
A&A 631, A138 (2019)
https://doi.org/10.1051/0004-6361/201936475
c© ESO 2019

Astronomy
&Astrophysics

Hemispheric injection of magnetic helicity by surface flux transport
G. Hawkes1 and A. R. Yeates2

1 Department of Mathematics, University of Exeter, N Park Rd, Exeter EX4 4QF, UK
e-mail: gh378@exeter.ac.uk

2 Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
e-mail: anthony.yeates@durham.ac.uk

Received 7 August 2019 / Accepted 2 October 2019

ABSTRACT

Aims. We estimate the injection of relative magnetic helicity into the solar atmosphere by surface flux transport over 27 solar cycles
(1700–2009).
Methods. We determine the radial magnetic field evolution using two separate surface flux transport models: one driven by magne-
togram inputs and another by statistical active region insertion guided by the sunspot number record. The injection of relative magnetic
helicity is then computed from this radial magnetic field together with the known electric field in the flux transport models.
Results. Neglecting flux emergence, solar rotation is the dominant contributor to the helicity injection. At high latitudes, the injection
is always negative/positive in the northern/southern hemisphere, while at low latitudes the injection tends to have the opposite sign
when integrated over the full solar cycle. The overall helicity injection in a given solar cycle depends on the balance between these
two contributions. This net injected helicity correlates well with the end-of-cycle axial dipole moment.

Key words. Sun: activity – Sun: evolution – Sun: magnetic fields

1. Introduction

Magnetic helicity is a measure of the topological complex-
ity associated with the average linking of magnetic field
lines (Moffatt 1969). In ideal magnetohydrodynamics, magnetic
helicity is an ideal invariant in any magnetically closed region,
and is known to be well conserved even in non-ideal conditions
(Berger 1984). Indeed, the rate of change of magnetic helicity
has been shown to give a lower bound to the rate of change of
magnetic energy (Berger 1984).

The Sun’s corona is not magnetically closed, so the helicity
in the corona can change due to boundary motions, even in a
purely ideal approximation. If B = ∇ × A, then the magnetic
helicity in the coronal volume V is given by

H =

∫
V

A · B d3x, (1)

and
dH
dt

= −2
∫

V
E · B d3x − 2

∮
S

A × E · r̂ d2x, (2)

where E is the electric field and S denotes the solar surface r =
R�. In the highly conducting corona, the volume term is usually
negligible, but the surface term is not.

A difficulty with the magnetically open corona is that both
H and dH/dt depend on the choice of the (non-unique) vector
potential A. In Solar Physics, the standard resolution of this dif-
ficulty is to consider the relative helicity (Berger & Field 1984),
with a potential reference field. For a spherical boundary S, this
corresponds to the same formula H but with a specific gauge
condition on A (DeVore 2000). Specifically, A× r̂ = Ap× r̂ on S,
where Ap satisfies ∇h · Ap = 0 and r̂ · Ap = 0 on S . With this def-
inition, the helicity H for a given coronal B is uniquely defined,
and we shall use H to denote this relative helicity throughout this
paper.

Although H cannot be measured directly without knowing
the three-dimensional magnetic field in the corona, the flux of
helicity through the lower boundary S is determined entirely by
an integral over this surface,

−2
∮

S
Ap × E · r̂ d2x. (3)

This integral depends purely on Br and E. It follows that the
flux of (relative) helicity out of the Sun is well-defined and inde-
pendent of the coronal magnetic field B above the surface, and
indeed of whether one defines an outer boundary of the corona
or not. It is this flux that we estimate in this paper. Whilst
H is conserved only for the global corona and not for each
hemisphere separately, it is nevertheless more informative to
consider the two hemispheres separately, since the helicity injec-
tion is roughly equal-and-opposite in each hemisphere (as we
show in Sect. 3). In principle, coronal magnetic field lines may
connect across the equator and thus cancel helicity between
the hemispheres in the overall H integral. Estimation of such
cross-equatorial cancellation requires extrapolation of the coro-
nal magnetic field, which is beyond the scope of this paper.
However, we expect that only a relatively small proportion of
helicity is lost in this way in typical extrapolation models (cf.
Yeates & Hornig 2016).

In this paper, we consider the global-scale injection of helic-
ity due to surface flux transport, from large-scale solar rotation
and meridional flow as well as small-scale supergranular dif-
fusion. Previously, Berger & Ruzmaikin (2000) estimated that
4 × 1046 Mx2 of helicity were injected into each coronal hemi-
sphere by solar rotation over a 22 year period from 1976 to 1998
(solar cycles 21 and 22), using low resolution magnetogram data
from Wilcox Solar Observatory. This calculation was extended
to 2018 by Hawkes & Berger (2018), who found, in particular,
that the injected helicity in solar cycle 23 was lower than in the

Article published by EDP Sciences A138, page 1 of 10

https://doi.org/10.1051/0004-6361/201936475
https://www.aanda.org
https://www.edpsciences.org


A&A 631, A138 (2019)

previous two cycles. Here we use surface flux transport mod-
elling to extend this calculation to multiple solar cycles, consid-
ering magnetic flux distributions with higher spatial resolution
and including also the helicity flux from meridional flow and
supergranular diffusion.

DeVore (2000) took a different approach to estimating the
helicity flux from differential rotation, based on an MHD cal-
culation of the shearing of a single bipolar active region. By
extrapolating to the number of active regions in a full solar cycle,
the author gave a final estimate of 1046 Mx2 of helicity injected
in this way during solar cycle 21. However, this approach
neglects the contribution from weaker high-latitude magnetic
fields. In this paper, the use of a surface flux transport model
allows us to consistently include both the injection measured
by DeVore (2000) as well as the contribution from large-scale
fields that was captured by the approach of Berger & Ruzmaikin
(2000).

In the approaches discussed so far, as well as in this paper,
the electric field E on the solar surface is approximated by
imposing an analytical flow and/or diffusion (see Sect. 2).
By contrast, LaBonte et al. (2007) and Georgoulis et al. (2009)
have used correlation tracking in high-cadence magnetogram
sequences to estimate the electric field pattern in individual
observed active regions, and hence the helicity flux. Using
magnetograms from SoHO/MDI, the authors have estimated
the helicity flux in the 393 largest active regions during solar
cycle 23. Accounting for unobserved regions and uncertain-
ties in the correlation tracking, they estimate a total helicity
flux of 6.6 × 1045 Mx2 over solar cycle 23. Only about 20% of
this flux came from differential rotation. However, owing to the
need for high-resolution data, it has not been possible to apply
this technique outside of active regions. This result is in agree-
ment with that of Pevtsov (2008), who found a mean helicity
of 1.7 × 1043 Mx2 per active region (based on a sample size of
around 160), by fitting linear force free models to a series of
magnetograms. Tziotziou et al. (2012) found a similar range of
helicities in their analysis. Much of this helicity in young active
regions arises from emergence and small-scale motions within
the region, so would be present in addition to the large-scale gen-
eration studied in this article.

One can also try to put less direct constraints on solar
helicity flux. From the viewpoint of the solar interior,
Brandenburg & Sandin (2004) and Brandenburg (2009) suggest
that the solar dynamo must shed 1046 Mx2 of magnetic helicity
per cycle if it is to avoid catastrophic alpha quenching caused
by a build up of small-scale magnetic helicity. From the view-
point of the heliosphere, Bieber & Rust (1995) estimated a helic-
ity ejection rate of 2 × 1045 Mx2 through coronal mass ejections
by considering toroidal magnetic flux, while DeVore (2000)
gave a higher estimate of 1046 Mx2 by modelling the mag-
netic structure of interplanetary magnetic clouds. More recently,
Démoulin et al. (2016) extrapolated data from 107 observed
magnetic clouds to estimate a total ejection rate of 2.5×1046 Mx2

over solar cycle 23, and a similar value was obtained inde-
pendently by Lowder & Yeates (2017) through non-potential
modelling of flux rope formation and ejection in the low
corona.

In summary, all of these estimates are broadly consistent, but
they are all approximations. It is a question of ongoing interest
to study how much helicity is contributed by different physical
processes, and particularly how this varies between solar cycles.
In Sect. 2 we describe the two surface flux transport models used
in this paper to estimate the helicity flux, before presenting the
results in Sect. 3 and our conclusions in Sect. 5.

2. Methods

The helicity flux through the photosphere cannot be observed
directly, so instead we need to estimate Ap × E · n̂ on this spher-
ical surface indirectly. In this paper, we do so using the surface
flux transport model. Two different implementations are used,
as will be outlined in this section. The surface flux transport
model (Jiang et al. 2014) evolves the photospheric radial mag-
netic field, Br(R�, θ, φ, t) through

∂Br

∂t
= −r̂ · ∇ × E + S (θ, φ, t) − D(θ, φ, t) (4)

where S (θ, φ) is a source term representing the emergence of
new magnetic flux, and D(θ, φ, t) is an additional decay term
that accounts for the effect of radial (inward) diffusion that can-
not be treated self-consistently in this two-dimensional model
(Baumann et al. 2006). The electric field takes the form

Eθ(θ, φ, t) = −vφBr +
η

R� sin θ
∂Br

∂φ
(5)

Eφ(θ, φ, t) = vθBr −
η

R�

∂Br

∂θ
· (6)

This represents the evolution of Br with (a) advection by large-
scale horizontal flows u(θ) and (b) horizontal (turbulent) diffu-
sion due to supergranular convection, with coefficient η.

To estimate the helicity flux, we take the electric field (5),
(6) as an approximation of the horizontal electric field on the
solar photosphere. We thus neglect any electric field arising from
flux emergence, as well as from localised flows within individual
active regions. The systematic observations required to account
accurately for these effects are simply not available for the time
periods considered here. We also neglect the contribution from
the decay term (we estimate at the end of this subsection that its
contribution would be an order of magnitude smaller than that
from supergranular diffusion).

In addition, we need to calculate Ap from Br at each time.
This is done by expressing Ap = −∇ψ × r̂, whence ψ satisfies a
two-dimensional Poisson equation

Br = −r̂ · ∇ × ∇ × (ψr̂) = −∇2
hψ. (7)

This equation is solved at each time by a five-point finite-
difference method that reduces to a Fast Fourier Transform
in φ and a series of tridiagonal eigenvalue problems in θ (cf.
van Ballegooijen et al. 2000). The two flux transport models dif-
fer both in the choice of imposed flow parameters u and η and in
the form of the source term S , as we now describe.

2.1. Model driven by observed active regions (W18)

For solar cycles 21–23, we use the flux transport model of
Yeates et al. (2015), in which the source term S (θ, φ, t) com-
prises individual active regions assimilated from synoptic mag-
netogram observations. These regions are selected from US
National Solar Observatory radial-component magnetograms
based on a flux threshold (≥39.8 G). Regions with sufficiently
balanced flux are inserted instantaneously into the simulation by
replacing the corresponding pixels of Br, correcting to ensure
that flux balance is maintained. The rest are discarded. This tech-
nique allows us to represent individual emerging regions, and
without approximating them as idealised magnetic bipoles. The
disadvantage is that systematic magnetogram observations are
required, which are not available for earlier cycles.
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The particular simulation used here, henceforth denoted
W18, was published by Whitbread et al. (2018), who deter-
mined the parameters through systematic optimization against
the observed magnetic butterfly diagram for cycles 21–23, using
a genetic algorithm. The initial condition was set to

Br(θ, φ) = B0| cos θ|7 cos θ. (8)

The azimuthal velocity was vφ(θ) = R�Ω(θ) sin θ, with angular
velocity

Ω(θ) = Ω0 + Ω2 cos2 θ + Ω4 cos4 θ, (9)

while the meridional velocity took the functional form

vθ(θ) = −
v0

vmax
sinp θ cos θ, (10)

where vmax = maxθ (sinp θ cos θ). The decay term in this model
took the form of a simple exponential decay D(θ, φ, t) = Br/τ.

The optimization by Whitbread et al. (2018) determined
simultaneously the values of the parameters B0, v0, p, η and
τ for the time period 1976 May 1–2008 October 23, selecting
B0 = 6.7 G, v0 = 9.2 m s−1, p = 2.33, η = 466.8 km2 s and
τ = 10.1 yr. The rotation profile Ω(θ) was fixed with Ω2 =
−2.396 deg day−1 and Ω4 = −1.787 deg day−1 as determined by
Snodgrass & Ulrich (1990). The original W18 simulation was
performed in the Carrington frame, but for computing the helic-
ity flux, we include not only the contribution from differential
rotation in the Carrington frame but also that from uniform rota-
tion of this frame with respect to the fixed stars. Thus we set
Ω0 = 14.713 deg day−1 (the sidereal rotation rate at the equator).
The vθ and vφ profiles are shown in Fig. 1.

For a simple comparison of the magnitude of the various
terms, note that the peak flow speed of rotation is |vφ| ≈ 2 km s−1,
compared to the maximum meridional flow speed of |vθ| ≈
9.2 m s−1. To calculate an effective diffusion speed, we must
define a charecteristic length scale; given the signed nature of
helicity, we choose this to be of the order of a unipolar struc-
ture, which corresponds to 10 degrees, or approximately 0.17 R�.
In this case, we calculate an effective diffusion speed of |vη| ≈
η/0.17 R� = 3.97 m s−1. We do not calculate the helicity flux
solely attributable to the decay term D(θ, φ, t) – calculating its
effective decay speed (at the same characteristic length scale)
gives |vD| ≈ 0.17 R�/τ = 0.37 m s−1, which is an order of mag-
nitude below that of |vη|. We see in Sect. 3 that this ordering
determines the relative contribution of each of these terms to the
helicity flux.

2.2. Model driven by statistical active regions (J11)

In order to estimate the helicity flux over multiple solar cycles,
we employ a flux transport simulation by Jiang et al. (2011a),
who simulated the solar magnetic field evolution continuously
over the period 1700–2009. Henceforth denoted J11, this has
several differences compared to the W18 model. Most signif-
icantly, the flux emergence term S (θ, φ, t) consists of bipolar
active regions determined semi-synthetically from statistical dis-
tributions modulated by observed sunspot numbers (Jiang et al.
2011b). This allows the model to extend for many solar cycles
prior to the magnetograph era. The flow profiles are also differ-
ent: J11 uses a lower supergranular diffusivity η′ = 250 km2 s−1,
compensated by a slightly faster meridional flow with a slightly
sharper gradient at the equator, given by

v′θ(θ) =

{
−v′0 sin(2.4λ) λ < 1.31
0 otherwise

, (11)

Fig. 1. Velocity profiles as a function of latitude for meridional velocity
vθ (left), and differential rotation vφ (right), in W18 and J11. The black
dashed curve for vφ shows the profile used by Berger & Ruzmaikin
(2000) and also by Hawkes & Berger (2018).

where λ= π/2−θ and v′0 = 11 m s−1. The differential rotation pro-
file was slightly different from W18, with Ω′2 =−2.30 deg day−1

and Ω′4 =−1.62 deg day−1. Again we set Ω′0 = 14.713 deg day−1.
Finally, the decay term D(θ, φ, t) in J11 uses a more sophisti-
cated form where different spherical harmonic components of
the solution decay at different rates, commensurate with the dif-
fusive decay of a uniform field in the solar convection zone.
The strength of convection zone diffusivity used here gives an
effective decay time of about 20 yr, a little longer than the W18
model.

To compute the helicity flux, we once again compute Ap
from B′r, using the same finite-difference method as for W18.
The electric field, however, is determined using v′φ, v′θ and η′.

Figure 2a shows that J11 produces a larger unsigned mag-
netic flux in each cycle than W18, commensurate with the lower
diffusivity. On the other hand, Fig. 2b shows that the relative
strength of their axial dipole moments (and hence polar fields)
varies from cycle to cycle, commensurate with the differences
both in transport and particularly in the source term.

3. Results for solar cycles 21–23

We first consider the period covered by both flux transport mod-
els: solar cycles 21–23.

3.1. Relative contributions of different terms

Figure 2c shows the net helicity flux out of the solar surface in
each hemisphere as a function of time, while Figs. 2d–f show
the separate contributions from differential (sidereal) rotation,
meridional velocity and supergranular diffusion, for both W18
and J11. Throughout this paper, plots describing W18 are shaded
blue, while those describing J11 are shaded red. The contribu-
tions from the Northern hemisphere N are defined as

Fvφ,N(t) = −2
∫

N
ApφvφBr d2x, (12)

Fvθ ,N(t) = −2
∫

N
ApθvθBr d2x, (13)

Fη,N(t) = 2η
∫

N
Ap · ∇Br d2x, (14)
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Fig. 2. Time variation of unsigned magnetic flux (a), axial dipole moment (b), and hemispheric helicity fluxes (c)–(f) for the W18 and J11 models
over solar cycles 21–23. The net helicity flux FN/S (c) is the sum of those due to solar rotation Fvφ ,N/S (d), meridional velocity Fvθ ,N/S (e) and
supergranular diffusion Fη,N/S (f) for both W18 (blue shades) and J11 (red shades).

with their sum giving the net hemispheric flux

FN = −2
∫

N
Ap × E · r̂ d2x = Fvφ,N + Fvθ ,N + Fη,N. (15)

The fluxes are defined similarly for the Southern hemisphere S .
The net helicity fluxes in north and south need not be exactly
equal and opposite, although they remain so to a good approx-
imation. In fact, we found that it can be shown analytically
that the helicity flux from supergranular diffusion is is exactly
balanced between the hemispheres, and that from differential
rotation is balanced to leading order (see Appendix A).

Figure 2 shows clearly that the contributions from solar rota-
tion dominate the flux overall, followed by meridional velocity
and supergranular diffusion in that order for both simulations. To
quantify the difference in magnitude between the helicity fluxes,
we compute the ratio

fvφ (t) =
1
2

(
|Fvφ,N|

|Fvφ,N| + |Fvθ ,N| + |Fη,N|
+

|Fvφ,S|

|Fvφ,S| + |Fvθ ,S| + |Fη,S|

)
,

(16)
and similarly for the other two fluxes. Table 1 shows the mean,
maximum and minimum values of these ratios, over the course
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Table 1. Mean, maximum and minimum values of the ratios in Eq. (16),
indicating the relative size of the three different contributions to the
helicity flux for the W18 and J11 (italic) simulations.

Mean Maximum Minimum

fvφ (W18) 0.99 1.00 0.82
(J11) 0.99 1.00 0.64

fvθ (W18) 0.0037 0.15 0.00
(J11) 0.0076 0.17 0.00

fη (W18) 0.0014 0.069 0.00
(J11) 0.0013 0.19 0.00

of the W18 and J11 simulations. The mean magnitude of each
term is roughly separable by an order of magnitude, consistent
with the magnitudes of the shear velocities associated with each
term (in the same order), as described in Sect. 2.1.

Notice that W18 and J11 agree in the ordering of contribu-
tions in Table 1, although there can be substantial differences
between their actual fluxes at any given time, as seen in Fig. 2.
Around Solar Maximum, differences between the helicity fluxes
in W18 and J11 arise because J11 has more absolute magnetic
flux at low latitudes, which tends to lead to greater helicity flux
(except from diffusion, which is weaker in J11). Around Solar
Minimum, the helicity fluxes from the two models are qualita-
tively more alike. Which is larger at Minimum varies from cycle
to cycle, according to which has the larger axial dipole moment.
This is because both the helicity flux and axial dipole at Mini-
mum are dominated by the high latitude (polar) field.

3.2. Net injection per solar cycle

Table 2 show the time-integrated helicity flux during each solar
cycle, for the two models. Following Whitbread et al. (2017),
we define Cycle 21 as 1976 May 1–1986 March 10, Cycle 22
as 1986 March 11–1996 June 1 and Cycle 23 as 1996 June 2–
2008 August 3. Concentrating on the net helicity flux (top two
rows), we observe that the sign of this net flux in W18 is negative
in the Northern hemisphere and positive in the Southern for all
three cycles, while in J11 it has the opposite sign in Cycles 21
and 22. We show below that this difference arises because the
solar-cycle helicity flux is a signed quantity that involves much
cancellation between contributions from different latitudes. This
makes it rather sensitive to model changes.

To illustrate this latitudinal cancellation, Fig. 3 breaks the
helicity fluxes down into their contributions in time and latitude,
i.e., the surface integrals (12)–(15) are performed over longitude
but not latitude. Figures 3c and d show that both W18 and J11
have the same qualitative behaviour, with strong contributions of
both signs from the “butterfly wings” below about 55◦ latitude
and a weaker but systematic contribution of systematic sign from
the high-latitude polar field. In the Northern hemisphere, this
high-latitude helicity flux is always negative, consistent with the
sense of the interplanetary Parker spiral. It arises simply because
the product ApφBr for a polar dipole is always positive/negative
in the northern/southern hemisphere, irrespective of the polar-
ity of Br. (If the sign of Br changes, so does the sign of Ap.)
Evidently, the model dependence of the cycle-integrated flux in
Table 2 must arise from the balance between these differently
signed contributions.

The positive and negative contributions from the butterfly
wings arise not from Joy’s law (like in the usual magnetic but-
terfly diagram) but simply from the fact that active regions are

typically bipolar in the East-West direction. To illustrate this,
Fig. 4 shows Br, Apφ, and the (dominant) helicity flux inte-
grand for two active regions A and B, during W18. Region A
is stronger, so its quadrupolar Apφ distribution dominates that
from the global dipole, leading to a product ApφBr whose polarity
is arranged North–South. This North–South pattern is the same
for any strong active region, irrespective of the sign of Br or
the hemisphere. Region B does not show a quadrupolar helic-
ity injection because its Apφ is weaker than that from the global
dipole. Since the helicity flux is effectively quadratic in Br, it is
dominated by the strong regions, thus leading to the latitudinal
sign pattern seen in the butterfly wings.

It turns out that the positive and negative helicity fluxes in
each butterfly wing are not usually equal. In fact, the net con-
tribution over a solar cycle from latitudes |λ| < 55◦ is always
opposite in sign to that from the high latitudes, being posi-
tive/negative in the Northern/Southern Hemisphere. This imbal-
ance arises because, later in the cycle, the equatorward polarity
helicity fluxes tend to cancel across the equator, leaving an
excess of the poleward polarities. Early in the cycle, there is
little equatorial cancellation, and the net contribution tends to
be opposite in sign because vφ is slightly stronger nearer to the
equator.

The net helicity flux in each hemisphere over a solar cycle
is therefore a balance between oppositely signed contributions
from high and low latitudes. We quantify this balance in Table 3
which shows means of the ratios

fN,|λ|<55(t) =
∣∣∣FN,|λ|<55(t)

∣∣∣/(∣∣∣FN,|λ|<55(t)
∣∣∣ +

∣∣∣FN,|λ|>55(t)
∣∣∣), (17)

fN,|λ|>55(t) =
∣∣∣FN,|λ|>55(t)

∣∣∣/(∣∣∣FN,|λ|>55(t)|
∣∣∣ +

∣∣∣FN,|λ|>55(t)
∣∣∣), (18)

and similarly for the Southern hemisphere. Notice that the high
latitudes dominate for W18 in all cycles, explaining the net neg-
ative/positive helicity flux in the North/South. On the other hand,
the low latitudes dominate for J11 during Cycles 21 and 22,
explaining the opposite signs. This tendency for the low latitude
butterfly wings to contribute more in J11 simply results from the
stronger magnetic flux in that simulation, because of the lower
supergranular diffusivity. This higher unsigned flux is evident in
Fig. 3b compared to Fig. 3a, as well as in Fig. 2a.

3.3. Comparison with earlier work

The third row of Table 2 shows the helicity fluxes estimated by
Hawkes & Berger (2018) using WSO data, using the differen-
tial rotation profile of Berger & Ruzmaikin (2000). This profile
is shown by the black dashed line in the right panel of Fig. 1,
and is seen to be close to those used inthe present paper. The
Hawkes & Berger (2018) helicity fluxes follow Fvφ from the
W18 model reasonably closely for Cycle 22, but are a factor
two stronger for Cycles 21 and 23. These discrepancies can be
attributed to the different spatial resolutions used for the two
studies: in Hawkes & Berger (2018) the authors use only the
first few degrees from the WSO spherical harmonic decompo-
sition, and as such calculate the large scale winding without
accounting for the contribution of active regions. Since active
regions are important for the net helicity flux in our study, the
Hawkes & Berger (2018) helicity flux is not necessarily directly
comparable, but we include it for the sake of comparison.

4. Results for earlier solar cycles

Having demonstrated the basic pattern of helicity flux in surface
flux-transport models, we now extend the calculation for J11 to
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Fig. 3. Latitude–time distributions of longitude-averaged radial magnetic field (a,b) alongside longitude integrated total helicity flux (c,d), and
helicity flux associated individually with differential rotation (e,f), meridional velocity (g, h) and supergranular diffusion (i,j) for W18 and J11
respectively. We stress that these latitudinal distributions are not in themselves physically meaningful, since there is typically significant cancella-
tion between different latitudes. The same colour scales are used for W18 and J11. Units are G for (a,b) and Mx2 day−1 for (c–j).
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Table 2. Solar-cycle-integrated helicity injection from each physical process [Mx2], per cycle, for the W18 and J11 (italic) simulations.

Cycle 21 Cycle 22 Cycle 23

North South North South North South

Net (W18) −4.33e46 3.70e46 −1.07e47 9.39e46 −2.27e46 2.61e46
(J11) 6.72e45 −6.09e45 8.99e45 −6.02e45 −7.49e45 8.48e45
(H-B) −9.22e46 9.22e46 −9.42e46 9.42e46 −4.37e46 4.37e46
vφ (W18) −4.33e46 3.7e46 −1.08e47 9.40e46 −2.18e46 2.5e46
(J11) 6.23e45 −5.38e45 8.43e45 −5.51e45 −8.01e45 9.08e45

vθ (W18) 9.23e43 −8.52e43 2.20e44 −1.32e44 2.94e44 −1.45e44
(J11) 5.48e44 −7.67e44 5.95e44 −5.41e44 5.47e44 −6.31e44

η (W18) −1.03e43 1.03e43 −8.99e43 8.99e43 −8.84e43 8.84e43
(J11) −5.76e43 5.85e43 −3.10e43 3.25e43 −3.07e43 3.50e43

Notes. The results from Hawkes & Berger (2018) for the flux from rotation are also shown (labelled H-B).

Fig. 4. Illustration of the source of helicity flux Fvφ at a single time
during November 1977 (during the early rise phase of Cycle 21), in
W18. Panels show (a) Br, (b) Aφ and (c) the integrand in (12).

the full time period of that simulation, years 1700–2009. Cover-
ing twenty-seven complete solar cycles, the results are shown in
Fig. 5. We observe the same qualitative behaviour as described
in Sect. 3 across the entire simulation period, with the terms
being ordered in magnitude as before. Having multiple cycles,
however, enables us to consider the variation in cycle-integrated
helicity flux from one cycle to the next.

Hawkes & Berger (2018) showed that the large scale helic-
ity flux estimated from WSO data correlates more strongly with
polar magnetic field strength than with sunspot number, for
cycles 20–23. We find similar behaviour in our helicity fluxes
for the J11 simulation when considering all 27 cycles. The polar
field trend is shown (by proxy) in Fig. 6, where cycle-integrated

Table 3. Mean of the ratios (17) and (18), indicating the relative size
of the low- and high-latitude contributions to the helicity flux for W18
and J11 (italic).

Cycle 21 Cycle 22 Cycle 23

North South North South North South

|λ| > 55 (W18) 0.64 0.61 0.66 0.57 0.59 0.60
(J11) 0.45 0.44 0.51 0.48 0.56 0.51

|λ| < 55 (W18) 0.36 0.39 0.34 0.43 0.41 0.40
(J11) 0.55 0.56 0.49 0.52 0.43 0.48

helicity flux is plotted against the strength (absolute value) of the
end-of-cycle axial dipole moment, for each cycle. Helicity fluxes
above and below 55◦ latitude are shown separately, because they
differ both in sign (as seen in Sect. 3) but also in the slope of the
trend. The latter is expected because both high-latitude helicity
flux and end-of-cycle axial dipole are determined by the strength
of the high-latitude polar field. As is well known, the end-of-
cycle polar field is not a direct function of the cycle ampli-
tude (strength of emerging active region magnetic flux), since
it depends also on the orientation and locations of active regions
(Jiang et al. 2014). Thus the high-latitude contribution causes the
helicity flux to correlate better with axial dipole moment than
with either cycle amplitude or cycle-integrated magnetic flux.

For comparison, Fig. 6 also shows the W18 data points. Most
of these do not deviate greatly from the J11 trend lines, except
for one low-latitude contribution in the Northern hemisphere (for
Cycle 22), which has the opposite sign. We found this to be asso-
ciated with the more rapid rise to maximum of this cycle com-
pared with Cycles 21 and 23 in W18, visible in Fig. 2a. The
reason for the reversed sign of helicity flux is that early active
regions are further from the equator, so that the corresponding
part of the butterfly wing does not make a net positive contribu-
tion (as mentioned in Sect. 3.2). Rather, the differential rotation
gradient tends to win out early in the cycle and the net contri-
bution is negative. As shown by Fig. 7, this sign-reversal phe-
nomenon occurs in all three W18 cycles. But it only beats the
later contribution in Cycle 22, and only for the Northern hemi-
sphere, owing to the stronger early flux emergence.

5. Conclusion

To summarise, we have used surface flux transport models to esti-
mate the amount of magnetic helicity injected into the solar corona
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Fig. 5. Results for the full J11 model, showing unsigned magnetic flux (a), axial dipole moment (b), total helicity flux (c) and helicity flux from
solar rotation (d), meridional velocity (e) and supergranular diffusion (f). In (c–f), light red shows the northern hemisphere and dark red the southern
hemisphere.

through evolution of the large-scale magnetic field on the solar
surface, on solar cycle timescales. We find a consistent pattern
whereby negative/positive helicity is systematically injected at
high latitudes in the northern/southern hemisphere. In the lower-
latitude wings of the magnetic butterfly diagram, the net helic-
ity injection over a solar cycle is usually opposite to this in sign,
unless the flux emergence is dominated by early active regions far
from the equator. The overall helicity injection rate is therefore a
balance between these high and low latitude contributions, and
thus quite sensitive to the details of the flux transport model.

Using the 27-cycle J11 simulation driven by statistical active
region emergence (Jiang et al. 2011a), we have found that the
rate of helicity injection in any given cycle correlates well with

the end-of-cycle axial dipole moment. This accords with the pre-
vious results of Hawkes & Berger (2018) using lower resolution
WSO magnetogram data, who found a similar relation with the
polar field for solar cycles 20–23. Compared to that study –
which extended the earlier work of Berger & Ruzmaikin (2000)
– our models have higher spatial resolution for the magnetic
field. We also include the helicity flux from meridional velocity
and supergranular diffusion, although we have shown that this
is essentially negligible in comparison with the flux from solar
rotation.

Recently, Pipin et al. (2019) have published latitude-time
maps of Ap · B for 2010–2019 using vector synoptic mag-
netograms from the HMI instrument on Solar Dynamics
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Fig. 6. Scatter plots of integrated helicity flux per cycle in each sub-
hemisphere for both W18 and J11, plotted against the axial dipole
strength (absolute value) at the end of each cycle. This time is defined
as the time of minimum unsigned magnetic flux in Figs.1a and 2a. Lines
of best fit and Pearson’s correlation coefficient are calculated for the J11
data.

Observatory. Whilst these show only the local helicity density in
the solar photosphere and not the flux of helicity out of the Sun,
they are nonetheless interesting to compare with our results. In
particular, we compare with their Fig. 5a showing the longitude-
averaged helicity density. At low latitudes, the helicity density
shows a similar tendency to our helicity flux, namely net nega-
tive earlier in the cycle and net positive later in the cycle (cf. our
Fig. 7). However, at higher latitudes, the helicity density changes
sign around 2014, following our sign pattern only in the first half
of the cycle. Given the pioneering nature of these vector synoptic
maps, and inherent uncertainties outside of active regions, it will
be interesting to see whether this pattern is confirmed by other
instruments.

Finally, we emphasize two limitations of our study that
require further work. Firstly, we neglected the contribution of
helicity due to emergence and small-scale motions in young
active regions; this may be addressed in the future with mod-
ern vector magnetogram observations. Secondly, we have com-
puted only the flux of relative magnetic helicity out of the Sun.
Once in the corona, the fate of this helicity depends on whether
it is ejected onto a magnetic field line whose other end is open
into the heliosphere, or one whose other end closes back to the
solar surface. Depending on the relative injection at their two

Fig. 7. Time variation of the |λ| < 55◦ helicity flux in the Northern hemi-
sphere for W18 (red), compared to the unsigned magnetic flux (blue).
The black line denotes the zero axis for helicity flux.

footpoints, closed field lines can store helicity within the corona,
releasing it only in the form of sporadic coronal mass ejections
(Low 1994; Bieber & Rust 1995). The details of this process
require time-dependent modelling of the magnetic field structure
in the corona, which is beyond the scope of the present paper.
See Yeates & Hornig (2016) for some preliminary calculations
in this regard.
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Appendix A: Hemispheric symmetry of magnetic
helicity flux

For each of the proofs in this section, we make use of our gauge
condition ∇ · Ap = 0, specifically

∂

∂θ

(
sin θApθ

)
+
∂Apφ

∂φ
= 0. (A.1)

A.1. Supergranular diffusion
The net helicity flux over the whole solar surface from super-
granular diffusion (following Eq. (14)) is

Fη(t) = 2η
∮

r=R�
Ap ·∇Br dS = 2η

∮
r=R�

(
∇·

(
ApBr

)
−Br∇·Ap

)
dS . (A.2)

The first term vanishes by the divergence theorem (since the sur-
face is closed), while the second term vanishes by our gauge
condition ∇ · Ap = 0. Thus Fη(t) = 0 and so the flux in northern
and southern hemispheres must be equal and opposite.

A.2. Differential rotation

The helicity flux from differential rotation is

Fvφ (t) = −2
∮

r=R�
ApφvφBr d2x

= −2R3
�

∫ π

0

∫ 2π

0
Ω(θ) sin2 θApφBr dφdθ. (A.3)

Now,

R� sin2 θApφBr = sin2 θ
1

sin θ

[
∂

∂θ
(sin θApφ) −

∂Apθ

∂φ

]
Apφ

=
1
2
∂

∂θ

(
sin2 θA2

pφ

)
−

∂

∂φ

(
sin θApφApθ

)
+ sin θApθ

∂Apφ

∂φ

=
1
2
∂

∂θ

(
sin2 θA2

pφ

)
−

∂

∂φ

(
sin θApφApθ

)
− sin θApθ

∂

∂θ
(sin θApθ)

[using (A.1)]

=
1
2
∂

∂θ

(
sin2 θA2

pφ

)
−

∂

∂φ

(
sin θApφApθ

)
−

1
2
∂

∂θ
(sin2 θA2

pθ).

Integration in φ reduces φ-derivative term to zero (by the
periodicity of Ap), such that Fvφ (t) is given by

Fvφ (t) = −R2
�

∫ π

0

∫ 2π

0
Ω(θ)

∂

∂θ

(
sin2 θ

(
A2

pφ − A2
pθ
))

dφdθ. (A.4)

For the case of uniform rotation Ω(θ) = Ω0 (constant), we
see that the integral vanishes. However, when Ω is a function
of θ this is not the case, but we note that the flux is small
because of the relative smallness of Ω2 and Ω4 as compared
to Ω0 (see Eq. (9)). As such, to leading order, the helicity flux
associated with differential rotation is balanced between the
hemispheres.
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