
 

Simulating seeded vacuum decay in a cold atom system
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We propose to test the concept of seeded vacuum decay in cosmology using a Bose-Einstein condensate
system. The role of the nucleation seed is played by a vortex within the condensate. We present two
complementary theoretical analyses that demonstrate seeded decay is the dominant decay mechanism of
the false vacuum. First, we adapt the standard instanton methods to the Gross-Pitaevskii equation. Second,
we use the truncated Wigner method to study vacuum decay.
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I. INTRODUCTION

First-order phase transitions form an important class of
physical phenomena. Typically, these are characterized
by metastable, supercooled states and the nucleation of
bubbles. Applications range from the condensation of water
vapor to the vacuum decay of fundamental quantum fields.
In cosmology, bubbles of a new matter phase would
produce huge density variations, and unsurprisingly first
order phase transitions have been proposed as sources
of gravitational waves [1,2] and as sources of primordial
black holes [3,4].
Clearly a key factor in the relevance of such by-products

of phase transitions is the likelihood of that transition
occurring. Bubble nucleation rates are exponentially sup-
pressed, and formal estimates of the lifetimes of metastable
states can be huge. However, many phase transition rates in
ordinary matter are greatly enhanced by the presence of
nucleation seeds, in the form of impurities or defects on the
boundary of the material. We have argued recently that
cosmological bubble nucleation can also be greatly accel-
erated by nucleation seeds, for example with seeds in the
form of primordial black holes [5,6]. In this paper we
propose that seeded bubble nucleation can be studied in a

laboratory cold-atom analogue of cosmological vacuum
decay [7,8].
The idea of using analogue systems for cosmological

processes comes under the general area of modeling the
“universe in the laboratory” [9,10]. So far, analogue
systems have mostly been employed to test ideas in
perturbative quantum field theory [11,12], but nonpertur-
bative phenomena such as bubble nucleation also play an
important role in quantum mechanics and field theory.
As pointed out in the classic work of Coleman and others

[13–15], the bubble nucleation process in quantum field
theory can be described by an instanton, or bounce,
solution to the field equations in imaginary time. The
probability for decay is then given, to leading order, by a
negative exponential of the action of the instanton.
Understanding vacuum decay and the role of the instanton
is now particularly pressing in light of the measurements
of the Higgs mass, that currently indicates our vacuum is in
a region of metastability [16].
The semiclassical description of vacuum decay with

gravity involves analytically continuing to imaginary time,
and finding the gravitational instanton. However, while
most are comfortable with the assumptions used in pertur-
bative quantum field theory on curved spacetime, such
nonperturbative processes are sometimes viewed with more
caution. The ability to test such a process via an analogue
“table-top” quantum system would be a strong vindication
of the use of such techniques. To this end, there have been
some recent developments in exploring possible analogue
systems that could test vacuum decay. Fialko et al. [7,8]
proposed an experiment in a laboratory cold atom system.
Their system consists of a Bose gas with two different spin
states of the same atom species in an optical trap. The two
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states are coupled by a microwave field. By modulating the
amplitude of the microwave field, a new quartic interaction
between the two states is induced in the time-averaged
theory which creates a nontrivial ground state structure as
illustrated in Fig. 1 [17].
In this paper we propose an analogue system that can

explore the process of catalysis of vacuum decay that is
central to our previous results. We use the above model to
test seeded vacuum decay by introducing a vortex into
the two dimensional spinor Bose gas system. We have used
two complementary theoretical approaches. First, we have
applied Coleman’s non-perturbative theory of vacuum
decay to the Gross-Pitaevskii equation (GPE). Second,
we have used the truncated Wigner method, a stochastic
approach, to study the vacuum decay. In both cases, we find
that the introduction of the vortex seed enhances the
probability of vacuum decay.

II. SYSTEM

Our system is a two-component BEC of atoms with
mass m coupled by a modulated microwave field. The
Hamiltonian operator in n dimensions is given by

Ĥ ¼
Z

dnx

�
ψ†
i

�
−ℏ2∇2

2m

�
ψ i þ Vðψ i;ψ

†
i Þ
�
; ð1Þ

with field operators ψ i, i ¼ 1; 2 and summation over the
spin indices implied. Fialko et al. [7,8] described a
procedure whereby averaging over timescales longer than
the modulation timescale leads to an interaction potential
of the form

V¼ g
2
ðψ†

i Þ2ðψ iÞ2−μψ†
iψ i−νψ†

i σxijψ jþ
gνλ2

4μ
ðψ†

i σyijψ jÞ2;

ð2Þ

where the σi are the Pauli matrices. The potential
includes the chemical potential μ, intracomponent s-wave

interactions of strength g between the field operators (we
assume intercomponent s-wave interactions are negligible),
and the microwave induced interaction ν. The final term
comes from the averaging procedure and introduces a
new parameter λ, dependent on the amplitude of the
modulation. The trapping potential used to confine the
condensate has been omitted in order to isolate the physics
of vacuum decay.
The terms proportional to ν are responsible for the

difference in energy between the global and local minima
of the energy. The global minimum represents the true
vacuum state and the local minimum represents the false
vacuum. In order to parametrize the difference in energy
between the vacua, we introduce a “small” dimensionless
parameter ϵ by

ϵ ¼
�
ν

μ

�
1=2

: ð3Þ

For ν > 0, the true vacuum is a state with ψ1 ¼ ψ2 and the
false vacuum is a state with ψ1 ¼ −ψ2. The condensate
densities of the two components at the extrema are equal to
one another, and given by hψ†

1ψ1i ¼ hψ†
2ψ2i ¼ ρmð1� ϵ2Þ.

Note that we prefer to work with the mean density ρm ¼
μ=g rather than the chemical potential. The difference in
energy density between the two vacuum states is given
by ΔV ¼ 4gρ2mϵ2.

III. INSTANTON TREATMENT

The nonperturbative theory of vacuum decay starts with
the imaginary-time partition function

Z ¼
Z

Dψ iDψ̄ ie−S½ψ i;ψ̄ i�=ℏ; ð4Þ

where the integral extends over complex fields ψ i and their
complex conjugates ψ̄ i with action

S½ψ i;ψ̄ i�¼
Z

dnxdτ

�
ℏψ̄ i∂τψ i− ψ̄ i

ℏ2

2m
∇2ψ iþVðψ i;ψ̄ iÞ

�
:

ð5Þ

Vacuum decay is associated with instanton solutions to
field equations in imaginary time τ ¼ it [13,14]

ℏ2

2m
∇2ψ i − ℏ∂τψ i −

∂V
∂ψ̄ i

¼ 0;

ℏ2

2m
∇2ψ̄ i þ ℏ∂τψ̄ i −

∂V
∂ψ i

¼ 0; ð6Þ

and fields that approach the false vacuum as r; τ → ∞.
On the original path integration contour, ψ i and ψ̄ i are

complex conjugates and the field equations imply that the
saddle points are static. In order to find the nonstatic bubble

FIG. 1. The field potential V plotted as a function of the relative
phase of the two atomic wave functions, φ. The false vacuum is
the minimum at φ ¼ π and the true vacuum the global minimum
at φ ¼ 0. ΔV is the difference in vacuum energy.
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solutions, we have to deform the path of integration into a
wider region of complex function space where ψ̄ i is not the
complex conjugate of ψ i. Although this may appear a
strange procedure at first sight, this analytic continuation is
already implicit in the previous work on vacuum decay as
we shall see later.
The full expression for the nucleation rate of vacuum

bubbles in a volume V is [13,14],

Γ ≈ V

���� det
0S00½ψb�

det S00½ψ fv�
����
−1=2

�
S½ψb�
2πℏ

�
N=2

e−S½ψb�=ℏ: ð7Þ

where S00 denotes the second functional derivative of the
action S, and det0 denotes omission of N ¼ nþ 1 zero
modes from the functional determinant of the operator.
(For convenience, we always include a constant shift to the
action so that the action of the false vacuum is zero.) For
seeded nucleation, the volume factor is replaced by the
number of nucleation seeds and the number of zero modes
becomes N ¼ 1. The key feature here is the exponential
suppression of the decay rate, and the nonperturbative
treatment fails if the exponent is small.
In vacuum decay, the key quantity determining physical

aspects of decay is the energy splitting between true and
false vacua, ΔV, which is proportional to ϵ2. In our system,
ϵ also determines the magnitude of the interaction between
the two scalars, and for small ϵ, most of the degrees of
freedom of the system decouple, leaving an effective field
theory of the relative phases of the two condensates as
explored in [7,8] in one spatial dimension.
Here we are interested in seeded decay, so we consider

the model in two spatial dimensions with polar coordinates
r and θ. The natural size of the bubble will be determined
by R0 ¼ ℏðρm=mΔVÞ1=2, and the natural timescale by
R0=cs, where the sound speed cs ¼ ðgρm=mÞ1=2. To sim-
plify the following analysis, we rescale our dimensionful
coordinates accordingly, and also rescale the action:

S ¼ ℏρmR2
0Ŝ: ð8Þ

Since we are interested in exploring seeded decay, we
look for a cylindrically symmetric solution that explicitly
highlights the relevant degrees of freedom—namely, the
relative phase φðr; τÞ between the two components, the
leading order (in ϵ) profile of the false vacuum background
ρðr; τÞ, an overall common phase winding nθ that is present
in a nontrivial vortex background, and the bubble profile
function σðr; τÞ—and includes the possibility of a topo-
logically nontrivial vortex false vacuum state:

ψ i ¼ ρ1=2
�
1� ϵ

2
σ

�
e�iφ=2þinθ;

ψ̄ i ¼ ρ1=2
�
1� ϵ

2
σ

�
e∓iφ=2−inθ; ð9Þ

where we adopt the convention that the upper/lower signs
apply to the i ¼ 1; 2 spin states respectively.
The pure false vacuum has n ¼ 0, and ρ ¼ ρmð1 − ϵ2Þ,

with instanton profiles for φ explored in [7,8]. Here we are
interested in seeded tunneling, so we also consider the
vortex background for n ¼ 1, with ρ satisfying the Oðϵ2Þ
background equations obtained by substituting (9) in (6).
The profile of ρ is precisely that of a superfluid (or global)
vortex, and is illustrated in Fig. 2.
The potential for the instanton solutions depends only

on the relative phase φ and the background density ρ.
Our rescaling of the length and time coordinates means that
we also rescale the potential to V̂ ¼ 2ðV − VTVÞ=ΔV,

V̂ ¼ ρ̂ð1 − cosφÞ þ 1

2
λ2ρ̂2sin2φ; ð10Þ

as plotted in Fig. 1. At zeroth order in ϵ, the field
equations (6) imply that σ ¼ −iρ̂−1∂τφ. Note that σ is
imaginary, and the bubble solution has ψ̄1 ≠ ψ†

1 as was
mentioned earlier. Replacing σ in the action using this field
equation gives a Klein-Gordon type action depending only
on φ which was used in Refs. [7,8]:

Ŝ½φ� ¼ ϵ

Z
dnxdτ

�
1

2
ρ̂ð∇φÞ2 þ 1

2
_φ2 þ V̂

�
: ð11Þ

However, at the core of the vortex, ρ̂ → 0 and this
replacement of σ is no longer valid. Instead, numerical
solutions have been obtained by solving the full equations
for the phase φ and the density variation σ.
The vacuum decay rate around a single vortex, using

Coleman’s formula (7) with a single zero mode, is

Γ ¼ A
cs
R0

�
ρmR2

0Ŝ
2π

�1=2

e−ρmR
2
0
Ŝ; ð12Þ

where A is a dimensionless numerical factor depending on
the ratio of determinants (which we do not evaluate here).
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−
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FIG. 2. Vortex density profile ρ̂ ¼ ρ=ρm plotted as a function
of radius r. The density vanishes at the center and approaches
the false vacuum density as r → ∞. Its physical thickness
scales as ϵR0.
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Numerical results for the factor Ŝ in the decay exponent
are shown in Fig 3 [20]. These show clearly that the
tunneling exponent can be reduced significantly in the
presence of a vortex. The vortex width from Fig. 2 is related
to ϵR0. Consequently, smaller values of ϵ are associated
with relatively thin vortices compared to the bubble scale
R0, which have less effect on the vacuum decay rate than
vortices with larger values of ϵ.
The nucleation rate depends on the physical parameters

through the combination ρmR2
0. The length scale R0 itself

is related to the atomic scattering length as and the
thickness of the condensate az via the effective coupling
strength g, [22],

g ¼ 4πℏ2

m
asffiffiffiffiffiffi
2π

p
az

: ð13Þ

Thus the factor in the decay exponent becomes ρmR2
0 ¼

az=ð4ϵ2
ffiffiffiffiffiffi
8π

p
asÞ.

IV. STOCHASTIC TREATMENT

A. Overview

As an alternative treatment of bubble nucleation we
model a two-dimensional spinor BEC using a truncated
Wigner approach. At the mean-field level, the system can
be described by the Gross-Pitaevskii equation (GPE)
derived from the symmetric Hamiltonian in the rescaled
coordinates used above,

i∂tψ i ¼ −ϵ∇2ψ i þ ϵV̂Tψ i þ ϵρm
∂V̂
∂ψ̄ i

; ð14Þ

where

∂V̂
∂ψ̄ i

¼ 1

2ϵ2

�
ψ̄ iψ i

ρm
− 1

�
ψ i

ρm
−
1

2

ðσxψÞi
ρm

þ λ2

4

ψ̄σyψ

ρm

ðσyψÞi
ρm

:

ð15Þ

Here V̂T is the dimensionless form of an optical trapping
potential that affects both spin states equally. The dimen-
sional trapping potential is VT ¼ 2gρmϵ2V̂T. The truncated
Wigner approach seeks to emulate the many-body quantum
field description of a BEC with a stochastic description
[23,24]. At zero temperature, it consists of seeding appro-
priate modes of the system with an average of 1=2 particle
per mode of stochastic noise in the initial conditions, and
then evolving in time with the GPE. The stochastic noise
emulates vacuum fluctuations.
We add stochastic noise to an ensemble of initial fields

and compute the trajectory of each field using the projected
GPE (PGPE) to precisely evolve the noise-seeded modes
[24], including a correction to the nonlinear term to account
for the average noise density [8]. In a periodic 2D square
box of side length L this corresponds to propagating the
equation

i∂tψ i ¼ P
��

−ϵ∇2 þ ϵV̂T þ
jψ ij2 − M

L2

2ϵρm
−

1

2ϵ

�
ψ i

þ
�
−
ϵ

2
þ ϵλ2

4ρm
ðψ iψ

�
3−i − ψ�

iψ3−iÞ
�
ψ3−i

�
; ð16Þ

where the projection operator P restricts the field to the M
lowest-energy plane wave modes.

B. Vortex-seeded decay in an infinite system

Taking a periodic 2D square box of side length L, we
begin with the false vacuum solution to the GPE,

ψ iFV ¼ ρ1=2m ð1 − ϵ2Þ1=2e�iπ=2: ð17Þ
We evolve the PGPE (16) using a Fourier pseudospectral
method, implemented using XMDS2 software [25], with P
grid points in each direction. The projector P restricts
the field to the M modes satisfying jkj < πP=ð2LÞ. Thus,
we create an initial ensemble of fields by adding noise into
these M plane-wave modes:

ψ i ¼ ψ iFV þ 1

L
P
�X

k

βikeik·r
�
; ð18Þ

where βi;k are complex Gaussian random variables with
hβ�i;kβj;k0 i ¼ δi;jδk;k0=2. To determine a decay rate without
vortices, we evolve trajectories directly from this initial
ensemble.
To investigate the effects of vortices on the decay rate

we take an initial ensemble as described above, but prior to
evolving trajectories we imprint the density and phase
profiles of vortices into the system. Since our periodic box

12

10

8

6

4

2

0
0.05 0.10 0.15 0.20 0.25

FIG. 3. The dimensionless exponent Ŝ of the vacuum decay rate
plotted as a function of the parameter ϵ2. The solid lines represent
unseeded vacuum decay and the dashed lines are for bubbles
seeded by vortices. The action is lower for the seeded bubbles.
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requires a net-neutral distribution of vortices, we use the
techniques described in Ref. [26] to imprint a square grid
pattern comprising two clockwise-circulating and two
anticlockwise-circulating vortices. The vortices’ mutual
x and y separations are set to L=2, and diagonally opposed
vortices have the same circulation.
In Fig. 4 we show typical examples of the stochastic

trajectories with and without the imprinted vortices. [These
are frames from the movies included as Supplemental
Material [27].] We observe bubbles of true vacuum to
nucleate most often at the locations of the vortices when
they are present, although nucleation in the bulk does
remain possible in the presence of vortices. To quantita-
tively investigate the increase in the rate of nucleation we
evolve an ensemble of 1000 trajectories both with and
without vortices. As in Ref. [8], we evaluate the average
value of cosϕ across all simulation grid points in each
trajectory, and consider a trajectory to have nucleated a

bubble of true vacuum when this average exceeds −0.95.
In Fig. 5 we plot the fraction of trajectories that have failed
to nucleate a bubble as a function of time, FðtÞ. We
determine approximate decay rates by least-squares fitting
an exponential decay to FðtÞ over the time interval where it
best resembles an exponential decay (determined by eye
from Fig. 5). Taking λ ¼ 1.15, we find Γ ≈ ð2.9� 0.1Þ ×
10−3cs=R0 without vortices, and Γ≈ð26�2Þ×10−3cs=R0

with vortices. For λ ¼ 1.2, we find Γ ≈ ð1.9� 0.2Þ ×
10−5cs=R0 without vortices, and Γ ≈ ð700� 20Þ ×
10−5cs=R0 with vortices. The quoted uncertainties estimate
the statistical uncertainty in the stochastic method by a
bootstrap calculation [28]. Clearly, the presence of vortices
greatly enhances the rate of vacuum decay in this system.

C. Vortex-seeded decay in a trapped system

To investigate the potential for realizing these results in
experiments, we repeat our stochastic simulations for the
case of a spinor BEC contained inside a circular optical
“bucket” trap of radius R

V̂TðrÞ ¼
V̂0

2

�
1þ tanh

�
r − R
w

��
; ð19Þ

where V̂0 is the (dimensionless) trap depth and w para-
metrizes the wall-steepness of the trap. We apply the
truncated Wigner formalism as described above, but mak-
ing an approximation for the initial stochastic noise,

ψ i ¼ ψ iFV þ fðrÞ
L

P
�X

k

βikeik·r
�

ð20Þ

−20

0

20 (a) (d)

−20

0

20 (b) (e)

− 20 0 20

−20

0

20 (c)

− 20 0 20

(f)

− 1

0

1

x (R0)

y
(R

0
)
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FIG. 4. Typical examples of the decay of the false vacuum with
and without imprinted vortices in a two-dimensional periodic
system. The plots show the cosine of the relative phase between
the two spin states. Dimensionless parameters are λ ¼ 1.15,
ϵ ¼ 0.316, ρmR2

0 ¼ 60.0, and L ¼ 42.67R0. Our numerical grid
has P ¼ 128. (a) Initially, the false vacuum predominates. (b) As
time progresses, bubbles of true vacuum (yellow) nucleate,
predominantly around the vortices. (c) Later still, nucleated
bubbles expand to fill the system. (d–f) Typical trajectories
without imprinted vortices [same times as (a–c)] illustrate the
nucleation of bubbles at random locations, which occurs at a
slower rate than vortex-seeded nucleation.
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t (R0/ cs)

−4

−3

−2

−1

0

1

lo
g[

F
(t

)]

= 1.15

= 1.2

0 10 4
−0.2

−0.1

0.0

FIG. 5. Fraction of trajectories failing to nucleate a bubble of
true vacuum by a given time, FðtÞ, both with and without vortices
(dashed and solid lines respectively). The straight grey lines show
exponential decays, fitted over selected regions.

SIMULATING SEEDED VACUUM DECAY … PHYS. REV. D 100, 065016 (2019)

065016-5



where the function fðrÞ ¼ ΘðR − rÞ restricts the noise to
the trap interior. We then evolve the PGPE as described
above, both with and without initial imprinting of the
density and phase profiles of a vortex at the trap center.
Numerical results, shown in Fig. 6, confirm that the

vortex continues to act as nucleation seed in this system,
holding out the possibility of experimental observation of
this effect. However, we also observe that the walls of the
trap strongly enhance bubble nucleation, both with and
without the imprinted vortex. Our numerics show that the
rate of vortex seeding at the trap walls is dependent on the
wall steepness w, with steeper walls reducing the rate.
This is a boundary effect, due to the fact that the density
outside of the trap is low, allowing the phase to fluctuate
widely, as seen in the first frame of Fig. 6. This could be

interpreted as the exterior of the trap being full of “ghost”

vortices that then migrate to the wall and trigger bubble
nucleation, and may be of interest for laboratory BECs.
However, in an unbounded system such as our universe,
this boundary effect is irrelevant, and the only possible
seed will be the vortex.

V. CONCLUSION

In conclusion, our two theoretical approaches, based on
the Euclidean field equations (6) and on the truncated
Wigner approximation, both show a significant increase of
the decay rate of the false vacuum in the presence of a
vortex, in agreement with our previous work on cosmo-
logical phase transitions. Both the quantum calculation and
the TW approach agree on this conclusion, although the
TW approach gives faster vacuum decay in all cases than
the quantum calculation does. We believe this is likely to be
due to the energy content of the stochastic fluctuations
which gives a boost to crossing the potential barrier. It may
be possible to account for this effect by renormalizing the
parameters of the potential in the TWapproach. We plan to
investigate this further, and conduct a thorough comparison
of the different approaches in a simpler 1D system.
Numerical simulations also indicate that other kinds of

defects, such as the walls of a sharp potential trap, can
also enhance decay. Since getting a large enough decay
rate is a major difficulty in designing experiments, we
expect this to be an important ingredient for putting the
theoretical model of [7,8] into practice, and thus testing
vacuum decay in the laboratory. While our simulations
represent a proof-of-principle example rather than a
concrete experimental proposal, advances in optical
trapping [29,30] and various techniques for vortex
imprinting in spinor condensates [31,32] could be used
to probe similar systems experimentally.
Data supporting this publication is openly available

under a Creative Commons CC-BY-4.0 License [33].
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FIG. 6. Examples of the decay of the false vacuum with and
without an imprinted vortex in a two-dimensional “bucket” trap.
The plots show the cosine of the relative phase between the two
spin states. Dimensionless parameters are λ ¼ 1.15, ϵ ¼ 0.316,
ρmR2

0 ¼ 32.0, and L ¼ 170.68R0. Our numerical grid has
P ¼ 512. The BEC is contained inside a circular bucket trap,
V̂TðrÞ ¼ V̂0f1þ tanh½ðr − RÞ=w�g=2, parametrized by strength
V̂0 ¼ 100, radius R ¼ 64R0 and wall steepness w ¼ 2R0. (a) Ini-
tially, the false vacuum predominates within the circular trap, but
bubbles of true vacuum rapidly form around the walls of the trap.
(b) Later, a bubble of true vacuum (yellow) forms around the
vortex in the center. (c) Later still, the true vacuum regions grow,
and eventually merge. (d–f) Typical trajectory without an initially
imprinted vortex [same times as (a–c)].
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