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Abstract

Principled methods for analyzing missing values, based chiefly on multiple imputa-

tion, have become increasingly popular yet can struggle to handle the kinds of large

and complex data that are also becoming common. We propose an accurate, fast, and

scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation

with Denoising Autoencoders). MIDAS employs a class of unsupervised neural net-

works known as denoising autoencoders, which are designed to reduce dimensionality

by corrupting and attempting to reconstruct a subset of data. We repurpose denois-

ing autoencoders for multiple imputation by treating missing values as an additional

portion of corrupted data and drawing imputations from a model trained to minimize

the reconstruction error on the originally observed portion. Systematic tests on simu-

lated as well as real social science data, together with an applied example involving a

large-scale electoral survey, illustrate MIDAS’s accuracy and efficiency across a range

of settings. We provide open-source software for implementing MIDAS.
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1 Introduction

Across a variety of disciplines, the analysis of data with missing values has recently been

characterized by two trends that have yet to be reconciled. First, to avoid the problems

caused by popular ad-hoc methods such as listwise deletion (discarding rows of the dataset

that contain any missing values), analysts are increasingly turning to principled techniques

for imputing, or filling in, missing values recommended by the statistics community. The

most widely used of these techniques, multiple imputation (MI), involves replacing each

missing element with several values that preserve relationships within the observed data

while representing uncertainty about the correct value. In the words of a prominent

scholar of missing-data analysis, “[MI] is now accepted as the best general method to

deal with incomplete data in many fields” (van Buuren 2012, 25).

Second, advances in computational power, efficiency, and storage capacity have en-

abled the compilation and analysis of unprecedentedly large and complex datasets, usher-

ing in an era of so-called “Big Data.” While massively increasing the amount of information

available for analysis, however, this development has not eliminated the problem of miss-

ing data. That is, bigger data has not necessarily translated into more complete data.

The growing scale and complexity of data present a computational challenge for exist-

ing MI algorithms, which were generally designed for small or medium-sized applications

with relatively simple (mostly linear) structures. While working well in many settings,

these algorithms can suffer from performance problems when applied to larger datasets

with features such as high dimensionality, severe nonlinearities, and unconventional func-
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tional forms. Convergence failures and slow — sometimes prohibitive — runtimes become

increasingly common, with imputations more likely to take on extreme and unusual val-

ues. Analysts can thus face an unappealing choice: limit the size or complexity of the

data passed into the MI algorithm, risking bias and reducing statistical efficiency; or em-

ploy an ad-hoc method that can be applied to the original data, such as listwise deletion

or mean imputation (replacing missing data with observed column averages), creating an

even greater risk of bias and guaranteeing inefficiency (Little and Rubin 1987, Ch. 3-4).1

This article proposes an accurate, fast, and scalable approach to MI, which we call

MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of

unsupervised neural networks known as denoising autoencoders (DAs), which were re-

cently developed to optimize the task of dimensionality reduction. DAs corrupt a subset

of input data via the injection of stochastic noise and attempt to reconstruct it through a

series of nested nonlinear transformations. The key innovation in MIDAS is to treat miss-

ing values as an additional portion of corrupted data and thus draw imputations from a

model trained to minimize the reconstruction error on the originally observed portion. To

reduce the risk of overfitting, we train this imputation-repurposed DA with the technique

of dropout, which extends the corruption process deeper into the neural network archi-

tecture. With the combination of denoising and dropout, MIDAS employs an effectively

1For instance, using the popular Amelia package in R (Honaker et al. 2011) to reanalyze

the results of a large number of political science articles, Lall (2016) has to restrict the size

of imputation model and reduce variance in the data to consistently avoid convergence

problems. We provide further illustrations of this dilemma below.

2



nonparametric imputation model that places constraints not on the joint distribution of

the data — the standard approach to MI — but only on the distribution of possible func-

tions that characterize the data. Functional flexibility enables the model to capture simple

as well as highly complex relationships between variables, providing the basis for perfor-

mance gains across diverse data types and structures. This flexibility, we believe, makes

MIDAS a useful complement to existing MI strategies in a wide range of fields where large

and complex data are becoming common, including political science, economics, public

health, computer science, and other parts of the social and natural sciences.

To implement MIDAS, we develop an efficient algorithm that expands the range and

quantity of data that can be analyzed with MI. This procedure leverages the powerful and

flexible computational architecture of the TensorFlow programming platform, allowing

a wide variety of data types and supporting high degrees of parallelization on supported

systems. As a companion to this article, we make the algorithm available in an easy-to-use

Python class (MIDASpy) and R package (rMIDAS) — the first full-featured, open-source

software for performing MI with neural network technology.2

We illustrate MIDAS’s accuracy and scalability through a series of systematic tests in-

volving real as well as simulated data.3 We first conduct two Monte Carlo simulation

experiments that assess MIDAS’s accuracy under the statistical conditions assumed by the

2MIDASpy can be installed from PyPI, rMIDAS from CRAN. For further information, see

https://github.com/MIDASverse.
3Data and code for replicating the results of these tests are provided in Lall and Robinson

(2020).
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dominant approach to MI, namely, joint multivariate normality. The first experiment es-

tablishes that MIDAS yields accurate estimated posterior densities and confidence intervals

for linear regression coefficients, while the second shows that the accuracy of MIDAS’s im-

puted values and parameter estimates compares favorably with that of leading existing

MI algorithms. We then move to a more realistic setting, introducing varying levels and

patterns of missingness into a widely used census dataset. We find that MIDAS yields more

accurate imputed values than other MI algorithms across most missingness conditions,

even performing well under patterns where MI cannot avoid some degree of bias.

We test MIDAS’s scalability by sampling increasing numbers of rows and columns from

a popular electoral survey that typifies the kind of large and complex data analyzed by po-

litical scientists. MIDAS produces completed datasets in consistently less time than existing

MI algorithms, with the gap increasing linearly with the number of rows and exponentially

with the number of columns. Even with modestly-sized datasets, MIDAS’s efficiency trans-

lates into substantial time savings for analysts. For datasets approaching the dimensions of

modern Big Data, where existing MI algorithms can be impractically slow, it may make the

difference between employing a principled and valid approach to analyzing missing data

and resorting to an ad-hoc method that results in biased and inefficient inferences.

Finally, we provide an applied illustration of MIDAS’s capacity to handle datasets that

pose computational problems for existing MI algorithms — that is, to give us access to

new substantive knowledge — that involves estimating the latent ideology of participants

in the electoral survey used in the scalability test. We show that substituting MIDAS for
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listwise deletion, which enables us to recover estimates for more than 10,000 additional

respondents, materially alters our understanding of the distribution of latent ideology in

the sample and of the relationship between this variable and presidential job approval.

2 MIDAS: Theory and Implementation

2.1 Multiple Imputation

The first building block of MIDAS, MI, consists of three steps: (1) replacing each missing

element in the dataset withM independently drawn imputed values that preserve relation-

ships expressed by observed elements; (2) analyzing the M completed datasets separately

and estimating parameters of interest; and (3) combining the M separate parameter es-

timates using a simple set of rules that leverages variation across these datasets to reflect

our uncertainty about the correct imputation model.4

The dominant approach to MI assumes that the complete data follow a multivariate

normal distribution, which implies that each variable is continuous and a linear function of

all others (e.g., King et al. 2001; Honaker and King 2010). An alternative approach models

each variable’s distribution conditionally on all others in an iterative fashion, typically

using a generalized linear estimator, which allows for a wider class of variable types and

distributions (e.g., Kropko et al. 2014). Imputed values, however, need not be drawn

4These rules, which are described in Rubin (1987), involve averaging the M parameter

estimates and computing variance as a weighted sum of the estimated variance within

and between the M datasets.
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from a posterior density. A notable nonparametric approach is predictive mean matching,

which involves replacing missing values with observed ones from similar rows (according

to a chosen metric) (e.g., Cranmer and Gill 2013).

All approaches to MI share three attractive features. First, they yield unbiased estimates

of parameters in the subsequent analytical model (e.g., regression coefficients) under a

fairly wide range of statistical conditions: data are either missing completely at random

(MCAR), i.e., the pattern of missingness is independent of observed and missing data,

or missing at random (MAR), i.e., this pattern depends on observed data. They cannot

avoid bias when data are missing not at random (MNAR), i.e., missingness depends on

missing data, though can still perform well if the observed data include strong predictors

of missingness (Lall 2016).5 Second, they tend to result in more efficient estimators than

methods that do not utilize all observed values (such as listwise deletion). Third, from a

practical perspective, they are simple to implement because they do not require directly

modeling the missingness mechanism and, due to the separation between imputation and

analysis, can be combined with standard complete-data methods.

Although useful in many settings, existing approaches to MI also have a common lim-

itation: they can perform poorly with the kinds of large and complex data that are be-

coming common. This is in part because extreme departures from their assumptions occur

more frequently in these data and in part due to problems of computational implementa-

tion. Most approaches are implemented with a variant of either the imputation-posterior

algorithm, which draws missing values from the appropriate posterior distribution using

5For formal definitions of these missingness mechanisms, see Little and Rubin (1987).
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Markov chain Monte Carlo (MCMC) methods, or the expectation-maximization algorithm,

a similar procedure that substitutes maximum likelihood estimates for posterior draws. For

a variety of reasons — including their serial nature, sweep of the entire dataset at each iter-

ation, and simultaneous updating of all parameters — both algorithms “have well-known

problems with large data sets. . .creating unacceptably long run-times or software crashes”

(Honaker and King 2010, 564). Even when they do converge, they can fail to accurately

approximate posteriors due to local maxima or major divergence from the assumed joint

distribution. Some approaches seek to overcome these problems by combining one of the

above algorithms with bootstrapping. As each bootstrapped sample is the same size as the

original dataset, however, these routines can also slow down sharply or fail to converge

when applied to large datasets. We later provide evidence of these scalability issues.

2.2 Denoising Autoencoder Neural Networks

MIDAS implements MI with the aid of artificial neural networks, a concept inspired by

the structure of the human brain that has been used to enhance the accuracy and effi-

ciency of a wide array of computational tasks. A neural network consists of a series of

nested nonlinear functions usually depicted as interconnected nodes organized in layers.

Input data are fed into the network through an input layer, processed by nodes in one or

more hidden layers, and returned via nodes in an output layer. To more precisely describe

these models, we adopt the linear algebraic notation typically used in the machine learn-

ing literature, which allows for concise expression of deeply nested functions: italicized
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upper-case symbols denote random vectors (e.g., X); bold lower-case symbols (x) denote

ordinary column vectors, i.e., realizations of random vectors; bold upper-case symbols de-

note matrices, with D = {Dobs,Dmis} denoting a dataset in which Dobs is observed and

Dmis is missing; and superscripts in parentheses index hidden layers of a network.

The model for a “forward pass” — or computation of output values given input data —

through layer h of a neural network is:

y(h) = σ(W(h)y(h−1) + b(h)) (1)

where y(h) is a vector of outputs from layer h (y(0) = x is the input), W(h) is a matrix of

weights connecting the nodes in layer h−1 with the nodes in layer h, b is a vector of biases

for layer h, and σ is a nonlinear activation function. The introduction of nonlinearity into

the model enables neural networks to efficiently learn complex functional forms with few

hidden layers. This model can be generalized to an arbitrary number of hidden layers H:

y = Φ(W(H)[...[σ(W(2)[σ(W(1)x + b(1))] + b(2))]...] + b(H)) (2)

where x is a vector of inputs and Φ is a final-layer activation function that returns outputs

with the appropriate distribution.

The parameters of the network (θ) are weights and biases, which are trained to mini-

mize a loss function L(y, ŷ) that measures the distance between actual and predicted out-

puts. Training involves four steps, collectively known as an epoch, which are repeated until

some convergence criterion is met: (1) performing a forward pass through the network us-

ing current θ; (2) calculating L; (3) using the chain rule to calculate error gradients with
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respect to weights in each layer, a technique called backpropagation; and (4) adjusting

weights in the direction of the negative gradient for the next forward pass. Characteristics

such as the number of training cycles per epoch, which are specified by the analyst rather

than learned in training, are referred to as hyperparameters.

One class of neural networks that is naturally suited to the task of imputing missing

data is the DA, an extension of the classical autoencoder — a well-established tool for di-

mensionality reduction in machine learning — proposed by Vincent et al. (2008). Classical

autoencoders consist of two parts. First, an encoder deterministically maps an input vector

x to a lower-dimensional representation y by compressing it through a series of shrinking

hidden layers that culminate in a “bottleneck” layer (indexed by B):

y = fθ(x) = σ(W(B)[...[σ(W(2)[σ(W(1)x + b(1))] + b(2))]...] + b(B)) (3)

Second, a decoder maps y back to a reconstructed vector z with the same probability

distribution and dimensions as x by passing it through a parallel series of expanding hidden

layers culminating in the output layer:

z = gθ′(y) = Φ(W(H)′[...[σ(W(B+2)′[σ(W(B+1)′y + b(B+1)′)] + b(B+2)′)]...] + b(H)′) (4)

To map z as closely as possible to x, weights are adjusted by backpropagation to minimize

a loss function L(x, z). This process yields a latent representation that captures the key

axes of variation in x in a similar manner to principal component analysis.

DAs were developed to prevent autoencoders from learning an identical representation

of the input (the identity function) while enabling them to extract more robust features
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from the data, that is, features that generalize better to new samples from the same data-

generating process. They achieve these benefits by partially corrupting inputs through the

injection of stochastic noise: x → x̃ ∼ qD(x|x̃). The corrupted input is then mapped to a

hidden representation y = fθ(x̃), from which a clean or “denoised” version z = gθ′(y) is

reconstructed. Unlike before, however, z is now a deterministic function of x̃ (not x).

The most common corruption process involves setting a random subset of inputs to 0.6

In attempting to recover these elements, the DA effectively performs a form of imputation:

predicting corrupted (missing) elements based on relationships among uncorrupted (ob-

served) elements. That is, missing values can be seen as a special case of corrupted input

data. Building on this insight, recent studies have developed application-specific models

for imputing missing values with DAs, reporting impressive performance (e.g., Beaulieu-

Jones and Greene 2016; Duan et al. 2014). These studies, however, neither offer a general

model of DA-based imputation nor combine DAs with MI, forgoing the latter’s advantages

vis-á-vis single imputation in bias reduction, efficiency, and uncertainty representation.

To our knowledge, the only existing attempt to implement MI using DAs comes from

Gondara and Wang (2018), who propose a model in which data are provisionally com-

pleted using mean or mode imputation before being corrupted and passed into the DA.7

While Gondara and Wang offer a relatively brief overview of their approach, it appears

6The value assigned to corrupted data points is not substantively important; 0 is a pop-

ular choice because it is often close to the “true” value being estimated, minimizing the

adjustment to network parameters in training and hence accelerating model convergence.
7We developed MIDAS without knowledge of Gondara and Wang’s research.
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to suffer from three limitations. First, its loss functions fail to distinguish between origi-

nally observed and originally missing values, causing reconstruction error to be measured

against the mean/mode imputations, which typically lead to biased parameter estimates.

Second, it injects stochastic noise into inputs once rather than in each training epoch, in-

creasing the risk of overfitting and reducing model robustness. Third, instead of sampling

from a single trained network, it trains a different network for each set of imputations,

substantially slowing runtime — storing all trained models and imputations in memory is

computationally demanding — without improving performance. In the rest of the section,

we present an alternative approach to MI based on DAs that avoids these issues.

2.3 The MIDAS Model

MIDAS modifies the standard DA model in two key ways. First, as part of the initial cor-

ruption process, it forces all missing values — in addition to a random subset of inputs

— to 0. The task of the DA is thus to predict corrupted values that were both originally

missing (x̃mis) and originally observed (x̃obs) using a loss function that only includes the

latter. Second, to further reduce the risk of overfitting, MIDAS regularizes the DA with

the complementary technique of dropout. Introduced by Hinton et al. (2012), dropout in-

volves randomly removing (or “dropping”) nodes in the hidden layers of a network during

training, typically by multiplying outputs from each of these layers by a Bernoulli vector v

that takes a value of 1 with probability p: ỹ(h) = v(h)y(h),v(h) ∼ Bernoulli(p). Dropout is

thus a generalization of the idea behind DAs, extending stochastic corruption to the hidden
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Figure 1. MIDAS Neural Network Architecture
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x̃.

layers and hence enabling the extraction of even more robust features.

Dropout training proceeds by sampling an arbitrary number of “thinned” networks,

with a different set of nodes dropped in each iteration. At test time, Hinton et al. pro-

pose scaling the weights of a single unthinned network by the probability that their orig-

inating nodes were retained during training. To produce multiple imputations, MIDAS

instead samples M thinned networks. This procedure has recently received a powerful

independent justification from Gal and Ghahramani (2016), who show through simula-

tion experiments that it results in more accurate parameter estimation with no additional

model complexity or training time. Notably, they also prove that dropout training is math-
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ematically equivalent to a Bayesian variational approximation of a Gaussian process (GP),

a commonly used probability distribution over functions. The implication is that MIDAS

posits not a joint distribution of the data but a distribution over possible functions that de-

scribe the data. Since GP models can estimate any continuous function arbitrarily well —

they are usually considered nonparametric because they have a potentially infinite number

of parameters — MIDAS can thus capture a wider class of joint distributions than existing

approaches to MI without making any additional parametric assumptions.

The encoder of an imputation-generating DA trained with dropout — a MIDAS network

— can thus be described as:

ỹ = fθ(x̃) = σ(W(B)v(B)[...[σ(W(2)v(2)[σ(W(1)x̃ + b(1))] + b(2))]...] + b(B)). (5)

The decoder, in turn, becomes:

z = gθ′(ỹ) = Φ(W(H)′[...[σ(W(B+2)′[σ(W(B+1)′ỹ + b(B+1)′)] + b(B+2)′)]...] + b(H)′) (6)

where g ∼̇ GP and z represents a fully observed vector containing predictions of x̃obs and

x̃mis. To produce a completed dataset, predictions of x̃mis are substituted for xmis in D. The

full architecture of a MIDAS network is illustrated in Figure 1.8

The default activation function in MIDAS is exponential linear unit (ELU), which is

known to facilitate efficient training in deep neural networks. The final-layer activation

function is chosen according to the distribution of the input data x, with identity, logistic,

8A more detailed description of the MIDAS model’s objective function is provided in Online

Appendix 2A.
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and softmax functions assigned to continuous, binary, and categorical variables, respec-

tively. Loss functions take the same form as in a regular DA, measuring the distance be-

tween x and z: L(x, z). As we are only interested in the reconstruction error for predictions

of originally observed corrupted values (x̃obs), however, these functions are multiplied by

a missingness indicator vector r. MIDAS employs root mean squared error (RMSE) and

cross-entropy loss functions for continuous and categorical variables, respectively:

L(x, z, r) =


[ 1
J

∑J
j=1 rj(xj − zj)

2]
1
2 if x is continuous

− 1
J

∑J
j=1 rj[xj log zj + (1− xj) log(1− zj)] if x is categorical.

(7)

In sum, unlike most existing approaches to MI, MIDAS does not assume a joint distribu-

tion of the data and use an iterative method to draw imputed values from the posterior of

this distribution. Rather, it uses a neural network to “learn” the form of the data by fitting

a series of nonlinear functions — in effect, a nonparametric model that only constrains the

range of functions that are consistent with the data — which enables it to capture both

simple and highly complex patterns. This is implemented by introducing additional miss-

ingness into the data during training, minimizing the reconstruction error for predictions

of these corrupted values, and drawing imputations from the trained network.

2.4 Algorithm

The algorithm we have developed to implement MIDAS takes an incomplete dataset D as

its input and returns M completed datasets. The algorithm proceeds in three stages, each

comprising a number of smaller steps. In the first stage, the input data D are prepared for
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Figure 2. Schematic of MIDAS Training Steps
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training. Categorical variables are “one-hot” encoded (i.e., converted into separate dummy

variables for each unique class) and continuous variables are rescaled between 0 and 1 to

improve convergence. In addition, a missingness indicator matrix R is constructed for D,

allowing us to later distinguish between Dmis and Dobs, and all elements of Dmis are set to

0. A DA is then initialized according to the dimensions of D; the default architecture is a

three-layer network with 256 nodes per layer.

In the training stage, the following five steps are repeated (see Figure 2 for a visual

schematic and Online Appendix 2B for a more formal description): (1) D and R are shuf-

fled and sliced row-wise into paired mini-batches (B1,B2, ...,Bn) to accelerate convergence;

(2) mini-batch inputs are partially corrupted through multiplication by a Bernoulli vector

v (default p = 0.8); (3) in line with standard implementations of dropout, outputs from
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half of the nodes in hidden layers are corrupted using the same procedure; (4) a forward

pass through the DA is conducted and the reconstruction error on predictions of x̃obs is cal-

culated using the loss functions defined in Equation 7; and (5) loss values are aggregated

into a single term and backpropagated through the DA, with the resulting error gradients

used to adjust weights for the next epoch.

Finally, once training is complete, the whole of D is passed into the DA, which attempts

to reconstruct all (i.e., originally observed and originally missing) corrupted values. A

completed dataset is then constructed by replacing Dmis with predictions of the originally

missing values from the network’s output. This stage is repeated M times.

3 Accuracy Tests

How does MIDAS perform in practice? The next two sections present tests of the method’s

accuracy and scalability involving both simulated and real data. We begin with two tough

simulation tests that gauge MIDAS’s accuracy under the multivariate normal conditions

assumed by the dominant approach to MI (without building a linearity constraint into

the MIDAS model). The first is the “MAR-1” experiment first conducted by King et al.

(2001), which assesses whether MIDAS generates correct estimates of linear regression

parameters; the second is the continuous component of a more general test conducted by

Kropko et al. (2014), which also assesses the accuracy of MIDAS’s imputed values. The

third part of the section tests MIDAS’s performance on similar metrics in a more realistic

context by simulating a variety of missingness conditions in a popular census dataset.
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Figure 3. Estimated Posterior Densities in MAR-1 Simulation Experiment
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multivariate normal distribution.

3.1 MAR-1 Experiment

The MAR-1 experiment involves simulating 100 datasets containing 500 rows and five

(moderately correlated) standardized variables Y,X1, ..., X4 from a multivariate normal

distribution. A mixed pattern of missingness is introduced, leaving an average of 72% of

rows in each sample fully observed: Y and X4 are MCAR, while X1 and X2 are MAR as a

function of X3. We estimate the linear model Y = β0 + β1X1 + β2X2 using four strategies:

(1) MIDAS, which we implement using our Python class MIDASpy; (2) multivariate nor-

mal MI, implemented with the Amelia package in R (Honaker et al. 2011), which employs

an expectation-maximization with bootstrapping algorithm; (3) listwise deletion, and (4)

analysis of the complete dataset.9

Figure 3 plots the posterior densities of the estimated coefficients on β0, β1, and β2

9In all tests conducted in this and the next section, M = 10 for all MI algorithms.
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for each strategy. For all three parameters, MIDAS yields very similar results to Amelia.

Both sets of estimates are close to the true density, though in the case of β1 have smaller

peaks and larger variances (due to their lower information content). Listwise deletion

estimates, by contrast, are severely biased away the true density of every parameter, mostly

possessing the incorrect sign as well as a higher variance than the other densities. In Online

Appendix 3, we further demonstrate that MIDAS and Amelia produce accurate estimated

95% confidence intervals, with listwise deletion again performing substantially worse.

3.2 Simulation Test of Imputation and Linear Model Quality

The continuous portion of Kropko et al.’s (2014) simulation-based accuracy test involves

generating 1,000 multivariate normal datasets with 1,000 rows and eight standardized

variables, and inducing MAR missingness in five of the latter (with proportions of 0.1, 0.1,

0.1, 0.1, and 0.25). To assess how the strength of relationships between variables affects

MIDAS’s performance, we generate two versions of the simulated datasets: one in which

correlations between variables are moderate and another in which they are strong.10

In addition to MIDAS, five missing-data strategies are applied to the incomplete datasets:

(1) conditional MI, implemented with the mi package in R (Su et al. 2011); multivariate

normal MI, implemented with (2) Amelia and (3) the norm package in R (which employs

a traditional expectation-maximization algorithm) (Schafer and Olsen 1998); (4) listwise

10As Kropko et al. use the random data function rdata.frame in R to simulate the datasets,

we model moderate and strong intercorrelations by setting the eta argument of this

function to 300 and to 1000, respectively.
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Figure 4. Inverse Imputation and Linear Model Accuracy in Kropko et al. Simulation Test
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The results are based on Monte Carlo-simulated data with 1,000 rows and eight standard-
ized variables, five of which contain MAR missingness, drawn from a multivariate normal
distribution. Lower RMSE indicates greater imputation/fitted-value accuracy; lower Ma-
halanobis distances indicate greater coefficient accuracy.

deletion; and (5) replacing missing values with draws from each variable’s marginal dis-

tribution. The six strategies are assessed on two metrics: (1) RMSE relative to true values

(averaging imputed values); and (2) the accuracy of coefficient estimates from a regression

of one variable on the remaining seven, measured as (i) the Mahalanobis distance between

model estimates and complete-data estimates, (ii) the RMSE of model fitted values relative

to complete-data fitted values, and (iii) the previous metric excluding incomplete rows.

The results are displayed in Figure 4. In the moderate-correlation scenario, MIDAS out-

performs the other four MI strategies on all four metrics. When we strengthen correlations,

this gap remains essentially the same in terms of imputation accuracy but becomes even
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larger in terms of coefficient and fitted-value accuracy (except with respect to marginal

draws). Even without a linearity constraint, therefore, MIDAS can produce accurate im-

putations and parameter estimates under multivariate normality, with its absolute and

relative performance improving with the strength of relationships between variables.

3.3 Applied Test with Adult Dataset

Real data, of course, are rarely multivariate normal. We thus supplement the previous

simulation exercises with an applied accuracy test based on the Adult dataset, an extract

from the 1994 United States Census that measures 15 characteristics of 48,842 individu-

als (a mixture of continuous and categorical variables).11 We select this dataset for two

reasons. First, in addition to being frequently used by social scientists, it is a standard

benchmarking dataset for machine learning tasks. Second, it is one of the few real social

science datasets we were able to find that is almost entirely complete — just 0.009% of

values are missing — which gives us near-complete discretion to manipulate missingness

in the test (while mitigating possible concerns about the exclusion of originally missing

values). Summary statistics for the dataset are provided in Online Appendix 3.

In contrast to the previous tests, we separately induce varying proportions of MCAR,

MAR, and MNAR missingness in the dataset. For each missingness pattern, we create

11Kropko et al. (2014) also conduct an applied test involving the American National Elec-

tion Studies (ANES) dataset. In Online Appendix 4, we incorporate MIDAS into the im-

putation accuracy component of this test, again finding that it produces more accurate

imputed values than other MI algorithms for all variables.
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Figure 5. Results of Applied Imputation Accuracy Test
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MCAR, MAR, and MNAR missingness are separately induced in varying proportions of ran-
domly selected columns in the Adult dataset, with up to 50% of values are set as missing.
Lower RMSE and classification error values indicate greater imputation accuracy.

four versions of the dataset in which 30%, 50%, 70%, and 90% of columns are randomly

selected for corruption. In the MCAR treatment, half of the values in the selected columns

are randomly set to missing. In the MAR treatment, a missingness indicator L is randomly

drawn from the non-selected columns. If L is continuous, a subset of observations at or

below its median value are set to missing in the selected columns; if L is categorical, half

of its categories are randomly sampled and a subset of corresponding observations in the

selected columns are set to missing. The MNAR treatment is similar to the MAR treatment,

with the key difference that L is the selected column itself. These treatments are described
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in more detail in Online Appendix 3. Since Amelia’s runtime substantially increases when

categorical variables have more than 10 classes (which is prohibited in its default settings),

native_country, occupation, and education are excluded from the corruption process.

We include the same five missing-data strategies as the previous test, comparing their

imputation accuracy using similar metrics: the RMSE of imputed versus actual values for

continuous variables; and classification error for categorical variables. We refrain from

conducting a model-based accuracy test because, unlike in Kropko et al.’s simulation, we

do not know the true joint distribution of the data. We instantiate MIDAS with two hid-

den layers of 256 nodes, an input corruption proportion of 0.75, and 20 training epochs,

leaving all other hyperparameters at their default settings. Amelia only converges with

a ridge prior of 1% of the number of rows in the imputation model, a modification that

shrinks covariances between variables and thus introduces some degree of bias (Honaker

et al. 2011, 19-20). We swap the earlier version of the norm package, which is unable

to handle the treated datasets, with an updated version based on the same algorithmic

logic (Novo 2015). To enable mi to complete the test in a reasonable time, we modify its

settings to complete datasets after either 15 imputation iterations (default = 30) or the

default maximum iteration time of 20 minutes — whichever comes first.

The results are summarized in Figure 5. Across almost all corruption levels and miss-

ingness patterns, MIDAS’s imputed values are more accurate than those of other strategies.

This advantage is largest for continuous variables: the mean RMSE of MIDAS imputations

is around 30% lower than that of the next best algorithm, mi. The gap in classification
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accuracy is narrower but still clear in the MAR and MCAR scenarios. Under MNAR, Amelia

and mi are the best category classifiers, though MIDAS’s performance is comparable. In

short, as we move to a more realistic setting in which multivariate normality does not hold,

MIDAS continues to exhibit strong relative performance on key metrics of accuracy.

4 Scalability Tests

To facilitate comparison, the previous tests were conducted on small or medium-sized

datasets that do not pose (major) computational problems for existing MI algorithms. We

now relax this constraint, comparing the algorithms’ efficiency in handling progressively

larger datasets. We conduct separate tests for increasing numbers of columns and rows,

though place greater weight on the former: additional columns are more computationally

demanding for MI algorithms than additional rows because they entail a greater marginal

increase in the number and complexity of relationships within the observed data.12

4.1 Column-Wise Scalability

Rather than scaling up a purely simulated dataset, which is unlikely to capture the com-

plexity and richness of real data, we conduct both tests using the 2018 Cooperative Con-

gressional Election Study (CCES), a large-scale electoral survey commonly used by political

scientists that encompasses a representative sample of 60,000 respondents in the United

12Given the computational demands of these tests, we conducted them on an Amazon Web

Services Linux m5.xlarge EC2 Instance virtual server (16 GB RAM, 4 vCPUs) running

Ubuntu 18.04.
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States. We focus on the subset of personal profile questions asked to all respondents, in ad-

dition to a selection of voting- and political activity-related questions (details are provided

in Online Appendix 5). To generate a baseline sample for the column-wise test, we re-

move all columns that are perfectly collinear or that contain at least 10,000 missing values

(which generally indicates structural missingness associated with survey flow) and all rows

with responses of “don’t know.” This leaves a sample of 30,421 rows and 144 variables.

Once categorical variables are one-hot encoded, there are 443 “effective” columns.

To examine the effect of increasing dataset width on imputation speed, we randomly

draw columns without replacement from the baseline sample based on a target number

of effective columns, which we vary from 25 to 400. If, after selecting a given variable,

the number of effective columns is more than 25% higher than the target, this variable is

replaced and a new one is selected. After each dataset has been generated, we induce 50%

MCAR missingness in every column. To ensure that the data do not become too sparse for

imputation, we include the fully observed gender and birthyr variables in all samples.

We test the same five MI strategies as before, comparing the time they take to complete

10 datasets. MIDAS is instantiated with three 256-node layers, a dropout rate of 0.75, and

30 training epochs — a conservative setup, especially for narrow datasets. Where possible,

we parallelize other MI algorithms using the doparallel and foreach packages in R.

Figure 6 displays the results, including predicted values from a regression of runtime on

the effective number of columns (which includes quadratic terms for Amelia and norm due

to the distribution of their runtimes). Differences in scalability emerge even at the smallest
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Figure 6. Results of Column-Wise Scalability Test
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The y-axis measures the time taken to produce 10 completed versions of a CCES sample
with 50 percent MCAR missingness; the x-axis measures the number of columns in the sam-
ple after categorical variables have been one-hot encoded. Dashed lines show predicted
values from a regression of y on x (including quadratic terms for Amelia and norm).

widths, with the mi package and marginal draws recording runtimes several times longer

than the remaining three algorithms for samples with 50 columns.13 The latter routines

perform similarly up to this width, with Amelia slightly faster than Norm and MIDAS but

(unlike other algorithms) failing to converge on several occasions. Note again that we do

not adjust the MIDAS network’s size by width; a three-layer, 256-node network is not nec-

essary for narrow datasets, and a leaner architecture would result in faster computation.

As the number of columns increases, MIDAS’s efficiency emerges clearly. MIDAS be-

13We therefore drop these two strategies for higher numbers of columns.
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comes faster than norm at a width of around 75 columns and Amelia just before 125

columns. By 200 columns, MIDAS is three times quicker than Amelia and almost 30 times

quicker than norm. At the maximum number of columns in the test, 400, MIDAS is 12

times faster than Amelia. Extrapolating from these results, Amelia would take more than

6,000 hours to produce 10 completed versions of the full CCES, approximately 100 times

longer than MIDAS. As indicated by the slope of the regression lines, MIDAS’s efficiency

advantage increases exponentially with the effective number of columns: the relationship

between computation time and data width is linear for MIDAS but quadratic for Amelia

and the other algorithms. This constitutes a major advantage in the Big Data era, in which

datasets can contain thousands or even tens of thousands of variables.

4.2 Row-Wise Scalability

We test row-wise scalability by extracting a similar baseline sample from the CCES. To

ensure a comparable overall runtime to the column-wise test, we focus on personal profile

variables that are continuous, binary, or nominal and have fewer than seven levels. In

total, the sample contains 22 variables and 34,441 complete rows. We vary sample length

by bootstrapping rows to create datasets with between 5,000 and 500,000 rows. We then

induce MCAR missingness in 30% of values in each column. As in the column-wise test, we

exclude birthyr and gender from the missingness treatment to prevent excessive sparsity.

As the baseline sample is smaller and less complex than before, we shrink the MIDAS

network to two layers of 256 nodes and set the number of training epochs as 20.
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Figure 7. Results of Row-Wise Scalability Test
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The y-axis measures the time taken to produce 10 completed versions of a CCES sample
with 30 percent MCAR missingness; the x-axis measures the number of rows in the sample.
Dashed lines show regression-based predicted values for each strategy.

The results are plotted in Figure 7. Across all sample lengths, MIDAS is the most ef-

ficient strategy. For datasets with 500,000 rows, MIDAS’s average runtime is three times

quicker than than that of norm, the third fastest algorithm, and 25 percent quicker than

that of Amelia, the second fastest, with these gaps increasing in proportion to length. Un-

like in the column-wise test, therefore, computation time scales linearly with the number

of rows for MIDAS as well as norm and Amelia, a finding consistent with the less in-

tensive computational demands created by additional rows. As before, mi and marginal

draws record the longest runtimes, producing the completed datasets in an average of 115
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minutes and 9.2 minutes, respectively, at the smallest number of rows (5000).14

Note that while the performance gap between MIDAS and Amelia is smaller in this test,

there are caveats to the latter’s results. Amelia did not converge with any dataset without

the inclusion of a bias-inducing ridge prior in the imputation model (of 0.005 times the

number of rows), most likely due to high correlations among some variables. Even with

this modification, it failed to converge in 16 of the 60 iterations of the simulation.

5 Applied Illustration: Estimating Ideology from CCES Data

In this section, we provide a brief illustration of MIDAS’s capacity to handle real missing-

data situations whose scale presents difficulties for existing MI algorithms. We continue

to focus on the CCES, whose large number of columns — a feature shared with other

electoral surveys — can prevent the usage of such algorithms. Specifically, we use MIDAS

to shed new light on the distribution of political ideology among respondents, a topic of

substantive interest to scholars of electoral politics in the United States and elsewhere.

Respondents to the CCES are asked to report their ideological position on a seven-

point scale ranging from 1 for “Very Liberal” to 7 for “Very Conservative.” Self-reported

ideology, however, is known to be a noisy proxy for underlying beliefs (for instance, due to

social desirability biases and variation in ideological positions across policy dimensions). A

variety of approaches have been proposed to capture respondents’ latent ideology, most of

which involve estimating ideology using responses to policy-related questions. In the 2018

14We again exclude these two strategies for longer samples.
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CCES, individuals are asked their opinion on a series of policy proposals in areas such as

the budget, healthcare, and environmental protection. These items have a higher rate of

nonresponse than the CCES in general, with an average of 14% of respondents failing to

provide an answer. Does this missingness affect estimates of latent ideology?

Building on recent work by Ramseyer and Rasmussen (2016), we regress respondent

i’s self-reported ideology on responses to 19 policy questions in the CCES (see Online

Appendix 6A for the list):

Self-Reported Ideologyi = α +
19∑
j=1

βj × Policyi,j + εi (8)

where j denotes a given policy question. The fitted values from Equation 8 represent

estimates of latent ideology. We compare such estimates under two missing-data strategies:

(1) listwise deletion (following Ramseyer and Rasmussen); and (2) MIDAS, which we

implement using a rich battery of 163 demographic and socioeconomic variables — an

imputation model too large to be computed by any existing MI algorithm — and a two-

layer, 256-node network trained for 200 epochs.15 MIDAS allows us to produce estimates

for more than 10,000 more respondents, almost one-fifth of the full CCES.

Figure 8 plots the densities of the two sets of latent ideology estimates. The two dis-

tributions have similar variances but divergent peaks; the null hypothesis that they are

15Some existing MI algorithms, such as Amelia, can accommodate subsets of the MIDAS

imputation model. These subsets, however, tend to exclude strong predictors of missing-

ness in the policy items. Consequently, as shown in Online Appendix 6B, the resulting

latent ideology estimates are substantially closer to those produced by listwise deletion.
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Figure 8. Regression-Based Estimates of CCES Respondents’ Latent Ideology
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drawn from the same distribution can be rejected under a Kolmogorov-Smirnov test. The

distribution of listwise deletion estimates is skewed toward the left (liberal) side of the

ideology scale — the modal estimate is 2 — though also contains smaller peaks in the cen-

ter and on the right (conservative) side. The MIDAS estimates, in contrast, follow a more

normal shape, peaking at 4. In the absence of MI, therefore, there is a danger that analysts

could overestimate the proportion of strong liberal and strong conservative respondents.

This finding also has implications for our understanding of the relationship between

ideology and other variables of substantive interest in the CCES, such as respondents’ as-

sessment of President Donald Trump’s performance in office. Table 1 shows the results of

regressing responses to the CCES presidential job approval question, which range from 1

for “strongly approve” to 4 for “strongly disapprove,” on (1) self-reported ideology and (2)
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Table 1. Regression of Presidential Job Approval on Different Measures of Ideology

Measure of Ideology β Std. Error Adj. R2 N
Self-reported -0.475 0.002 0.506 48713
Regression-based (MIDAS) -0.697 0.002 0.616 60000

the MIDAS-based regression estimates of latent ideology.16 In both models, the estimated

coefficient on the ideology measure is negative and statistically significant, indicating that

respondents classified as more liberal express lower average levels of presidential job ap-

proval. The MIDAS-based measure, however, is a far better predictor of job approval than

the self-reported alternative, possessing a coefficient almost 50% larger (with an identical

standard error) and accounting for 20% more model-adjusted variance in the outcome.

6 Potential Limitations

While MIDAS’s flexibility render it suitable for a wide range of missing-data problems,

there are nevertheless circumstances in which it may perform suboptimally. First, MI-

DAS cannot, of course, avoid bias when the usual assumptions of MI are violated: data

are MNAR, the posited distribution of the data is a poor approximation to reality, or the

imputation model is misspecified in some other way. However, as noted earlier — and

demonstrated in the applied accuracy test — MIDAS can still perform relatively well under

MNAR when there are strong predictors of missingness in the imputation model.

Second, like other approaches to MI, MIDAS is not guaranteed to perform well with cer-

16We remove “not sure” responses from the job approval variable for the self-reported

model. These values are imputed in the MIDAS model.
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tain unconventional data structures, such as non-exchangable data, multilevel data, and

spatially lagged data. In general, however, we have found MIDAS to be surprisingly ef-

fective at learning observed-data relationships within these structures (without including

any special features in the imputation model). Online Appendix 7 provides an illustra-

tion of this capacity in the context of time-series cross-sectional data — perhaps the most

common form of non-exchangable data in social science research — adapting an exercise

conducted by Honaker and King (2010) to show how MIDAS can impute smooth nonlin-

ear time trends in economic variables. This illustration, which involves another dataset

too large to be processed by existing MI algorithms, highlights how the flexibility of neural

networks can sometimes mitigate the need for manual feature transformation.

Finally, MIDAS inherits the general risks associated with neural network-based meth-

ods. These include misspecification of hyperparameters, which can result in bias; overfit-

ting — despite MIDAS’s heavy inbuilt regularization — the likelihood of which increases

with the size, dimensionality, and sparsity of the dataset; and poor performance on very

small datasets. Such risks can be compounded by the “black box” nature of neural net-

works, which makes it difficult for analysts to conduct parameter and posterior checks to

identify problems. Our software for implementing MIDAS offers two diagnostic tools to

help analysts conduct such checks (see Online Appendix 1 for details): (1) the technique

of “overimputation” (Honaker et al. 2011, 27-29), which involves sequentially removing

observed values and checking the accuracy of their imputations; and (2) the use of a varia-

tional autoencoder component to generate an alternative set of imputations based on more
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stringent assumptions about the distribution of the latent input space. We acknowledge,

however, that these tools do not guarantee detection of all problems.

7 Concluding Remarks

As the scale and complexity of real-world data continue to grow, it is increasingly important

that analysts have access to accurate, fast, and scalable methods for analyzing missing

values. The approach to MI we have developed in this article, MIDAS, seeks to deliver these

advantages by drawing on recent theoretical and computational advances in deep learning.

A battery of tests involving real and simulated data suggest that MIDAS can provide gains

in accuracy over existing approaches to MI (as well as listwise deletion) even in small- and

medium-sized applications, with larger improvements when data possess more complex

features. Relative to leading MI algorithms, it can offer improvements in efficiency when

datasets contain as few as 200 columns (with the gap increasing exponentially beyond this

width) and 5,000 rows (with the gap increasing linearly beyond this length).

To be sure, MIDAS is not a panacea for missing-data problems in the emerging era

of Big Data. As discussed earlier, despite its flexibility, the approach is not guaranteed

to perform well with every type of data and may be not be straightforward to optimize

for particular applications. Nevertheless, we believe that it constitutes a helpful addition

to the methodological toolkit of analysts and nicely complements the strengths of exist-

ing approaches to MI. Indeed, it is precisely the kinds of applications with which these

approaches can struggle where MIDAS comes into its own.
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1 Summary of Diagnostic Tools

The performance of modern machine learning techniques depends heavily on the length of

training — which affects the risk of overfitting — and the choice of model hyperparameters

(Probst et al. 2019). To help users of MIDAS assess the fit of the imputation model and

calibrate hyperparameters, we provide two diagnostic tools. The first is the technique of

“overimputation” (Blackwell et al. 2017; Honaker et al. 2011). This involves sequentially

removing observed values from the dataset, generating a large number of imputations

for each value, and checking the accuracy of these imputations. Accuracy is measured

with (1) the RMSE of imputed values versus true values for continuous variables and (2)

classification error for categorical variables. To ensure a good fit, we recommend selecting

the number of training epochs that minimizes the average value of these metrics (weighted

by the proportion of continuous versus categorical variables). By reducing the risk of

overtraining, this “early stopping” rule effectively serves as an extra layer of regularization

in a MIDAS network.

In the MIDASpy class, overimputation can be implemented using the overimpute func-

tion (described in more detail on the MIDAS GitHub page). This function plots values of

the RMSE and classification error metrics for each training epoch. Initially, these values

should decline with additional epochs as the MIDAS network learns increasingly accurate

approximations of the missing-data posterior. As suggested above, if and when error be-

gins to rise, the number of epochs specified in the train.model function should be capped

before this point. The plot_all argument of overimpute compares the distribution of

overimputed versus original values, allowing users to visually inspect whether the former

fall within a reasonable range (implying a good model fit). The default hyperparameter

settings for overimpute are a corruption proportion (spikein) of 0.1 and 100 training

epochs (training_epochs).
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The second diagnostic tool is the generation of entirely new observations using a vari-

ational autoencoder component. Variational autoencoders are another extension of the

classical autoencoder that encode inputs not to a fixed vector z but to a distribution over

the latent space p(z) (Kingma and Welling 2013; Rezende et al. 2014). The loss func-

tion minimized during training includes a regularization term (in addition to the usual

reconstruction term) that constrains the latent distribution to approximate normality, re-

ducing the risk of an irregular latent space in which similar data points can become very

different after decoding. Samples from the latent distribution z ∼ p(z|x) will thus tend to

more closely follow the input density than a regular (deterministic) latent representation

z, rendering them better suited to the task of generative modeling.

In the MIDASpy class, the variational autoencoder component can be activated by

setting vae_layer = True in the Midas function. This inserts a variational autoencoder

layer after the denoising portion of a MIDAS network, which probabilistically maps inputs

to a latent distribution in the manner described above. After training, samples are drawn

from this distribution and decoded to produce new observations. In general, the greater

the similarity between these observations and the input data, the better the fit of the

imputation model. Default settings for vae_layer hyperparameters — which include the

number of normal clusters assumed to characterize the input data (latent_space_size),

the variance of these distributions (vae_sample_var), and the strength of our normal prior

(vae_alpha) — follow standard conventions in autoencoder applications.

We favor overimputation and data generation over customary train/test split approaches

to model validation for two reasons. First, the latter have been found to systematically

underestimate error in autoencoders and other unsupervised methods of nonlinear di-

mensionality reduction where there is no clear target value (Christiansen 2005; Scholz

2012). Second, they prevent us from training the MIDAS network on the full dataset,

which impedes accuracy — and could seriously compromise performance at high levels of
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missingness.

2 Technical Details on MIDAS Model and Algorithm

2A Objective Function

This section offers additional technical details on the MIDAS model’s objective function.

Recall from the main text that a traditional autoencoder first maps an input vector x to a

lower-dimensional representation y via a deterministic series of transformations y = fθ(x),

parameterized by θ = {W,b} (Equation 3), and then maps this representation back to a

reconstructed vector z via a converse series of transformations z = gθ′(y), parameterized

by θ′ = {W′,b′} (Equation 4). Each element i of the input vector xi is thus mapped to

a corresponding element of the hidden representation yi and the reconstruction zi. The

parameters of this model are trained to minimize the average reconstruction error:

θ∗, θ′∗ = arg min
θ∗,θ′∗

1

N

N∑
i=1

L(xi, zi) (A1)

= arg min
θ∗,θ′∗

1

N

N∑
i=1

L(xi, gθ′(fθ(xi))) (A2)

where L is a loss function (such as a mean squared error function).

In a denoising autoencoder, we again optimize these parameters to minimize the av-

erage reconstruction error. Unlike before, however, z is a deterministic function of x̃, the

corrupted input, instead of x. In a MIDAS model, we only seek to minimize the recon-

struction error on corrupted values that were originally observed. That is, we want z to

be as close as possible to x̃obs (we do not know the original values of x̃mis). If D consists

of two random variables X and Y with joint probability distribution p(X, Y ), the overall
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joint distribution can be characterized as:

q0(X, X̃obs, X̃mis, Y ) = q0(X)qD(X̃obs, X̃mis|X)δfθ(X̃obs,X̃mis)
(Y ) (A3)

where q0(X, X̃, Y ) is parameterized by θ = {Ω,ψ}. This implies that Y is a deterministic

function of both X̃obs and X̃mis. However, the objective function minimized by stochastic

gradient descent only includes the former:

arg min
θ∗,θ′∗

Eq0(X, X̃mis)[L(X, gθ′ , (fθ(X̃obs)))] (A4)

The implication of this result is that the MIDAS model minimizes the expected loss over

the empirical distribution of not only the observed data but also the subset of corrupted

data that were originally observed.

2B Training Steps

As discussed in the main text, a MIDAS network is feedforward: given an initial set of

weights and biases, data are propagated forward through the hidden layer of the network

and aggregate loss is calculated. Weights and biases are then adjusted via the method of

backpropagation. Since the MIDAS network is deep (i.e., it contains more than one hidden

layer), this adjustment is made sequentially from the last layer to the first. This section

provides a more detailed description of the key training steps in the MIDAS algorithm.

Recall that in the pre-training stage, a missingness indicator matrix D is generated for

the input data D, Dmis is set to 0, and a MIDAS network is parameterized using a variant of

Xavier Initialization. In each training epoch, we shuffle and divide D into B mini-batches

B1,B2, ...,BB of size s (default s = 16); R is divided into corresponding mini-batches. This

step has the advantage of reducing training time — storing all training data in memory and
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calculating loss for the whole sample are memory-intensive, whereas mini-batches can be

processed quickly and in parallel — as well as increasing the frequency of model updates,

which ensures more robust convergence (for instance, by avoiding local minima).

In the next step, we partially corrupt the input data by multiplying the B mini-batches

by a Bernoulli vector v with p = 0.8 (resulting in a corruption rate of 20%):

x̃ = [v(0,1)B1, ..., v(0,n)BB]

v(0) ∼ Bernoulli(p = 0.8)

(A5)

We then implement dropout regularization by partially corrupting nodes in the hid-

den layers of the network. This involves multiplying outputs from each layer by another

Bernoulli vector with p = 0.5 (a corruption rate of 50%):

ỹ(h) = y(h)v(h)

v(h) ∼ Bernoulli(p = 0.5)

(A6)

We then perform a full forward pass through the network — using both the corrupted

inputs x̃ and the corrupted hidden nodes ỹ(h) — to generate our input reconstruction

z (described in Equations 5 and 6 in the main text). Loss is calculated with respect to

the subset of corrupted data that were originally observed (x̃obs), which is achieved by

multiplying the RMSE and cross-entropy loss functions by a missingness indicator vector

r (see Equation 7). A weight decay regularization term λ is included in the calculation to

reduce overfitting:

E = L(x, z, r) + λ||E[W]||2 (A7)

In the backpropagation step, we find the gradient of the loss function with respect

to the weights of the network.1 Since the change in error with respect to the weights

1For a more in-depth discussion of the backpropagation procedure, see Goodfellow et al. (2016, Chapter 6).
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in a given layer (W(h)) depends on the weights in the next layer (W(h+1)), this must be

calculated sequentially from the output layer to the input layer. Specifically, for each layer,

we must derive ∂E
∂W(h) . Through two applications of the chain rule, this problem becomes

more tractable:

∂E

∂W(h)
=

∂E

∂y(h)
· ∂y(h)

∂W(h)
(A8)

=
∂E

∂y(h+1)
· ∂y(h+1)

∂y(h)
· ∂y(h)

∂W(h)
, (A9)

The first term of Equation A9 indicates that the layer-specific partial derivative of the loss

function depends on the derivative with respect to outputs from the next layer. The middle

term is the partial derivative of the next layer’s outputs with respect to the current layer’s,

which is equivalent to the derivative of the next layer’s activation function ∂f(y(h+1)

y(h+1) . Since

y(h) is the weighted sum of the inputs into layer h, the right term is simply equal to y(h−1).

Note that the latter two terms are straightforward to derive because the functional form of

each layer’s activation function is known a priori.

Once errors have been fully backpropagated through the network, we use the calcu-

lated gradients to update the MIDAS network’s weights. Each weight is adjusted in the

direction of the negative gradient, tempered by some learning rate γ that stabilizes con-

vergence by scaling the step size according to the application at hand:

∆W(h) = −γ ∂E

∂W(h)
(A10)

Once all weights are updated, the training epoch is complete. This procedure is re-

peated iteratively until the loss function converges.
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3 Additional Information on Accuracy Tests

3A MAR-1 Experiment

Figure A1. Coverage of Complete-Data Coefficients Across Trials of MAR-1 Simulation
Experiment
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The solid black lines indicate complete-data (“true”) coefficients in the MAR-1 experiment. The dashed
lines represent 95% confidence intervals for each method’s coefficient estimates across the 100 trials of the
experiment (whose densities are plotted in Figure 3 in the main text).

Figure A1 plots the estimated confidence intervals produced by MIDAS, Amelia, and list-

wise deletion across the 100 trials of the MAR-1 experiment. Similarly to the posterior

densities of the estimated coefficients (Figure 3 in the main text), the Amelia and MI-
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DAS intervals both exhibit good coverage for all three coefficients, encompassing the true

estimate with a probability close to the ideal of 0.95.2 Listwise deletion’s coverage is sub-

stantially worse in every case, excluding this estimate — and hence failing to appropriately

capture uncertainty — in at least 40% of simulations for two of the three coefficients (β0

and β1).3

3B Applied Test with Adult Dataset

Table A1. Summary Statistics for Adult Dataset

Variable Type Missing Distribution Description

class_labels (outcome) Binary 0 >50K: 11,687; ≤50K: 37,155 Annual income
age Continuous 0 Mean = 38.64; SD = 13.71 Age
workclass Unordered

categorical
2,799 Mode = Private (33,906); 7

other categories
Employment type

fnlwgt Continuous 0 Mean = 189,664; SD =
105,604

Final weight (expected
number in population)

education Ordinal 0 Mode = HS-grad (15,784);
15 other categories

Highest level of
education (categorical)

education_num Continuous 0 Mean = 10.08; SD = 2.57 Highest level of
education (numerical)

marital_status Unordered
categorical

0 Mode = Married-civ-spouse
(22,379); 6 other categories

Marital status

occupation Unordered
categorical

2,809 Mode = Prof_speciality
(6,172); 13 other categories

Employment sector

relationship Unordered
categorical

0 Mode = Husband (19,716); 5
other categories

Position in family

race Unordered
categorical

0 Mode = White (41,762) Race

sex Binary 0 Mode = Male (32,650); 1
other category

Sex

capital_gain Continuous 0 Mean = 1079; SD =
7,452.019

Capital gains

capital_loss Continuous 0 Mean = 87.5; SD = 403.00 Capital losses
hours_per_week Continuous 0 Mean = 40.42; SD = 12.39 Hours worked per

week
native_country Unordered

categorical
857 Mode = United-States

(43,832); 41 other categories
Country of origin

The dataset has 48,842 rows representing individuals surveyed in the 1994 United States Census.

2Amelia’s coverage rates are marginally closer (β0 = 0.93, β1 = 0.95, β2 = 0.94) to the ideal than MIDAS’s
(β0 = 0.93, β1 = 0.86, β2 = 0.87), as should be expected under multivariate normal conditions.

3The coverage rates are β0 = 0.22, β1 = 0.60, β2 = 0.79.
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Table A2. Missingness Treatments Applied to Adult Dataset

Missingness
Pattern

Step Procedure to Obtain R (Missingness Indicator Vector)

MCAR 1. Randomly select proportion of columns (0.3, 0.5, 0.7, or 0.9) for miss-
ingness treatment. native_country, occupation, and education cannot
be selected (due to computational issues with Amelia).

2. R ∼ Bernoulli(p = 0.5) for each selected column.

MAR 1. MCAR step 1.
2. L = one column randomly sampled from those not selected (latent

missingness indicator).
3a. If L is continuous, select all rows with values at or below median of L.

Sample N/2 rows from this matrix. For each selected column, Ri = 1
if row i’s value is in this sample.

3b. If L is categorical, randomly sample half of all categories. If no. of
rows in this matrix > 50% of N, sample N/2 of rows. For each selected
column, Ri = 1 for all rows in remaining sample.

MNAR 1. MCAR step 1.
2. L = selected column.
3a. If L is continuous, MAR step 3a.
3b. If L is categorical, select modal category. For each selected column,

Ri = 1 for all except randomly sampled 5% percent of this sample.
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4 Applied Accuracy Test on ANES Data

In addition to their multivariate normal simulation exercise (see Section 3.2 of the main

text), Kropko et al. (2014a) conduct an applied accuracy test using the 2008 American

National Electoral Studies (ANES) dataset. The ANES is, in theory, a good fit for MIDAS:

like other electoral surveys, it is a wide and relatively diverse dataset, containing more than

1,000 columns (before any data transformations), many of which are categorical variables

with large numbers of classes. Kropko et al., however, focus on a subset of the ANES

comprising 11 columns — none of which present difficulties for existing MI algorithms

(the categorical variables have few classes) — and the 1,442 complete observations in the

dataset.4 It thus offers another good opportunity to assess MIDAS’s relative performance

under statistical conditions that are well suited to existing MI algorithms.

In the first step of the test, ordinal variables are transformed into continuous integer-

valued variables, binary variables are recoded to 0/1 format, and nominal variables are

one-hot encoded. MAR missingness is then simulated in 10 percent of observations, ex-

cluding one column per data type, and five completed datasets are generated. The test

consists of 20 simulations, across which the two accuracy metrics in Kropko et al.’s multi-

variate normal simulation are averaged.5

We instantiate MIDAS with a three-layer, 512-node network, which we train for 20

epochs. To ensure consistency across missing-data strategies, we make a few minor modi-

fications to the test. First, we supply the one-hot encoded versions of the nominal variables

to the marginal draws and mi-based strategies, which renders the multinomial logit (la-

beled “MI:MNL” by Kropko et al.) and renormalized logit (“MI:RNL”) variants of the latter

indistinguishable. Second, after imputation, we do not convert non-integer predicted prob-

4For detailed information on these variables, see Table 1 in Kropko et al. (2014a).
5Our description and extension of the test follow the code in Kropko et al.’s replication materials (Kropko
et al. 2014b); their article reports a higher number of simulations.
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abilities of binary and nominal variables into realized values through draws from further

random distributions. This practice can lead to misleading results because the random

draws may end up generating realized values with low predicted probabilities, resulting in

large imputation error. Consequently, we maintain the raw predicted probabilities when

comparing strategies.6

As in our applied accuracy test (Section 3.3 of the main text), we do not replicate the

model-based component of the test because we do not know the true joint distribution of

the data. Furthermore, since missingness in the original ANES is not completely random

(according to Little’s (1988) standard test), the parameters of a model estimated on the

test subset may be nontrivially biased.

Figure A2 plots the average RMSE of imputed values generated by each strategy across

the 20 completed datasets simulated in the test. Consistent with the results of our other

accuracy tests, MIDAS’s imputed values are more accurate than those of the remaining

strategies for all 11 variables. This gap is particularly sizable for the nominal religion vari-

ables, where MIDAS’s error is approximately 25% lower than that of every other strategy.

It is worth reiterating, moreover, that this test presents favorable conditions for existing MI

strategies; were it to be run on a wider subset of the ANES, MIDAS’s (relative) performance

would likely improve further.

6This is not possible in the case of mi, which automatically converts imputed values of binary variables to 0
or 1.
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Figure A2. Inverse Imputation Accuracy in Kropko et al. Applied ANES Test
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Lower RMSE indicates worse average imputation accuracy across the 20 completed datasets simulated in
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5 Additional Information on Scalability Analysis

5A List of Variables in Column-Wise Test

Binary gender, pew_bornagain, cit1, investor, trans, votereg, edloan, CC18_417a_1, CC18_417a_2,

CC18_417a_3, CC18_417a_4, CC18_417a_5, CC18_417a_6, CC18_417a_7, CC18_417a_8,

CC18_418a, CC18_414A, CC18_414B, CC18_414C, CC18_414D, CC18_414E, CC18_324a,

CC18_324b, CC18_324c, CC18_324d, CC18_415a, CC18_415b, CC18_415c, CC18_415d,

CC18_416, CC18_417_a, CC18_417_b, CC18_417_c, CC18_417_d, CC18_417_e, health-

ins_1, healthins_2, healthins_3, healthins_4, healthins_5, healthins_6, healthins_7, CC18_300_1,

CC18_300_2, CC18_300_3, CC18_300_4, CC18_300_5, CC18_300_6, CC18_303_1, CC18_303_2,

CC18_303_3, CC18_303_4, CC18_303_5, CC18_303_6, CC18_303_7, CC18_303_8, CC18_303_9,

CC18_303_10, CC18_303_11, CC18_320a, CC18_320c, CC18_320d, CC18_321a, CC18_321b,

CC18_321c, CC18_321d, CC18_322a, CC18_322b, CC18_322c_new, CC18_322d_new, CC18_322c,

CC18_322f, CC18_325a, CC18_325b, CC18_325c, CC18_325d, CC18_325e_new, CC18_325f_new,

CC18_326, CC18_327a, CC18_327c, CC18_327d, CC18_327e, CC18_328b, CC18_328d,

CC18_328e, CC18_328f, CC18_331a, CC18_331b, CC18_331c, CC18_332a, CC18_332b,

CC18_332c, CC18_332e

Categorical sexuality, educ, race, employ, internethome, internetwork, marstat, pid3, re-

ligpew, ownhome, urbancity, immstat, union_coverage, unionhh, CC18_309a, CC18_309b,

CC18_309c, CC18_309d, CC18_316, CC18_318a, CC18_335, CC18_350

Ordinal pew_religimp, pid7, ideo5, pew_churatd, pew_prayer, newsint, faminc_new, CC18_421a,

CC18_app_dtrmp_post, CC18_422a, CC18_422b, CC18_422c, CC18_422d, CC18_422e, CC18_422f,

CC18_422g, CC18_426_1, CC18_426_2, CC18_426_3, CC18_426_4, CC18_426_5, CC18_427_a,

CC18_427_b, CC18_427_c, CC18_427_d, CC18_302
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Continuous birthyr, citylength_1

5B List of Variables in Row-Wise Test

Binary gender, pew_bornagain, cit1, investor, trans, votereg

Categorical sexuality, educ, internethome, internetwork, marstat, pid3, ownhome, urbancity,

immstat, unionhh

Ordinal pew_religimp, pid7, ideo5, pew_churatd, pew_prayer, newsint, faminc_new

Continuous birthyr, citylength_1

6 Additional Information on Latent Ideology Estimation

6A List of Policy Questions

As discussed in the main text, we estimate CCES respondents’ latent ideology by regressing

their ideological self-placement on their answers to 19 policy questions in the survey. The

former is based on CCES question CC18_334A (Ideological Placement — Yourself): “How

would you rate each of the following individuals and groups?” Response options range

from 1 for “Very Liberal” to 7 for “Very Conservative.” The 19 policy variables are listed in

Table A3.

6B Comparison with Amelia

Although existing MI algorithms cannot accommodate the full CCES sample on which we

train the MIDAS imputation model, some of them can handle small subsets of this sample
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Table A3. List of CCES Policy Variables Included in Latent Ideology Estimation

Variable Policy.Area Response.Type Missing
CC18_414A Minimum Wage For/Against 8202
CC18_414B Millionaire’s tax For/Against 8216
CC18_414C Sales tax For/Against 8233
CC18_414D Income tax For/Against 8230
CC18_414E Abortion spending For/Against 8223
CC18_324a Government Spending Support/Oppose 8304
CC18_324b Government Spending Support/Oppose 8324
CC18_324c Government Spending Support/Oppose 8298
CC18_324d Government Spending Support/Oppose 8280
CC18_415a Carbon Dioxide regulation Support/Oppose 8517
CC18_415b Fuel efficiency regulation Support/Oppose 8499
CC18_415c Renewable energy policy Support/Oppose 8476
CC18_415d EPA powers Support/Oppose 8456
CC18_416 Financial regulation Support/Oppose 8495
CC18_426_1 State welfare spending Increase/Decrease (1-5) 8311
CC18_426_2 State healthcare spending Increase/Decrease (1-5) 8330
CC18_426_3 State education spending Increase/Decrease (1-5) 8353
CC18_426_4 State law enforcement spending Increase/Decrease (1-5) 8380
CC18_426_5 State transportation/infrastructure

spending
Increase/Decrease (1-5) 8364

that exclude categorical variables with a large number of levels. Importantly, however,

some of these omitted variables — such as respondents’ state of residence and religion

— are likely to be strong predictors of both the policy items and missingness in these

variables. When they are excluded from the imputation model, therefore, estimates of

latent ideology will tend to be closer to those based on listwise deletion.

To illustrate this point, we estimate latent ideology using a subset of the CCES data

with the Amelia package in R. Specifically, we include five demographic variables — gen-

der, sexuality, race, sector of employment, and party identification — in addition to the

19 policy variables included in the regression model (Equation 8).7 As with MIDAS, we

then generate 15 completed datasets and recover latent ideology estimates from the fitted

7We exclude several demographic variables with a higher number of categories to enable convergence.
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Figure A3. Comparison of Latent Ideology Estimates from Different MI Strategies
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Figure A3 plots the latent ideology estimates from listwise deletion, MIDAS, and Amelia.

As expected, Amelia’s estimates are substantially closer to the listwise deletion estimates

than MIDAS’s. While the modal category is 4, there is a more pronounced peak on the

left (liberal) side of the ideology scale and a flatter tail on the right (conservative) side.

Compared to MIDAS, therefore, Amelia yields estimates with a clearly more peaked and

less normal shape. We can reject the null hypothesis that the three sets of estimates are

drawn from the same distribution at the p < 0.01 level in Kolmogorov-Smirnov tests.

These inferential differences are also significant from a practical perspective. In real

datasets such as the CCES, the pattern and specific determinants of missingness are not

known. The best option for users of MI is to leverage as much predictive information

about the missingness mechanism and incomplete variables as possible. MIDAS enables

us to utilize considerably more such information than existing MI strategies — with no
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loss in imputation speed or accuracy — reducing the risk of bias and increasing statistical

efficiency.

7 Imputing Time-Series Cross-Sectional Data: An Illustration

Finally, this appendix provides an illustration of MIDAS’s ability to handle a particularly

common type of non-exchangable data in social science research: time-series cross-sectional

data.8 As Honaker and King (2010) note, the dominant approach to MI tends to perform

poorly with such data, yielding imputed values that are implausible based on substantive

knowledge or that deviate substantially from previous and subsequent observations in a

smoothly varying time series. These problems arise because the approach “assumes that

the missing values are linear functions of other variables’ observed values, observations

are independent conditional on the remaining observed values, and all the observations

are exchangable in that the data are not organized in hierarchical structures” (Honaker

and King 2010, 565).9 Although MIDAS — like most MI strategies — does not include any

special functionalities for non-exchangable data, we have found that its capacity to learn

complex relationships among variables enables it to accurately impute values in time-series

cross-sectional settings with only small adjustments to the imputation model.

Building on an experiment conducted by Honaker and King (2010, 565-569) with

Amelia, we demonstrate this capacity using data from the World Bank’s World Devel-

opment Indicators (WDI), a collection of almost 1,600 time-series indicators of social and

economic development covering 217 countries since 1960.10 We select six African coun-

tries — Cameroon, Côte D’Ivoire, Congo Republic, Ghana, Niger, and Zambia — over the
8Data are non-exchangeable if observations cannot be reordered without altering their joint distribution.
More formally, a sequence of random variables X1, X2, ..., Xn is non-exchangeable if its joint distribution is
not identical to that of any (finite) permutation of its indices: p(X1, X2, ..., Xn) 6= p(Xπ(1), Xπ(2), ..., Xπ(n)).

9Amelia seeks to avoid these problems by allowing users to construct a general model of temporal patterns
with a sequence of polynomials of the time index. Such a sequence could, of course, be included in a MIDAS
model.

10http://datatopics.worldbank.org/world-development-indicators/.
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period 1970-2000, drop all entirely missing columns, and sequentially remove a single

country-year observation of GDP (measured in constant 2010 United States dollars) from

each cross-section (31 years × six countries).11 This yields 186 different subsets of the

WDI, each comprising 186 observations and 1251 variables — samples that are too wide

for any existing MI algorithm to process. Note, however, does this setup does not play to

MIDAS’s strengths either, given that the accuracy of neural networks generally increases

with the number of observations.

For each sample, we generate lags and leads of all (non-index) variables, since both past

and future values of a given variable tend to be correlated with its present value (Honaker

et al. 2011, 19). Based on an overimputation analysis (see Section 1), we instantiate

MIDAS with two hidden layers of 1024 and 512 nodes, a learning rate of 3e− 5, a dropout

rate of 0.95, and 2000 training epochs. We include country dummies as well as the lags

and leads in the imputation models, bringing the total number of variables to 3756.12 200

completed datasets are then produced with each model.

Figure A4 compares real versus MIDAS-imputed values of GDP for the six countries.

In general, the latter data track the former remarkably closely through each time series,

even capturing trends that were missed by Amelia, such as Côte d’Ivoire’s cocoa crisis

in the late 1970s and Cameroon’s strong economic recovery in the mid-1980s (Honaker

and King 2010, 569). Only a handful of real values fall outside the interquartile range

of MIDAS’s imputations, most of which are at the extremities of the time series. This is

probably a consequence of the absence both of lags at the beginning of the time series and

of leads at the end. Incorporating into the imputation model data from shortly before and

after the time period of interest — if available — may help to avoid this problem.

11We deviate from Honaker and King’s selection of countries by substituting Niger for Mozambique, since
the latter lacks a complete GDP time series in the WDI.

12Given the large number of imputation models in this exercise, we pass all variables other than country,
year, and GDP to the additional_data argument in MIDAS, which excludes them from the cost function
and hence accelerates training.
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Figure A4. Real Versus MIDAS-Imputed GDP for Six African Countries, 1970-2000
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MIDAS imputations are based on variants of the WDI dataset in which country-year observations of GDP are
sequentially removed. Each imputation model includes all variables in the WDI that are not entirely missing
for the six countries, leads and lags of all non-index variables, and country dummies.

In sum, MIDAS can successfully recover smooth temporal trends in GDP for all six coun-

tries. This is particularly notable in light of the absence of explicit features for modeling

time and the high ratio of variables to observations, which often leads to poor imputation

accuracy with existing MI strategies. To be sure, MIDAS would not perform as well in the

presence of longer periods of missingness and sharper inflection points in the time series.

However, provided that the imputation model contains sufficiently rich information about
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how observed values are related at different points in time, posterior uncertainty should

be low enough to permit valid statistical inference. The inclusion of additional features in

the model, such as polynomials of the time index and flexible basis functions, could further

improve MIDAS’s performance.
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