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Abstract

In this paper, we introduce the Multi-Region Discontinuous Galerkin Com-
posite Finite Element Method (MRDGCFEM) with hp-adaptivity for the dis-
cretization of second-order elliptic partial differential equations with discon-
tinuous coefficients. This method allows for the approximation of problems
posed on computational domains where the jumps in the diffusion coefficient
form a micro-structure. Standard numerical methods could be used for such
problems but the computational effort may be extremely high. Small enough
elements to represent the underlying pattern in the diffusion coefficient have
to be used. In contrast, the dimension of the underlying MRDGCFE space
is independent of the complexity of the diffusion coefficient pattern. The
key idea is that the jumps in the diffusion coefficient are no longer resolved
by the mesh where the problem is solved; instead, the finite element basis
(or shape) functions are adapted to the diffusion pattern allowing for much
coarser meshes. In this paper, we employ hp-adaptivity on a series of test
cases highlighting the practical application of the proposed numerical scheme.

Keywords: composite finite element methods, discontinuous Galerkin
methods, discontinuous coefficients, adaptivity

1. Introduction1

Many challenging problems in science and engineering involve partial dif-2

ferential equations (PDEs) with coefficients with discontinuities on a “small”3

scale. This is common for photonic crystals [21] and composite materials [28].4

In such problems, the discontinuities of the coefficients form subregions that5
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could have very complicated geometries. Standard finite element methods6

struggle on such problems because meshes fine enough to describe the pat-7

tern of the discontinuities of the coefficients on the domain have to be used.8

In such situations, an extremely large number of elements may be required9

for a mesh generator to produce even a “coarse” mesh and the solution of10

the resulting system involves a large number of degrees of freedom and it is11

computationally very expensive.12

In recent years, a new discontinuous Galerkin method referred to as Dis-13

continuous Galerkin Composite Finite Element Method (DGCFEM) [4], has14

been developed for the numerical solution of partial differential equations on15

complicated domains characterized by small geometric details or holes. Sub-16

sequently, in [17, 16] adaptivity was added to the method and later in [14]17

the method was extended to eigenvalue problems. What all these incarna-18

tions of DGCFEM have in common is the focus on domains with geometries19

difficult to resolve using standard FEMs. Often the DGCFEM is applied to20

problems on domains with small details forming a small-scale structure of21

holes. A lot of engineering applications involve such domains. However, for22

other classes of problems like photonic crystal fibres and composite materi-23

als, the small-scale structure does not consist of holes, but distinct values of24

coefficients in the governing PDE. Discontinuities in the coefficients on a fine25

scale, especially for the diffusion coefficient, cannot be effectively tackled so26

far by the DGCFEM. This is because DGCFE coarse elements have standard27

polynomial spaces like Qp or Pp defined on them, therefore standard polyno-28

mials are not able to approximate well discontinuities in the gradient of the29

solution within the elements. In this work, we present a way to extend the30

DGCFEM to overcome such difficulty.31

Problems with subregions are common in physics and engineering, there-32

fore many variations of finite element methods (FEMs) has been proposed33

for problems with subregions. In CutFEM [24, 10, 19, 18], a standard mesh is34

adjusted to fit the interface between the regions by cutting elements crossing35

the interface. The interface between the regions is described implicitly using36

a higher dimension surface, like in level-set methods [25]. The cut elements37

are no longer standard elements with regular shapes, therefore a new way to38

integrate over such shapes is added to the method. This introduces exten-39

sions to the FEM formulation to work on cut elements. In comparison, in40

the DGCFEM, the integration over elements of any shape can be done using41

standard quadrature rules on regular elements thanks to the presence of the42

fine level mesh [4]. Moreover, CutFEM shares similar limitations to many43
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level-set methods when it comes to computing the intersection between the44

mesh and the interface. The interface is approximated on the mesh using a45

piecewise linear interpolation. For the interpolation to be accurate, the in-46

terface must not be too “wiggly” inside each element. This put a constraint47

of the maximum size of elements that can be used and in the presence of48

complicated interfaces, very small elements may be needed to be able to de-49

scribe accurately the interface. The method presented in this work has not50

such limitation allowing for elements of any size to be used. In [9], this issues51

is mitigated introducing a finer uniform background mesh or an adaptively52

refined background mesh along the interface for the quadrature rule. This53

removes the constraint on the size of the elements, however, the methods are54

still limited by the fact the interface is approximated only linearly, mean-55

ing that, for example, if the interface between the regions is a circle, such56

geometry can never be exactly described by the interpolated interface. In57

Section 5.2, such an example is considered and in our method, the interface58

is exactly described.59

Another method that uses cut elements and implicit description of the60

interface is the Cut-Cell method [11, 8, 6, 27]. The Cut-Cell method can61

also be used with finite difference and finite volume discretisations. Also in62

the case of the Cut-Cell method, the interface is approximated in a piece-63

wise linear manner leading to the same limitations already discussed for the64

CutFEM.65

There are methods in literature with the ability to represent complex66

small scale geometries, Multiscale FEMs [22, 1, 2] are among the most used.67

Similarly to the DGCFEM, Multiscale FEMs uses special basis functions68

constructed to take into account the small scale features of the problem.69

Such construction in the Multiscale FEM setting is done by solving a series70

of local problems. This approach is much more computationally expensive71

than the projection used in the DGCFEM to accomplish the same result [4].72

Furthermore, the definition of the local problems used in Multiscale FEMs73

depend on the PDE problem to solve, instead the DGCFE projection is PDE74

independent.75

Another class of methods found in the literature with similar capabil-76

ities to the Multiscale FEMs are the Orthogonal Decomposition Methods77

[12, 20]. Also, in this case, special sets of basis functions called corrected78

basis functions have to be computed solving local problems which are also79

computationally more expensive than the projection used in the DGCFEM.80

Finally, another very popular method to deal with PDEs with small-scale81
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features is homogenization [23, 3], which consist of expanding the solution of82

the PDE in a power series and constructing a multi-scale asymptotic expan-83

sion of the problem considering only the first few terms of the power series.84

The most common choice is to just use a two-scale asymptotic expansion.85

Homogenization has been shown to work well when the size of the entire do-86

main is several orders of magnitude larger than the small-scale features and87

when the small-scale features form a periodic pattern. Therefore, there are88

many problems that do not possess these characteristics such as all problems89

that have “small” features in the meso-scale size and not in the micro-scale90

and problems with non-periodic features.91

The structure of this article is as follows. In Section 2, we introduce the92

model problem and state the necessary assumptions on the computational93

domain Ω. Section 3 introduces the multi-region discontinuous Galerkin com-94

posite finite element spaces. In Section 3.1 we present the a priori conver-95

gence results for the method; the a posteriori error estimator used to drive the96

adaptivity is presented in Section 4. The performances of the MRDGCFEM97

on a series of test cases are studied in Section 5. Finally, in Section 6 we98

summarize the work presented in this paper and draw some conclusions.99

2. Model problem100

In this article we consider the following model problem: given f ∈ L2(Ω)101

and g ∈ H1/2(∂Ω), find u such that102

−∇ · (A∇u) = f in Ω,

u = g on ∂Ω. (1)

Here, Ω is a bounded connected polyhedral domain in Rd, d = 2, 3, with103

boundary ∂Ω and A may assume a finite number of positive values in the104

domain Ω, with Amax the maximum value of A in Ω. We also assume that105

Ω can be partitioned into n connected regions Cj, with j = 1, . . . , n where106

the value of A is constant in each of them, n maybe large. We assume that107

these connected regions are forming a meso-structure or micro-structure. In108

order to define the method we group together the regions Cj into possibly109

disconnected m regions Ri, with m ≤ n, where the value of A is the same.110

Therefore each region Ri is the union of all regions Cj where A has a certain111

value. Along the boundaries Γ between different regions Ri, the solution u112
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of (1) satisfies:113

u+ = u− on Γ,

A+∇u+ · n+ = −A−∇u− · n− on Γ, (2)

where the superscripts + and − indicate the quantities from either side of the114

interface Γ and within the two regions indicated by R+ and R−. The vectors115

n+ and n− are unit vectors perpendicular to Γ pointing away from regions +116

and − respectively. The second equation in (2) implies that the gradient of117

the solution is not continuous across the interface Γ. Standard finite element118

methods use polynomial basis functions in the support of each elements,119

which are C∞ functions. Therefore when an element crosses the interfaces Γ,120

the approximation of the solution is very poor since C∞ functions struggle121

to approximate a solution that is not even C1. Normally this limitation is122

resolved by aligning the edges of the elements in the mesh along with Γ.123

Since standard FEMs are supposed to be only C0 across edges and faces,124

this helps to regain a good convergence speed. Therefore, in the presence125

of a meso-scale or a micro-scale, standard FEMs need very fine meshes to126

perform well.127

3. Multi-region DGCFE method128

To overcome the limitations of standard FEMs on problems with meso-129

scales or micro-scales, we propose to extend the DGCFE method in such a130

way that no element crosses Γ and Γ is always described by the edges of the131

elements. At the same time, the flexibility of the DGCFE method allows for132

elements much larger than the size of the regions Cj.133

The key idea of DGCFEM is to exploit general shaped elements upon134

which elemental basis functions may only be locally piecewise smooth. In135

particular, a Composite Finite Element (CFE) may be seen as an aggregation136

of standard elements, with the basis functions on the CFE being constructed137

as a linear combination of the basis functions defined on the standard el-138

ements used in the aggregation; see [4] for further details. In this way, a139

mesh composed of CFEs may describe very complex domains with a small140

number of elements. To accomplish this, two meshes are used in the DGCFE141

method. Borrowing the notation from [4], we denote with TCFE the coarse142

level mesh formed by CFEs, which is assumed to be too coarse for the prob-143

lem in the standard FEM way and with Th` the fine level mesh of standard144
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elements that describes all the details in the domain and the boundaries of145

the regions Cj. Each fine element in Th` is considered as a child of the coarse146

element in TCFE that contains its centre. The easiest way to defines the two147

meshes Th` and TCFE is to construct them independently using a standard148

mesh generator. In [4, Section 3] a different method to construct Th` and149

TCFE is presented. In such method, the mesh Th` is derived from a coarse150

conforming mesh TH by applying adaptive refinement. Then the mesh TCFE151

is derived from TH by restricting the support of the elements to the domain152

Ω. Such construction can be extended to cover the case considered in this153

paper. For the sake of brevity, we do not report the full algorithm here, we154

only indicate the differences from the algorithm in [4]. The initial mesh is155

assumed to be very coarse, so coarse that it is not even possible to describe156

the outer shape of the domain. In the algorithm in [4, Section 3] an element157

κ is refined if it is not fully contained in the physical domain Ω. To construct158

the fine mesh Th` for the case with discontinuous coefficients, it is necessary159

to refine also all elements κ that are not fully contained in only one of the160

regions Ri. The maximum number of refinement steps used to construct161

Th` is set with the input parameters. The index ` in this case indicates the162

number of refinement levels between the coarse and the fine mesh. As in [4],163

in the final stage of the process of the construction of Th` the nodes may be164

moved in the same way as explained in [4], not only to fit better ∂Ω, but165

also the boundaries ∂Ri of the regions. The displacement of the nodes can166

be seen as the action of a bijective mapping φ. In this way, the fine mesh is167

constructed in such a way to describe the different regions Ri.168

Remark 3.1. To make the presentation of the method easier, we assume in169

this paper that the domain Ω has a simple shape. In this way, we can focus170

on the small scale structure formed by the regions where A assumes different171

values. Therefore we assume that the element κCFE ∈ TCFE is a standard172

looking element. Domains with complicated shapes are not a difficulty for173

the MRDGCFEM since the method is based on DGCFE which is specifically174

designed for the task.175

The methods presented so far to construct TCFE do not guarantee that176

all coarse elements κCFE ∈ TCFE are all contained in only one region Ri. In177

general, it is just the opposite since we want the sizes of the elements κCFE to178

be bigger than the sizes of the regions Ri. In this way, the number of κCFE179

elements may not be linked to the number and sizes of the regions Ci.180
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Figure 1: Decomposition of a composite element (a) intersecting two regions Ri into two
κCFE,i multi-region elements (b-c). The element in (a) intersects two different regions
indicated in dark and light gray. The multi-region element in (b) is the intersection
between the element and the first region. Similarly, the multi-region element in (c) is the
intersection between the element and the second region.
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Hence, we define κCFE,i := κCFE ∩Ri 6= ∅, where κCFE is any coarse level181

element and Ri is any of the regions, see Figure 1 for a representation of such182

operation. All elements κCFE intersect at least one region Ri, i.e. for any183

element κCFE there is at least a region Ri such that κCFE,i 6= ∅. In general,184

we assume that each element κCFE may intersect more than one region Ri,185

i.e. for a given element κCFE, κCFE,i 6= ∅ for more than one value for i. Also,186

it is safe to assume in most cases that κCFE,i may be a disconnected region.187

Contrarily, each element κ ∈ Th` is contained by construction in only one188

region Ri, for some i.189

To extend the DGCFE method to problems with discontinuous coeffi-190

cients, we need to define a different coarse level mesh. Let define T disc
CFE the191

composite finite element mesh consisting of all composite elements κCFE,i 6= ∅192

for any combination of κCFE and Ri. For simplicity we indicate the ele-193

ment of T disc
CFE with κdisc

CFE. From the definition is straightforward to see that194

TCFE ⊆ T disc
CFE ⊆ Th` meaning that all elements of T disc

CFE can be seen as aggre-195

gations of elements in Th` . The elements κ ∈ Th` forming an element κdisc
CFE196

are called its children and indicated with the set S(κdisc
CFE) ⊆ Th` .197

Defining a vector of positive integers p of the same length as the number of
elements in Th` , the DG finite element space on Th` is defined in the standard
way as in [4]:

V (Th` ,p) = {u ∈ L2(Ω) : u|κ ∈ Ppκ(κ) ∀κ ∈ Th`},

where the polynomial space Ppκ(κ) could coincide with either Qpκ(κ) or198

Ppκ(κ) depending on the problem to solve and pκ is the entry in p corre-199

sponding to the element κ. The construction of the finite element space200

V (T disc
CFE,p) on T disc

CFE is inspired to the finite element space constructed on201

TCFE in [4]. On each coarse element κdisc
CFE we define a polynomial space202

Pp
κdisc
CFE

(κdisc
CFE) which should satisfy the condition: For any κdisc

CFE ∈ T disc
CFE we203

have that for any κ ∈ S(κdisc
CFE) holds204

Pp
κdisc
CFE

(κdisc
CFE)|supp(κ) ⊆ Ppκ(κ) , (3)

or in other words the restriction of the space Pp
κdisc
CFE

(κdisc
CFE) to the support of205

any of the children elements is contained in the polynomial space of the child206

element. The condition (3) guarantees that any basis function living on the207

coarse elements can be described as a linear combination of basis functions208

living on the fine level elements. Denoting the coarse level basis function209
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with φCFE,i, with i = 1, . . . , dim(V (T disc
CFE,p)) and denoting the fine level basis210

functions with φh`,j, with j = 1, . . . , dim(V (Th` ,p)), we have that there are211

real coefficients αi,j such that212

φCFE,i :=
∑

j=1,...,dim(V (Th` ,p))

αi,jφh`,j . (4)

This construction is equivalent to define on each coarse element κdisc
CFE a stan-213

dard polynomial space restricted to the support of κdisc
CFE. In view of this, the214

fact that the elements κdisc
CFE may be disconnected is not an issue, as this is215

not an issue for the DGCFE method either.216

In order to define the MRDGCFE method on T disc
CFE, we denote by FIdisc

the set of all interior faces of the partition T disc
CFE of Ω, and by FBdisc the set of

all boundary faces of T disc
CFE. Furthermore, we define Fdisc = FIdisc ∪ FBdisc. It

is important to notice that the elements in T disc
CFE are not standard elements so

their number of faces may vary significantly from element to element. How-
ever, any face in the mesh T disc

CFE can be seen as an aggregation of faces of Th` .
Let (κdisc

CFE)+ and (κdisc
CFE)− be two adjacent elements of T disc

CFE, and x an arbi-
trary point on the interior face F ∈ FIdisc given by F = ∂(κdisc

CFE)+∩∂(κdisc
CFE)−.

Let also v and q be scalar- and vector-valued functions, respectively, that are
smooth inside each element (κdisc

CFE)±. We denote with (v±,q±) the traces of
(v,q) on F taken from within the interior of (κdisc

CFE)±, respectively. We also
define the average q at x ∈ F as

{{q}} =
1

2
(q+ + q−).

Similarly, we define the jump of v at x ∈ F as

[[v]] = v+ n+
(κdiscCFE)

+ v− n−
(κdiscCFE)

,

where we denote by n±
(κdiscCFE)

the unit outward normal vector of ∂(κdisc
CFE)±,217

respectively. On a boundary face F ∈ FBdisc the definition of the average218

and jump are {{q}} = q and [[v]] = vn, with n denoting the unit outward219

normal vector on the boundary ∂Ω. We also assume that the assumptions220

(A1), (A2) and (A3) in [4] are satisfied.221

With this notation, we define the weak MRDGCFE formulation for the222

numerical approximation of problem (1) as find uh ∈ V (T disc
CFE,p) such that223

BDG(uh, v) = Fh(v) (5)
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for all v ∈ V (T disc
CFE,p), where

BDG(u, v) =
∑

κ∈T disc
CFE

∫
κ

A∇u · ∇v dx−
∑

F∈FIdisc∪FBdisc

∫
F

(
{{A∇v}} · [[u]] + {{A∇u}} · [[v]]

)
ds

+
∑

F∈FIdisc∪FBdisc

∫
F

σ [[u]] · [[v]] ds,

Fh(v) =

∫
Ω

fv dx−
∑

F∈FBdisc

∫
F

A∇v · nFg ds+
∑

F∈FBdisc

∫
F

σ gv ds,

where nF is the unit outward normal vector of F and where the function224

σ ∈ L∞(Fdisc) is the discontinuity stabilization function that is chosen as225

follows226

σ|F = γAFp2
Fh
−1
F , (6)

where on interior faces pF is the maximum of the order of the elements227

sharing F and on boundary edges pF is the order of the element containing228

F . Similarly, on interior faces AF is the maximum value of A among the two229

elements sharing the face F and on boundary edges AF is the value of A of230

the element containing F . The parameter γ > 0 is independent of hF and231

pF .232

In the weak formulation (5), the discontinuous coefficient A is incorpo-233

rated in flux terms and in the penalty term in the most simple way possible.234

The value of A is used to adjust the penalisation on faces to compensate for235

the difference in the diffusion coefficients in different parts of the domain.236

Such modification of the DG method works well when the jumps in the val-237

ues of A are not too extreme. A more robust way to treat discontinuous238

diffusion coefficients can be found in [13].239

3.1. A priori convergence240

The a priori convergence analysis for the MRDGCFE method is an ex-241

tension of the analysis in [4] to take into account the partition of the CFEs242

in different regions. The extension in this case is simple because the DGCFE243

method in [4] can handle CFEs of any shape and the elements κdisc
CFE can be244

seen as CFEs of various shapes. As in [4], the a priori convergence result245

makes use of the following extension result from [26, Theorem 5, p. 181]:246
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Theorem 3.2. Let Ω be a domain with a Lipschitz boundary. Then there
exists a linear extension operator E : Hs(Ω) → Hs(Rd), s ∈ N0, such that
Ev|Ω = v and

‖Ev‖Hs(Rd) ≤ C‖v‖Hs(Ω),

where C is a positive constant depending only on s and Ω.247

As in [4], the a priori result is restricted to problems with solutions with248

local regularity at least in H2. This is the case for the problems presented in249

Section 5.1 and in Section 5.2. In general, problems with non-smooth inter-250

faces between the different regions Ri have weaker regularity. The regularity251

assumption may be weakened as suggested in Remark 7.4 in [4].252

Defining the DG norm as253

||| v |||2DG =
∑

κ∈T disc
CFE

‖A
1
2∇v‖2

L2(κ) +
∑

F∈Fdisc

‖σ
1
2 [[v]]‖2

L2(F ), (7)

the following results proves that the DG norm of the error can be bounded254

by the norm of the solution to the problem.255

Theorem 3.3. Let Ω ∈ Rd be a bounded polyhedral domain, and let T disc
CFE be

a subdivision of Ω as described above. Let uh ∈ V (T disc
CFE, p) be the MRDGCFE

approximation to u defined by (5). Assuming that the local regularity of u
in each κ ∈ T disc

CFE is such that u|κ ∈ HKκ(κ) for integers Kκ ≥ 2. Then the
following error bound holds with a constant C independent of the size and
order of the elements in T disc

CFE and the variations of A:

|||u− uh |||2DG ≤ AmaxC
∑

κ∈T disc
CFE

h2sκ
κ

h2
F

1

2p2Kκ−3
κ

‖Eũ‖2
HKκ (κCFE) ,

for any integers sκ, 1 ≤ sκ ≤ min(pκ + 1, Kκ) with pκ ≥ 1 and where hκ is256

the diameter of κ. Moreover, we denote by κCFE the CFE in TCFE for which257

there is region Ri such that κ = κCFE ∩Ri and we define ũ := u ◦ φ.258

The proof of Theorem 3.3 follows the same argument as the proof of259

Theorem 7.2 in [4].260

261

Remark 3.4. Theorem 3.3 holds under the assumption in Remark 3.1. In
case that the shape of the domain Ω is complicated, the result in Theorem 3.3
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would be:

|||u− uh |||2DG ≤ AmaxC
∑

κ∈T disc
CFE

h2sκ
κ

h2
F

1

2p2Kκ−3
κ

‖Eũ‖2
HKκ (κ̂) ,

where κ̂ is the element of the coarse mesh TH that contains κ, see [4] for262

more details.263

4. A posteriori error estimator264

In this section, we present the a posteriori error estimator η to drive the265

adaptivity for the MRDGCFE method:266

η :=

( ∑
κ∈T disc

CFE

η2
κ

) 1
2

, (8)

where the terms ηκ in (8) are defined as:267

η2
κ = h2

κp
−2
κ ‖Πf +∇ · (A∇uh)‖2

L2(κ)

+
∑

F⊂FIdisc(κ)

h2
κh
−1
F p−1

κ ‖[[A∇uh]]‖2
L2(F ) +

∑
F⊂FIdisc(κ)

σh2
κh
−2
F pκ‖[[uh]]‖2

L2(F )(9)

+
∑

F⊂FBdisc(κ)

σh2
κh
−2
F pκ‖uh − Πg‖2

L2(F ), (10)

where FIdisc(κ) and FBdisc(κ) are respectively FIdisc ∩ ∂κ and FBdisc ∩ ∂κ and268

where we denote by Π the L2–projection onto V (T disc
CFE, p). The error estima-269

tor η is the adaptation of the error estimator presented in [17] to the current270

case with multiple regions Ri.271

Remark 4.1. Slightly modifying the argument in [17], it is possible to prove
the reliability of the error estimator η, i.e.

|||u− uh |||DG ≤ C

( ∑
κ∈T disc

CFE

(η2
κ +O2

κ)

) 1
2

,

with a constant C independent of the size or order of the elements in T disc
CFE

and with

Oκ :=
(
h2
κp
−2
κ ‖f − Πf‖2

L2(κ) +
∑

F∈FBdisc(κ)

σh2
κh
−2
F pF‖g − Πg‖2

L2(F )

) 1
2
.
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5. Numerics272

In this section, we present a series of computational examples to highlight273

the performances of the MRDGCFE method for problems where the under-274

lying computational domain contains inclusions. Throughout this section the275

MRDGCFE solution uh in (5) is computed with the constant γ appearing in276

the discontinuity stabilization function σ equal to 10.277

Algorithm 5.1 Adaptive Refinement Algorithm

1: Input parameters: refinement fraction θr; termination tolerance tol; max-
imum number of refinement steps nmax; type of adaptive refinement.

2: Initial step: Input initial composite finite element mesh T disc
CFE and fine

level mesh Th` and and the corresponding finite element spaces V (T disc
CFE,p)

and V (Th` ,p).
3: Set n = 1.
4: while n < nmax do
5: Compute uh ∈ V (T disc

CFE,p) solving (5).
6: Evaluate the error indicators ηκ, defined by (10), for all κ ∈ T disc

CFE

7: if η < tol then
8: Exit.
9: else

10: Mark elements for refinement employing the fixed fraction refine-
ment strategy with refinement fraction θr.

11: if Element κ is marked for refinement then
12: Depending on what type of adaptive refinement between h and

p has been requested, the marked elements are marked for the requested
refinement.

13: end if
14: Set n = n + 1 and adaptively refine the finite element space

V (T disc
CFE,p) and the mesh T disc

CFE.
15: Refine the fine level finite element space V (Th` ,p) and the mesh
Th` (if necessary), to ensure that the inclusion V (T disc

CFE,p) ⊆ V (Th` ,p)
holds.

16: end if
17: end while

Algorithm 5.1 outlines the general adaptive algorithm employed in this278

section. The last step of Algorithm 5.1 ensures the compatibility condition279
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V (T disc
CFE, p) ⊆ V (Th` , p) which is fundamental for the MRDGCFE method280

since such condition is exploited in the construction of the coarse level shape281

functions, cf. (4).282

In this section, the MRDGCFE method is compared against the DGCFE
method. The DGCFE method is the discontinuous Galerkin composite finite
element method presented in [4]. The difference between the MRDGCFE
method and the DGCFE method is that the composite finite elements in
the DGCFE method may not respect the subdivision Cj of the domain Ω.
The DGCFE method is designed for problems with complicated domains and
not for problems with discontinuous coefficients. In general, it may happen
that a composite finite element in the DGCFE method intersects more than
one region Ri. Using V (TCFE,p) to indicate the finite element space for the
DGCFE method introduced in [4], we have that the variational formulation
for the DGCFE method of problem (1) is:

BDGCFE
DG (uh, v) = F DGCFE

h (v)

for all v ∈ V (TCFE,p), where

BDGCFE
DG (u, v) =

∑
κ∈TCFE

∫
κ

A∇u · ∇v dx−
∑

F∈FI∪FB

∫
F

(
{{A∇v}} · [[u]] + {{A∇u}} · [[v]]

)
ds

+
∑

F∈FI∪FB

∫
F

σ [[u]] · [[v]] ds,

F DGCFE
h (v) =

∫
Ω

fv dx−
∑
F∈FB

∫
F

A∇v · nFg ds+
∑
F∈FB

∫
F

σ gv ds,

where FI and FB are respectively the set of all interior faces and the set of
all boundary faces of TCFE. The DG norm for the DGCFE method is defined
as:

||| v |||2DG =
∑

κ∈TCFE

‖A
1
2∇v‖2

L2(κ) +
∑

F∈FI∪FB
‖σ

1
2 [[v]]‖2

L2(F ).

For the DGCFE method, the a posteriori error estimator for problem (1) is
defined as:

η :=

( ∑
κ∈TCFE

η2
κ

) 1
2

,
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where283

η2
κ = h2

κp
−2
κ ‖Πf +∇ · (A∇uh)‖2

L2(κ)

+
∑

F⊂FI(κ)

h2
κh
−1
F p−1

κ ‖[[A∇uh]]‖2
L2(F ) +

∑
F⊂FI(κ)

σh2
κh
−2
F pκ‖[[uh]]‖2

L2(F )

+
∑

F⊂FB(κ)

σh2
κh
−2
F pκ‖uh − Πg‖2

L2(F ),

where FI(κ) and FB(κ) are respectively FI ∩∂κ and FB ∩∂κ and where we
denote by Π the L2–projection onto V (TCFE, p).
Also, in this section, the SIPDG method is mentioned. The SIPDG method
is the symmetric interior penalty discontinuous Galerkin method [5] applied
to (1). The variational formulation for the SIPDG method for problem (1)
is:

BSIPDG
DG (uh, v) = F SIPDG

h (v)

for all v ∈ V (TH ,p), where

BSIPDG
DG (u, v) =

∑
κ∈TH

∫
κ

A∇u · ∇v dx−
∑

F∈FISIPDG∪FBSIPDG

∫
F

(
{{A∇v}} · [[u]] + {{A∇u}} · [[v]]

)
ds

+
∑

F∈FISIPDG∪FBSIPDG

∫
F

σ [[u]] · [[v]] ds,

F SIPDG
h (v) =

∫
Ω

fv dx−
∑

F∈FBSIPDG

∫
F

A∇v · nFg ds+
∑

F∈FBSIPDG

∫
F

σ gv ds,

where FISIPDG and FBSIPDG are respectively the set of all interior faces and the
set of all boundary faces of TH . Moreover, the DG norm for the SIPDG
method is defined as:

||| v |||2DG =
∑
κ∈TH

‖A
1
2∇v‖2

L2(κ) +
∑

F∈FISIPDG∪FBSIPDG

‖σ
1
2 [[v]]‖2

L2(F ).

284

5.1. Convergence study285

In this section, we explore the convergence of the MRDGCFE method.286

We are particularly interested in showing the ability of MRDGCFEs to287

achieve good approximation in the cases where the coarse mesh is too coarse288
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to describe the regions Ri. The comparison is done between the MRDGCFE289

and the DGCFE method. To do the comparison, a non-smooth problem on290

the domain Ω = [0, 1]2 with a known analytical solution is used. The pre-291

scribed solution is not regular across the segment x0 × [0, 1], for x0 to be292

specified later. The problem is defined as293

−∇ · (A∇u) = f in Ω ,
u = g on ∂Ω ,

(11)

where A = 1 in [0, x0]× [0, 1] and A = 100 in (x0, 1]× [0, 1] and f(x, y) and294

g(x, y) are derived from the solution u(x, y). In the region [0, x0]× [0, 1] the295

solution u(x, y) is defined as sin(πx); while in the region (x0, 1]×[0, 1], u(x, y)296

is defined as αx+β where the values of α and β are such that the continuity297

of the solution along x0 × [0, 1] is ensured and the jumping condition across298

x0 × [0, 1] is satisfied, i.e.299

limx→x−0
u− limx→x+0

u = 0, ∀y ∈ [0, 1],

limx→x−0

(
A∇u · n−

)
+ limx→x+0

(
A∇u · n+

)
= 0, ∀y ∈ [0, 1],

(12)

where n− = (1, 0)T and n+ = (−1, 0)T .300

Three values for x0 are considered: 3/4, 11/16 and 45/64. Starting from301

a structured mesh of 2 × 2 square elements and doing multiple uniform h-302

refinements, the segments x0 × [0, 1] for such values of x0 can be described303

by the edges of the adapted mesh after respectively 1, 3 and 5 uniform h-304

refinements. In other words, the segments x0 × [0, 1], for the prescribed305

values of x0, are described by structured meshes of respectively 4×4, 16×16306

and 64 × 64 elements. Any mesh coarser than those is not able to describe307

correctly the piecewise regions of coefficient A.308

In all the simulations the fine mesh Th` is a structured mesh of 64 × 64309

square elements, which is the least fine mesh needed to describe well the310

interface for all considered positions of x0. This implies that on the fine311

mesh the piecewise regions of coefficient A are always well described. For312

the coarse level composite meshes TCFE we consider structured meshes with313

the following number of elements: 2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32 and314

64 × 64 which may not describe well the regions Ri. For the MRDGCFE315

method, the meshes T disc
CFE are constructed as described in Section 3 starting316

from the TCFE meshes. On all meshes, we use linear elements.317

In Figure 2 the convergence of the L2 and the DG norms of the error318

are reported for the two methods for the problem with x0 = 3/4. Such319

16



Figure 2: Results for the problem with x0 = 3/4. (left) L2 norm of the error. (right) DG
norm of the error.

value of x0 means that from the second coarser mesh onwards, the coarse320

mesh of both methods is fine enough to resolve the piecewise regions of321

coefficient A, therefore the two methods are indistinguishable. But on the322

first mesh, the coarse mesh of both methods is too coarse to resolve the323

piecewise regions of coefficient A. In such conditions, the DGCFE method324

delivers an approximation not in line with the rest of the plot. Instead,325

the MRDGCFE method delivers an approximation in line with the rest of326

the plot because the piecewise regions of the coefficient are captured on the327

coarse level mesh even if the mesh itself is not fine enough.328

In Figure 3 the convergence of the L2 and the DG norms of the error are329

reported for the two methods for the problem with x0 = 11/16. In this case,330

only on the fourth mesh the coarse mesh of both methods is fine enough331

to capture the piecewise regions of the coefficient. The MRDGCFE method332

delivers consistent approximations on all meshes, while the DGCFE only on333

the fourth mesh onwards.334

In Figure 4 the convergence of the L2 and the DG norms of the error335

are reported for the two methods for the problem with x0 = 45/64. In336

this case, only on the last mesh the coarse mesh of both methods is fine337

enough to capture the piecewise regions of the coefficient. While the DGCFE338

methods deliver not reliable approximations on all meshes except the last,339

the MRDGCFE shows a steady convergence.340

Next, we solve again the same problems with x0 equal to 3/4, 11/16 and341

45/64 but this time increasing p uniformly on a sequence of meshes. The342
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Figure 3: Results for the problem with x0 = 11/16. (left) L2 norm of the error. (right)
DG norm of the error.

Figure 4: Results for the problem with x0 = 45/64. (left) L2 norm of the error. (right)
DG norm of the error.
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Figure 5: Results for the problem with x0 = 3/4. (left) L2 norm of the error. (right) DG
norm of the error.

coarse mesh in this experiments is always the 2 × 2 structured mesh and p343

varying from 1 to 6.344

In Figures 5, 6 and 7 we reported the behaviour of the errors measured345

in the L2 and DG norm for both the MRDGCFE and the DGCFE for the346

three considered values of x0. Compared to previous plots, these are semi-log347

plots showing the convergence rate close to exponential for the MRDGCFE348

method. This is understandable, thanks to the decomposition of composite349

elements according to the regions Ri, ensuring that in the support of each350

composite element the solution u is smooth. Therefore increasing p we obtain351

exponential convergence of the method.352

Remark 5.1. For this problem, the interface between the regions Ri can be353

described using structured meshes. Due to the simplicity of the problem, the354

DGCFE method is equivalent to the SIPDG method and all the results apply355

as well.356

5.2. Regions with smooth interface357

In this section, we consider problem (11) with the two regions where358

coefficient A assumes different values separated by a smooth curve. The359

domain Ω is [0, 1]2 with A = 1 within the circle of centre (0.5, 0.5) and360

radius 0.25 and with A = 100 outside, see Figure 8(left). For this problem361

f(x, y) = 1 and g(x, y) = 0. The true solution of this problem is not known,362

but using the error estimator η a good approximation of the solution is363

computed. The fine level mesh Th` is an unstructured mesh of triangles364
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Figure 6: Results for the problem with x0 = 11/16. (left) L2 norm of the error. (right)
DG norm of the error.

Figure 7: Results for the problem with x0 = 45/64. (left) L2 norm of the error. (right)
DG norm of the error.

20



containing 387804 elements. Such a large number of elements is necessary365

to describe very accurately the interface between the two regions. Moreover,366

the edges of the elements in Th` are bended to for the geometry. The coarse367

level meshes TCFE are constructed from a series of structured meshes of square368

elements. This series of structured meshes are constructed using h-adaptivity369

and starting from a structured mesh of 8×8 square elements. It is important370

to point out that the CFEs in the TCFE meshes are defined as the aggregations371

of the fine triangular elements with centres laying inside the coarse square372

elements. Therefore, the shapes of the CFEs in the TCFE meshes are the373

resulting shapes from the aggregation of the fine level elements and they374

may not be square elements any more. For simplicity, in all figures, we375

still represent the CFEs as squares. As explained in [4], this is the most376

general setting when the coarse level and the fine level are not nested, the377

coarse level is only used to describe the topology of CFE mesh. In [4] is also378

explained that to construct correctly the coarse level finite element space,379

the polynomial space on each fine level elements must contain the polynomial380

space of the coarse father element. Since we use Q1 CFEs, we need to use the381

Q1 polygonal space also on the triangular elements on the fine mesh. This382

is not a problem since both the fine and the coarse finite element spaces are383

discontinuous Galerkin spaces and no continuity is required along the edges384

of the meshes. As for the previous example, the T disc
CFE meshes are constructed385

from the TCFE meshes using the procedure described in Section 3.386

In Figure 8(right) the convergence of the error estimator for the MRDGCFE387

method and the DGCFE method are reported. Even if the piecewise regions388

of coefficient A are never resolved exactly on any of the TCFE meshes, the389

decay of the error estimator for the MRDGCFE method looks consistent and390

better than the DGCFE method.391

This can also be seen visually comparing the solutions of the MRDGCFE392

method and the DGCFE method computed on the final adapted meshes, see393

Figure 9. The solution computed with the MRDGCFE method is much more394

neat along the boundary of the inner region.395

In Figure 10 the initial mesh and the values of the error estimator for the396

MRDGCFE method on each element is reported. The coarse level elements397

intersecting the interface are the ones with higher values.398

In Figures 11 and 12 the third and fifth adapted meshes are reported for399

the MRDGCFE method together with the values of the error estimator for400

each element. After a few iterations of the adaptive procedure, high values401

appears not only in elements along the interface and refined elements appear402
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Figure 8: (left) Regions of definition for coefficient A. (right) Convergence of the error
estimator η using adaptive h-refinement for the MRDGCFE and the DGCFE method.

Figure 9: (left) Solution on the final adapted mesh of the MRDGCFE method. (right)
Solution on the final adapted mesh of the DGCFE method..
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Figure 10: (left) Initial coarse level mesh. (right) Error estimator values on the initial
mesh.

in different parts of the mesh. This is normal because locally refining the403

elements has the effect to reduce locally the values of the error estimator,404

so after few iterations other less refined parts of the mesh show the highest405

values for the estimator.406

Similarly to what done in the previous section, we now compare the407

MRDGCFE method and the DGCFE method on the same problem using408

p-adaptivity. In this case, the initial polynomial order of both methods is 1409

and the structured mesh of 8×8 square elements. Then the adaptive method410

decides automatically on what elements to increase the value of p.411

In Figure 13 we reported the convergence of the error estimator for the412

MRDGCFE method and the DGCFE method, clearly as the MRDGCFE413

method outperforms the DGCFE method.414

5.3. Problem with meso-structure415

In this section, we consider problem (11) with regions where coefficient A416

assumes different values forming a meso-structure. The true solution of this417

problem is not known, but using the error estimator η a good approximation418

of the solution is computed. For this problem g(x, y) = 0 and with f(x, y) =419

e
−r(x,y)2

0.022 where r(x, y) is the distance of the point (x, y) from the centre of420

the domain (0.5, 0.5). f is defined in such a way to concentrate the solution421

around the centre of the domain. The domain Ω is [0, 1]2 with A = 1 outside422

the white regions in Figure 14(left) and A = 100 inside the regions. Such a423

complicated structure resembles the geometry of the photonic crystal fibre424
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Figure 11: (left) Third mesh in the h-adaptive sequence. (right) Error estimator values
on the third mesh.

Figure 12: (left) Fifth mesh in the h-adaptive sequence. (right) Error estimator values on
the fifth mesh.
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Figure 13: Convergence of the error estimator η using adaptive p-refinement for the
MRDGCFE and the DGCFE method.

with a central defect [21]. The initial fine level mesh Th` is fine enough to425

resolve correctly the geometries of all regions. As before, h-adaptivity is426

applied in such a way that if necessary, also the fine level mesh is refined for427

compatibility with the coarse level mesh. The initial coarse level mesh is a428

structured mesh TCFE of 3 × 3 elements, see Figure 15(left). As before the429

initial T disc
CFE mesh is constructed from the TCFE mesh.430

In Figure 14(right) the convergence of the error estimator is reported.431

For this example, as in the previous one, the decay of the error estimator432

looks consistent even when the coarse level mesh is too coarse to resolve433

the interface geometry. The star indicates the value of the error estima-434

tor computed using the SIPDG method on the coarsest mesh that resolves435

the meso-structure. The plot suggests a possible usage of the MRDGCFE436

method to compute quickly approximation of solutions for complicated prob-437

lems. For example, the MRDGCFE method can test quickly several different438

configurations of the meso-structure which could have applications for opti-439

misation. In Figure 15 the initial mesh and the values of the error estimator440

for each element is reported. In Figures 16 and 17, the seventh and fifteenth441

adapted meshes are reported together with the values of the error estimator442

for each element. On the seventh mesh, some coarse level elements away from443

the central defect are still too coarse to capture the correct shape of the in-444

clusions, nevertheless, the approximation looks good in the convergence plot445

for the error estimator. On the fifteenth mesh, the central region is heavily446

refined, since the solution is concentrated there. This is necessary to have a447
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Figure 14: (left) Regions of definition for coefficient A. (right) Convergence of the error
estimator η using adaptive h-refinement.

Figure 15: (left) Initial coarse level mesh. (right) Error estimator values on the initial
mesh.
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Figure 16: (left) Seventh mesh in the h-adaptive sequence. (right) Error estimator values
on the seventh mesh.

very good overall approximation.448

6. Conclusions449

In this paper, we have presented the MRDGCFE method to solve elliptic450

PDE problems with coefficients with a fine scale of discontinuities. The451

method shows an improved efficiency compared to standard finite element452

methods and the DGCFE method. We have also shown how to use the453

method with an a posteriori error estimator to drive the adaptivity. The454

resulting method could be very useful for a variety of engineering problems455

since the error estimator can be used to decide when the solution is accurate456

enough for engineering purposes, as shown in Section 5.3, even if the mesh is457

not fine enough to describe the features of the problem resulting in a valuable458

gain computationally speaking.459

We developed this method with two applications in mind that are compos-460

ite materials and photonic crystals. The MRDGCFE method combines very461

well with results from recent papers to tackle the two mentioned problems. In462

particular, the MRDGCFE method could be used to solve problems involving463

composite materials combining it with the error estimator presented in [7].464

Similarly, combining the MRDGCFE with DGCFE method for eigenvalues465

presented in [15] could result in an efficient numerical method for photonic466

crystal applications.467

27



Figure 17: (left) Fifteenth mesh in the h-adaptive sequence. (right) Error estimator values
on the fifteenth mesh.
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