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ABSTRACT
We present results from a study of TESS observations of the eclipsing dwarf nova system Z Cha,
covering both an outburst and a superoutburst. We discover that Z Cha undergoes hysteretic
loops in eclipse depth – out-of-eclipse flux space in both the outburst and the superoutburst.
The direction that these loops are executed in indicates that the disc size increases during an
outburst before the mass transfer rate through the disc increases, placing constraints on the
physics behind the triggering of outbursts and superoutbursts. By fitting the signature of the
superhump period in a flux-phase diagram, we find the rate at which this period decreases in
this system during a superoutburst for the first time. We find that the superhumps in this source
skip evolutionary stage ‘A’ seen during most dwarf nova superoutbursts, even though this
evolutionary stage has been seen during previous superoutbursts of the same object. Finally,
O–C values of eclipses in our sample are used to calculate new ephemerides for the system,
strengthening the case for a third body in Z Cha and placing new constraints on its orbit.
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1 IN T RO D U C T I O N

Accreting white dwarfs (AWDs) are astrophysical binary systems
in which a star transfers matter to a white dwarf companion via
Roche lobe overflow. If the white dwarf is not highly magnetized,
material that flows through the inner Lagrange point (L1) follows
a ballistic trajectory until it impacts the outer edge of an accretion
disc, resulting in a bright spot. Material then flows through the disc
towards the white dwarf until eventually being accreted. In so-called
‘dwarf nova’ AWDs, changes in the flow rate through the accretion
disc can take place in the form of ‘outbursts’ (e.g. Warner 1976;
Meyer & Meyer-Hofmeister 1984): dramatic increases in luminosity
that persist for time-scales of a few days and recur on time-scales of
weeks to years (e.g. Cannizzo, Shafter & Wheeler 1988). The cause
of these outbursts is likely a thermal instability in the disc related to
the partial ionization of hydrogen (Osaki 1974). Some dwarf nova
AWDs also undergo ‘superoutbursts’ (van Paradijs 1983), longer
outbursts believed to be triggered during a normal outburst when
the radius of the accretion disc reaches a critical value (e.g. Osaki
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1989), at which point the disc undergoes a tidal instability and
becomes eccentric. Superoutbursts are characterized by the presence
of ‘superhumps’ in their optical light curves, which are modulations
in luminosity with periods close to the orbital period of the system.
These superhumps are believed to be caused by geometric effects
within an expanded accretion disc (Horne 1984), and in a simplistic
model, can be understood as the precession of an elongated accretion
disc. Systems that undergo superoutbursts are called SU UMa-type
systems after the prototype of these systems, SU Ursae Majoris.

Z Chameleontis (Mumford 1969; hereafter Z Cha) is an SU
UMa-type AWD consisting of a white dwarf primary and a red
dwarf companion, with a well-constrained orbital period of 1.79 h
(Baptista et al. 2002). This system shows both outbursts and
superoutbursts and, due to its high inclination angle (∼80

◦
, see

Table 1), deep eclipses caused by the red dwarf passing in front
of the white dwarf and the accretion disc (Mumford 1971). Due
to this property, the parameters of this system are relatively well
constrained; in Table 1, we list a number of physical properties of
the Z Cha system. This combination of outbursts, superoutbursts,
and eclipses makes Z Cha an interesting object with which to probe
the evolution of AWDs during these events.
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Table 1. A table of the physical parameters of the Z Cha system. Values
are from McAllister et al. (2019). See Section 4.1 for discussion regarding
the orbital period of the system.

Parameter Value Error

Mass ratio 0.189 0.004
Inclination 80.44

◦
0.11

◦

WD mass 0.803 M� 0.014 M�
RD mass 0.152 M� 0.005 M�
WD radius 0.01046 R� 0.00017 R�
RD radius 0.182 R� 0.002 R�
Separation 0.734 R� 0.005 R�

In this paper, we report on TESS observations of Z Cha taken
during two different intervals in 2018. We describe the observations
in Section 2, and our results relating to the timing characteristics
of the system in Sections 4.1 and 4.3. Finally, in Section 4.2 we
perform a population study of the eclipses observed by TESS, and
discuss how they change over the course of both an outburst and a
superoutburst.

2 O BSERVATIONS

The Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2009)
is a space-based optical telescope launched in 2018. The telescope
consists of four cameras, each with a field of view (FOV) of 24

◦ ×
24

◦
, resulting in a total telescope FOV of 24

◦ × 96
◦
. Each camera

consists of 4096 × 4096 pixels, resulting in an effective resolution
of 21 arcsec, and is effective at wavelengths of ∼600–1000 nm.

TESS’s primary mission is to perform an all-sky survey to search
for transiting exoplanets. This survey is performed by dividing the
sky into a number of ‘sectors’, each of which corresponds to the
total field of view of all four cameras. These sectors overlap near the
ecliptic poles; as such, many objects have been or will be observed
in multiple sectors. Each sector is observed for approximately 27 d
at a cadence of 2 min, and a Full Frame Image (FFI) is returned
once every 30 min. Due to telemetry constraints, only images of
∼16 000 pre-selected ∼10 × 10 pixel ‘Postage Stamps’ are returned
at the optimum 2 min cadence, creating a Target Pixel File (TPF)
for each Postage Stamp. Simple aperture photometry is applied to
each of the TPFs to obtain a barycentred Light Curve File (LCF)
of a selected object within that TPF. FFIs, TPFs, and LCFs from
TESS are available at the Mikulski Archive for Space Telescopes1

(MAST).
Z Cha (Tess Input Catalogue ID 272551828) has been observed

during two TESS Sectors: Sector 3 between BJDs 2458385 and
2458406 and Sector 6 between BJDs 2458467 and 2458490. We
show the LCF-generated Z Cha light curves from these sectors
in Figs 1 and 2, respectively. During Sector 3, Z Cha underwent
a superoutburst beginning on BJD 2458391 and persisting until
at least the end of Sector 3. The initial part of this superoutburst
took the form of a normal outburst, transitioning to a superoutburst
around BJD ∼ 2458394. During Sector 6, Z Cha underwent a normal
outburst beginning on BJD 2458481 and persisting until around
BJD 2458486. Both observations include a significant data gap, in
each case caused by the Earth rising above the sun-shade on the
spacecraft and contributing significant scattered light.2

1https://archive.stsci.edu/tess/
2Data Release Notes (DRNs) on TESS Sectors 3 and 6 can be found at
https://archive.stsci.edu/tess/tess drn.html.

3 DATA A NA LY SIS

To analyse TESS data from Sectors 3 and 6, we use our own software
libraries3 to extract data from the native .fits LCF files and to
create secondary data products such as flux-phase diagrams and
power spectra. As the data in TESS LCFs are barycentred, and hence
not evenly spaced in time, we do not produce Fourier spectra from
the data. Instead, we analyse timing properties using the generalized
Lomb–Scargle method (Irwin et al. 1989): a modification on Lomb–
Scargle spectral analysis (Lomb 1976; Scargle 1982) that weights
data points based on their errors. To extract periods from our Lomb–
Scargle spectra, we fit Gaussians in the region of the respective peaks
in frequency space.

When creating generalized Lomb–Scargle spectra, we first de-
trend our data to remove long-term variability and trends such as
the evolution of an outburst and a superoutburst. To perform this
detrending, we subtract a value Nt from each point in our data set. Nt

is calculated by taking a window of width 0.074 499 2631 d, or the
orbital period of Z Cha (McAllister et al. 2019). The lower and upper
quartiles of the flux values of the data within this window are calcu-
lated, and all points outside of the interquartile range are discarded.
Nt is then defined as the arithmetic mean of the flux values of the
remaining points. By discarding all values outside of the interquar-
tile range, we remove the flares and eclipses from our detrending
process and ensure that our calculated trend is close to describing
how the out-of-eclipse rate of the object changes over time.

3.1 Extracting eclipses

To study how the eclipse properties varied as a function of time
in each sector, we calculated the time of each eclipse minimum
assuming an orbital period of 0.074 499 2631 d (McAllister et al.
2019). We created a new light curve with eclipses removed by
removing all data within 0.1 phases (∼0.007 d) of each eclipse
minimum. We then fit a spline to the remaining data to fill in the
gaps using a uniformly spaced time grid. This eclipse-free light
curve could then be subtracted from the original light curve to
isolate only the eclipse features. We show some sample resultant
light curves from this algorithm in Fig. 3.

We split both the eclipse-removed and eclipse-only light curves
into segments of length equal to one orbital period, such that each
segment contains the entirety of a single eclipse. We fit a Gaussian
to each of these segments. The shape of an eclipse is in general
complex, consisting of eclipses of multiple components of the
system each with a separate ingress and egress. Therefore, to fit
each eclipse, we only fit data less than 0.1 phases before or after
the expected eclipse minimum, as the profile of each eclipse is
Gaussian-like in this range. We use this fit to extract a number
of parameters for each eclipse, including amplitude −A, width
σ , and phase φ; we show an example Gaussian fit in Fig. 4. We
also estimate the out-of-eclipse count rate r̄ for each eclipse by
taking the median of the corresponding segment of the eclipse-
removed light curve, resulting in a total of four parameters for each
eclipse.

A number of small gaps exist in the data set, generally due
to anomalous being manually excluded during the light curve
processing. Due to these gaps, some eclipses are partially or
completely missing from our sample, and hence a Gaussian fit to
these segments of the eclipse-only light curve is poorly constrained.

3Available at https://github.com/jmcourt/TTU-libraries.
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Z Cha as seen with TESS 4151

Figure 1. The full TESS light curve of Z Cha during Sector 3; inset: we plot a zoom in on the region highlighted in blue to show the presence of eclipses.
The data gap centred at about BJD 2458396 (highlighted in grey) is due to the telescope being repointed to downlink data to the Earth at this time. Eclipses at
BJDs ∼ 2458388 and 2458401 occur during smaller data gaps, and hence appear as ‘missing’ eclipses in this light curve. The green dashed line at BJD 2458391
represents a conservative estimate of the start time of the superoutburst, which we use to select eclipses that occurred during quiescence (see Section 4.1). The
red dotted line at BJD 2458393 represents the approximate onset time of superhumps (see Section 4.3).

Figure 2. The full TESS light curve of Z Cha during Sector 6; inset: we plot a zoom in on the region highlighted in blue to show the presence of eclipses.
The data gap centred at about BJD 2458477.5 (highlighted in grey) is due to the telescope being repointed to downlink data to the Earth at this time. Eclipses
at BJDs ∼ 2458469 and 2458471 occur during smaller data gaps, and hence appear as ‘missing’ eclipses in this light curve. The green dashed lines at BJDs
2458481 and 2458486 represent conservative estimates of the start and end times of the outburst, which we use to select eclipses that occurred during quiescence
(see Section 4.1). Note that the vertical scale on this figure is different to Fig. 1.

To clean our sample, we remove all eclipses for which the magnitude
of any of A, σ , or r̄ is less than three times the magnitude of the
corresponding error.

4 R ESULTS

In this section, we present the results of the analysis we describe in
Section 3. First, we present our new value for the orbital period of
Z Cha, as well as new ephemerides for the system based on fits to
historical O–C data. Then we present our study of the superhump,
presenting a new value for its mean frequency and showing that it
does not undergo evolutionary stage A (Kato et al. 2009). Finally,
we present our study of the eclipses in this system, showing that

hysteresis in max-eclipse-depth–out-of-eclipse-flux space occurs
during both the outburst and the superoutburst.

4.1 Orbital period

In Figs 5 and 6, we show dynamic power spectra constructed from
the data of Sectors 3 and 6, respectively, after removing the outburst
profile found using the algorithm described in Section 3. In both
the plots, a strong and constant signal at ν0 = 13.428(±1) c/d can
be seen, corresponding to an orbital period of the system Porb =
0.074 472(6) d.

We calculate an orbital period Porb for the Z Cha system
independently using our data set so that our value can be used
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Figure 3. The results of applying the algorithm we describe in Section 3.1
to the portion of the Sector 6 light curve of Z Cha containing the outburst.
In light grey we show the original light curve, which we have decomposed
into an eclipse-removed light curve (blue) and an eclipse-only light curve
(orange). Inset: we show a zoom to the period during the light curves
highlighted in green. Note that, due to the presence of a pre-eclipse
brightening caused by the hotspot coming into view (see also Figs 4 and 7),
an amount of orbital modulation is still visible in the eclipse-removed light
curve.

Figure 4. The light curve of a typical eclipse in the eclipse-only light curve
of Z Cha (black), along with the shape of the Gaussian (red) that we fit to it
to extract parameters.

to better constrain the characteristics of the Z Cha system. Starting
with the orbital period of 0.074 472 d indicated by our dynamical
power spectrum, we calculated the cycle number (since an arbitrary
start time) corresponding to each eclipse minimum during portions
of the data set in which Z Cha was in quiescence. We then fit a
function tmin = PorbN + t0 to the eclipse minima times to obtain a
value for Porb. We obtain an orbital period of 0.074 499 53(5), which
is slightly longer than the value of 0.074 499 2631(3) d reported by
McAllister et al. (2019). In Fig. 7, we show a portion of the light
curve of Sector 6 folded over our value for the orbital period.

We also calculate the O–C values (the difference between
observed eclipse time and expected eclipse time according to a given
ephemeris) of the eclipses in our sample compared to the linear
ephemeris provided by Baptista et al. (2002), which we reproduce
in Table 2. Due to the presence of significant variations of the value
of φ in eclipses during the outburst and superoutburst (discussed in

Figure 5. A dynamic Lomb–Scargle spectrogram of the Sector 3 observa-
tion of Z Cha. Each spectrum corresponds to a 4 d window of data, which is
moved 0.1 d at a time. We also show the light curve of Sector 3 on the same
x-axis for comparison. Note that the dynamic power spectrum is heavily
oversampled; using a window size of less than ∼4 d does not allow us to
resolve the orbital and superhump periods as separate features.

Figure 6. A dynamic Lomb–Scargle spectrogram of the Sector 6 observa-
tion of Z Cha. Each spectrum corresponds to a 4 d window of data, which is
moved 0.1 d at a time. We also show the light curve of Sector 6 on the same
x-axis for comparison. Note that the dynamic power spectrum is heavily
oversampled, consistent with Fig. 5.

more detail in Section 4.2), we do not use any eclipses after BJD
2458391 in Sector 3 or between BJDs 2458481 and 2458486 in
Sector 6; these times are marked on Figs 1 and 2. By averaging the
O–C values for all eclipses in the remaining periods of quiescence,
we find a mean O–C of −293.3(7) s.

We show our O–C value in Fig. 8 alongside O–C values against
the Baptista et al. (2002) ephemeris for eclipse times reported
in a number of previous studies (Cook 1985; Wood et al. 1986;
Honey et al. 1988; Warner & O’Donoghue 1988; van Amerongen,
Kuulkers & van Paradijs 1990; Robinson et al. 1995; Baptista et al.
2002; Dai et al. 2009; Nucita et al. 2011; Pilarčı́k et al. 2018). We
choose the ephemeris from Baptista et al. (2002) as a reference due
to its linearity.

A number of previous studies (e.g. Baptista et al. 2002) have noted
an apparently sinusoidal variation in the O–C values of eclipses
in Z Cha. This effect has been seen in other eclipsing AWDs
(e.g. Bond & Freeth 1988), and has variously been attributed to
either a secular process caused by magnetic cycles in the donor
star (the Applegate mechanism, Applegate 1992) or the presence
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Z Cha as seen with TESS 4153

Figure 7. Upper: the light curve of data from Sector 6 before the data
gap at BJD ∼ 2458477.5, folded over our measured orbital period of
0.074 499 53 d. We choose this segment of our data to fold here as the
out-of-eclipse intensity of Z Cha changes little during this interval, and
hence the shape of the average eclipse can be better seen. Lower: the same
folded light curve, rebinned into phase bins of width 0.005, to better show
fine features of the mean cycle such as the egress of the hotspot at φ ∼ 0.1.

of a third body in the system. In the latter scenario, this third
body either periodically transfers angular momentum to the visible
components, or causes a periodic shift in the distance, and hence
light-traveltime, to the visible components. Dai et al. (2009) note
that the Applegate mechanism cannot be employed to satisfactorily
explain the variations in the orbital period of Z Cha. Consequently,
previous authors (e.g. Baptista et al. 2002; Dai et al. 2009) have fitted
ephemerides with a sinusoidal component to the archival eclipse
times of Z Cha, in order to extract the orbital characteristics of the
hypothetical third body. In Fig. 8, we also show the expected O–C
values for sinusoidal ephemerides calculated in Baptista et al. (2002)
and Dai et al. (2009), as well as a quadratic ephemeris presented
in Robinson et al. (1995); in each case, our new data point lies
far outside the confidence region associated with the respective
ephemeris.

We calculate a new ephemeris for Z Cha by fitting a function to
all the eclipse time data with the form

te = T0 + P0N + A sin

(
2π(te − T1)

P1

)

≈ T0 + P0N + A sin

(
2π(T0 + P0N − T1)

P1

)
(1)

assuming A � P0N.

Table 2. A table of ephemerides for the eclipses of Z Cha for which we
simulate O–C values in Fig. 8. In each case, te is the expected time of
minimum light of the Nth eclipse since some time T0.

Baptista et al. (2002) linear ephemeris

te = T0 + P0N
T0 = 2440 264.680 70(±4) d
P0 = 0.074 499 3048(±9) d

Robinson et al. (1995) quadratic ephemeris

te = T0 + P0N + cN2

T0 = 2440 264.632 13(±9) d
P0 = 0.074 499 2575(±24) d
c = 3.77(±6) d

Baptista et al. (2002) sinusoid ephemeris

te = T0 + P0N + Acos (2π(N − B)/C)
T0 = 2440 264.6817(±1) d
P0 = 0.074 499 297(±2) d
A = (7.2 ± 1.0) × 10−4 d
B = (120 ± 4) × 103

C = (136 ± 7) × 103

Dai, Qian & Fernández Lajús (2009) sinusoid ephemeris

te = T0 + P0N + Asin (2πBN + C)
T0 = 2440 265.85(2) d
P0 = 0.074 499 293(4) d
A = (8.8 ± 0.1) × 10−4 d
B = (2.4 ± 3) × 10−5

C = (0.992 ± 7) × 103

Figure 8. A plot of the O–C values for reported eclipse times against the
linear ephemeris of Baptista et al. (2002) over time. The blue points are
recalculated O–C values for eclipses reported in the literature (see the main
body of text for sources), whereas the orange square represents the point
added by our study. In the black lines, we plot the expected O–C values for
a number of different ephemerides; see Table 2 for further details. The grey
area associated with each black line represents the 1σ confidence interval
associated with that ephemeris.

We rebin the arrival times into observing runs: periods of time of
at most a few days in which the separation between observations is
much less than the separation from the next and previous runs. The
error of each of these runs is taken to be the value of its rms scatter;
when fitting, we weight each run by the reciprocal square root of
this value. If this error is smaller than 10 s, we increase it to 10 s to
attempt to account for historical systematic errors. If a run contains
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Table 3. A table of the new best-fitting linear and sinusoid ephemerides
that we calculate for eclipses in Z Cha.

New linear ephemeris

te = T0 + P0N
T0 = 2440 000.060 88(7) d
P0 = 0.074 499 2878(4) d

New sinusoid ephemeris

te = T0 + P0N + A sin
(

2π(T0+P0N−T1)
P1

)

T0 = 2440 000.060 88(7) d
P0 = 0.074 499 2878(4) d
A = 0.000 92(5) d
T1 = 2446 781 ± 140 d
P1 = 13 550 ± 438 d

Figure 9. A plot of the O–C values for reported eclipse times against
our new linear ephemeris (see Table 3) over time. The blue points are
recalculated O–C values for eclipses reported in the literature (see the main
body of text for sources), whereas the orange square represents the point
added by our study. In the black lines, we plot the expected O–C values from
our new sinusoid ephemeris (also in Table 3). The grey area represents the
1σ confidence interval associated with our ephemeris.

only 1 point, we assume a conservative error of 30 s. Even after
doing this, the O–C values from historical data must be treated with
caution, as a number of different standards for converting times to
BJD exist and it is not always clear which is being used by a given
author. These different standards can lead to differences in reported
eclipse times of the order of ∼50 s (e.g. van Amerongen et al. 1990;
Eastman, Siverd & Gaudi 2010) and we do not attempt to correct
for them here.

We present the results of fitting equation (1) to our data set in
Table 3, and in Fig. 9 we show how it fits the O–C taken against
a new best-fitting linear ephemeris (also given in Table 3). These
values suggest that the orbit of the speculative third body in the Z
Cha system has an orbital period of 37.5 ± 0.5 yr. We find that the
main components of Z Cha likely orbit the centre of mass common
to this third body with a semimajor axis of >82.2 ± 5 light-seconds
[35.4(2) R�] depending on the inclination angle.

4.2 Eclipse properties

As we do not fix the phase when fitting Gaussians to each eclipse, the
phase φ at which minimum light occurs is free to vary slightly from

Figure 10. A plot of eclipse amplitude A against out-of-eclipse rate r̄ (an
eclipse fraction diagram) for all well-constrained eclipses in the Sector 6
TESS observation of Z Cha. The data points are joined sequentially by a
grey line to show evidence of hysteresis during the outburst; the track traced
by eclipses during the rise (decay) of the outburst is labelled R (D). The
black line is a line with gradient = 1 fit to the data points corresponding to
eclipses during quiescence; inset: we show a zoom to the eclipses used to
calculate this line.

eclipse to eclipse. We find that, indeed, the minimum-light phase
indicated by our fitting does show small but significant variations
of the order of 0.01 φ, especially shortly after the onset of both
the outburst and the superoutburst. This effect has previously been
noted by Robinson et al. (1995), who attribute the phase jump during
outbursts to be due to each eclipse consisting of a hybrid event: an
eclipse of the hotspot and an eclipse of the disc that cannot be
cleanly separated. The effect has also been noted in a number of
other eclipsing AWDs, including V447 Lyrae (Ramsay et al. 2012)
and CRTS J035905.9+175034 (Littlefield et al. 2018).

In other eclipsing AWDs such as GS Pav (Groot et al. 1998) and
KIS J192748.53+444724.5 (Scaringi, Groot & Still 2013), it has
been shown that, during quiescence, the depth of an eclipse shows a
linear correlation with the out-of-eclipse luminosity. The gradient of
this relationship is very close to unity, which is interpreted as being
due to same fraction of the accretion disc flux being obscured during
each eclipse. However, when these systems undergo outbursts, the
eclipse depths deviate from this relationship and become shallower.
This is interpreted as being due to a combination of the radial
temperature gradient of the disc changing and the physical size of
the disc; in each case, the donor star will eclipse a smaller fraction of
the integrated luminosity during each eclipse, and hence the eclipses
become shallower than would be expected from the 1:1 relation.

In Fig. 10, we show a plot of eclipse amplitude A against
out-of-eclipse rate r̄ (hereafter, referred to as an ‘eclipse fraction
diagram’) for all eclipses in the Sector 6 TESS observation of Z Cha,
which includes a normal outburst. To check that the expected 1:1
relationship between A and r̄ is consistent with our observations,
we fit a y = mx + c curve to the portion of these data corresponding
to quiescence (e.g. before and after the outburst start and end
times, marked with the dashed green lines in Fig. 2). We find m =
0.93 ± 0.07. As this is consistent with 1, we set m = 1 and fit a
y = x + c curve to our data (black line in Fig. 10), obtaining an
x-intercept of 49.8(3) e− s−1. This intercept gives the out-of-eclipse
flux of the system when the eclipse depth is 0, i.e. there is no disc
to eclipse. As such, this value gives an estimate for the flux of the
donor star, and it should be constant across all outbursts of Z Cha.
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Z Cha as seen with TESS 4155

Figure 11. A plot of eclipse amplitude A against out-of-eclipse rate r̄ (an
eclipse fraction diagram) for all well-constrained eclipses in the Sector 3
TESS observation of Z Cha, which includes the superoutburst. The data
points are joined sequentially by a grey line to show evidence of hysteresis
during the outburst; the track traced by eclipses during the rise (decay) of
the outburst is labelled R (D). The black line is a line with gradient = 1 fit to
the data points corresponding to eclipses during quiescence; inset: we show
a zoom to the eclipses used to calculate this line.

We also show that eclipses during the outburst in Sector 6 exhibit
the same behaviour as those seen in other eclipsing AWDs, in
that their A-values dip below the 1:1 relationship with r̄ during an
outburst. In addition to this, we find strong evidence of hysteresis
in this parameter space during the outburst; during the rise of the
outburst, eclipses move along a track at lower eclipse depth A (track
R, marked in Fig. 10) and then return to quiescence along a track at
higher A (track D). As the eclipses in our sample are approximately
equally spaced in time, the sparsity of points along track R compared
to track D indicates that movement along track R is completed
in a significantly shorter time. Hysteresis in this parameter space
during a dwarf nova outburst has previously been noted by Scaringi
et al. (2013).

In Fig. 11, we show the eclipse fraction diagram for all eclipses
in Sector 3, including the superoutburst. We again check the 1:1
correlation between these parameters by fitting a y = mx + c line
to the data during quiescence, and obtain a gradient m = 0.7 ± 0.2.
This figure is more than 1σ lower than 1, although the line is not
very well constrained (c = −28 ± 16 e− s−1) due to the relatively
low number of quiescent eclipses in Sector 3 (72) compared to
Sector 6 (220). If we again fix the gradient to 1 and refit the line,
we obtain an x-intercept c = 51.9 ± 0.3 e− s−1. This is significantly
different from the x-intercept, and hence donor star flux, that we
obtain by fitting a straight line to the quiescent periods in Sector 6.
This in turn further suggests that a 1:1 fit to the data in Sector 3 is
not physical.

Again we find evidence of hysteresis, confirming that the hystere-
sis reported by Scaringi et al. (2013) during dwarf nova outbursts can
also occur during superoutbursts. Again, the hysteresis generally
consists of two tracks: an outbound track R that is completed in
relatively little time, and a decay track D that occurs at generally
higher values of A than on track R. The hysteresis in Fig. 11
appears somewhat more complicated than that in Fig. 10, but some
of the excursions to high or low values of A along path D are
likely due to the superhump modulation, causing us to periodically
overestimate A.

4.3 Superhump

In Fig. 5, a second signal is also visible peaking at a mean frequency
of ∼12.95 d−1, or a period of 0.077 13(±7) d. This signal is only
visible during the superoutburst portion of Sector 3, and is absent
from all of Sector 6 including the outburst, and so we identify this
feature as a ‘positive superhump’: a modulation of the disc caused by
its geometric elongation and subsequent precession after it extends
beyond the 3:1 resonance point with the companion star (e.g. Wood
et al. 2011). The superhump begins on BJD ∼ 2458393, less than
3 d before the start of the data gap and at the approximate time of
the transition of an outburst into the superoutburst. Due to the data
gap centred around BJD 2458396, and the end of the observation,
the early- and late-time evolution of the superhump is lost. Towards
the end4 of the observation at BJD ∼ 2458404, the amplitude of
the superhump begins to weaken significantly, at the same time
that the superoutburst is beginning to end (see e.g. Fig. 1 for
comparison).

A positive superhump has previously been reported in Z Cha by
Kato et al. (2015) during a 2014 superoutburst of the source. They
calculated the mean period of the superhump as 0.077 36(8) d during
the dominant evolutionary Stage B (see Kato et al. 2009). Using
bootstrapping to estimate errors, we calculate a mean superhump
period of 0.077 13(±7) d from our data set, somewhat shorter than
that calculated by Kato et al. This discrepancy may in part be due
to sampling effects, as the superhump period changes significantly
during the course of Stage B.

Studies of superhumps in other SU UMa-type systems have
found ‘fading’ events during superoutburst, in which the system
becomes a few tenths of a magnitude fainter for ∼1 d before
rebrightening (Littlefield et al. 2018). We see similar features during
the superoutburst of Z Cha in the form of an ∼2 d modulation
in flux apparent in Fig. 1. However, this modulation occurs very
close to the beat period between the orbital period and the mean
superhump period (∼2.13 d), and hence is likely an artefact of this
beat. As the positive superhump is generally interpreted as occurring
at the beat frequency of the disc precession and the orbital period
(Hellier 2001), this 2.13 d period may also be interpreted as the
synodic precession period of the elongated accretion disc during
superoutburst.

The modulation that causes the superhump can also be readily
seen in the light curve. In Fig. 12, we show a flux-phase diagram
of the light curve from the Sector 3 observation of Z Cha, in
which the light curve has been folded over the orbital period
of the system and then stacked vertically. This diagram shows
how the phase of a periodic or quasi-periodic event changes with
time. The brightening events associated with the superhump can
clearly be seen as ‘diagonal lines’ in this plot, arriving slightly
later during each orbital period due to the superhump’s period
being slightly greater than that of the orbit. In Fig. 13, we show
a similar flux-phase diagram, this time folded over the mean period
that we calculated for the superhump. Including the 10 cycles that
occur before the data gap, the superhump appears as a parabola-
like shape in this plot; at first, it arrives later than its expected
time of arrival, but this delay decreases over time and eventually
reverses, indicating that the period of the superhump is decreasing
over time.

4The data for our dynamic Lomb–Scargle periodograms end 2 d before the
end of the associated light curve data due to our choice of a 4 d window
when producing Lomb–Scargle periodograms.
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Figure 12. A flux-phase plot of the Sector 3 light curve of Z Cha; a light
curve that has been cut into segments equal to two times the orbital period
and then stacked vertically, to show how light curve morphology varies as
a function of cycle number. The brightening associated with the superhump
can be seen as diagonal tracks. The count rates in each orbit have been
converted to ‘normalized rate’ by subtracting the mean and dividing by the
standard deviation. The horizontal grey regions correspond to data gaps.

Figure 13. A flux-phase plot of the Sector 3 light curve of Z Cha, folded on
the mean superhump period we calculated. The count rates in each orbit have
been converted to ‘normalized rate’ by subtracting the mean and dividing
by the standard deviation. In red, we plot the parabola we fit to the central
superhump phase as a function of time (see Table 4). The horizontal grey
regions correspond to data gaps.

5 D ISCUSSION

5.1 Third body in the Z Cha system

Sinusoidal O–C modulations have been identified or proposed in a
number of additional AWD systems (e.g. Bond & Freeth 1988; Dai
et al. 2010; Han et al. 2016), but the orbital cycles of these systems
are generally either poorly sampled or have not been observed in
their entirety. Previous studies have shown that these modulations
cannot always be explained by the orbit of a third body (e.g.
Bianchini et al. 2004); instead they suggest secular processes such as
the Applegate mechanism (Applegate 1992), in which the donor star
is periodically deformed due to its own magnetic activity and this
deformation is coupled with a redistribution of angular momentum
in the system. Dai et al. (2009) have previously attempted to use
the Applegate mechanism to explain the O–C modulation seen in Z
Cha. They calculated the minimum energy required to redistribute

sufficient angular momentum in the companion star via this effect
to reproduce the observed amplitude of the oscillation. They found
that the required energy was ∼1 order of magnitude greater than
the entire energy output of the star over an oscillation period, and
hence ruled out the Applegate mechanism as the driver of this
oscillation (see also Brinkworth et al. 2006, for a full treatment of
the energetics of the Applegate mechanism). We find a sinusoid
amplitude of 79.5 ± 4 s; as this number is similar to value of ∼90 s
obtained by Dai et al., we find that the energetic output of the donor
star is still much too small to explain the O–C modulation via the
Applegate mechanism. As such, our results further strengthen the
case for the presence of a low-mass third body in Z Cha (see also
studies by, e.g. Baptista et al. 2002).

If the sinusoidal modulation in O–C is caused by a light-
traveltime effect, we calculate an orbital period for this body of
37 ± 0.5 yr, similar to the recent orbital period estimate proposed
by Dai et al. (2009) of ∼32.57 yr. We find the binary mass function
of orbit of the tertiary body orbit to be f(M) = 3.2 × 10−6 M�.
For a combined mass of the two major components of Z Cha of
0.955 M� (McAllister et al. 2019), this leads to a brown dwarf
mass of ∼0.015 M�/sin i3, where i3 is the inclination of the orbital
plane of the third body. Assuming our new estimate for the orbital
period, a full orbital cycle of the third body in Z Cha has now been
sampled, as can be seen clearly in our fit in Fig. 9. This makes Z Cha
one of only very few systems for which this has been achieved (see
also e.g. Beuermann et al. 2011, for a similar study on the AWD DP
Leonis).

However, there are a number of important considerations regard-
ing these results. The time standard5 employed by prior studies of Z
Cha is often unclear during the earlier part of Z Cha’s observational
history. The use of these alternative time standards can lead to
differences of up to ∼50 s in the reported times of eclipse minima
(e.g. van Amerongen et al. 1990). In addition to this, the orbital
period we calculate for the third body is similar to the length
for which Z Cha has been observed, leading to the possibility
that our result may be contaminated by windowing effects. Future
observations of the O–C behaviour of Z Cha will be able to confirm
or refute the presence of such a third body in this system.

5.2 Hysteresis in eclipse depth/out-of-eclipse flux space

It is possible to use the eclipse fraction diagrams, shown in
Figs 10 and 11, to estimate properties of the eclipses in the Z
Cha system. Previous authors have attempted to deconvolve the
quiescent eclipses of Z Cha into a series of eclipses of individual
components of the system (Wood et al. 1986; McAllister et al. 2019).
This technique leads directly to an estimate of the fraction of the disc
flux that is eclipsed during eclipse maximum. Previous studies (e.g.
Wood et al. 1986; McAllister et al. 2019) find that the accretion
disc is only partially obscured at maximum eclipse depth during
quiescence. However, we find a 1:1 correlation between eclipse
depth and out-of-eclipse flux for Z Cha during quiescence in Sector
6. This suggests that the vast majority of the disc flux is missing
during each eclipse at this time, and hence the disc is entirely or
almost entirely eclipsed. To estimate the minimum possible size of
the accretion disc, we calculate the circularization radius of the disc
using the formula (e.g. Frank, King & Raine 2002):

Rcirc = a(1 + q)(0.5 − 0.227 log q)4 , (2)

5In this paper, we refer to TESS-calculated BJDs, which agree with times
calculated using the BJDTDB standard to within 1 s (Bouma et al. 2019).
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where a is the semimajor axis of the orbit and q is the mass
ratio. Using the values of q and a from McAllister et al. (2019)
(see Table 1), we estimate that the minimum accretion disc radius
is ∼0.170 R�. This value is slightly smaller than the red dwarf
eclipsor’s radius of 0.182 R�, also taken from McAllister et al.
(2019). As such, the red dwarf in the Z Cha system would be able
to totally eclipse the disc if it passes very close to the centre of the
disc as seen from the Earth.

Notably, we were not able to fit a well-constrained 1:1 correlation
to eclipse depth and out-of-eclipse flux during the quiescent period
before the superoutburst. This suggests that the maximum eclipse
fraction was significantly smaller before the superoutburst than
after it in Sector 6. This in turn suggests that the quiescent disc
before the superoutburst had a larger radius than the quiescent
disc immediately after the superoutburst. This finding is consistent
with the Tidal–Thermal Instability model of superoutbursts (Osaki
1989): in this model, the radius of the accretion disc during
quiescence becomes slightly larger after each successive outburst.
Eventually, the quiescent disc radius reaches some critical value,
and the next outburst triggers a superoutburst, which then resets
the quiescent disc radius to some smaller value. As such, the
minimum accretion disc radius should occur during the quiescence
immediately after a superoutburst, which is consistent with our
finding that the disc radius during TESS Sector 6 is likely close to
the circularization radius.

The increase in luminosity during AWD outbursts is caused by
an increase in both the viscosity (and hence temperature) and the
size of the accretion disc. Using the presence of the hysteresis in
the eclipse fraction diagrams that we show in Figs 10 and 11, it is
possible to estimate the sign and magnitude of the response time of
the disc to the increase in viscosity or vice versa. Assuming a static
accretion disc (e.g. Frank et al. 2002), the temperature T in the disc
during outburst as a function of radius R can be expressed as

T (R) =
(

k
Ṁ

R3

[
1 −

√
R∗
R

]) 1
4

, (3)

where Ṁ is the instantaneous accretion rate, R∗ is the radius of the
compact object, and

k = 3GM

8πσ
, (4)

which depends only on the mass M of the compact object. Using
the Stefan–Boltzmann equation, the luminosity of one side of such
an accretion disc between Rin and Rout is therefore

L(Ṁ, Rout) = 1

2

∫ Rout

Rin

σ2πRT 4(R) dR

∝ Ṁ

(
2
√

R∗
3Rout

√
Rout

− 1

Rout
+ 1

3R∗

)
(5)

assuming that the inner disc radius Rin = R∗ for an AWD. The
out-of-eclipse flux from an accretion disc is therefore given by

�O ∝ L(ṁ, rdisc) (6)

for a disc with radius rdisc and instantaneous mass transfer rate ṁ.
First of all, we assume the simplest possible eclipse, in which the
star passes directly in front of the centre of the disc as seen from
the Earth and the inclination angle of the disc is 90

◦
. The maximum

eclipse depth can be estimated as the integrated flux over some
region A0 of the disc. A0 can be set equal to the surface of a disc
truncated at the radius recl of the eclipsing body, unless this is larger

Figure 14. The fractional projected area of a sphere (red) on the surface
of an inclined disc (grey) is equal to the fractional projected area of an
ellipse on to a face-on disc (right), where the eccentricity of the ellipse in
the latter case is determined by the inclination of the disc in the former. In
our approximation, we assume that the covered region of the disc at peak
eclipse (A0 in orange) is equal to a circle with the radius of the eclipser. The
true covered region of the disc is Ai = A0 + Ae, so we underestimate our
eclipse depths by a value equal to the integrated flux over Ae (in green).

than the total flux from the disc:

�E ∝
{

L(ṁ, rdisc) if recl > rdisc

L(ṁ, recl) otherwise .
(7)

In true astrophysical eclipses, the inclination angle of the disc
must be small, and the eclipsed region corresponds to a portion Ai

of the disc highlighted in Fig. 14. In the limit where the disc radius
tends to infinity and its inclination tends to 0

◦
, the factor by which

we underestimate the eclipsed area of the disc tends to

Ai

A0

rdisc→∞, i→0−−−−−−−→ 4

π

rdisc

recl
. (8)

In the Tidal–Thermal Instability model, the radius of the accretion
disc during quiescence cannot exceed the radius of a Keplerian 3:1
resonance with the orbital frequency (Osaki 1989). We estimate
a value for this radius in Z Cha to be ∼0.33 R�, and hence
rdisc/recl � 2.2. As such, our toy model underestimates the eclipsed
area of the disc by less than a factor of 3. As the temperature
profile of the disc leads to a surface brightness that decreases with
increasing r, our model underestimates the eclipsed flux from the
disc by even less, and our approximation is valid.

Using equations (6) and (7), it is possible to take two signals ṁ(t)
and rdisc(t) and produce the expected eclipse fraction diagrams, up
to some constant. We take the case in which ṁ(t) and rdisc(t) have
the same functional form, but rdisc instead depends on t − φ for
some constant φ. This way we can model how the eclipse depth
diagram would appear for an accretion disc in which an increase
in radius lags an increase in accretion rate or vice versa. We show
such an eclipse depth diagram for a Gaussian input signal of the
form ṁ = A exp(B(t − C)2) in Fig. 15.

The general behaviour of this modelled eclipse fraction diagram
is similar to what we see in the real data from the normal outburst
of Z Cha; at low luminosities, eclipse depth and out-of-eclipse flux
follow a 1:1 relationship. At some point (labelled A in Fig. 15), the
radius of the disc significantly exceeds the radius of the eclipsing
object, and eclipse depth becomes smaller than out-of-eclipse flux.
As the object evolves, it executes a loop in this parameter space
below the x = y line, before returning to that line at a point B.
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Figure 15. Top panel: a plot of eclipse depth against out-of-eclipse flux (an
eclipse fraction diagram) for a system modelled using equations (6) and (7),
with Gaussian input signals of the form ṁ = A1 exp(B1(t − C)2) and rdisc =
A2exp (B2(t − C − φ)2). All values have been normalized by the maximum
out-of-eclipse flux. In order for the hysteretic loop in this diagram to be
executed in an anticlockwise direction (to mimic the data from Z Cha), −π

< φ < 0. A and B mark the points in the diagram at which the object leaves
and returns to the 1:1 line in this diagram, respectively. Lower panels: plots
showing the forms of the input signals ṁ(t) and rdisc(t) used to generate the
top panel. The accretion rate ṁ is normalized by the mean accretion rate ṁμ.

For all input signals, we find that the loop in the eclipse fraction
diagram is executed in a clockwise direction if and only if φ

is positive, i.e. the disc radius increases after the instantaneous
accretion rate (and disc temperature) increases. Conversely, the loop
is executed in an anticlockwise direction if and only if φ is negative,
and the increase in temperature during an outburst lags the increase
in disc radius. As we show in Figs 10 and 11, the hysteretic loop in
the eclipse fraction diagram is executed anticlockwise in both the
outburst and superoutburst of Z Cha, leading us to conclude that the
disc begins to increase in size before it increases in temperature in
both cases.

This behaviour can also be seen by considering points A and B
in Fig. 15. By definition, at both of these points, rdisc = recl. As the
out-of-eclipse flux at B is greater than at A, it follows that ṁ must
also be greater at B than at A. Assuming the functional forms ṁ(t)
and rdisc(t) are similar, this also implies that an increase in accretion
rate lags after an increase in disc size. This in turn suggests that, at
the onset of an outburst, the increase in viscosity in the accretion
disc first causes the disc to expand. The matter in this expanded
region of the outer disc then accretes inwards, increasing the mean
mass transfer rate within the disc and raising the luminosity of the
disc surface.

Table 4. A table of best-fitting parameters, in units of phase/cycle, for a
parabola fit to the curve traced by the superhump in Fig. 13. φSH is the
expected phase of the peak of the superhump, and N is the number of cycles
since BJD 2458385, the approximate time of onset for the superhumps.
Pfold = 0.077 1892.

φSH(N) = aN2 + bN + c
Value Error

a − 4.4 × 10−5 5.0 × 10−7

b 5.5 × 10−3 7.4 × 10−5

c 3.4 × 10−1 2.4 × 10−3

5.3 Superhump period and evolution

Our results have implications for the behaviour of a dwarf nova
accretion disc during outbursts and superoutbursts, particularly
during the onset and the decay of these features. As the brightening
events associated with the superhump are large in this system, it
is possible to use the path that they trace in a flux-phase plot (e.g.
Fig. 13) to estimate how the superhump frequency changes over
time. The gradient of a straight line m in a flux-phase plot with the
y-axis in units of cycles corresponds to an event recurring with a
period PSH:

PSH = Pfold

(
1

m
+ 1

)
= Pfold (m̄ + 1) , (9)

where Pfold is the folding period used to obtain the flux-phase plot
and m̄ is defined as 1/m, and is equal to the rate of change of phase
as a function of cycle number. Consequently, the rate of change of
PSH with respect to time can be calculated as

ṖSH = 1

Pfold

dPSH

dN
= dm̄

dN
, (10)

where N is the time in units of number of cycles since the approxi-
mate onset of the superhump at BJD 2458385. By fitting a parabola
to the feature caused by the superhump in a flux-phase diagram
of the Sector 3 light curve, we find a value dm̄

dN
= −8.8(1) × 10−5,

corresponding to ṖSH = −7.6(1) s d−1; the best-fitting values for
this parabola are given in Table 4, and we plot it in Fig. 13.

At the approximate onset of the superhump, N = 0 and, using
the values in Table 4 and equation (9), the instantaneous superhump
period can be calculated to be 0.077 74(6) d at this time.

The drift in the superhump period can also be investigated
using O–C diagrams. To estimate the arrival time of each super-
hump, we divide the eclipse-removed light curve into segments of
0.077 1892 d, a value close to the approximate median superhump
recurrence time. A Gaussian was then fitted to each of these
segments to extract the time at which the peak of each superhump
occurred. We compared these arrival times against those predicted
by a linear ephemeris with a period of 0.077 1892 d; we show
the resultant O–C diagram in Fig. 16, showing the quadratic
ephemeris corresponding to the parabolic fit to the flux-phase
diagram presented in Table 4. To check for consistency, we also
fit a quadratic ephemeris to only the superhumps that occurred after
the large data gap in Sector 3 (shown in blue in Fig. 16). When
extrapolated, this new ephemeris significantly overestimates the O–
C values of superhumps that occurred before the data gap (shown
in white in Fig. 16). This implies that the mean rate of period decay
during and before the data gap was larger than the mean rate of
period decay after the data gap. It is therefore unlikely that the
superhump period was constant for any significant length of time
during this data gap.
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Figure 16. An O–C diagram of superhump arrival times against a linear
ephemeris with a period of 0.077 1892 d and arbitrary phase. The dashed line
is a quadratic ephemeris fit to all superhumps in our sample, corresponding
to the quadratic fit to the flux-phase diagram presented in Table 4. The solid
line is a quadratic ephemeris fit only to those superhumps that occurred after
the large data gap in Sector 3 (in blue). In each case, 1σ confidence intervals
are highlighted in grey. Note that this ephemeris significantly overestimates
the O–C values of superhumps that occurred before the data gap (in white).

A decreasing superhump period has been previously noted in
a number of other systems (e.g. Uemura et al. 2005). Kato et al.
(2009) found that the evolution of the superhump period in most
AWD superoutbursts can be described in three evolutionary ‘stages’:

(i) Stage A, in which the superhump period is high and stable.
The superhump period in this stage is higher than in both the other
stages.

(ii) Stage B, which occurs after Stage A, in which the superhump
period usually decreases smoothly over time. In some sources, the
superhump period may increase instead during this stage.

(iii) Stage C, which occurs after Stage B, in which the superhump
period is low and stable.

Our results suggest that the superhump period of Z Cha continued
to decrease during the data gap in Sector 3. As such, we find that the
superhump in the 2018 superoutburst of Z Cha was in evolutionary
Stage B for the duration of the observation with TESS, and neither
Stages A nor C were observed. As the start of the outburst was
observed, we are able to state that Stage A did not occur during
this superoutburst, but it is unclear whether Stage C occurred as the
late stages of the outburst were not observed. Previous studies of
the superhump period in superoutbursts of Z Cha (e.g. Kato et al.
2015) have been unable to determine the period derivative during
Stage B using O–C fitting techniques. As such our measurement
calculated using the flux-phase diagram is, as far as we are aware,
the first superhump period derivative calculated for Z Cha.

Stage A superhumps are interpreted as being the dynamic
procession rate at the radius of the 3:1 resonance with the binary
orbit. Stage B superhumps appear later, when a pressure-driven
instability in the disc becomes appreciable. The absence of Stage
A superhumps has been noted in a few other SU UMa-type AWDs
(e.g. QZ Vir and IRXS J0532, Kato et al. 2009), but the physical
parameters that determine whether Stage A superhumps will occur
in a given superoutburst remain unclear. Notably, a previous
superoutburst of Z Cha in 2014 did show Stage A superhumps (Kato
et al. 2015), indicating that the absence of Type A superhumps is

a property related to individual superoutbursts rather than to the
system.

Additionally, using our estimate of the superhump period at its
onset, it is possible to obtain an independent estimate for the mass
ratio q of the components of the Z Cha system, where q is the mass
ratio defined as

q ≡ Md/Ma , (11)

where Ma is the mass of the accretor (in this case the white dwarf)
and Md is the mass of the donor star. We use the empirical relation
between q and ε (Knigge 2006):

q = (0.114 ± 0.005) + (3.97 ± 0.41) × (ε − 0.025) , (12)

where ε, the superhump period excess, is a function of superhump
period Psh and orbital period Porb:

ε ≡ Psh − Porb

Porb
. (13)

From equation (12), we thus obtain q = 0.187 ± 0.013. This
mass ratio is consistent with recent estimates of q obtained via
independent methods (e.g. McAllister et al. 2019).

6 C O N C L U S I O N S

We have performed a study of the timing properties of Z Cha during
the TESS observations of that source in 2018, as well as a study of
how the eclipse properties varied throughout that time period. We
calculate the arrival times of eclipses in this system, and use these
results to confidently rule out a number of ephemerides constructed
by previous studies. We thus create a new orbital ephemeris for the
Z Cha system, implying the existence of a third body (consistent
with previous studies of this object) and finding a new orbital period
for this body of 37.5 ± 0.5 yr.

We also study the properties of the ‘positive superhump’: an
oscillation with a period slightly greater than the orbital period,
which has been observed during superoutbursts in a number of dwarf
nova AWDs. We find that the period associated with the superhump
changes significantly during the superoutburst, decreasing towards
the orbital period of the system as the superoutburst progresses, and
find the rate at which this period decays for the first time in Z Cha.
Notably, we find that the superhump in Z Cha evolves in a non-
standard way, skipping evolutionary Stage A entirely. Superhumps
during previous outbursts of this source have been observed to
evolve normally, suggesting that the absence of Stage A evolution
is a property of an individual superoutburst rather than of an AWD
system.

Finally, we trace how the depth of an eclipse, and the out-of-
eclipse flux, varies over the course of both an outburst and a
superoutburst. We find that, during quiescence, these parameters
follow a 1:1 relationship. Out of quiescence, eclipses deviate from
this relationship such that eclipse depth becomes significantly less
than out-of eclipse flux. We interpret this as being due to the
quiescent disc being comparable in radius to the eclipsing red dwarf,
and hence able to be totally or near-totally eclipsed, whereas the
disc during outburst becomes larger and is only partially eclipsed.
We also find evidence of hysteresis in this parameter space, and
show that this can be explained by allowing a lag to exist between
an increase in the radius of the accretion disc and the instantaneous
mass transfer rate within the disc. We show that this lag is positive,
suggesting that the disc first grows in size during an outburst, and
then this triggers an increase in the mass transfer rate, which causes
a heating of the disc.
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