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Abstract
We address the problem of initiation of convective motion in the case of a fluid saturated
porous layer, containing a salt in solution, which is heated and salted below. We amplify the
very interesting recent results of Nield and Kuznetsov and examine in detail a whole range of
temperature and salt boundary conditions allowing for a combination of prescribed heat flux
and temperature. The behaviour of the transition from stationary to oscillatory convection
is examined in detail as the boundary conditions vary from prescribed temperature and salt
concentration toward those of prescribed heat flux and salt flux.

Keywords Heated–salted below · Stationary–oscillatory transition · Double diffusive
convection

1 Introduction

Nield andKuznetsov (2016) produced an inspiring article inwhich they address the behaviour
of the onset of convective motion in a layer of porous material which is saturated by a fluid
containing a dissolved salt. They consider both Brinkman and Darcy theory, and they are
primarily interested in the casewhere the heat flux and salt flux are prescribed on the boundary.
They do, however, also consider the case where general thermal and salt boundary conditions
are employed which involve a combination of flux and prescribed temperature and salt. They
develop an asymptotic and a numerical analysis to study how oscillatory convection behaves
as boundary conditions of flux only are considered. It is well known that in the heated
below–salted below situation there is a transition from stationary convection to oscillatory
convection as the salt Rayleigh number increases. The current article is motivated entirely by
the work of Nield and Kuznetsov (2016), and we analyse how the transition from stationary
to oscillatory convection is affected as the boundary conditions change.

Double diffusive convection is a problem with many real-life applications and as such
has attracted much attention in the research literature, see, e.g. Barletta and Nield (2011),
Deepika (2018), Deepika and Narayana (2016), Harfash and Challoob (2018), Harfash and
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Hill (2014), Joseph (1970), Joseph (1976),Lombardo et al. (2001),Matta et al. (2017),Mulone
(1994), Nield (1967, 1968), Nield and Kuznetsov (2016), Straughan (2011, 2014, 2015a,
2018, 2019) and Xu and Li (2019). Stability analyses in double diffusive convection were
introduced in the fundamental articles of Nield (1967, 1968), and from an unconditional
energy stability point of view by Joseph (1970, 1976). Research activity in this area has
increased rapidly as is witnessed by the articles cited above and the references therein.

Another very interesting development in stability in thermal convection studies has been to
consider boundary conditions which are more general than those of prescribing temperature
and salt concentration. For example, isoflux conditions, isobaric conditions, or various com-
binations. In many cases, these boundary conditions lead to surprising and novel results, see,
e.g. Barletta (2012), Barletta et al. (2010), Barletta andRees (2012), Barletta andCelli (2018),
Celli and Barletta (2019), Celli et al. (2016), Celli et al. (2013), Celli and Kuznetsov (2018),
Falsaperla et al. (2010, 2011), Lagziri and Bezzazi (2019), McKibbin (1986), Mohammad
and Rees (2017), Nield and Kuznetsov (2016), Rees and Barletta (2011), Rees and Mojtabi
(2011), Rees and Mojtabi (2013), Salt (1988) and Webber (2006).

Given the interest in double diffusive convection, especiallywhere the salt and temperature
effects are in competition as in the heated and salted below case, and the attention to general
boundary conditions where a combination of flux and prescribed temperature/salt is studied,
we believe this work is noteworthy. We also corroborate some of the findings of Nield and
Kuznetsov (2016) as boundary conditions of pure flux are approached.

2 Equations

The derivation of the equations for double diffusion in a porous layer is well known. We
present the non-dimensional perturbation equations in terms of the velocity, pressure, tem-
perature and concentration perturbations, ui , π, θ and φ, cf. Nield and Kuznetsov (2016),
Mulone (1994) and Straughan (2014), Eq. (5),

0 = ui + Rθki − Cφki − π,i ,

ui,i = 0,

θ,t + uiθ,i = w + �θ,

ε1φ,t + Leuiφ,i = w + �φ

(1)

where R and C are the Rayleigh and salt Rayleigh numbers, k = (0, 0, 1), ε1 = εLe, where
ε is the porosity and Le is the Lewis number,� is the Laplace operator, and standard indicial
notation is employed. Equation (1) holds in the layer {(x, y) ∈ R

2}×{z ∈ (0, 1)}with t > 0.
The boundary conditions may be derived as in Nield and Kuznetsov (2016), where the

temperature and concentration are specified on the boundaries z = 0, 1 and the perturbations
are subject to more general boundary conditions. Alternatively, in the dimensional variables,
we may propose the temperature satisfies the boundary conditions

α
(∂T

∂z
+ β

)
d + (1 − α)(TL − T ) = 0, z = 0,

α
(∂T

∂z
+ β

)
d + (1 − α)(T − TU ) = 0, z = d,

(2)

where d is the layer depth, TL and TU are constants with TL > TU , β = (TL − TU )/d
and α is a constant with 0 ≤ α < 1. Note that α = 0 corresponds to prescribed upper
and lower temperatures TU and TL , whereas α = 1 corresponds to flux boundary conditions.
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Equation (2) is usually known as Robin boundary conditions, and they allow a steady solution

T̄ = TL − βz

and then lead to the non-dimensional perturbation boundary conditions

αθz − (1 − α)θ = 0, z = 0,

αθz + (1 − α)θ = 0, z = 1,
(3)

where θ is the non-dimensional temperature perturbation. We introduce the parameter L =
(1 − α)/α (the Biot number) and note that (3) may be rewritten as

θz − Lθ = 0, z = 0,

θz + Lθ = 0, z = 1.
(4)

A similar derivation involving the concentration C leads to non-dimensional perturbation
boundary conditions on φ as

φz − Lφ = 0, z = 0,

φz + Lφ = 0, z = 1.
(5)

We here restrict attention to the case where L has the same value in (4) and (5). One could
consider a general case where four different L values, Li , i = 1, . . . , 4, are considered in
(4) and (5).

We are interested in determining the threshold of instability and so we remove the nonlin-
ear terms from (1) and then seek a solution like ui = ui (x) eσ t , π = π(x) eσ t , θ = θ(x) eσ t ,
φ = φ(x) eσ t .We next remove the pressure by taking curlcurl of (1)1 and retain the third com-
ponent of the resulting equation. Writing u = (u, v, w), this leaves the system of equations

0 = �w − R�∗θ + C�∗φ,

σθ = w + �θ,

σε1φ = w + �φ,

(6)

where �∗ = ∂2/∂x2 + ∂2/∂ y2. This system is to be solved subject to boundary conditions
(4), (5), together with

w = 0, z = 0, 1, (7)

and the assumption that w, θ, φ satisfy a periodic plane tiling planform in (x, y) (Chan-
drasekhar 1981, pp. 43–52).

The plane tiling planform h(x, y) is discussed at length in cf. Chandrasekhar (1981),
pp. 43–52, and satisfies �∗h = −a2h, where a is a wavenumber. This allows one to
decompose w, θ, φ in terms of functions of form w = W (z)h(x, y), θ = �(z)h(x, y)
and φ = �(z)h(x, y). Upon using these forms, one has to solve the eigenvalue problem

(D2 − a2)W + Ra2� − Ca2� = 0,

(D2 − a2)� + W = σ�,

(D2 − a2)� + W = ε1σ�,

(8)

and the boundary conditions

W = 0, z = 0, 1,

�z − L� = 0, z = 0; �z + L� = 0, z = 1,

�z − L� = 0, z = 0; �z + L� = 0, z = 1.

(9)

Numerical solutions of (8) and (9) are presented in Sect. 5.
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Fig. 1 Graph of R,C when the parameter L has infinite value (prescribed temperatures). Here, εLe = 20.
The left branch of the solid curve is the stationary convection boundary, and the part after (R∗,C∗) =
(4π2(εLe/εLe − 1), 4π2/(εLe − 1)), represents the oscillatory convection boundary. The broken line is a
continuation of the stationary convection boundary

3 Exact Theory

Before discussing numerical results for various values of L , we recollect resultswhen L = ∞,
i.e. when α = 0. In this case, Eqs. (8) and (9) may be solved exactly and one finds the lowest
two eigenvalues lead to the stationary convection threshold

R = C + 4π2, (10)

and the oscillatory convection threshold

R = C

ε1
+ 4π2

(1 + ε1

ε1

)
, (11)

with the oscillatory part of the eigenvalue satisfying

σ 2
i = π2

ε1
(4π2 + C − R). (12)

One may observe that curves (10) and (11) intersect at (R∗,C∗)when ε1 > 1, as is nearly
always the case in real life, where

R∗ = 4π2
( ε1

ε1 − 1

)
, C∗ = 4π2

(ε1 − 1)
.

The behaviour of the (R,C) curves is shown in Fig. 1 when ε1 = εLe = 20. In this case, the
stationary convection curve has slope 1, while the oscillatory convection curve has slope 1/20.
For C ≤ C∗, one finds stationary convection, whereas for C > C∗ oscillatory convection
occurs.
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Table 1 Values of R∗ and C∗ together with the critical value of a, namely, acr , and L

R∗ C∗ acr L

4π2ε1/(ε1 − 1) ≈ 41.5562 4π2/(ε1 − 1) ≈ 2.0778 π ≈ 3.14159 ∞
(40.758, 40.759) (2.038, 2.039) 3.111 100

(35.642, 35.643) (1.782, 1.783) 2.879 10

(32.273, 32.274) (1.614, 1.615) 2.693 5

(28.400, 28.401) (1.420, 1.421) 2.442 2.5

(23.530, 23.531) (1.177, 1.178) 2.057 1

(16.201, 16.202) (0.810, 0.811) 1.201 0.1

(13.745, 13.746) (0.687, 0.688) 0.677 0.01

(12.742, 12.743) (0.638, 0.639) 0.214 10−4

(12.642, 12.643) (0.632, 0.633) 0.06773 10−6

(12.632, 12.633) (0.632, 0.633) 0.0213 10−8

The respective values of R∗ and C∗ are given in an interval. This reflects the accuracy of the computational
solution. Here, ε1 = εLe = 20

Table 2 Values of L and σi
representing the values of σi on
the critical oscillatory convection
curve when C = 2.1

L σi

100 ± 0.1672

10 ± 0.3209

5 ± 0.3426

2.5 ± 0.3266

1 ± 0.2632

0.1 ± 0.1034

0.01 ± 0.03428

10−4 ± 3.485 × 10−3

10−6 ± 3.494 × 10−4

Here, ε1 = εLe = 20

If one employs purely flux boundary conditions, it is known that a = 0 yields the stationary
convection boundary and then I calculate a weakly nonlinear analysis to show

R = C + 12 + 34

35
a2 + O(a4),

is the instability threshold. This suggests that R∗ ∈ [12, 4π2ε1/(ε1 − 1)] and C∗ ∈
[12/ε1, 4π2/(ε1 − 1)], for general values of L in (0,1]. Numerical analysis confirms this,
and the behaviour is reported in Sect. 5.

4 Numerical Methods

Thenumericalmethodswe employ are based on theChebyshev taumethod, see, e.g.Dongarra
et al. (1996) and Gheorghiu (2014), and the resulting finite dimensional generalized matrix
eigenvalue problem is solved with the QZ algorithm of Moler and Stewart (1971). Explicit
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Fig. 2 Graph of R,C when the parameter L varies. Here, εLe = 20. The curves decrease in R as L decreases
and are for L = ∞ (uppermost curve), 10, 5, 2.5, 1, 0.1, 0.01 and 10−4 (lowest curve). The dark solid circles
represent (R∗,C∗). The dotted lines represent the curves C = 1, 1.7, 2.1, cf. Tables 2, 3 and 4
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Fig. 3 Graph of R∗,C∗. The parameter L varies from 10−10 to ∞. Here, εLe = 20. The values of L
represented by the circles are 10−10, 10−8, 10−6, 10−4 shown as the four nearly coalesced circles on the
lower left of the line (indistinguishable at this scale), and 0.01, 0.1, 1, 2.5, 5, 10, 100 and ∞, with the last
value being the circle on the upper right of the line. The dashed line for C∗ between 0 and 2.5 represents the
convection threshold R = 12
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Table 3 Values of L and σi
representing the values of σi on
the critical oscillatory convection
curve when C = 1.7

L σi

5 ± 0.1443

2.5 ± 0.2095

1 ± 0.1981

0.1 ± 0.08590

0.01 ± 0.02903

10−4 ± 2.970 × 10−3

10−6 ± 2.973 × 10−4

10−8 ± 2.950 × 10−5

10−10 ± 2.930 × 10−6

Here, ε1 = εLe = 20

Table 4 Values of L and σi
representing the values of σi on
the critical oscillatory convection
curve when C = 1

L σi

10−1 ± 0.03968

10−2 ± 0.01613

10−4 ± 1.736 × 10−3

10−6 ± 1.754 × 10−4

10−8 ± 1.741 × 10−5

10−9 ± 5.508 × 10−6

10−10 ± 1.719 × 10−6

10−11 ± 5.602 × 10−7

10−12 ± 1.782 × 10−7

Here, ε1 = εLe = 20

details of this are given in Dongarra et al. (1996), and we write

W =
N∑

n=0

WnTn(z), � =
N∑

n=0

�nTn(z), � =
N∑

n=0

�nTn(z),

where Tn are the Chebyshev polynomials of the first kind and Wn,�n,�n are the Fourier
coefficients. In terms of the vector

X = (W0, . . . ,WN ,�0, . . . , �N ,�0, . . . , �N ),

this leads to the matrix eigenvalue problem

AX = σ BX

where

A =
⎛
⎝
D2 − a2 I Ra2 I −Ca2 I

I D2 − a2 I 0
I 0 D2 − a2 I

⎞
⎠

and

B =
⎛
⎝
0 0 0
0 I 0
0 0 ε1 I

⎞
⎠
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Table 5 Values of acr, R,C and
σi at criticality L = 100

acr R C σi

3.111 38.7205 0 0

3.111 39.1205 0.4 0

3.111 39.5205 0.8 0

3.111 39.9205 1.2 0

3.111 40.3205 1.6 0

3.111 40.7205 2.0 0

3.111 40.7305 2.01 0

3.111 40.7591 2.05 ± 0.07377

3.111 40.7601 2.07 ± 0.1202

3.111 40.7616 2.1 ± 0.1672

3.111 40.7766 2.4 ± 0.4039

3.111 40.7916 2.7 ± 0.5462

3.111 40.8066 3.0 ± 0.6584

Here, ε1 = εLe = 20

Table 6 Values of acr, R,C and
σi at criticality L = 10

acr R C σi

2.879 33.8601 0 0

2.879 34.3601 0.5 0

2.879 34.8601 1.0 0

2.879 35.3601 1.5 0

2.879 35.5601 1.7 0

2.879 35.6432 1.8 ± 0.07613

2.879 35.6484 1.9 ± 0.1954

2.879 35.6537 2.0 ± 0.2657

2.879 35.6799 2.5 ± 0.4823

2.879 35.7061 3.0 ± 0.6282

Here, ε1 = εLe = 20

Care must be taken with the boundary conditions to avoid the presence of spurious eigen-
values. Details of how one handles the boundary conditions W = 0 are given in Dongarra
et al. (1996). To deal with the boundary conditions on� and�, we note that Tn(±1) = (±1)n

and T ′
n(±1) = (±1)n−1n2. One has to recollect that the Chebyshev domain is (−1, 1), and

then one finds that the boundary conditions yield the restrictions

2
[
22�2 + 42�4 + · · · + (N − 3)2�N−3 + (N − 1)2�N−1

]

+ L
[
�0 + �2 + · · · + �N−3 + �N−1

] = 0

and

2
[
�1 + 32�3 + · · · + (N − 2)2�N−2 + N 2�N

]

+ L
[
�1 + �3 + · · · + �N−2 + �N

] = 0.

123



Heated and Salted Below Porous Convection with Generalized…

Table 7 Values of acr, R,C and
σi at criticality L = 5

acr R C σi

2.693 30.6504 0 0

2.693 31.1594 0.5 0

2.693 31.6594 1.0 0

2.693 31.8594 1.2 0

2.693 32.0594 1.4 0

2.693 32.2780 1.7 ± 0.1441

2.693 32.2836 1.8 ± 0.2120

2.693 32.2892 1.9 ± 0.2628

2.693 32.2948 2.0 ± 0.3053

2.693 32.3004 2.1 ± 0.3426

2.693 32.3060 2.2 ± 0.3762

2.693 32.3116 2.3 ± 0.4070

2.693 32.3172 2.4 ± 0.4357

Here, ε1 = εLe = 20

Table 8 Values of acr, R,C and
σi at criticality L = 2.5

acr R C σi

2.442 26.9809 0 0

2.442 27.2809 0.3 0

2.442 27.5809 0.6 0

2.442 27.8809 0.9 0

2.442 28.4058 1.5 ± 0.1120

2.442 28.4119 1.6 ± 0.1678

2.442 28.4179 1.7 ± 0.2095

2.442 28.4240 1.8 ± 0.2441

2.442 28.4300 1.9 ± 0.2744

2.442 28.4361 2.0 ± 0.3016

2.442 28.4422 2.1 ± 0.3266

2.442 28.4482 2.2 ± 0.3495

2.442 28.4543 2.3 ± 0.3712

Here, ε1 = εLe = 20

This allows one to write

�N−1 = − 1

[2(N − 1)2 + L] [(2 × 02 + L)�0 + (2 × 22 + L)�2+
· · · + {2(N − 3)2 + L}�N−1]

and

�N = − 1

[2N 2 + L] [(2 × 12 + L)�1 + (2 × 32 + L)�3+
· · · + {2(N − 2)2 + L}�N−2]
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Table 9 Values of acr, R,C and
σi at criticality L = 1

acr R C σi

2.057 22.3523 0 0

2.057 22.8523 0.5 0

2.057 23.3523 1.0 0

2.057 23.4523 1.1 0

2.057 23.5302 1.2 ± 0.04205

2.057 23.5366 1.3 ± 0.09629

2.057 23.5429 1.4 ± 0.1295

2.057 23.5492 1.5 ± 0.1557

2.056 23.5556 1.6 ± 0.1782

2.056 23.5619 1.7 ± 0.1981

2.056 23.5682 1.8 ± 0.2162

2.056 23.5746 1.9 ± 0.2329

2.056 23.5809 2.0 ± 0.2485

Here, ε1 = εLe = 20

Table 10 Values of acr, R,C and
σi at criticality L = 0.1

acr R C σi

1.201 15.3912 0 0

1.201 15.5912 0.2 0

1.201 15.7912 0.4 0

1.201 15.9912 0.6 0

1.201 16.1912 0.8 0

1.201 16.2063 0.9 ± 0.02731

1.201 16.2120 1.0 ± 0.03968

1.201 16.2177 1.1 ± 0.04903

1.201 16.2290 1.3 ± 0.06373

1.201 16.2404 1.5 ± 0.07563

1.201 16.2517 1.7 ± 0.08590

1.201 16.2631 1.9 ± 0.09506

1.201 16.2744 2.1 ± 0.1034

Here, ε1 = εLe = 20

Analogous expressions hold for�N−1 and�N . These expressions are used to remove bound-
ary condition rows, cf. Dongarra et al. (1996), in the matrices A and B and are very important
in dealing with spurious eigenvalues.

To find (R∗,C∗) numerically is not trivial. We used two codes. One tracks along the
stationary convection curve from C = 0 and then tracks along the oscillatory convection
curve in the opposite direction. When we are in the vicinity of (R∗,C∗), the two leading
eigenvalues σ1 and σ2 one of which is real, whereas the other is complex, have real parts close
to zero and close to each other; therefore, the code switches from one to the other and breaks
down. Thus, we extrapolate from the stationary and oscillatory convection curves for a given
value of L to find an approximate value for R∗ andC∗. We then employ a second code which
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Table 11 Values of acr, R,C and
σi at criticality L = 0.01

acr R C σi

0.677 13.0586 0 0

0.677 13.2586 0.2 0

0.677 13.4586 0.4 0

0.677 13.6586 0.6 0

0.677 13.7518 0.8 ± 9.6837 × 10−3

0.677 13.7570 0.9 ± 0.01330

0.677 13.7623 1.0 ± 0.01613

0.677 13.7674 1.1 ± 0.01853

0.677 13.7779 1.3 ± 0.02258

0.677 13.7884 1.5 ± 0.02600

0.677 13.7988 1.7 ± 0.02903

0.677 13.8092 1.9 ± 0.03176

0.677 13.8197 2.1 ± 0.03428

Here, ε1 = εLe = 20

Table 12 Values of acr, R,C and
σi at criticality L = 10−4 acr R C σi

0.214 12.1049 0 0

0.214 12.2549 0.15 0

0.214 12.4049 0.3 0

0.214 12.5549 0.45 0

0.214 12.6550 0.55 0

0.214 12.7451 0.7 ± 7.2263 × 10−4

0.214 12.7501 0.8 ± 1.1629 × 10−3

0.214 12.7552 0.9 ± 1.4773 × 10−3

0.214 12.7602 1.0 ± 1.7357 × 10−3

0.214 12.7652 1.1 ± 1.9603 × 10−3

0.214 12.7753 1.3 ± 2.3459 × 10−3

0.214 12.7853 1.5 ± 2.6765 × 10−3

0.214 12.7953 1.7 ± 2.9705 × 10−3

0.214 12.8053 1.9 ± 3.2379 × 10−3

0.214 12.8154 2.1 ± 3.4849 × 10−3

Here, ε1 = εLe = 20

compares σ1 and σ2 in the vicinity of the “crossing point” and varies over a suitable range
of wavenumber a. In this way, we actually find where σ1 and σ2 swap places, to 3 decimal
places of accuracy in R. Numerical results employing these procedures are presented next.
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Table 13 Values of acr, R,C and
σi at criticality L = 10−6 acr R C σi

0.06773 12.0105 0 0

0.06773 12.1105 0.1 0

0.06773 12.3105 0.3 0

0.06773 12.5105 0.5 0

0.06773 12.6005 0.59 0

0.06773 12.6460 0.7 ± 7.5101 × 10−5

0.06773 12.6510 0.8 ± 1.1801 × 10−4

0.06773 12.6560 0.9 ± 1.4911 × 10−4

0.06773 12.6610 1.0 ± 1.7438 × 10−4

0.06773 12.6660 1.1 ± 1.9701 × 10−4

0.06773 12.6760 1.3 ± 2.3552 × 10−4

0.06773 12.6860 1.5 ± 2.6800 × 10−4

0.06773 12.6960 1.7 ± 2.9798 × 10−4

0.06773 12.7060 1.9 ± 3.2469 × 10−4

0.06773 12.7160 2.1 ± 3.4936 × 10−4

Here, ε1 = εLe = 20

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
-3.0
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-1.5

-1.0
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log10L
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Fig. 4 Graph of log10 a, log10 L . Here, ε1 = εLe = 20
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5 Numerical Results and Conclusions

The values of R∗ and C∗ as L varies are displayed in Table 1 and in Figs. 2 and 3. From
Fig. 3, it appears that (R∗,C∗) form approximately a straight line with L varying. The critical
values of a are in agreement with the values in table 1 of Nield and Kuznetsov (2016), who
give values of R and acr as L varies for the problem of thermal convection (without a solute).
We found R∗ ∈ (12.631, 12.632) and C∗ ∈ (0.6315, 0.6316) when L = 10−10, and we
found a similar value for C∗ when L = 10−12.

The critical wavenumber acr varies with L , but we found no variation with C , as seen in
Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13. For L ≤ 0.1, we found the graph of log10 a against
log10 L yields approximately a straight line, as is seen in Fig. 4. This behaviour is already
seen in the numbers of table 1 of Nield and Kuznetsov (2016). We actually found values of
acr when L = 10−9, 10−10, 10−11 and 10−12 to be acr = 0.01201, 0.00671, 0.00381 and
0.00213, respectively.

From Tables 2–4, we see that the value of σi (the imaginary part of σ ) on the oscillatory
curve firstly increases as L decreases, reaches a maximum, and then decreases again with
further decrease in L . Tables 2–4 correspond to values on the oscillatory branches of the
instability curve shown in Fig. 2 for C = 1, 1.7 and 2.1 (the dashed lines). We observe that
as L becomes very small σi likewise becomes very small. This is in complete agreement
with the findings of Nield and Kuznetsov (2016) who note in their conclusions (in our
notation),…oscillatory instability can still occur as L tends to zero…, in practical situations
it is likely that no oscillations will be observed. This behaviour is witnessed in Tables 5–13.

From Tables 5–13, we see that σi increases on the oscillatory curve as C increases, and
this is in agreement with the exact case of prescribed temperature and concentration where
we know the exact solution, cf. Eq. (12).

From Tables 5–13 and the exact solution when L = ∞, we observe that the slope on the
stationary convection curve is always 1. However, the slope on the oscillatory convection
curve is 0.05 when L = ∞, 100 and then increases to a maximum and then decreases again
as L → 0. We found approximately, slopes of 0.0524, 0.0561, 0.0606, 0.0633, 0.0567,
0.0522, 0.0502 when L = 10, 5, 2.5, 1, 0.1, 0.01, 10−4, respectively, and then for L = 10−6

or smaller the slope is 0.05. It appears from the numerical results that the oscillatory curve
is a straight line for all values of L , but we have no analysis to justify this. It is worth
pointing out that while the oscillatory curve is close to a straight line for an anisotropic inertia
coefficient it is not actually straight, see Straughan (2014). Also, the transition from stationary
to oscillatory convection in other problems may involve curved stationary convection and
oscillatory convection curves, see, e.g. the analysis of Straughan (2015b) when the heat flux
is of Cattaneo–Christov type.

In conclusion, we have found the transition from stationary convection to oscillatory
convection in the heated below–salted below situation when the Nield and Kuznetsov (2016)
boundary conditions, (4), (5), are employed for various values of L . We have chosen for our
numerical results the realistic value of ε1 = εLe = 20, although I believe the behaviour
found here is not simply restricted to this case. Our results are in agreement with those of
Nield and Kuznetsov (2016), and we add further information to their findings.
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