisfy any rapidity constraint, leading to

contributions to the cross-section from events with high-rapidity particles. These types of

event have already been identified as being subject to power corrections that are large [36].

Up to NNLO in QCD, the cross-section for this process can be written as,

σNNLO = σLO + δσNLO + δσNNLO, (3.2)

where σLO, δσNLO and δσNNLO contain, respectively, only contributions of order α3
s, α

4
s and

α5
s. The NLO cross-section, σNLO, is defined similarly by omitting the final term. In the

sections that follow it is useful to compare calculations of both the higher-order coefficients

δσNLO and δσNNLO as well as the full cross-sections at each order, σNLO and σNNLO.

3.1 Comparison of NLO calculation

We have first cross-checked the implementation of the NLO calculation, using dipole sub-

traction, by comparing with the corresponding computation in NNLOJET. As shown in

table 1, we have found complete agreement between the codes at the per-mille level.

We now turn to the 1-jettiness calculation and inspect the τ cut dependence of each

partonic channel, using a value of τ cut that depends dynamically on the kinematics of each

event. Specifically, we set

τ cut = ε×
√
m2

H +
(
pj1T

)2
(3.3)

with 2 × 10−5 ≤ ε ≤ 5 × 10−4. For the sake of comparison it is possible to convert these

values of τ cut to a definite scale by using pj1T → pj1T,min. In this way, these values of ε

approximately correspond to fixed values of τ cut in the range 0.0025–0.06 GeV, although

the correspondence is not exact due to contributions to the cross-section at higher jet

transverse momentum. We note in passing that almost the entire range of τ cut studied

here is significantly below the one studied in the previous calculation of H+jet production

using jettiness slicing [4].

As a first check of the sensitivity of this process to power corrections, we examine the

τ cut dependence of the NLO calculation in each of the three main partonic channels — gg,

qg and q̄g. The results are shown in figure 2, for both definitions of T1, in the hadronic

center-of-mass frame (left) and after the boost to the rest frame of the Higgs boson+jet

system (right). We see that, in both cases, the jettiness result for the NLO coefficient

in each channel approaches the known NLO result computed using dipole subtraction as

τ cut → 0. However we also observe that, as expected, this approach is much less steep
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Figure 2. τ -dependence of NLO coefficients for the gg, qg and q̄g partonic channels, in the

NNLOJET setup. The plots on the left show the result when T1 is computed in the hadronic c.o.m.

and the ones on the right indicate the corresponding result when evaluating this quantity in the

boosted frame. The (blue) solid lines correspond to the fit form in eq. (3.4), with the dot-dashed

lines representing the errors on the asymptotic value of the fit. The exact results, computed in

MCFM using dipole subtraction, are shown as the black dashed lines.
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Figure 3. τ -dependence of NLO coefficients for the qq̄, qq and q̄q̄ partonic channels, in the NNLO-

JET setup. The plots on the left show the result when T1 is computed in the hadronic c.o.m. and

the ones on the right indicate the corresponding result when evaluating this quantity in the boosted

frame. The exact results, computed in MCFM using dipole subtraction, are shown as the black

dashed lines.
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Calculation gg qg q̄g qq̄ qq q̄q̄ total

ε = 5× 10−5 4967± 11 547.3± 1.0 231.5± 0.4 −14.65± 0.03 −33.92± 0.05 −6.74± 0.01 6455± 19

δfit
NLO 4960± 8 547.3± 0.7 231.3± 0.3 −14.57± 0.03 −33.84± 0.04 −6.73± 0.01 6447± 9

Exact 4960± 2 546.3± 0.4 231.1± 0.1 −14.62± 0.04 −33.94± 0.08 −6.73± 0.01 6445± 3

Table 2. Comparison between NLO coefficients computed by MCFM, both exactly (using dipole

subtraction) and by jettiness slicing (boosted definition of T1). Results are shown for ε = 5× 10−5

in the definition of τ cut and for a combination of fit values (gg, qg, q̄g) and results for ε = 2.5×10−5

(qq̄, qq, q̄q̄), denoted by δfit
NLO. Note that the total column includes a factor of two for channels that

are not beam-symmetric.

when using the boosted definition of T1. In order to quantify the τ cut-dependence we have

performed a fit to the data points using the expected behavior of the power corrections.

This is prescribed by the leading singularities at this order and takes the form,

δ
{gg,qg,q̄g}
NLO (ε) = δfit

NLO + c0 ε log(ε) + . . . (3.4)

These fits, shown as solid lines in figure 2, describe the τ cut-dependence extremely well.

Corresponding results for the subleading channels — qq̄, qq and q̄q̄ — are shown in figure 3.

Again we observe excellent agreement with the exact calculation. However, from this figure

it is obvious that the power corrections in these channels are tiny, with agreement between

the two calculations at the per-mille level for essentially the entire range of τ cut values

studied here. The reason for this is clear in the case of the qq and q̄q̄ channels since they

enter for the first time at this order and only contain collinear singularities. Moreover,

for the qq̄ channel the dominant contribution comes not from s-channel diagrams that are

present at LO, but from t-channel scattering diagrams that only enter at NLO and have a

similar singularity structure as those for qq and q̄q̄. Since the effect of power corrections is

so small we see essentially no gain in using the boosted definition of T1.

Since the boosted definition performs better, it is clear that we should use it for

assessing the performance of the jettiness calculation. In order to summarize our findings

we will compare with the exact NLO result, for two cases. In the first we simply use

ε = 5 × 10−5, while in the second we define δfit
NLO as the asymptotic fit value indicated in

eq. (3.4) for the leading channels and simply use ε = 2.5×10−5 for the subleading channels.

This comparison is shown in table 2. We conclude that either choice reproduces the exact

result at the 0.15% level or better.

3.2 Comparison of NNLO calculation

We now turn to an examination of the NNLO calculation, for which we perform a similar

τ cut-dependence study. As before, we first inspect the performance of the calculation in

the leading partonic channels that are subject to the largest power corrections, using both

versions of T1. The results are shown in figure 4, which indicates again that using the

boosted definition of T1 results in a less dramatic approach to the asymptotic result. In

contrast to the case at NLO, but as anticipated from the stronger power corrections that

are present at this order, the dependence on τ cut is quite pronounced. The region in which

the power corrections are under control is much reduced, even when using the boosted
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definition of T1. The results only begin to become independent of τ cut, at around the 5%

level, for ε = 10−4 or smaller. The figures also indicates the results of a fit to the data

using the expected form of the power corrections at this order, which takes the form,

δ
{gg,qg,q̄g}
NNLO (ε) = δfit

NNLO + c0 ε log3(ε) + . . . (3.5)

This leading behavior is sufficient for the boosted definition but we observe that for T1

defined in the hadronic c.o.m. it may be more appropriate to include an additional sub-

leading ε log2(ε) term. Since the boosted definition is clearly superior, and well-described

by the leading coefficient alone, we do not investigate this further. For both definitions we

see that the fit value is in very good agreement with the NNLOJET result.

A similar study of the subleading channels is shown in figure 5, although in this case we

choose to show only the results obtained using the boosted definition of T1 since it is clear

that the power corrections are small. In all cases there is very little dependence on τ cut and

the resulting NNLO corrections are in good agreement with those from NNLOJET, apart

from the qq̄ channel that is slightly outside the error estimate. However, we note that the

NNLOJET calculation with which we compare did not isolate individual channels and is

therefore heavily focussed on the dominant gg and qg channels. As explained in ref. [7],

these subleading channels are more sensitive to numerical fluctuations at larger values of x,

which may explain the relatively poorer agreement observed in figure 5. For the 1-jettiness

calculation in MCFM we have indicated a fit to the power corrections using a form that

reflects their weaker role in these channels,

δ
{qq̄,qq,q̄q̄}
NNLO (ε) = δfit

NNLO + c0 ε log(ε) + . . . (3.6)

However we note that, although the τ cut dependence is milder for the subleading channels,

the τ cut dependence of the total NNLO correction — and hence the effectiveness of this

method — is governed by the behavior of the leading channels.

The final comparison between MCFM and NNLOJET, including also the results from

the fits, is shown in table 3. Note that we also include, separately and for reference, the

contribution from the Wilson coefficient correction that enters at NNLO. Note that this

contribution may be computed exactly (without any τ cut dependence) since it is simply

related to the NLO coefficient. Since the τ cut-dependence is stronger at NNLO we use

ε = 2.5× 10−5 as the point at which we compare our non-fitted results. We conclude that

this value reproduces the NNLOJET result to within about 5 − −10% for all channels,

with a significant improvement in the agreement — especially for the leading gg channel

— when using the fitted asymptotic result.

It is useful to perform a cross-check that also tests the scale-dependence of the full

result. For this we employ a simple 2-point variation in which both renormalization and

factorization scales vary by a factor of two together about the central choice. At the

preceding orders in perturbation theory we find,

σLO(MCFM) = 7.66+2.92
−1.98 pb , (3.7)

and,

σNLO(MCFM) = 14.12+2.83
−2.45 pb , (3.8)
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Figure 4. τ -dependence of NNLO coefficients for the gg, qg and q̄g partonic channels, in the

NNLOJET setup. The plots on the left show the result when T1 is computed in the hadronic c.o.m.

and the ones on the right indicate the corresponding result when evaluating this quantity in the

boosted frame. The (blue) solid lines correspond to the fit form in eq. (3.5), with the dot-dashed

lines representing the errors on the asymptotic value of the fit. The NNLOJET result, including its

associated uncertainty, is shown as the band enclosed by the black dashed lines.
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Figure 5. τ -dependence of NNLO coefficients for the qq̄, qq and q̄q̄ partonic channels, in the

NNLOJET setup, using T1 evaluated in the boosted frame. The (blue) solid lines correspond to the

fit form in eq. (3.6), with the dot-dashed lines representing the errors on the asymptotic value of

the fit. The NNLOJET result, including its associated uncertainty, is shown as the band enclosed

by the black dashed lines.
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Calculation gg qg q̄g qq̄ qq q̄q̄ total

NNLO Wilson 879± 2 93.4± 0.4 40.2± 0.2 −3.00± 0.02 −6.61± 0.03 −1.33± 0.01 1132± 3

ε = 2.5× 10−5 2043± 49 154± 7 79.5± 2.3 −15.0± 0.4 −29.1± 0.7 −6.95± 0.07 2444± 69

δfit
NNLO 2159± 37 166± 5 82.2± 1.5 −15.1± 0.2 −28.6± 0.4 −6.90± 0.04 2590± 51

NNLOJET 2213± 25 152± 7 80.8± 1.7 −17.2± 1.0 −30.6± 4.1 −6.97± 0.32 2607± 49

Table 3. Comparison between MCFM and NNLOJET results for the NNLO coefficient δNNLO,

defined in eq. (3.2), in the YR4 setup detailed in the text. We also show separately the NNLO

Wilson coefficient contribution to δNNLO. Results are shown for the boosted definition of T1, for

ε = 2.5×10−5 and also for the fit values (δfit
NNLO). Note that the total column includes a factor of two

for channels that are not beam-symmetric and uncertainties on individual channels are combined

linearly in the total.

which are in complete agreement with the corresponding results from NNLOJET. At NNLO

we first examine the non-fitted result and find,

σNNLO(MCFM, ε = 2.5× 10−5) = 16.56± 0.07 +1.03
−1.52 pb , (3.9)

where the error from the Monte Carlo calculation is shown first, and the scale uncertainty

is indicated by the sub- and super-scripts. This is to be compared with the corresponding

result from NNLOJET,

σNNLO(NNLOJET) = 16.73± 0.05 +1.00
−1.51 pb . (3.10)

We see that, since the NNLO corrections are so large, the difference between the total

NNLO result computed with NNLOJET and MCFM is at the 1% level and outside the

(combined) 0.5% Monte Carlo errors. Although this difference does lie well within the

residual NNLO scale uncertainty, the fact that agreement is only at the percent level

potentially limits the range and power of the phenomenology that may be performed with

this result. However, we note that the use of the asymptotic fits for the central result yields

excellent agreement,

σNNLO(MCFM, fit) = 16.71± 0.05 +1.03
−1.52 pb . (3.11)

We conclude this section by examining the calculation of a more differential quantity,

the rapidity spectrum of the Higgs boson. We show the NLO and NNLO predictions for

this observable in figure 6, where the NNLO coefficient is calculated using the boosted

definition of T1 with ε = 2.5× 10−5 and ε = 10−4. We first observe that the differences in

the spectrum when computed using these two values of τ cut is at the 1-2% level, consistent

with the τ cut dependence of the total cross section implied by figures 4 and 5. There is no

significant change in the shape of the corrections between these two values of τ cut because

we have used the boosted definition of T1. Second, the effect of the NNLO corrections

is approximately constant in rapidity, with an overall impact that is in excellent by-eye

agreement with NNLOJET (cf. figure 24 of ref. [9]).
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Figure 6. The rapidity distribution of the Higgs boson computed at NLO and NNLO using MCFM,

in the NNLOJET setup. The NNLO coefficient is calculated using both ε = 2.5×10−5 and ε = 10−4

in the boosted definition of T1. The lower panel shows the ratio of the NNLO and NLO results.

4 Comparison with BCMPS

We now turn to a detailed comparison with results obtained using the calculation of

Boughezal, Caola, Melnikov, Petriello and Schulze (BCMPS) [3]. Apart from being a

cross-check with a different calculation, this comparison provides additional insight since

the setup is slightly different.2 The setup for the comparison is as follows:

LHC,
√
s = 13 TeV, µR = µF = mH = 125 GeV,

pjet
T > 20 GeV, anti−kT algorithm, ∆R = 0.4 (4.1)

PDF set : PDF4LHC15 nnlo mc

In addition, in the calculation of ref. [3] NNLO corrections to the 4-quark channels, that

first enter the calculation at NLO, are not included. The essential difference with respect

to the previous calculation is the slight reduction in the jet pT cut (from 30 to 20 GeV),

2We thank Fabrizio Caola for providing detailed information on the calculation used in ref. [3] that is

used for this comparison.
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Contribution gg qg + q̄g
∑
qq Total

σLO 7.957 2.855 0.016 10.828

δNLO 7.422 1.668 −0.139 8.951

δNNLO 3.408± 0.039 0.345± 0.008 0 3.753

Table 4. Cross-sections in picobarns, broken down by channel, using the BCMPS cuts, from the

code used in ref. [3].

which one expects to render the jettiness calculation more difficult to perform since the

power corrections should be larger for the same value of τ cut.

As before, we examine the NNLO coefficient alone and separated into partonic chan-

nels. In this case the BCMPS calculation can be easily broken down into three contributions

with which we can compare: gg, qg + q̄g and qq̄ + qq + q̄q̄, where factors of two to include

all beam-crossings have been included where necessary. The contributions in these cate-

gories are shown in table 4. As indicated above, in this calculation the final category —

four-quark channels — are simply not included at NNLO. This is clearly motivated by

the size of the contributions at NLO, but is also a check that we can perform at NNLO

with MCFM.

Results obtained using this setup are shown in figure 7, once again for both definitions

of T1. As before we see that the boosted definition is subject to much weaker power

corrections, resulting in a much quicker approach to the asymptotic result. For example,

at the lowest value of τ cut considered here, corresponding to ε = 10−5, the deviation from

the asymptotic fit value — obtained using the same fit forms as in section 3 — is around 4%

for the gg channel. We note that this value of τ cut is as small as practically possible for our

code, with much lower values becoming sensitive to numerical instability in the evaluation

of the double-real contributions. However, we observe that the asymptotic results obtained

from this fit to the power corrections indicate somewhat smaller NNLO corrections to

the gg and qg channels than those found by BCMPS. The asymptotic results for each

channel are,

δgg,fit
NNLO = 3.213± 0.040 pb ,

δqg+q̄g,fit
NNLO = 0.272± 0.013 pb . (4.2)

Both results are lower than BCMPS (cf. table 4), by about 6% (gg) and 21% (qg), and

outside the error bands on the calculations (1.2% and 5%, respectively). However, we note

that the BCMPS results reported in table 4 and figure 7 contain error estimates that may

not be reliable for such a detailed comparison; they may be underestimated by a factor of

around three [37]. A small difference would still remain for the qg channel even after taking

this into account, which we suspect may be due to our calculation being unable to go to

sufficiently low values of τ cut to reliably extract the asymptotic result. Taking the original

error estimates at face value, the combined effect is a 1.1% difference in the total NNLO

cross section — insufficient to conclusively establish agreement between the calculations in

this region but mostly harmless for phenomenological studies.
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Figure 7. τ -dependence of the NNLO coefficient for the gg, qg+q̄g and four-quark partonic channels

using the setup of BCMPS. The plots on the left-hand side show the results with T1 computed in

the hadronic c.o.m. while those on the right are obtained using the boosted definition. The black

dashed lines indicate the BCMPS result, including the uncertainty, and the bands enclosed by the

blue dot-dashed lines show the error on the asymptotic value obtained from the fitted blue curve.
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Figure 7 also shows the result of the computation of the correction to the 4-quark

channels (qq, q̄q̄, and qq̄). Our results verify the size of these corrections at NNLO, with

the fitted asymptotic result,

δ
∑

qq,fit
NNLO = −0.114± 0.001 pb . (4.3)

This demonstrates that the corrections are of a similar size as the NLO ones, but are at the

level of 0.5% in the total cross-section and therefore negligible for the purposes of present

phenomenology.

5 Boosted region

We conclude our study with an examination of the performance of the jettiness slicing

method in a region for which it is especially well-suited. For illustration we consider

the calculation of the cross-section in the boosted region corresponding to a recent CMS

analysis searching for the decay H → bb̄ [38]. This analysis reconstructs Higgs boson

candidates that satisfy pHT > 450 GeV, for which the leading theoretical contribution is

a Higgs boson recoiling against a jet of the same transverse momentum. The cut on pHT
allows a well-defined calculation to be performed at fixed perturbative order, although

at higher orders the cross-section receives contributions from partons of lower momenta.

Nevertheless, at NNLO such contributions satisfy pT > pHT /3, which is still a much stronger

constraint than any of the scenarios studied so far. We therefore expect the jettiness

slicing method to be subject to much smaller power corrections. Finally we note that the

calculation presented here should not be compared directly with experimental data since,

as is well-known, the effective field theory used to perform the calculation is not valid in the

region pHT > mt. Instead one must take into account the effect of a finite top-quark mass,

for example as in ref. [6], a procedure that can now be performed using exact results at

NLO [39]. Here we refrain from such an approach in order to focus instead on the efficacy

of the jettiness method itself.

We modify our parameters only slightly for this study. We use the same setup as in

the previous section, with the exception that we modify the scale choice in order to take

into account the transverse momentum of the Higgs boson. We thus use,

µR = µF =

√
m2

H +
(
pHT
)2

(5.1)

and drop any jet requirement, replacing this with the cut pHT > 450 GeV. Here we choose

to quote cross-sections that do not include any pseudo-rapidity cut on the Higgs boson, in

contrast to the CMS analysis [38]. We note instead that such a cut has almost no effect

on the theoretical calculation, reducing the cross-section by 0.1%. For the jettiness slicing

calculation we modify the definition of τ cut in order to reflect the role of the transverse

momentum of the Higgs boson, rather than that of the jet, in the definition of the hardness

of the process,

τ cut = ε×
√
m2

H +
(
pHT
)2
. (5.2)
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Figure 8. τ -dependence of NLO (left) and NNLO (right) coefficients for Higgs boson production

in the boosted regime, pHT > 450 GeV. The (blue) solid lines correspond to the fit forms in eqs. (3.4)

and (3.5), with the dot-dashed lines representing the errors on the asymptotic value of the fit. For

the NLO coefficient the exact result computed in MCFM using dipole subtraction is shown as the

black dashed line.

The expectation of reduced power corrections in the boosted region is first confirmed

by the results of a study at NLO, shown in figure 8 (left). In this case the jettiness

slicing results agree with those of the exact calculation at NLO, to within 0.6%, even for

ε = 4× 10−3. For comparison, we observe that a similar level of agreement for the jet cut

in section 3 (pjet
T > 30 GeV) is only obtained for ε = 2 × 10−4 . From figure 8 (right) it

is clear that the calculation of the NNLO coefficient is similarly improved in the boosted

region, with the agreement between the fit result and the point at ε = 10−3 already at the

1.5% level. When combined with the NLO cross-section,

σNLO(pHT > 450 GeV) = 40.67 pb , (5.3)

we find,

σNNLO(pHT > 450 GeV, ε = 10−3) = 50.50± 0.04 pb . (5.4)

Therefore the difference between this result and the one that would be obtained with the

asymptotic fit is around 0.3%, well below the level of phenomenological interest. We note

in passing that the effect of the NNLO corrections on the boosted cross-section is only

slightly larger than at lower transverse momenta.

6 Conclusions

In this paper we have presented a calculation of H+jet production at NNLO using the

N -jettiness procedure. This calculation shares many elements with an earlier computation

using the same method [4], but differs in the exact implementation. In particular, small

errors in the above-cut H + 2 jet NLO calculation have been corrected and the analysis

has been performed at smaller values of the jettiness-slicing parameter, τ cut. We have

compared results with other calculations available in the literature [2, 3, 6, 8] and found
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good agreement, but do not reproduce the results of ref. [4]. As anticipated from the jet

cuts used for the comparisons, in particular the relatively low transverse momenta and lack

of any rapidity requirement, the N -jettiness calculation suffers from relatively large power

corrections. These can be ameliorated by using a definition of 1-jettiness that accounts for

the boost of the Higgs+jet system. For these comparisons we showed that it is possible

to determine the NNLO coefficient δNNLO with an accuracy of around 5% with reasonable

numerical stability, but that substantially better agreement can only be obtained by fitting

out the effect of power corrections. On the other hand, since δNNLO/σNNLO ≈ 1/6, an

accuracy of 5% in the NNLO coefficient translates into an error on the total rate, σNNLO, of

less than 1%. We also showed that requiring a substantially harder jet reduces the effect of

power corrections considerably and renders the method more competitive. Our calculation

demonstrates the importance of a dedicated program to compute the effects of power

corrections analytically, as has already been performed for the color-singlet case [12, 36, 40–

42], in order to improve the effectiveness of the N -jettiness method.
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