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ABSTRACT 

 
Cutaneous leishmaniasis (CL) is a neglected parasitic disease conventionally 

treated by multiple injections with systemically toxic drugs. Aiming at a more 

acceptable therapy, we developed lipid-core nanocapsules (LNC) entrapping 

the potent antileishmanial chalcone (CH8) for topical application. Rhodamine-

labeled LNC (Rho-LNC-CH8) was produced for imaging studies. LNC-CH8 and 

Rho-LNC-CH8 had narrow size distributions (polydispersity index < 0.10), with 

similar mean sizes (~180 nm) by dynamic light scattering. In vitro, Rho-LNC-

CH8 were rapidly internalized by extracellular Leishmania amazonensis 

parasites macrophages in less than 15 minutes. LNC-CH8 activated 

macrophage oxidative mechanisms more efficiently than CH8, and was more 

selectively toxic against the intracellular parasites. In vivo, topically applied Rho-

LNC-CH8 efficiently permeated mouse skin. In L. amazonensis-infected mice, 

LNC-CH8 reduced the parasite load by 86% after three weeks of daily topical 

treatment, while free CH8 was ineffective. In conclusion, LNC-CH8 has strong 

potential as a novel topical formulation for CL treatment.  

 
Keywords: Leishmaniasis, nitrochalcone, lipid-core nanocapsules, drug 

delivery, skin, topical treatment.  
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BACKGROUND 

Cutaneous leishmaniasis (CL) is the most common clinical form of the 

disease, accounting for an estimated 1.2 million cases per year, mainly in 

developing countries1. After inoculation of flagellated promastigotes into the skin 

by blood-feeding sandflies, successful parasites invade dermal macrophages, 

transform into amastigote forms, and survive and multiply intracellularly by 

downregulating host cell defense mechanisms such as the production of 

reactive oxygen species (ROS) and nitric oxide (NO), and proteolytic digestion 

inside the parasitophorous vacuole2. Chronic and disfiguring ulcers develop at 

the infection site, and may spread to other parts of the skin.    

Although the infection is limited to the skin, current CL chemotherapy 

involves long-term intravenous or intramuscular injections with pentavalent 

antimonials (Pentostam® or Glucantime®), pentamidine or amphotericin B. The 

injections are painful, systemically toxic and result in high hospital costs.3 The 

only oral antileishmanial drug – miltefosine – is used mostly for visceral 

leishmaniasis in the Old World, and is not approved for use in New World 

countries such as Brazil. To circumvent these difficulties, an effective topical 

treatment is the obvious choice for CL. However, creams containing 

paromomycin, miltefosine and amphotericin B have shown partial or no efficacy 

against CL, in particularly against New World Leishmania species4-6. Failure of 

topical formulations is typically linked to poor skin permeation, mainly to high 

drug molecular size and/or inappropriate lipophilicity7. The addition of strong 

permeation enhancers to topical formulations allows drugs to reach the deep 

dermis; however, most permeation enhancers cause unacceptable irritation at 
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the treatment site8. Thus, the present scenario justifies the search for new 

antileishmanial agents and formulations, particularly for topical CL treatment.  

Due to the inadequacy of current CL chemotherapy, the Drugs for 

Neglected Disease initiative (DNDi) has supported the search for new topical or 

oral treatments for CL that are efficacious against all species, easy to 

administer, can be given in as a short treatment course (14-28 days), and are 

compatible with combination therapy and adapted to tropical climates9. We 

have previously reported the strong antileishmanial activity and selectivity of the 

synthetic chalcone CH810 (3-nitro-2-hydroxy 4,6-dimetoxychalcone, Figure 1), a 

lipophilic and highly stable compound that fulfills most of the criteria specified by 

DNDi for a promising anti-leishmanial drug. In vivo, CH8 given to mice by the 

oral route is effective and safe against both cutaneous and visceral 

leishmaniasis11. Importantly, local subcutaneous injections with CH8 either in 

the free form10 or loaded in slow-release systems12, 13 effectively treated mice 

with CL. However, effective topical formulations remain a challenge for this and 

other anti-leishmanial compounds. 

Drug nanocarriers have been extensively applied to improve drug 

delivery and bioavailability of molecules with poor solubility in water, such as 

chalcones. These systems may protect the drug against degradation while 

promoting its intestinal uptake or skin permeation through the epidermis layer or 

hair follicle14. Lipid-core nanocapsules (LNCs) made with a biodegradable 

poly(-caprolactone) shell have emerged as appropriate nanocarriers to 

increase the bioavailability of lipophilic agents, since these can be entrapped 

into the carrier lipid core15. Previously, we showed that encapsulation in LNC 

promotes the intestinal absorption of the flavonoid quercetin, increasing by 40 
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fold the efficacy of this lipophilic molecule via the oral route, in a murine model 

of CL.16 In topical drug delivery assays, LNCs successfully promoted skin 

permeation of other lipophilic molecules such vitamin K1, resveratrol and 

curcumin17, 18, without appreciable skin irritation.  

Given the efficacy of CH8 against CL and the safety and potential of 

LNCs as nanocarriers of drugs to the skin, we describe here the development 

and testing – both in vitro and in vivo - of an LNC-CH8 formulation for the 

topical treatment of CL.  

 

METHODS 

Animals and ethics statement 

BALB/c mice (female, eight-week-old, 23 g) used in the experiments 

were maintained under controlled conditions at the animal facilities of the 

Federal University of Rio de Janeiro (UFRJ, RJ, Brazil). 

The animal protocols used in this study were approved by the local 

Animal Care and Use Committee (protocol number CAUAP118). All animal 

experiments were conducted in compliance with the principles stated in the 

Guide for the Care and Use of Laboratory Animals, 8th Edition.19 

 

Production of lipid-core nanocapsules 

The compound 3-nitro-2-hidroxy-4,6-dimethoxy chalcone (CH8, Figure 1) 

was synthesized as described previously10.  

Lipid-core nanocapsules (LNC) were prepared by a self-assembly 

methodology20. Briefly, 200 mg poly(-caprolactone) (80,000 g mol-1 PCL; 
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Sigma-Aldrich Co., USA), 80 mg sorbitan monostearate (Sigma-Aldrich Co.), 

310 mg capric/caprylic triglyceride (Alpha Quimica, Brazil) were dispersed in 

acetone (46 mL), and then injected into an aqueous phase composed of 

polysorbate 80 (185 mg; Gerbras, Brazil), ethanol (8 mL) and water (106 mL). 

The mixture was stirred for 10 minutes at room temperature, the solvent was 

evaporated under reduced pressure (rotatory evaporator, Büchi, Switzerland) at 

40 0C and the aqueous suspension was concentrated for a final volume of 10 

mL. Streptomycin (100 μg/mL) and penicillin (100 UI/mL) (Sigma-Aldrich Co.) 

were added. LNC-CH8 was prepared by adding 5 mg CH8 in the organic phase 

and Rho-LNC-CH8 was prepared as described above, with the exception that 

part of the unlabeled PCL was replaced with 10 mg of Rhodamine B-labeled 

PCL (Rho-PCL)21.  

 

Characterization of lipid-core nanocapsules 

 Formulations were analyzed by laser diffraction, in a Mastersizer® 2000 

particle size analyzer (Malvern, UK)15, to determine their volume-weighted 

mean diameter (D[4,3]). Size polydispersity was calculated considering the 

diameters at 10%, 50%, and 90% of the cumulative size distribution (SPAN). 

The Z-average diameter (method of cumulants) and polydispersity index were 

determined by photon correlation spectroscopy (PCS) using a Zetasizer Nano 

ZS particle analyzer (Malvern, UK) after dilution. The zeta potential of 

nanoparticles was calculated by examining the electrophoretic mobility of 

formulations dispersed in a 10mM NaCl aqueous solution (pH = 7.0) using a 

Zetasizer Nano ZS (Malvern, UK).  
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CH8 encapsulation efficiency 

A sample of the formulation was dissolved in acetonitrile and filtered 

(0.45 μm, Merck Millipore, USA). The CH8 content was quantified by HPLC-UV 

[Perkin-Elmer® S200 pre-column, column LiChrospher 100 RP18 (5µm) 

(Merck®)], using a mobile phase of acetonitrile:aqueous 0.01% phosphoric acid 

(Tedia) (80:20 v/v), with a flow rate of 1 mL/min and a detection wavelength of 

337 nm, as described previously.22 

Parasites 

Leishmania amazonensis (MHOM/BR/75/Josefa strain) promastigotes were 

maintained in culture at 26oC in M199 medium (CultiLab, Brazil) supplemented 

with 10% heat-inactivated fetal calf serum (HIFCS) (CultiLab, Brazil), 0.2% 

hemin (Sigma-Aldrich Co., USA), 100 g/mL streptomycin and 100 UI/mL 

penicillin (Sigma-Aldrich Co., USA), herein referred to as ‘complete medium’. 

Alternatively, GFP-expressing parasites were cultured as described previously23 

Parasites were always used at the stationary phase of growth.  

Anti-amastigote activity 

 Bone marrow derived macrophages (BMDM) from BALB/c mice were 

prepared as described23 and plated (2x105/ well) onto circular glass coverslips 

in 24-well culture plates, and incubated for 24 h at 37oC (and 5% CO2). Then 

macrophage monolayers were kept uninfected or were infected with L. 

amazonensis promastigotes (5x106 cells/ mL) for 4 h at 34oC / 5% CO2. After a 

further 24h of infection at 37oC, macrophages were incubated with 0.1, 1, 10 

and 100 µg/mL of CH8, LNC-CH8 or equivalent blank LNC concentrations, for 
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48h at 37oC. Then, cells were washed with PBS and stained with panoptic 

(Instant Prov kit, Newprov, Brazil) according to the manufacturer’s instructions. 

The number of amastigotes in 200 cells was counted by light microscopy 

examination, in a Nikon Eclipse Ti microscope, at 1000 X magnification. The 

compound concentrations required to reduce amastigote numbers by 50% (IC50 

values) were calculated by linear regression analysis. 

Cytotoxicity 

 The supernatants of the anti-amastigote assay were collected at the end of 

the treatment described above and the release of the cytosolic enzyme lactate 

dehydrogenase (LDH) by the macrophages was used as a cytotoxicity indicator. 

For total and spontaneous LDH releases, supernatants were collected from 

cells cultured with 1% triton and medium alone, respectively. LDH release was 

measured by a colorimetric assay using the detection kit DHL (Doles, Brazil), 

according to the manufacturer’s instructions. Readings were taken at 492 nm in 

PowerWave XS spectrophotometer (BIO-TEK, USA), and cytotoxicity to BMDM 

calculated as the % of specific LDH release = (test - spontaneous / total - 

spontaneous) x100. The compound concentrations required to produce 50% of 

cytotoxicity (CC50 values) were calculated by linear regression analysis. The 

selectivity index (SI) for each compound was calculated as the ratio between 

50% cytotoxicity (CC50) and 50% anti-amastigote activity (IC50). 

Rho-LNC-CH8 uptake assays  

 For Rho-LNC-CH8 uptake by promastigotes, parasites (106 cells/mL), were 

plated in 24 well-plates in M199 medium containing 10% HIFCS, in the 

presence or absence of Rho-LNC-CH8 (10 g/mL CH8). After 15 and 60 min of 
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incubation, cells were washed with phosphate-buffered saline (PBS) and 

transferred to glass slides for visualization in an Eclipse-Ti fluorescence 

microscope (Nikon) equipped with a CFI Plan Apo Lambda 100X Oil objective. 

Standard filters for FITC (B-2A) or rhodamine (G2 E/C) and DIC were used. 

Images were analyzed using the Adobe Photoshop CC software (version 

14.2.1). Alternatively, fluorescent cells were analyzed by flow cytometry in a 

FACScan equipment (BD Biosciences), and the results were expressed as the 

percentage of cells (as gated by FSC vs. SSC) with fluorescence above 6x100 

arbitrary units (105 events/sample). 

 For LNC-CH8 uptake by macrophages and intracellular amastigotes, 

BMDM (2x105 cells/well) were infected as described for the anti-amastigote 

activity assay. After 24 h, infected and non-infected macrophages were treated 

with Rho-LNC-CH8 (10 g/mL CH8) for up to 240 min and cells were imaged by 

fluorescence microscopy as described above. Alternatively, BMDM were 

infected and treated in 6-well plates (at 106 cells/well), and then subjected to 

flow cytometry analysis as described above.  

Macrophage reactive oxygen species (ROS) production 

BMDM (1x105 cells/well) were plated into black, clear-bottom 96-well 

plates, and then infected with L. amazonensis promastigotes and treated with 

CH8, LNC-CH8, or LNC as described above for the anti-amastigote assay. 

Then, cells were incubated with the oxidation-sensitive fluorescent dye 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA, at 10 µM; Invitrogen, USA) for 

20 min at 37°C, and fluorescence was read at 485/528 nm (excitation/emission) 

in an FLX800 plate fluorimeter (BIO-TEK, USA). Uninfected and infected 
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macrophages incubated with 250 µg/mL Zymosan (Sigma–Aldrich Co.) were 

used as positive controls for ROS production.  

Macrophage nitric oxide (NO) production 

BMDM (1x105 cells/ well) were plated in 96-well plates, and then infected 

with L. amazonensis promastigotes and treated with CH8, LNC-CH8, or LNC as 

described above for the anti-amastigote assay. NO production in culture 

supernatants was measured by the Griess method, as described previously24. 

Readings were taken at 570 nm in a PowerWave XS spectrophotometer (BIO-

TEK, USA). The nitrite concentration was calculated using a standard curve of 

sodium nitrite (NaNO2), from 0 to 50 µM. Uninfected and infected macrophages 

incubated with 1 µg/mL lipopolysaccharide (LPS; Sigma–Aldrich Co.) were used 

as positive controls for NO production.  

Macrophage intracellular proteolysis 

BMDM (1x105 cells/well) were plated in black clear bottom 96-well plates, 

maintained and infected as described above for the anti-amastigote activity 

assay. At 24 h after infection, cells were incubated with CH8 (1 µg/mL), LNC-

CH8 or LNC for 20 min at 37°C. Then, cells were allowed to internalize the 

fluorogenic protein substrate DQ green-BSA (Thermo Fisher, UK) and human 

IgG (Sigma-Aldrich) - functionalized carboxylated silica beads (Kisker Biotech 

GmbH & Co., Germany) (5:1) for 5 minutes, as described previously25. Alexa 

Fluor 594 succidinimyl ester (Molecular Probes, USA) was used as a calibration 

fluorophore. After washing in PBS (to remove non-phagocytosed beads), the 

increase in fluorescence, indicative of proteolysis, was measured at different 

time points during a 2h period, at 37°C, using an FLX800 plate fluorimeter (BIO-
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TEK, WI, USA) set at 594/620nm (for calibration fluorescence - CF) or 

485/528nm (for substrate fluorescence - SF). The ‘blank’ (B) represented the 

cell fluorescence before treatment. The relative fluorescence (RF) was 

calculated as RF = (SF – B) / (CF – B). 

Topical drug absorption assay 

Mice were anesthetized with 2% isoflurane inhalation, and Rho-LNC-CH8 

(20 µL, containing 11 µg of CH8) were applied to a shaved dorsal area of 

approximately 1.5 cm2. At 0, 5, 15, 30, 60, 90, 120, 180, 240 and 300 min after 

application, fluorescence images of the whole animals were taken using an 

IVIS® Lumina Imaging System (Xenogen Corp, USA) with filters for rhodamine 

detection. A region of interest (ROI) was drawn 2 mm around the outer 

fluorescent margin, and the specific fluorescence was expressed as the 

difference between values for Rho-LNC-CH8 and LNC-CH8 surface radiance 

(photons/s/cm2) for each time point. As a fluorescence quenching/decay control, 

the same amount of Rho-LNC-CH8 was applied per cm2 onto an impermeable 

plastic blade and the fluorescence was measured as performed for animal skin.  

Mouse infection and topical treatment 

 Mice were infected in the ear with 2x106 promastigotes of L. 

amazonensis. On days 7 to 28 of infection, the ears were treated topically (5 

times a week, using a disposable spatula) with one of the following 

formulations: (1) 10 µg of CH8 in PBS/2% DMSO (CH8 group); (2) 10 µg of 

CH8 in LNC-CH8) (LNC-CH8 group); blank LNC (LNC group); or 20 µL of 2% 

DMSO alone (untreated group). At the end of treatment (day 30 post-infection), 

the animals were euthanized by terminal 5% isoflurane inhalation, the infected 

ears were excised aseptically at the base, and homogenized individually in 1 
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mL of complete M199 medium. The parasite burden was evaluated by a limiting 

dilution assay (LDA), as described previously26.  

Statistical analysis  

Data were analyzed by one-way or two-way ANOVA followed by 

Bonferroni multiple comparison test. Data were expressed as arithmetic mean ± 

standard deviation (SD) values and samples were considered significantly 

different when p ≤ 0.05 in a series of at least three independent experiments. 

 

 

RESULTS 

3.1 LNC efficiently encapsulates CH8 into homogeneous nanoparticle 
suspensions.  
 

All formulations were macroscopically homogeneous, and had unimodal 

narrow size dispersions, with mean diameters below 238 nm (laser diffraction) 

and 184 nm (PCS) (Table 1).  All nanocapsules showed a slight negative zeta 

potential () close to zero (-6.1 to -7.5 mV). The drug content was close to 500 

g/mL with an encapsulation efficiency close to 100% (99.9%) (Table 1). 

Overall, nanocapsule sizes and surface potential were slightly affected by the 

drug loading or rhodamine labeling. The high efficiency of drug encapsulation 

corroborate the previous results observed for other drugs, such as doxorubicin, 

tacrolimus, quercetin, resveratrol and curcumin16, 18, 27, 28.  

 
3.2 Rho-LNC-CH8 is internalized by L. amazonensis promastigotes   
 

To evaluate whether LNC could be internalized by parasite promastigote 

forms, these cells were incubated with Rho-LNC-CH8 (at 10 µg/mL of CH8) and 

the nanoparticle uptake was monitored over time, by flow cytometry and 
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fluorescence microscopy. Promastigotes internalized Rho-LNC-CH8 rapidly, 

and, within 15 minutes, a red fluorescence signal was observed in a specific 

sub-cellular compartment. Afterwards, at 60 min of internalization, the 

fluorescence signal appeared widespread in the cytoplasm. Quantification of the 

kinetics of Rho-LNC-CH8 internalization showed that the proportion of cells 

positive for Rho-LNC-CH8 increased with the incubation time (Figure 2), with 

~80% of promastigotes having internalized Rho-LNC-CH8 by 60 min of 

incubation. These data showed the nanosystem is efficiently internalized by the 

Leishmania form that initiates infection in mammalian hosts.  

 

3.3 CH8 encapsulation in LNCs did not decrease its anti-leishmanial 

activity. 

In a previous study, we demonstrated that CH8 has potent and selective 

activity against Leishmania promastigotes10. Here, we tested both CH8 and 

LNC-CH8 against the intracellular forms of the parasite, the amastigotes. 

Infected macrophages were incubated with CH8, LNC-CH8 or LNC and the 

number of amastigotes inside host cells was assessed by direct counting under 

a light microscope, after 48 h of treatment (Table 2). Entrapping of CH8 in LNCs 

did not alter the anti-amastigote activity of the compound in vitro, as both CH8 

and LNC-CH8 showed similar IC50 values (2.2 ± 0.1 and 2.9 ± 0.1 µg/mL, 

respectively). LNC (blank formulation) was not able to kill intracellular 

amastigotes (IC50 of 38.8 ± 0.3 µg/mL). However, LNC was not selective to the 

parasite, with encapsulation leading to a reduced selectivity index (SI) of CH8 

towards the parasite, in comparison to the free drug. 
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3.4 LNC-CH8 delivers CH8 to Leishmania amastigotes inside host cells. 

 Since encapsulation on LNCs did not alter the activity of CH8 in vitro, we 

evaluated the internalization of Rho-LNC-CH8 by infected and uninfected 

macrophages, to verify if the nanocapsules could deliver CH8 effectively to 

parasites inside macrophages, where the parasite survives and multiplies. For 

this purpose, bone marrow-derived macrophages (BMDM) infected with L. 

amazonensis promastigotes expressing GFP23 were incubated with Rho-LNC-

CH8 (10 µg/mL CH8), and the internalization was evaluated at different time 

points (up to 240 min), by fluorescence microscopy and flow cytometry (Figure 

3).  

Similarly to that observed in promastigotes, Rho-LNC-CH8 was 

internalized quickly by infected and uninfected BMDMs, and we observed red 

fluorescence in the macrophage cytoplasm (but not in the nucleus) within 15 

min of internalization (Figure 3A). In infected macrophages, the Rho-LNC-CH8 

red fluorescence appeared faster (at 7.5 min) than in uninfected cells (Figure 

3C), and internalization increased over time (Figure 3A and C). Importantly, the 

red fluorescence signal of Rho-LNC-CH8 was concentrated in the 

parasitophorous vacuole (PV) of infected cells (Figure 3A). Moreover, co-

localization of Rho-LNC-CH8 with GFP-labeled amastigotes in the PV could be 

observed after 60 and 120 min of incubation. After 240 min of incubation, the 

Rho-LNC-CH8 fluorescence was found predominantly co-localized with GFP-

labeled parasites in the PV, suggesting that Rho-LNC-CH8 had likely killed the 

amastigotes by that time point. In uninfected cells, the Rho-LNC-CH8 

fluorescence signal had decreased by 240 min of internalization, with only low 

fluorescence being detected by fluorescence microscopy and a reduced 
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percentage of fluorescent cells detected by flow cytometry (Figure 3A, B and C). 

This decrease in fluorescence at later time points was not observed in infected 

cells (Figure 3C). 

 Together, these results confirm that LNC-CH8 can be internalized by 

infected macrophages and delivered to the PV, the intracellular compartment 

where the parasite is located. 

 

3.5 LNC-CH8 triggers macrophage microbicidal mechanisms. 

Phagocytes such as macrophages are capable of responding to infection 

by triggering microbicidal mechanisms, which include the production of reactive 

oxygen species (ROS) and nitric oxide (NO), and the activation of proteolytic 

enzymes and acidification of the PV. To study the influence of entrapment into 

LNCs on the activation of macrophage microbicidal mechanisms by CH8, we 

evaluated the stimulation of these mechanisms – which constitutes macrophage 

activation - in infected cells treated with LNC-CH8. 

For ROS production, infected and uninfected macrophages were 

incubated with increasing concentrations of CH8, LNC-CH8 or LNC, and ROS 

production was assayed using the fluorescent dye H2DCFDA (Figure 4, A and 

B). As expected, Leishmania infection decreased the basal ROS levels in 

untreated cells. CH8 was unable to activate ROS production in macrophages, 

even at high concentrations. In contrast, both LNC and LNC-CH8 induced ROS 

production at medium to high concentrations (Figure 4A and B). 

In contrast, NO production (as estimated by NaNO2 quantification in 

culture supernatants) increased only after treatment with high concentrations of 
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LNC-CH8; however, LNC and CH8 could not stimulate NO production, even at 

high concentrations (Figure 4C and D). 

We assessed the proteolytic activity of macrophages by measuring the 

degradation of functionalized beads over time, in infected and uninfected cells 

treated with 1 µg/mL CH8, or equivalent amounts of LNC-CH8 and LNC. The 

proteolytic activity of uninfected cells was similar for all treatments (Figure 4E), 

while proteolysis levels increased over time in infected cells treated with LNC-

CH8 or LNC, but not CH8 alone (Figure 4F). Although the proteolytic response 

was delayed in infected compared with uninfected cells, treatment of the former 

with LNC or LNC-CH8 eventually increased proteolysis levels above those 

observed uninfected cells (Figure 4F). CH8 encapsulation in LNC did not 

change cell acidification significantly (as assessed using the LysoTracker Green 

dye), irrespective of the presence of infection (data not shown).  

The combined analysis of different antimicrobial mechanisms showed 

that LNC-CH8 can modulate host macrophage activation positively, which 

contributes to the activity of the LNC-CH8 nanosystem against the intracellular 

parasite.  

3.6 Rho-LNC-CH8 is absorbed efficiently by mouse skin. 
   

After the promising in vitro results described above, we evaluated if the 

LNC-CH8 formulation could permeate mouse skin and deliver the drug to 

macrophages in vivo. The kinetics of Rho-LNC-CH8 skin absorption was 

evaluated for up to 300 min after application onto the lightly shaved mouse 

hump. Although Rho-LNC-CH8 fluorescence was stable for up to 120 min after 

application, we observed a clear decrease in fluorescence thereafter until 240 

min, when almost complete Rho-LNC-CH8 absorption was achieved (Figure 5A 
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and B). Spontaneous fluorescence quenching by drying was discarded by 

surface radiance quantification demonstrating that the fluorescence intensity of 

Rho-LNC-CH8 applied onto an impermeable plastic surface remained stable 

throughout the experiment (Figure 5B).  

  

3.7 LNC-CH8 increased the efficacy of CH8 in cutaneous leishmaniasis 
treatment. 
 

Given that Rho-LNC-CH8 is absorbed by mouse skin, we tested the 

activity of LNC-CH8 in vivo as a topical treatment for experimental CL, in 

BALB/c mice infected in the ear with GFP-labeled L. amazonensis.  

After 3 weeks of daily topical treatment (5 days / week) with LNC, LNC-

CH8 or CH8 (10 µg CH8 per cm2/ dose), the parasite burden was evaluated in 

infected mouse ears by a limiting dilution assay. Mice treated with LNC-CH8 

had significantly fewer parasites in infected ears than animals either treated with 

CH8 alone, or kept untreated (Figure 6). Thus, encapsulation of CH8 in LNC-

CH8 increased its efficacy by the topical route in a murine model of CL. 

 

DISCUSSION 

In recent years, various topical formulations containing paromomycin, 

pentavalent antimonials, β-lapachone and amphotericin B have been developed 

for  CL treatment4-6, 29, but none were sufficiently effective or safe for clinical 

approval. Here, we evaluated the efficacy of a new topical nanoformulation 

against CL that combined the potency of a promising antileishmanial compound 

– the nitro-chalcone CH811 - with the skin permeation ability of the versatile  

LNC30. 
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The results demonstrated that PCL and the oily component used here 

were adequate to provide a high rate of CH8 incorporation into LNC-CH8 

(99.9%). Most of the drug was probably retained into the lipid compartment, 

which is protected by the PCL shell, thus increasing its bioavailability, as 

demonstrated for oral quercetin and resveratrol16,31.  Despite their weak 

negative charge (-7.5 mV), LNC-CH8 stability was achieved by steric hindrance 

promoted by the nonionic polysorbate 80 surfactant32. 

  The resulting LNC-CH8 were readily taken up by both macrophages and 

promastigote forms of Leishmania. Light microscopy analysis of Rho-LNC-CH8 

internalization suggests that the nanocapsules enter promastigotes through the 

flagellar pocket and are transported to organelles of the endocytic pathway 

(likely corresponding to lysosome multivesicular tubules33) within 15 min, and 

then reach the cytoplasm. In macrophages, Rho-LNC-CH8 may reach the 

cytoplasm by fluid phase endocytosis, as described for LNC-doxorubicin28. 

Therefore, our data suggest that LNC-CH8 are only degraded after reaching the 

PV34, where Leishmania amastigotes reside. 

Encapsulation in LNC did not impair the anti-amastigote activity of CH8, 

as observed previously with poly(lactide-co-glycolide) (PLGA) microspheres that 

delayed intracellular parasite killing22. LNC may produce faster drug delivery to 

intracellular parasites due to their smaller size and/or higher sensitivity to 

lysosomal enzymes, compared with PLGA microspheres. The higher 

cytotoxicity of LNC-CH8 and LNC to macrophages, compared with CH8, is likely 

caused by the presence of polysorbate 80 surfactant in both LNC formulations. 

Despite the increased cytotoxicity, LNC-CH8 selectivity remained high - at 61 

fold - which is comfortably above the 10-fold selectivity index advocated by 
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DNDi as a ‘cut-off’ for promising new antiparasitic drugs35. Additionally, the 

polysorbate 80 cytotoxicity observed here may not be relevant in vivo, 

especially for topical administration, since intradermal polysorbate 80-containing 

LNC systems are safe to rats36.  

The innate immune response to parasitic infection leads to the production 

of ROS and NO which together generate peroxynitrite (ONOO-), a strong 

oxidant considered essential for parasite killing by phagocytic cells37. These 

compounds can also increase the expression of genes associated with pro-

inflammatory responses, such as NF-κB transcription factors38. While 

nanocarriers are known to activate these mechanisms,39,40 the LNC 

nanoparticles used in this studies only led to an increase in ROS species. 

Moreover, in line with the antioxidant and anti-inflammatory effects of 

chalcones40,41, CH8 alone could not activate macrophage antimicrobial 

mechanisms. in contrast, encapsulation into LNC led to ROS and NO 

production in both uninfected and infected cells. The former possibly accounting 

for the slightly increased macrophage cytotoxicity observed with LNC-CH8. 

Interestingly, intracellular Leishmania parasites downregulate these 

macrophage antimicrobial mechanisms2 and the use of LNC nanocarriers may 

help to overcome this effect. 

In addition to ROS and NO production, intracellular proteolysis is 

essential for microbial killing after endocytosis42. Interestingly, for safe 

therapeutic purposes, LNC-CH8 induced proteolytic activity in infected but not 

uninfected macrophages, suggesting that the presence of the parasites was 

necessary for the activation of cellular digestion mechanisms.  
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The lower efficacy of previous topical formulations for CL is possibly due 

to lack of proper drug permeation through the stratum corneum barrier of the 

skin, necessary to reach the infected cells in the lower dermis layer30. Despite 

its low molecular weight (329Da) and high lipophilicity (LogP = 3.63), CH8 alone 

cannot permeate the skin barrier43. However, the imaging studies shown here 

demonstrate that Rho-LNC-CH8 applied onto the mouse skin surface is no 

longer detectable 3 hours post-application, suggesting that the drug is absorbed 

efficiently by the skin. The time required for skin signal decrease suggests that 

drug absorption is not due to occlusion, as reported previously for solid lipid 

nanoparticles44. Rho-LNC-CH8 and LNC-CH8 permeation through skin 

appendages (hair follicles or sweat glands)30 appears more plausible. This is 

agreement with the studies of Raber et al45 demonstrating that negatively 

charged nanoparticles are able to interact more efficiently with the skin surface, 

facilitating follicular uptake.   

Although the mechanism by which LNC-CH8 promotes drug permeation 

through the skin remains unclear, the in vivo data in murine CL clearly show 

that topical application of LNC-CH8 onto mouse lesions effectively reduced the 

parasite load by ~80% in comparison with free CH8. Interestingly, LNC alone 

reduced the number of parasites in skin lesions by ~30%. Although blank LNC 

does not have intrinsic antiparasitic activity, as seen by the lack of in vitro 

activity, our data suggest that this blank nanodevice is an excellent adjuvant for 

topical CL treatment. LNC-CH8 was more effective than other nanosystems 

attempted for CL topical treatment29, 46.  Following the skin permeating potential 

demonstrated here, future LNC-CH8 manipulations may further improve its 

antiparasitic activity. One possibility is LNC co-entrapment with 
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superparamagnetic iron oxide nanoparticles (SPIONs) to allow heating and 

killing of the infected cells after local application of a magnetic field, as 

envisaged for cancer thermotherapy47. 

Overall, the results reported here show that LNC-CH8 is an appropriate 

nanosystem not only for intracellular drug delivery, but also for skin permeation 

and intracellular parasite killing.  This study has clinical relevance for localized 

and safe treatment of CL, a skin pathology for which there is currently no 

adequate topical treatments. 
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FIGURE LEGENDS 

Figure 1. Chemical structure of the chalcone CH8. 

Figure 2. Kinetics of Rho-LNC-CH8 internalization by promastigotes. 

Leishmania amazonensis promastigotes were incubated with rhodamine-

labeled LNC-CH8 (Rho-LNC-CH8, at 10 µg/mL CH8) and analyzed at different 

time points, to detect compound internalization. (A) Light microscopy analysis of 

live promastigotes, showing internalization of red-fluorescent Rho-LNC-CH8 

from 0 to 60 min of incubation. DIC, differential interference contrast. Scale bar, 
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5 µm. (B, C) Flow cytometry analysis of the Rho-LNC-CH8 fluorescence 

intensity in promastigotes (105 events/sample) at different time points, displayed 

as histograms (B) and as the percentage of cells expressing > 6 x 100 arbitrary 

units of fluorescence (C; corresponding to cells in gate M1, in B). AU, arbitrary 

units. (n=3). 

Figure 3. Rho-LNC-CH8 is efficiently internalized by macrophages. Bone 

marrow derived macrophages (BMDM) were infected with L. amazonensis 

expressing GFP and incubated with Rho-LNC-CH8 (10 μg/mL CH8). (A) Light 

microscopy analysis of uninfected and infected BMDM at different time points of 

incubation with Rho-LNC-CH8, showing co-localization between amastigotes (in 

green) and Rho-LNC-CH8 (in red), after 120 min of incubation. DIC, differential 

interference contrast. Scale bar, 20 µm. (B, C) Flow cytometry analysis of 

uninfected and infected BMDM after 240 min of Rho-LNC-CH8 internalization. 

The histograms in B show treated cells in blue, and untreated in grey, and the 

percentage of cells expressing >3 x 100 arbitrary fluorescence units (gate M1 in 

B) is shown in C (mean ± SD values, n=3 independent experiments). *p<0.05. 

AU, arbitrary units. 

Figure 4. LNC-CH8 (but not CH8 alone) activates infected macrophages. 

Bone marrow derived macrophages (BMDM) were kept uninfected (A, C, E) or 

were infected with L. amazonensis (B, D, F), treated with LNC, CH8 or LNC-

CH8 and then processed for the analysis of different markers of macrophage 

activation. (A, B) Reactive oxygen species (ROS) production was measured 

fluorimetrically using H2DCFDA, after 30 min of treatment. FU, fluorescence 

units (C, D) Nitric oxide (NO) levels were estimated by quantifying NaNO2 in 

culture supernatants (by the Griess method), after 48h of treatment. (E, F). 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

27 
 

Intracellular proteolysis was assessed by using DQ green-BSA and IgG-

functionalized beads, after 30 min of treatment. Results are expressed as 

relative fluorescence (RF). Data represent mean ± SD values (n=3 independent 

experiments). *p < 0.05, **p < 0.01, relative to free CH8. 

Figure 5. Topical Rho-LNC-CH8 is absorbed through living mouse skin. 

Rhodamine-labeled CH8 (Rho-LNC-CH8, with 10 µg/mL CH8) was applied onto 

the pre-shaved dorsum of BALB/c mice and the skin fluorescence kinetics was 

followed by in vivo fluorescent imaging using the IVIS® Lumina system (A). A 

region of interest (ROI) was drawn 2 mm around the outer fluorescent margin, 

and data expressed as average surface radiance (photons/s/cm2) after 

deduction of background fluorescence of skin to which unlabeled LNC-CH8 was 

applied (red line). As a control for fluorescence quenching/decay, the same 

amount of Rho-LNC-CH8 or LNC-CH8 was applied onto an impermeable 

surface (blue line) (B). Means ± SD values (n=5). 

Figure 6. Efficacy of topical LNC-CH8 against cutaneous leishmaniasis. 

BALB/c mice were infected in the left ear with 2x106 promastigotes of L. 

amazonensis. Seven days after infection, the infected ears were treated 

topically once a day (five times a week), for 3 weeks, with 20 µL of LNC, LNC-

CH8 containing 10 µg of CH8 (22.5 µg CH8 per cm2) or the same amount of 

free CH8 in PBS/2% DMSO. The untreated group was administered only the 

drug-free vehicle. After 30 days of infection, animals were euthanized, the ears 

were removed and the parasite burden was quantified by a limiting dilution 

assay. Data represent mean ± SD values of one out of two independent 

experiments (n=5 animals/group). ** p<0.01. 
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Table 1. Physicochemical features of the different nanocapsules. 
LNC, “blank” LNC; LNC-CH8, LNC entrapping CH8; Rho-LNC-CH8, LNC-CH8 produced using a 

rhodamine(Rho)-labelled precursor. , zeta potential; EE, Encapsulation Efficiency.  (n=3). 

Formulation D[4,3] (nm) SPAN  (mV) 

z-average 

diameter 

(nm) 

PDI 

CH8 

content 

(g/mL) 

EE% 

LNC 167 ± 0.009  1.20 ± 0.1 -6.10 ± 0.09 181± 09 0.12 ± 0.01 - - 

LNC-CH8 238 ± 0.010 0.81 ± 0.1 -7.50 ± 0.07 174 ± 07 0.10 ± 0.01 501 ± 0.02 99.9 

Rho-LNC-CH8 145 ± 0.013 1.12 ± 0.1 -6.47 ± 0.08 184 ± 11 0.08 ± 0.02 550 ± 0.03 99.9 
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Table 2. Anti-Leishmania activity of LNC-CH8 in vitro.  

IC50, anti-amastigote activity estimated by light microscopy. CC50, cytotoxicity estimated 
by lactate dehydrogenase release. SI, selectivity index (SI = CC50/IC50). (n=3). 

 

 

TREATMENT 
ANTI-AMASTIGOTE 

IC
50

 (µg/mL) 
CYTOTOXICITY 

CC
50

 (µg/mL) SI 

CH8   2.15 ± 0.14 393.72 ± 0.09 183.1 

LNC 38.83 ± 0.29 247.90 ± 0.06 6.3 

LNC-CH8   2.90 ± 0.15 178.60 ± 0.12 61.6 
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GRAPHICAL ABSTRACT 

The antileishmanial drug candidate CH8 was encapsulated in lipid-core 

nanocapsules (LNC-CH8), to improve drug bioavailability for topical treatment of 

cutaneous leishmaniasis. LNC-CH8 were able to control the infection by 

penetrating mouse skin and delivering the drug to infected dermal 

macrophages. 
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