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ABSTRACT
Evolution of the Tibetan Plateau is important for understanding continental tectonics 

because of the plateau’s exceptional elevation (∼5 km above sea level) and crustal thickness 
(∼70 km). Patterns of long-term landscape evolution can constrain tectonic processes, but 
have been hard to quantify, in contrast to established data sets for strain, exhumation, and 
paleo-elevation. This study analyzes the relief of the bases and tops of 17 Cenozoic lava fields 
on the central and northern Tibetan Plateau. Analyzed fields have typical lateral dimensions 
of tens of kilometers, and so have an appropriate scale for interpreting tectonic geomorphol-
ogy. Fourteen of the fields have not been deformed since eruption. One field is cut by normal 
faults; two others are gently folded, with limb dips <6°. Relief of the bases and tops of the 
fields is comparable to that of modern, internally drained parts of the plateau, and distinctly 
lower than that of externally drained regions. The lavas preserve a record of underlying 
low-relief bedrock landscapes at the time they were erupted, which have undergone little 
change since. There is an overlap in each area between younger published low-temperature 
thermochronology ages and the age of the oldest eruption in each area, here interpreted as 
the transition between the end of significant (>3 km) exhumation and plateau landscape 
development. This diachronous process took place between ∼32.5°N and ∼36.5°N and between 
ca. 40 Ma and ca. 10 Ma, advancing northwards at a long-term rate of ∼15 km/m.y. Results 
are consistent with incremental northward growth of the plateau, rather than a stepwise 
evolution or synchronous uplift.

INTRODUCTION
This paper aims to determine time scales 

between the end of significant exhumation 
and the creation of relatively low-relief land-
scapes across the Tibetan Plateau (Figs. 1A 
and 1B), using lava fields as markers for the 
timing of deformation and landscape evolu-
tion (Fig. 1C). Study of the rise of the Tibetan 
Plateau to its present ∼5 km elevation helps 
in understanding how continents deform in 
response to plate convergence. It is debat-
ed how northward convergence and plateau 
growth have taken place since initial collision 
of the Indian and Eurasian plates at ca. 60 Ma 
(Yin and Harrison, 2000; Kapp and DeCelles, 
2019). Proposed mechanisms include stepwise 
continental subduction and crustal thicken-
ing within Tibet (Fig. 2A; Tapponnier et al., 
2001) and incremental crustal shortening and 
thickening of Tibetan terranes to double nor-
mal crustal thickness (Fig. 2B; England and 
Houseman, 1986). Surface uplift is a conse-

quence of crustal shortening and thickening 
via isostasy, but other proposed mechanisms 
include: (1) mantle lithosphere detachment 
(Fig. 2C; England and Houseman, 1989), (2) 
crustal thickening as a consequence of low-
er-crustal flow (Fig. 2D; Clark and Royden, 
2000), and (3) magmatic additions, possibly 
accompanying loss of the lower lithosphere 
(Fig. 2C; Chen et al., 2018). Combinations are 
possible; e.g., a component of lower-crustal 
flow could account for discrepancies between 
crustal shortening and present crustal thick-
ness and surface elevations in northern Tibet 
(e.g., Staisch et al., 2016). There is also evi-
dence for early Cenozoic exhumation near the 
present northern limits of the plateau (e.g., Liu 
et al., 2017). The schematic cross-sections in 
Figure 2 do not show this complexity.

Patterns of surface uplift and relief can 
constrain underlying processes, e.g., by dis-
tinguishing whether plateau growth is episodic 
with stepwise jumps in the location of marginal 

fold-and-thrust belts (Fig. 2A; Tapponnier et al., 
2001), incremental northward (Fig. 2B; England 
and Houseman, 1986), or synchronous across 
broad areas (Fig. 2C; England and Houseman, 
1989).

Surface elevation has been addressed through 
δ18O isotope studies and paleobotany. Collective 
data sets indicate elevations of >4000 m as early 
as the Eocene in southern and central Tibet (e.g., 
Rowley and Currie, 2006; see Kapp and De-
Celles [2019] for a summary). Low-temperature 
thermochronology data have been used to in-
terpret exhumation histories, related to crustal 
thickening and consequent surface uplift (Jolivet 
et al., 2001; Wang et al., 2008; Rohrmann et al., 
2012; McRivette et al., 2019), and show limited 
(<3 km) exhumation since 45 Ma in central Ti-
bet (Rohrmann et al., 2012). However, neither 
paleo-elevation nor exhumation-rate data give 
direct information on topographic relief over 
time nor the development of landscapes similar 
to the modern plateau. Undeformed lower Mio-
cene lacustrine rocks of the Wudaoliang Group 
cover much of central Tibet (Wu et al., 2008), 
indicating low relief, but such stratigraphic con-
straints are rare.

Collision-zone volcanic rocks have po-
tential to track landscape development: flow 
bases record the underlying landscape at the 
time of eruption, while the upper surface acts 
as a marker for later deformation and incision 
(Wang et al., 2008). Volcanic centers that post-
date initial India-Asia collision are widespread, 
if scattered, across the central and northern Ti-
betan Plateau (Ding et al., 2003; Chung et al., 
2005; Wang et al., 2016; Chapman and Kapp, 
2017; Kapp and DeCelles, 2019; Guo and Wil-
son, 2019; Yakovlev et al., 2019). Compositions 
are commonly potassic and ultrapotassic with 
some adakites, and crustal melt rhyolites in the 
north. Lava fields range in area from <100 to 
∼1000 km2 with lateral extents typically of tens 
of kilometers (Table DR1 and Fig. DR1 in the 
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GSA Data Repository1). Accumulated flows are 
∼10–150 m thick (Guo et al., 2006).

Our approach is to first show that Tibetan 
Plateau lavas capped low-relief landscapes 
comparable to the modern plateau, with little 
erosion or deformation of fields since erup-
tion. We then compare lava age distributions 
to published thermochronology data to explore 
time scales between the end of significant ex-
humation (≥3 km) and creation of plateau land-
scapes. Age determinations have previously 
been used with geological data, such as uncon-
formities, to interpret the end of deformation at 
a specific locality (Wang et al., 2008; Kapp and 
DeCelles, 2019); here we perform a regional 
study to understand landscape evolution across 

the plateau, and test different models for tec-
tonic evolution (Fig. 2).

METHODS
We examined contacts and morphologies of 

lava fields using satellite imagery from Google 
Earth™, Landsat, and digital topography (Shuttle 
Radar Topography Mission [SRTM] 1 arc-second 
data set; https://www2.jpl.nasa.gov/srtm/). Our 
study focuses on the Qiangtang and Songpan-
Ganzi terranes of the central and northern Ti-
betan Plateau (32.5°–36.5°N, 88°–92°E; Fig. 1; 
Fig. DR1); this region contains the majority of 
lava fields in these terranes. The data set does not 
include every field, but focuses on fields large 
enough to yield meaningful results, i.e., with lat-
eral dimensions of ≥ 10 km; these are on a length 
scale great enough to record regional deforma-
tion. Fifteen of the 17 flows analyzed in this study 
lie within the area of modern internal drainage 
(Fig. 1); the remaining two are just outside.

Contacts between lavas and underlying rocks 
were studied by profiling the elevation of the 
flow base around the present outcrop perim-
eters for 17 individual lava fields and compil-
ing results as section lines. Perimeter roughness 
(PR) is defined as the ratio of the path along the 
topographic surface to the flat perimeter length. 
Higher values indicate higher-relief terrain, and 
areas with comparable tectonic and erosion his-
tories would be expected to have similar PR val-
ues. Figure 1C shows the approach schemati-
cally. Results were compared with those from 
a random sample of 60 circular areas within the 
internally and externally drained parts of the 
plateau with perimeters of 100 km (Fig. DR2; 
Tables DR2 and DR3). Surface roughness (SR) 
was measured for the lava fields. SR is the ra-
tio between the topographic surface of an area 
and the corresponding area of flat topography 
(Fig. 1C). Lava field data were compared with 
those from the random sample of areas.

1GSA Data Repository item 2020073, lava field 
and test area parameters (Tables DR1–DR3), is avail-
able online at http://www.geosociety.org/datareposi-
tory/2020/, or on request from editing@geosociety.org.
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Figure 1.  Regional tectonics and topography of the Tibetan Plateau. (A) Location of lava fields in this study. Elevation color scale is scaled to 
emphasize internal plateau relief. Ages of lava fields are shown (in Ma); red color = 45–30 Ma, blue = 30–15 Ma, gray = 15–0 Ma. Active faults are 
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Results were compared with published lava 
ages (Table DR1) and low-temperature ther-
mochronologic data (apatite fission track and 
apatite [U-Th]/He analyses; Jolivet et al., 2001; 
Wang et al., 2008; Rohrmann et al., 2012). The 
thermochronologic ages indicate the time at 
which samples passed through the partial reten-
tion zone temperature window, and so constrain 
the timing of cooling and, indirectly, exhumation 
to within ∼3 km of the surface. Using this com-
bined approach, it is possible to track the end of 
significant exhumation, onset of extrusive mag-
matism, and landscape evolution history across 
a large area of the Tibetan Plateau, and to use 
these results to discriminate between different 
tectonic models (Fig. 2).

RESULTS
The present-day interior of the Tibetan Pla-

teau is rugged rather than completely flat, with 
relief commonly ≤ 500 m between summits and 
adjacent valleys and ∼1 km across active fault 

zones (Fig. 1). Lavas flowed over previously 
deformed bedrock, which had been eroded by 
the time of eruption (Fig. DR1). There is rarely 
an obvious relationship to major faults or fault-
controlled basins; the Ashikule field is an excep-
tion. The great majority of fields (14 out of 17) 
appear to be unfaulted and unfolded since erup-
tion (Fig. DR1). Three lava fields are deformed. 
Upper Miocene (ca. 12 Ma) lavas at Xiangyan-
ghu (35.5°N, 89°E) are mildly deformed as part 
of a gentle west-east fold that lies parallel to 
the nearby Kunlun fault. The Kunlun fault is an 
active strike-slip fault, but has evidence for as-
sociated, localized, compressional deformation: 
e.g., there were west-east–striking thrust focal 
mechanisms in the aftermath of the A.D. 2001M 
8 strike-slip earthquake, ∼300 km east of Xiang-
yanghu (Ozacar and Beck, 2004). Oligocene 
(ca. 28–30 Ma) lava flows at Yulinshan (33.8°N, 
83.3°E) are gently warped along an east-west 
axis, with a half-wavelength of ∼10 km and a 
fold amplitude of ∼250 m (Ding et al., 2003). 

Both of these fields are dissected into discrete 
remnants by erosion, which is not the case for 
the other studied fields (Fig. DR1). Late Eocene 
(ca. 36 Ma) lavas at Nading Co (32.7°N, 85.5°E) 
are cut by normal faults (Ding et al., 2007); these 
faults are part of the middle Miocene–recent ex-
tensional fault system within the Tibetan Plateau 
(Taylor and Yin, 2009).

The lava fields’ basal relief indicates land-
scapes comparable to internally drained parts 
of the modern plateau at the time of each erup-
tion (Figs. 3A–3B): average (mean) PR values 
are 1.003 (maximum/minimum: 1.009/1.001) 
and 1.017 (1.044/1.003) for the lava fields and 
internally drained regions respectively (Tables 
DR1 and DR2). Both the lava fields and inter-
nally drained regions are distinctly different 
from externally drained regions in the east of 
the plateau (Fig. 3A), where relief is 1–2 km 
across major river gorges and average PR for 
the 30 test areas is 1.095 (1.205/1.006) (Table 
DR3). The lava fields show a similar mean SR 

Figure 2.  End-member 
tectonic models for 
growth of the Tibetan 
Plateau. (A) Northward 
stepwise growth involv-
ing crustal thickening 
above continental sub-
duction (Tapponnier 
et  al., 2001). (B) Incre-
mental northward growth 
by lithospheric thickening 
(England and Houseman, 
1986). (C) Rapid regional 
and synchronous surface 
uplift following removal 
of lower lithosphere, with 

accompanying magmatism (England and Houseman, 1989). (D) Crustal thickening, but not shortening, via lower-crustal flow (Clark and 
Royden, 2000).
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value to the internally drained regions of the pla-
teau (averages 1.017 [1.028/1.006] and 1.018 
[1.101/1.004]), and both groups are distinct 
from modern externally drained regions (average 
1.095 [1.211/1.006]) (Fig. 3A). There is no rela-
tionship between PR and lava age (Fig. 3C; Table 
DR1). SR shows a gradual linear decrease with 
age (∼0.003 every 10 m.y.), with a low R2 value 
(0.3124). Folded fields, Xiangyanghu and Yulin-
shan, have high PR and SR values (Fig. 3B).

Lava ages are plotted by latitude in Fig-
ure 3D. Qiangtang terrane lavas are typically 
ca. 40–25 Ma, although Pliocene flows are also 
present (Table DR1). Songpan-Ganzi terrane 
flows are typically ≤ 18 Ma. Published low-
temperature thermochronology ages are also 
shown on Figure 3D. There is a ∼20–30 m.y. 
difference between the oldest low-temperature 
thermochronologic ages (Rohrmann et al., 2012) 
and the oldest lava eruption ages at each latitude. 
The youngest thermochronology ages for each 
latitude overlap with the oldest eruption ages.

DISCUSSION
There has been little erosion of the lava flows 

post-eruption, such that Paleogene lavas show 
remarkably similar morphologies to Neogene 
and Quaternary counterparts 20–30 m.y. young-
er (Fig. 3C). The decrease in SR value with de-
creasing age can be expected as gradual erosion 
occurs over tens of millions of years, though the 
very slow decrease shows that erosion within 
the Tibetan Plateau has been extremely limited 
within the internally drained area where these 
lavas are concentrated. The existence of unde-
formed and undissected ca. 40 Ma flows in the 
plateau interior indicates minimal long-term 
post-eruption erosion.

Thermochronology data show low erosional 
exhumation rates (<0.05 mm/yr) across much 
of central Tibet after 45 Ma (Rohrmann et al., 
2012), but give no direct information about con-
temporary relief. Lava eruption ages constrain 
the minimum age of the formation of low re-
lief, given that the lava fields seal underlying 
landscapes comparable to the modern plateau 
(Fig. 3A). This study quantifies the time scales 
involved in the creation of regional plateau 
landscape, combining the distributions of lava-
field ages and thermochronology data. Lava 
eruption ages in each area overlap the young-
er range of thermochronology ages (Fig. 3D). 
Plateau landscapes formed without a distinct 
time lag after the end of significant exhuma-
tion. The northward decrease in both lava ages 
and thermochronology ages (Fig. 3D) indicates 
that plateau landscape formation migrated north-
ward between ∼32.5°N and ∼36.5°N from ca. 40 
to ca. 10 Ma, equivalent to a long-term rate of 
∼15 km/m.y. for the diachronous development 
of the plateau landscape.

Our results do not indicate that the relief of 
the Tibetan Plateau interior is a consequence of 

rifting (Wang et al., 2014), because the Neo-
gene onset of extension (ca. 15–10 Ma) post-
dates the older flows in central Tibet. Nor is 
there evidence of regionally simultaneous uplift 
and plateau growth in the late Miocene (Molnar 
et al., 1993). Progressive crustal thickening since 
the Eocene is a viable mechanism for both sur-
face uplift and plateau landscape development 
(Fig. 2B). While crustal shortening via thrusting 
and folding is the most obvious way to achieve 
such thickening, lower-crustal flow would 
achieve the same result, and has been invoked 
in the northern Tibetan Plateau to explain an ap-
parent shortfall in crustal shortening estimates 
(Staisch et al., 2016). Magmatism postdated pla-
teau landscape creation, without significant later 
exhumation and/or major erosion. There is no 
indication of distinct time steps in the plateau 
landscape evolution, as might be expected if tec-
tonic growth was stepwise (Fig. 2A; Tapponnier 
et al., 2001). If any of mantle lithosphere delami-
nation (Fig. 2C; England and Houseman, 1989), 
lower-crustal flow (Fig. 2D; Clark and Royden, 
2000), or magmatic underplating (Fig. 2C; Chen 
et al., 2018) took place after lava eruptions, they 
did so without leaving an imprint on the Ce-
nozoic landscape record in the interior of the 
Tibetan Plateau.

CONCLUSIONS
We have conducted a quantitative geomor-

phic study of Cenozoic lavas across the central 
and northern Tibetan Plateau. These lavas are 
typically undeformed, and were erupted over 
landscapes with relief similar to that of the mod-
ern plateau interior (Fig. 3A). Such low relief 
indicates that erosion and truncation of underly-
ing, deformed rocks had taken place by the time 
of eruption. Preservation of lava fields for tens 
of millions of years suggests that they have lain 
within internally drained regions since eruption, 
without major erosion (Fig. 3C). Geomorphol-
ogy results are combined with published lava 
ages and thermochronology data to show an 
overlap between the youngest exhumation ages 
and the oldest lava ages for each area (Fig. 3D). 
We therefore interpret plateau landscape forma-
tion to overlap the end of significant exhumation 
in each area. This process advanced northwards 
between ∼32.5°N and ∼36.5°N from ca. 40 to ca. 
10 Ma at an average long-term rate of ∼15 km/
m.y. The simplest explanation of the results 
is that plateau growth is primarily a function 
of diachronous crustal thickening and surface 
uplift via isostasy (Figs. 2B and 2D), followed 
by creation of low relief and internally drained 
landscapes.
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