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Abstract

The syntheses and photophysical behaviour of nine, strongly luminescent nonadentate 

Eu(III) complexes are reported. Each complex is based on N-functionalised 1,4,7-

triazacyclononane, and linkage to other groups or targeting vectors can occur either via 

amide bond formation to a coordinated pyridine p-aminopropyl group or via a nucleophilic 

substitution reaction involving thiol attack on a metal coordinated p-nitropyridyl moiety.  

Evidence is presented in favour of the latter conjugation strategy, as parallel work with 

maleimide conjugates was complicated or compromised by the propensity to undergo post-

conjugation thiol exchange or succinimide ring hydrolysis reactions.  Confocal microscopy 

and spectral imaging studies revealed that the peptide conjugate of AcCFFKDEL was found to 

localise selectively in the endoplasmic reticulum of mouse fibroblast cells, whereas the 

related maleimide conjugate was only observed in cellular lysosomes.     
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Introduction

Europium complexes and their bio-conjugates have been studied in depth because of their 

ability to serve as alternative optical stains in cell imaging or as luminescent reporters and 

responsive probes in a wide range of bioassays. 1-8   Early work directed towards the creation 

of systems that are capable of targeting a particular cell organelle assessed the intracellular 

uptake and localisation behaviour of scores of complexes, wherein complex charge and the 

nature of the sensitising aromatic chromophore were shown to have a major impact in 

determining the localisation profile. 9-11 Systems capable of selectively staining the 

mitochondria, (often aided by a complementary cationic complex charge) the endoplasmic 

reticulum, (ER), the ribosomes/nucleolus or lysosomes were identified. The common and 

predominant cell uptake mechanism was identified as macropinocytosis, in which the 

internalised macropinosome is relatively leaky and is able to discharge its contents within 

the cell readily. 12,13    

Other targeting strategies can be employed in an effort to stain a particular organelle. 

Examples include the conjugation of a cell-penetrating peptide moiety 14,15, although many 

of these systems that use poly-cationic peptides have been shown to lead to deleterious cell 

toxicity, as the peptide inserts into the lipid bilayer and the cell membrane may then be 

permeabilised rather dramatically. 16 In parallel work using fluorescent organic dyes, many 

reports have examined the behaviour of small peptide bio-conjugates for live cell imaging, 

and conjugates with BODIPY dyes that target the ER, the trans-Golgi network (TGN) and the 

cell nucleus have been described.  17-19   For example, in the targeting of the ER or the TGN, 

peptides that carry the retention sequences KDEL and SDYQRL respectively were examined,  
20 allowing live cell imaging of changes in morphology, dynamics and degradation. 

Here, we report the synthesis and characterisation of a series of Eu(III) complexes, based on 

the recently described �EuroTracker� dyes, 21,22  in which the rare earth complex is linked to 

the targeting peptide vector in two different ways, (Chart 1).  The first linkage method 

involves use of a precursor complex, [EuL1], wherein the para-nitro group on a coordinated 

pyridine ring may be selectively displaced by a cysteine thiol group, under ambient 

conditions. 23 This type of linkage creates a very short tether between the metal complex and 

the peptide moiety, and has been used recently to prepare some Gd(III)-protein conjugates 

for EPR spin-labelling applications. 24 The second and more traditional conjugation method 

involves use of a maleimide moiety attached to a pendant primary amino-propyl group, as in 

[EuL7], replacing the p-NO2 group in [EuL1].  For purposes of comparison, the conjugates of 

glutathione, [EuL5] and [EuL8] were also prepared in this study, to assess the effect of the 

conjugation of this ubiquitous peptide itself, and to allow a comparison of the cell 

localisation profile of [EuL1] in particular, as the nitro group could react with the endogenous 

glutathione in cellulo, during the course of observing its own localisation behaviour. 
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Chart 1 Europium(III)  complexes and selected Cys linked peptide conjugates, showing the 

glutathione conjugates, [EuL5] and [EuL8], the conjugates of the ER-targeting vector AcCFFKDEL, 

[EuL3] and [EuL9],  and the conjugate with the TGN targeting sequence, AcGASDYQRLGC, [EuL4].  

Results and Discussion   

Synthesis of Complexes     The syntheses of the ligands L1 and L7 and their key precursors 

were undertaken using methods established in the recent literature. 21,22,24   Thus, the 

conjugated mesylate, 4, was prepared by the coupling reaction of 2 21 with the alkyne 1 

mediated by catalytic Pd(PPh3)2Cl2 in the presence of pyrrolidine in hot THF, followed by a 

standard mesylation procedure, (Scheme 1).  In parallel, alkylation of di-BOC-1,4,7-

triazacyclononane,6,  with the p-nitromesylate 7, 24 followed by treatment with TFA gave the 
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4

amine 9, and the key ligand precursor 10 was obtained by reaction with two equivalents of 

the mesylate, 4. Base hydrolysis followed by complexation with europium chloride at 

ambient pH gave the charge neutral complex [EuL1] that was purified by reverse phase HPLC, 

(see SI).  
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Scheme 1 Synthesis of the ligand precursor, 10, and the derived Eu(III) complex, [EuL1]

The complex, [EuL7] was prepared using similar methodology, Schemes 2, 3 and 4. In its 

structure, the amino-propyl group replaces the p-nitro group in L1, and the primary amine 

allows a variety of conventional coupling methodologies to be used. Here, we converted it in 

situ into a maleimide moiety, in order to permit selective reaction with the cysteine thiol 

group in the peptides. Reaction of the common intermediate, 2,  with N-Boc-allylamine 

under Pd catalysis gave the alkene, 14, together with its constitutional isomer, where the 
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double bond is not conjugated to the pyridine. Hydrogenation over palladium on carbon 

gave the alcohol 15 only, and mesylation using methanesulfonic anhydride afforded the 

ester 16.   Subsequent steps to the ligand precursor 18 were carried out by stepwise N-

alkylation and standard de-protection methods, and the complex [EuL7] was finally prepared 

by reaction of the complex [EuL6] with TFA in MeCN for 20 minutes. Under these relatively 

mild conditions, the Eu complex resists acid-catalysed decomplexation. 
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  Scheme 3 Synthesis of the p-aminopropyl functionalised complex, [EuL7]

Finally, the primary amino group was reacted with the maleimide active ester, 19, from 

which the peptide conjugates were derived, e.g. the glutathione adduct, [EuL8], Scheme 4.   
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Proof of the constitution of the peptide adducts was obtained from a series of MS-MS 

fragmentation experiments, (Figures 1 and 2), aided by the presence of the characteristic Eu 

isotope pattern in certain fragments.   Thus, the parent species of [EuL3] was observed as a 

doubly charged ion, [M+2H]2+, and the observation of successive fragmentation from the C-

terminus enabled confirmation that the Cys thiol group had displaced the p-nitro group in 

[EuL1]. This analysis was confirmed by the observation of fragments derived from cleavage 

around the thio-ether bond linkage site. Similar methods were used to establish the 

constitution of [EuL9]. Here, an additional species was observed, identified also by LCMS, 

that corresponded to the ring-opened adduct (i.e. M + 18) where the succinimide moiety 

reacts with water following thiol addition, (Scheme 5 and Figure 2).  The ratio of the two 

species varied slightly in separate reactions, but was estimated by LC peak integration to be 

3:2, in favour of the ring opened adduct. Such competitive hydrolysis reactions have been 

observed previously in maleimide conjugation chemistry, 25 and contrast with the clean 

substitution reaction using [EuL1].  Indeed, the stability of the thiol/maleimide adduct has 

been a cause of concern, as subsequent thiol exchange may adversely compromise 

conjugate stability. The hydrolysed, ring-opened product on the other hand, shows an 

enhanced stability towards cleavage of the C-S bond, and is preferred. 25   
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Cell Imaging Microscopy Studies

The cell localisation behaviour of the various Eu complexes and conjugates (Chart 1) was 

examined as a function of time in living NIH 3T3 cells, following incubation of solutions of 

each complex (typically between 10 and 15 �M) in the cell growth medium. Emission 

spectral images and lifetimes were also recorded for the internalised complex that allowed 

the Eu spectral signature to be recorded; in every case the emission spectrum observed in 

cellulo was the same as that of the intact complex (e.g., Figs 4-6), and the measured 

emission lifetimes were within ±10% of those measured in vitro, confirming the integrity of 

the Eu coordination environment and the relative insensitivity of the Eu excited state to 

quenching. 

The p-nitro complex, [EuL1], gave rise to a predominant lysosomal profile, (Pavg = 0.78), as 

revealed by co-staining experiments with LysoTracker Green (Figure 7). Similar lysosomal 

localisation profiles were observed with the glutathione conjugates [EuL5] (P = 0.89), [EuL6] 

(P = 0.78) as well as [EuL8] (P = 0.78).  

Figure 7: (upper: 3h, P = 0.81; lower: 23h, P = 0.75)) Confocal microscopy images of NIH 3T3 cells 

following incubation with [EuL1] (12 µM, �exc = 355 nm, observe 605 � 720 nm) (left); LysoTracker 

Green (200 nM; 5 min, �exc = 488 nm, observe 505 � 535 nm) (centre); (right): merged image showing 

evidence of co-localisation (scale bar 20 µm). Note the dividing cell at 23h, consistent with the 

behaviour of healthy living cells. 

Evidence for effective targeting of the endoplasmic reticulum was observed with [EuL3] but 

not with [EuL9]. Each complex contains the ER-targeting peptide sequence �KDEL�. In the 

former case, the staining of the ER was observed to increase slowly in intensity from 3 to 23h 

(Figure 8).  
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Figure 8: (upper: 3h, P = 0.84; lower 23h, P = 0.89) Confocal microscopy images of NIH 3T3 cells 

following incubation with [EuL3] (11 µM, 3 h, �exc = 355 nm, observe 605 � 720 nm) (left); ER-Tracker 

Green (200 nM; 5 min, �exc 488 nm, observe 505 � 535 nm) (centre); merged image showing co-

localisation in the ER (right), (scale bar 20 µm).

However, with the Eu complex conjugate of the peptide that has been reported to enhance 

localisation of the trans-Golgi network, [EuL4], no evidence for staining of this organelle was 

found, and only a simple lysosomal localisation profile was observed,  (P = 0.9; ESI Figure 

S48).   It is not clear whether the behaviour of [EuL9] reflects a lack of binding affinity of the 

targeting peptide, notwithstanding the success with [EuL3], or the inability of the complex to 

escape from a maturing endosome. Past studies have revealed that cell uptake with such 

europium complexes involves macropinocytosis 12,13, and macropinosomes are usually able 

to discharge their contents effectively and quite quickly within the cell.  

Summary and Conclusion

A series of nine europium (III) complexes based on the 1,4,7-triazacyclononane scaffold is 

reported and their photophysical properties compared. The complexes show relatively high 

overall emission quantum yields and brightnesses in water, with values of up to 39% and 

12,100 M-1 cm-1 respectively.  The para-nitro pyridyl complex, [EuL1], allows the 

chemoselective linkage of a cysteine thiol group  and affords stable conjugates with selected 

peptides, e.g. [EuL3-5], that are resistant to thiol exchange or any  subsequent hydrolysis 

reaction. Such behaviour contrasts with that found for conjugates based on thiol attack of a 
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cysteine residue on a maleimide group, where further evidence is reported, e.g. with [EuL8] 

and [EuL9], for post-conjugation transformation. In this respect, evidence for thiol exchange 

is most concerning, as the europium complex is then detached from the intended targeting 

vector.   Future conjugation strategies in creating luminescent labels for use in cell biology 

need to take account of such behaviour, and favour the application of the new p-nitropyridyl 

system reported herein.  

Experimental 

Details of reagents used and the analytical methods used (NMR, MS, optical spectroscopy and 

microscopy methods) are given in the supplementary information (SI). 

Compounds 2,27 7,28 8,29 1230 and 1931 were prepared using procedures described in the literature. 

Compound 1 and reduced L-gluthathione were purchased from Sigma Aldrich and CarboSynth Ltd. 

respectively, and the peptides with the acronyms �ER� and �AcTGN� were supplied by Dundee Cell 

products. Experimental details for the preparation of [EuL2], [EuL5] and [EuL9] are given in the SI, 

together with selected spectra of key intermediates (Figures S1-S26), HPLC analyses of the final Eu 

complexes and conjugates (Figures S27-S42) and their absorption, excitation and europium emission 

spectra (Figures S43-S47). 

Synthesis of [EuL1]

O

N
HO

P
O

O

Br

2

1 N
HO

P
O

O

O

3

Pd(PPh)3Cl2
Pyrrolidine, THF

60 °C, 12 h, Ar

N
O

P
O

O

O

S

O

O

4

Mesyl chloride

NEt3, THF

r.t., 2 h

Ethyl (6-(hydroxymethyl)-4-((4-methoxy-2-methylphenyl)ethynyl)pyridin-2-yl)(methyl)phosphinate, 

3. To a solution of ethyl (4-bromo-6-(hydroxymethyl)pyridin-2-yl)(methyl)phosphinate 2 (129 mg, 

0.44 mmol) in anhydrous THF (2 ml) was added 1-ethynyl-4-methoxy-2-methylbenzene 1 (64.2 mg, 

0.44 mmol), pyrrolidine (186 µL, 2.20 mmol) and Pd(PPh3)2Cl2 (32 mg, 0.04 mmol) under argon. The 

reaction was heated at 50°C under argon for 24 h. After this time, the solvent was removed under 

reduced pressure and the residual oil was dissolved in CH2Cl2 (20 ml) before addition of H2O (20 mL). 

The aqueous layer was extracted with CH2Cl2 (3 × 10 mL) and the combined organic layers were dried 

over MgSO4, filtered, and evaporated to dryness. The crude was purified by column chromatography 

(Al2O3, CH2Cl2 to MeOH 2% in CH2Cl2) to yield compound 3 as a pale brown oil (124 mg, 78%); Rf 

(Al2O3, CH2Cl2/MeOH, 98/2) = 0.30; 1H-NMR (298 K, 400 MHz, CDCl3) UH  8.03 (dd, 1H, J = 6.0 Hz, J = 

2.0 Hz), 7.50 (t, 1H, J = 2.0 Hz), 7.44 (d, 1H, J = 8.0 Hz), 6.79 (d, 1H, J = 2.0 Hz) 6.74 (dd, 1H, J = 8.0 Hz, 

J = 2.0 Hz) 4.82 (s, 2H), 4.0 (ddm, 2H, J = 97.0 Hz, J = 11.0 Hz, J = 7.0 Hz), 3.81 (s, 3H), 2.75 (s, 3H), 1.79 

(d, 3H, J = 15.0 Hz), 1.28 (t, 3H, J = 7.0 Hz); 13C-NMR (298 K, 100 MHz, CDCl3) UC  160.7, 152.9 (d, J = 
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155 Hz), 142.9, 134.0, 133.4 (d, J = 11 Hz), 128.1 (d, J = 22 Hz), 124.1 (d, J = 3.0 Hz), 115.3, 113.7, 

111.6, 95.4, 89.0, 64.1, 61.4 (d, J = 6 Hz), 55.3, 21.0, 16.4 (d, J = 6 Hz), 13.4 (d, J = 104 Hz); 31P{1H}-

NMR (298 K, 162 MHz, CDCl3) 	P +40.1; HRMS+ m/z 360.1372 [M+H]+ (C19H23NO4P+ requires 

360.1365). 

(6-(Ethoxy(methyl)phosphoryl)-4-((4-methoxy-2-methylphenyl)ethynyl)pyridin-2-yl)methyl 

methanesulfonate, 4. Compound 3 (123.5 mg, 0.34 mmol) was dissolved in anhydrous THF (2 mL). 

Methanesulfonyl chloride (33.0 µL, 0.51 mmol) and triethylamine (162 µL, 1.20 mmol) were added 

and the solution was stirred under argon at room temperature for 2 h. The solvent was evaporated 

under reduced pressure, the residue was dissolved in CH2Cl2 (10 mL) and brine was added (10 mL). 

The organic layer was separated and the aqueous layer extracted with CH2Cl2 (3 × 10 mL). The 

combined organic layers were dried over Na2SO4, filtered and concentrated to dryness to yield 

compound 4 as a pale yellow oil (133 mg, 88%) that was used directly in the next step without 

further purification; 1H-NMR (298 K, 400 MHz, CDCl3) UH 8.12 (dd, 1H, J = 6.0 Hz, J = 2.0 Hz), 7.64 (t, 

1H, J = 2.0 Hz), 7.48 (d, 1H, J = 8.0 Hz), 6.82 (d, 1H, J = 2.0 Hz), 6.78 (dd, 1H, J = 8.0 Hz, J = 2.0 Hz), 5.40 

(s, 2H), 4.03 (ddm, 2H, J = 97.0 Hz, J = 11.0 Hz, J = 7.0 Hz), 3.86 (s, 3H), 3.17 (s, 3H), 2.52 (s, 3H), 1.81 

(d, 3H, J = 15.0 Hz), 1.31 (t, 3H, J = 7.0 Hz); ESI-MS m/z 438.493 (100%, [M+H]+).

N

N

NH
H

H

N

N

N

H

O

O

O

O
N

N

N
O

O

O

O

N

NO2

EtOOC

N

N

NH
H

N

NO2

EtOOC

N

N

N

O

N

P O
EtO

O

N

P
O

OEt

N

NO2

EtO

O

. 3HCl

. 2CF3COOH

N

OMs

COOEt

NO2

CH3CN, K2CO3

r.t.,12 h, Ar

O

N P

O

EtOOMs

CH3CN, K2CO3

r.t.,12 h, Ar

5

4

10

6

7

8

9

(Boc)2O, NEt3, CHCl3
r.t., 12 h, Ar

TFA (20% in CH2Cl2)

r.t., 2 h

Di-tert-butyl 7-((6-(ethoxycarbonyl)-4-nitropyridin-2-yl)methyl)-1,4,7-triazacyclononane-1,4-

dicarboxylate, 8. Di-tert-butyl 1,4,7-triazacyclononane-1,4-dicarboxylate 6 (170 mg, 0.52 mmol) was 

dissolved in anhydrous CH3CN (5 mL) under argon, and the mesylate 7 (189 mg, 0.62 mmol) and 
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K2CO3 (150 mg, 1.04 mmol) added. The mixture was stirred at room temperature under argon for 12 

h. The solvent was removed under reduced pressure and the residual orange oil was dissolved in 

CH2Cl2 (50 mL) before addition of H2O (50 mL). The aqueous layer was further extracted with CH2Cl2 

(3 × 25 mL) and the combined organic layers were dried over Na2SO4, filtered and evaporated to 

dryness. The residual oil was purified by reverse phase HPLC (water, 10 to 100% CH3CN over 10 min, 

0.1% formic acid) to yield compound 8 (205 mg, 73%, mixture of diastereoisomers) as a light yellow 

oil; UPLC (water, 5 to 95% CH3CN over 5 min, 0.1% formic acid) tR = 2.86 min; 1H-NMR (298 K, 400 

MHz, CDCl3) UH  8.56 (d, 1H, J = 2.0 Hz, isomer A), 8.54 (d, 1H, J = 2.0 Hz, isomer B), 8.44 (br s, 1H, 

isomer A), 8.41 (br s, 1H, isomer B), 4.47 (2 × q, 2H, J = 7.0 Hz, isomers A and B respectively), 4.04 (s, 

2H), 3.6 � 2.6 (9 br s, 12H), 1.43 (2 s, 18H, isomers B and A respectively), 1.41 (2 t, 3H, J = 7.0 Hz, 

isomers A and B respectively); HRMS+ m/z 538.2903 [M+H]+ (C25H40N5O8
+ requires 538.2877). 

Ethyl 6-((1,4,7-triazacyclononan-1-yl)methyl)-4-nitropicolinate, 9. The dicarbamate 8 (70 mg, 0.13 

mmol) was dissolved in anhydrous CH2Cl2 (3 mL) at room temperature. Trifluoroacetic acid (0.6 mL) 

was added and the solution was stirred at room temperature for 2 h after which the solvent was 

removed under reduced pressure. The residue was treated with CH2Cl2 (2 mL) and the solvent again 

removed under reduced pressure; this process was repeated three times. The crude mixture was 

purified by reverse phase HPLC (water, 10 to 100% CH3CN over 10 min, 0.1% formic acid) to afford 

compound 9 as its trifluoroacetate salt (70 mg, quantitative); UPLC (water, 5 to 95% CH3CN over 5 

min, 0.1% formic acid) tR = 0.66 min; 1H-NMR (298 K, 400 MHz, CDCl3) UH  8.68 (d, 1H, J = 2.0 Hz), 8.18 

(d, 1H, J = 2.0 Hz), 4.52 (q, 2H, J = 7.0 Hz), 4.37 (s, 2H), 4.3 � 3 (br. m, 12H), 1.47 (t, 3H, J = 7.0 Hz); 

19F{1H}-NMR (298 K, 376 MHz, CDCl3) Uf  -75.96; HRMS+ m/z 338.1825 [M+H]+ (C15H24N5O5
+ requires 

338.1828 

Ethyl 6-((4,7-bis((6-(ethoxy(methyl)phosphoryl)-4-((4-methoxy-2-methylphenyl)ethynyl)pyridin-2-

yl)methyl)-1,4,7-triazacyclononan-1-yl)methyl)-4-nitropicolinate, 10. Compound 9 (6 mg, 17.8 µmol) 

was dissolved in anhydrous CH3CN (1 mL) at room temperature under argon. The mesylate 4 (16.3 

mg, 37.3 µmol) and K2CO3 (11.0 mg, 70 µmol) were added and the solution was stirred at room 

temperature for 24 h under argon. After this time the solution was filtered and the filtrate was 

evaporated to dryness. The subsequent residue was purified by HPLC (water, 10 to 100% CH3CN over 

10 min, 0.1% formic acid) to yield compound 10 (16 mg, 88%) as a pale yellow oil; UPLC (water, 5 to 

95% CH3CN over 5 min) tR = 3.69 min; 1H-NMR (298 K, 400 MHz, CDCl3) UH 8.73 (d, 1H, J = 2.0 Hz), 8.60 

(d, 1H, J = 2.0 Hz), 8.01 (dd, 2H, J = 6.0 Hz, J = 2.0 Hz), 7.65 (t, 2H, J = 2.0 Hz), 7.43 (d, 2H, J = 8.0 Hz), 

6.79 (d, 2H, J = 2.0 Hz), 6.75 (dd, 2H, J = 8.0 Hz, J = 2.0 Hz), 4.52 (q, 2H, J = 7.0 Hz), 4.14 (s, 2H), 4.00 

(dm, 4H, J = 90.0 Hz), 3.93 (s, 4H), 3.85 (s, 6H), 3.1 � 2.9 (br. m, 12H), 2.48 (s, 6H), 1.78 (d, 6H, J = 15.0 

Hz), 1.46 (t, 3H, J = 7.0 Hz), 1.28 (t, 6H, J = 7.0 Hz); 13C-NMR (298 K, 100 MHz, CDCl3) UC 164.6, 163.4, 
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160.6, 159.5 (d, J = 22 Hz), 156.1, 155.4, 152.9 (d, J = 157.0 Hz), 142.8, 133.9, 133.4 (d, J = 11.0 Hz), 

126.6 (d, J = 22.0 Hz), 125.7, 118.4, 116.1, 115.3, 113.7, 111.6, 94.6, 89.2, 62.7, 62.2, 61.0 (d, J = 6.0 

Hz), 55.3, 54.0, 53.0, 44.7, 39.3, 21.0, 16.5 (d, J = 6.0 Hz), 14.3, 13.4 (d, J = 103.0 Hz); 31P{1H}-NMR 

(298 K, 162 MHz, CDCl3) 	P 40.1; HRMS+ m/z 1020.419 [M+H]+ (C53H64N7O10P2
+ requires 1020.419). 

N

N

N

O

N

P O
EtO

O

N

P
O

OEt

N

NO2

EtO

O 10

N

N

N

O

N

P O
O

O

N

P
O

O

N

NO2

O

O

Eu

[EuL1]

1. NaOH, Water/CH3CN

pH = 12, r.t., 3 h

2. HCl, pH = 6.5

3. EuCl3.6H2O, pH = 7

Europium complex of 6-((4,7-bis((6-(ethoxy(methyl)phosphoryl)-4-((4-methoxy-2-

methylphenyl)ethynyl)pyridin-2-yl)methyl)-1,4,7-triazacyclononan-1-yl)methyl)-4-nitropicolinate, 

[EuL1]. Compound 10 (15.0 mg, 14.7 µmol) was dissolved in CH3CN (1.5 mL), and an aqueous solution 

of NaOH (0.5 mL, 0.1 M) was added to reach pH = 12. The solution was stirred at room temperature 

and ester cleavage was monitored by LC/MS until complete hydrolysis of the ligand L1 was observed; 

HRMS+ m/z 936.3232 [M+H]+ (C47H52N7O10P2
+ requires 936.3251); 31P{1H}-NMR (298 K, 162 MHz, 

CDCl3) 	P = +26.9 (	P = +40.1 for reactant). After complete hydrolysis, the pH was adjusted to 6.5 by 

addition of dilute hydrochloric acid (0.1 M HCl).  EuCl3.6H20 (11.0 mg, 29.3 µmol) was added and the 

solution was stirred at room temperature for 12 h. The solution was removed under reduced 

pressure to yield the crude Eu(III) complex as a yellow solid, displaying bright red luminescence under 

long-wave UV light. The complex was purified by HPLC (ammonium bicarbonate buffer, 25 mM, 10 to 

100% CH3CN in buffer over 10 min) to yield complex [EuL1] (8.8 mg, 56%) as a yellow powder after 

freeze drying; HRMS+ m/z 1084.222 [M+H]+ (C47H49N7O10P2
151Eu+ requires 1084.221); UPLC 

(ammonium bicarbonate buffer, 25 mM, 10 to 100% CH3CN in buffer over 10 min) tR = 5.88 min; 

�H2O (aq. ammonium bicarbonate) = 0.87 ms; �D2O = 1.05 ms; �MeOH = 1.15 ms; q = 0; �max (H2O) = 340 nm; �340 nm = 

42000 M-1 cm-1; �H2O = 5%, �MeOH = 39%. 
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[EuL1]

Eu

Ammonium bicarbonate buffer, 25 mM, r.t., 24 h

[EuL3]

The complex [EuL1] (0.5 mg, 0.46 µmol) was dissolved in ammonium bicarbonate buffer (2 mL, 25 

mM in water) and the peptide �ER� (0.48 mg, 0.51 µmol) was added. The solution was stirred at room 

temperature for 24 h and the reaction was monitored by LC/MS. The crude solution was directly 

purified by HPLC (ammonium bicarbonate buffer, 25 mM, 10 to 100% CH3CN in buffer over 10 min) 

to yield [EuL3] (0.37 mg, 40%); LC/MS (ES+ MS) m/z 1981.66 (100% [M+H]+), 991.17 (69%, ); 
[�+ ��]2 +

2

UPLC (ammonium bicarbonate buffer, 25 mM, 10 to 100% CH3CN in buffer over 10 min) tR = 5.69 

min; �H2O (ammonium bicarbonate) = 0.93 ms; �max (H2O) = 336 nm; �336 nm = 41000 M-1 cm-1; �H2O = 16%.

 [EuL4]
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Ammonium bicarbonate buffer, 25 mM, r.t., 24 h
N

N

N

O

N
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O

O

N

P
O

O

N

O

O

Eu

NO2

[EuL1]

[EuL4]

The complex [EuL1] (4.06 mg, 3.74 µmol) was dissolved in ammonium bicarbonate buffer (2 mL, 25 

mM in water) and the peptide �AcTGN� (2.00 mg, 1.80 µmol) was added. The solution was stirred at 

room temperature for 24 h and the reaction was monitored by LC/MS. The crude solution was 

directly purified by HPLC (ammonium bicarbonate buffer, 25 mM, 10 to 100% CH3CN in buffer over 

10 min) to yield the complex [EuL4] (2.3 mg, 60%); LC/MS (ES+ MS) m/z 2149.69 (26.5% [M+H]+), 

1075.35 (100%, ); UPLC (ammonium bicarbonate buffer, 25 mM, 10 to 100% CH3CN in 
[�+ ��]2 +

2

buffer over 10 min) tR = 5.42 min; �H2O = 0.93 ms; �max (H2O) = 336 nm; �336 nm = 41000 M-1 cm-1; �H2O = 

18%. 
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 [EuL6]

O

N P

O

OEt

O
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S
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O

N

N
N

H

H

Boc
. 2HCl

11

+

K2CO3

CH3CN
70 oC, 16 h, Ar

N

N
N Boc

N

N

P

P

O

OEt

O

O

EtO

O

13

Compound 13. The macrocycle 11 (68 mg, 0.225 mmol), mesylate 12 (220 mg, 0.520 mmol) and 

K2CO3 (200 mg, 1.45 mmol) were combined in anhydrous CH3CN under argon and heated at 70 oC for 

16 h. After this time the crude solution was separated from the inorganic salts by filtration and 

purified directly by reverse phase HPLC (water, 10 to 100% CH3CN over 10 min) to yield compound 13  

as a pale yellow oil (126 mg, 63%); UPLC (water, 5 to 95% CH3CN over 5 min) tR = 2.46 min; 1H-NMR 

(298 K, 600 MHz, CDCl3) UH  7.99 (app. t, 2H, J = 5.6 Hz), 7.67 (s, 1H), 7.58 (s, 1H),  7.47 (d, 4H, J = 8.5 

Hz), 6.89 (d, 4H, J = 7.6 Hz), 4.14 � 4.05 (m, 2H), 3.95 (d, 4H), 3.90 � 3.81 (m, 2H), 3.83 (s, 6H), 3.43 � 

3.32 (m, 4H), 3.15 � 3.04 (m, 4H), 2.76 � 2.63 (m, 4H), 1.76 (2 × d, 6H, J = 15 Hz), 1.48 (s, 9H), 1.25 (2 × 

t, 6H, J = 7.0 Hz); 31P-NMR (298 K, 162 MHz, CDCl3) UP +40.1 (2 × s); HRMS+ m/z 884.3937 [M+H]+ 

(C47H59N5O8P2 requires 884.3940).

N P

Br

O

OEt
OH

N P

O

OEt
OH

NHBoc

N P

O

OEt
OH

NHBoc

N P

O

OEt
O

NHBoc

S

O

O

NHBoc

Pd(OAc)2

PPh3, Et3N,

80 oC, 18 h, Ar

H2 (40 bar)

Pd / C

EtOH, 8 h

Ms2O

DIPEA, THF

r.t., 1 h

2 14 15 16

tert-Butyl-(E)-(3-(2-(ethoxy(methyl)phosphoryl)-6-(hydroxymethyl)pyridin-4-yl)allyl)carbamate, 14. 

Compound 2 (74 mg, 0.25 mmol), tert-butyl N-allylcarbamate (155 mg, 0.99 mmol), palladium(II) 

acetate (11 mg, 0.05 mmol) and triphenylphosphine (20 mg, 0.08 mmol) were combined in toluene 

(2 mL) under an argon atmosphere. The reaction mixture was degassed by bubbling through with 

argon for 15 min. Following this, triethylamine (0.3 mL, 2.2 mmol) was added and the mixture was 

heated to 80 oC under argon for 18 h. After cooling, the solvent was removed under reduced 

pressure and the resulting residue dissolved in CH2Cl2 (30 mL), washed with water (4 × 30 mL) and 

dried over MgSO4. Removal of the solvent under reduced pressure gave the crude product 14. 

Further purification by reverse phase HPLC (water, 10 to 100% CH3CN over 10 min) yielded 

compound 14 as an E/Z isomer mixture (93 mg, 63%); 1H-NMR (298 K, 400 MHz, CDCl3) UH 8.03 � 7.91 

(2 × d, 1H), 7.45 � 7.28 (2 × s, 1H), 6.61 � 6.44 (m, 2H),  4.83 � 4.77 (2 × s, 2H), 4.14 � 4.03 & 3.89 � 
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3.77 (m, 2H), 3.97 � 3.93 (m, 2H), 1.80 � 1.74 (2 × d, 3H), 1.48 � 1.40 (2 × t, 3H); 31P{1H}-NMR (298 K, 

162 MHz, CDCl3) UP +40.5, +40.4; HRMS+ m/z 371.1746 [M+H]+ (C17H28N2O5P+) requires 371.1736.

tert-Butyl (3-(2-(ethoxy(methyl)phosphoryl)-6-(hydroxymethyl)pyridin-4-yl)propyl)carbamate, 15. 

The E/Z isomer mixture of compound 14 (210 mg, 0.57 mmol) was dissolved in ethanol (60 mL) to 

which palladium upon carbon (Pd content 10%, 25 mg) was added. The vessel was then loaded onto 

a Parr hydrogenator (pressure 40 bar H2) and the reaction mixture was agitated for 8 h. After this 

time, the catalyst was removed by filtration and the solvent removed under reduced pressure. 

Compound 15 was dried under high vacuum and isolated as a pale yellow oil (210 mg); 1H-NMR (298 

K, 600 MHz, CDCl3) UH 7.82 (d, 1H, J = 6 Hz), 7.24 (s, 1H), 4.78 (s, 2H), 4.66 (br s, 1H), 4.12 � 3.79 (m, 

2H), 3.18 � 3.11 (m, 2H), 2.73 � 2.68 (m, 2H), 1.87 � 1.81 (m, 2H), 1.76 (d, 3H, J = 15 Hz), 1.43 (s, 9H), 

1.26 (t, 3H, J = 7 Hz); 13C-NMR (298 K, 151 MHz, CDCl3) UC 160.5 (d, J = 19), 156.1, 153.0 (d, J = 156), 

152.2 (d, J = 10), 127.0 (d, J = 21), 123.0, 79.5 , 64.1, 61.2 (d, J = 6), 40.0, 32.6, 30.8, 28.5, 16.6 (d, J = 

6), 13.7 (d, J = 104); 31P{1H}-NMR (298 K, 243 MHz, CDCl3) UP +39.9; HRMS+ m/z 373.1880 [M+H]+ 

(C17H30N2O5P+ requires 373.1892); Rf = 0.40 (5% CH3OH in CH2Cl2).

(4-(3-((tert-Butoxycarbonyl)amino)propyl)-6-(ethoxy(methyl)phosphoryl)pyridin-2-yl)methyl 

methanesulfonate, 16. Compound 15 (25 mg, 0.067 mmol), methanesulfonic anhydride (20 

mg, 0.115 mmol) and DIPEA (0.03 mL, 0.172 mmol) were combined in anhydrous THF (0.5 mL) under 

argon. The reaction mixture was stirred at room temperature for 1 h with monitoring by TLC. 

Following complete conversion, the solvent was removed under reduced pressure and the resulting 

crude residue dissolved in CH2Cl2 (40 mL), washed with water (3 × 40 mL) and the organic layer dried 

over K2CO3. Removal of the solvent under reduced pressure afforded the mesylate 16 as a colourless 

oil (30 mg, quant.); 1H-NMR (298 K, 400 MHz, CDCl3) UH 7.86 (d, 1H, J = 6 Hz), 7.41 (s, 1H), 5.33 (s, 2H), 

4.66 (br s, 1H), 4.15 � 3.77 (m, 2H), 3.19 � 3.09 (m, 5H), 2.76 � 2.67 (m, 2H), 1.89 � 1.79 (m, 2H), 1.74 

(d, 3H, J = 15 Hz), 1.42 (s, 9H), 1.25 (t, 3H, J = 7.1 Hz); HRMS+ m/z 451.1666 [M+H]+ (C18H32N2O7PS+ 

requires 451.1668; Rf = 0.50 (5% CH3OH in CH2Cl2).
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Compound 17. Trifluoroacetic acid (0.8 mL) was added to a solution of compound 13 (73 mg, 0.082 

mmol) in CH2Cl2 (3.2 mL). The solution was stirred at room temperature for 40 min before removal of 

the solvent under reduced pressure. To the subsequent residue was added CH2Cl2 (20 mL) and the 

solvent was removed under reduced pressure once again; this process was repeated five times. The 

residue was dried under high vacuum for several hours to yield the named compound 17 as the 

trifluoroacetate salt (74 mg, quant.); 1H-NMR (298 K, 700 MHz, CDCl3) UH 7.82 (d, 2H, J = 6 Hz), 7.49 � 

7.45 (m, 6H), 6.89 (d, 4H, J = 9 Hz), 4.32 (s, 4H), 4.15 � 4.08 & 3.99 � 3.91 (m, 4H), 3.82 (s, 6H), 3.60 � 

3.44 (m, 8H), 3.36 � 3.23 (m, 4H), 1.74 (d, 6H, J = 15 Hz), 1.30 (dt, 6H, J = 7.1 Hz, J = 2 Hz); 13C-NMR 

(298 K, 176 MHz, CDCl3) UC 161.1, 156.7 (d, J = 17 Hz), 153.3 (d, J = 160 Hz), 134.4 (d, J = 12 Hz), 133.9, 

128.0 (d, J = 23 Hz), 127.5, 114.4, 113.3, 98.0, 84.6, 62.4 (d, J = 6 Hz), 59.8, 55.5, 51.6, 49.7, 44.5, 16.4 

(d, J = 6 Hz), 13.7 (d, J  = 102 Hz) ; 31P{1H}-NMR (298 K, 162 MHz, CDCl3) UP +40.9, +40.8; HRMS+ m/z 

784.3415 [M+H]+ (C42H52N5O6P2
+ requires 784.3393.

Compound 18. The macrocycle 17 (74 mg, 0.082 mmol), mesylate 16 (90 mg, 0.20 mmol) and K2CO3 

(90 mg, 0.65 mmol) were combined in anhydrous CH3CN (2 mL) under argon and heated at 70 oC for 

16 h. After this time the crude solution was separated from the inorganic salts by filtration and 

purified directly by reverse phase HPLC (water with 0.1% formic acid, 10 to 100% CH3CN with 0.1% 

formic acid over 10 min) to yield a pale orange oil (38 mg, 40%); 1H-NMR (298 K, 400 MHz, CH3OD) UH 

8.48 (s, 1H), 7.93 (d, 2H, J = 5.7 Hz), 7.84 (d, 1H, J = 6 Hz), 7.68 (s, 2H), 7.50 (d, 4H, J = 8.6 Hz), 6.98 (d, 

4H, J = 8.6 Hz), 4.36 (br s, 2H), 4.27 � 4.19 (m, 6H), 4.17 � 3.93 (m, 6H), 3.84 (s, 6H), 3.29 � 3.08 (m, 

12H), 3.05 (t, 2H, J = 6.7 Hz), 2.76 (t, 2H, J = 7.5 Hz), 1.88 � 1.80 (m, 9H), 1.42 (s, 9H), 1.31 � 1.26 (m, 

9H); 13C-NMR (298 K, 176 MHz, CH3OD) UC 169.3, 162.6, 159.3 (2 × d, J = 19 Hz), 158.5 (2 × d, J = 10 

Hz), 155.4 (2 × d, J = 160 Hz), 134.8, 128.7 (d, J = 5 Hz), 128.6 (d, J = 23 Hz), 128.3 (d, J = 23 Hz), 115.5, 

114.5, 98.0, 85.8, 79.9, 63.0 (d, J = 6 Hz), 62.9 (d, J = 6 Hz), 60.3, 59.8, 56.0, 51.4, 51.0, 50.3, 40.5, 

33.2, 31.5, 28.8, 16.9 (2 × d, J = 6 Hz), 13.4 (d, J  = 102 Hz), 13.3 (d, J  = 102 Hz); 31P{1H}-NMR (298 K, 

162 MHz, CH3OD) UP +41.8, +41.2; HRMS+ m/z 1138.512 [M+H]+ (C59H78N7O10P3
+ requires 1138.510).

Synthesis of [EuL7]
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[EuL6]. The ligand precursor 18 (10 mg, 0.009 mmol) was dissolved in a solution of CH3OH/water 

(1.5:1, 2.5 mL total) and the pH was adjusted to 12 using a NaOH solution (4 M). The solution was 

heated at 60 oC for 3 h with monitoring by LC/MS. After complete hydrolysis of the ester groups, the 

pH of the solution was readjusted to 6.5 using a HCl solution (2 M) and EuCl3.6H2O (4 mg, 0.011 

mmol) was added. The mixture was heated at 60 oC once again for 17 h. After this time, the mixture 

was filtered and the solution purified by reverse phase HPLC (water, 10 to 100% CH3OH over 10 min) 

to yield the complex [EuL6] as a white solid (5 mg, 46%); HRMS+ m/z 1202.31 [M+H]+ 

(C53H64N7O10P3
151Eu+ requires 1202.31); UPLC (ammonium bicarbonate buffer, 25 mM, 10 to 100% 

CH3CN in buffer over 10 min) tR = 2.95 min; �H2O = 1.11 ms; �MeOH = 1.27 ms, �max = 328 nm; �328 nm = 

31000 M-1 cm-1; �H2O = 33%. 

[EuL7]. Trifluoroacetic acid (0.8 mL) was added to a solution of [EuL6] (7.2 mg, 6.0 µmol) in CH3CN (3.2 

mL). The solution was stirred at room temperature for 20 min before removal of the solvent under 

reduced pressure. To the subsequent residue was added CH3CN (20 mL) and the solvent was 

removed under reduced pressure once again; this process was repeated five times. The residue was 

dried under high vacuum for several hours to yield the complex [EuL7] as the trifluoroacetic salt (7.8 

mg, quant.); HRMS+ m/z 1104.260 [M+H]+ (C48H56N7O8P3
151Eu+ requires 1104.262); UPLC (ammonium 

bicarbonate buffer, 25 mM, 10 to 100% CH3CN in buffer over 10 min) tR = 2.75 min.
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[EuL8]. To a solution of the complex [EuL7] (7.8 mg, 6.0 µmol) in anhydrous CH3CN under argon was 

added the active ester 19 (1.4 mg, 5.3 µmol) and DIPEA (0.05 mL, excess). The solution was stirred at 

room temperature under argon for 30 min at which point the formation of the maleimide derivative 

[EuL7-maleimide] was confirmed by mass spectrometry (HRMS+ m/z 1255.29 [M+H]+ 

(C55H61N8O11P3
151Eu+ requires 1255.29)). Reduced L-glutathione (1.6 mg, 5.3 µmol) was added to the 

solution and the reaction was stirred at room temperature for a further 30 min. The reaction mixture 
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was directly subjected to reverse phase HPLC (ammonium bicarbonate buffer, 25 mM, 10 to 100% 

CH3CN in buffer over 10 min) to yield the complex [EuL8] as a white solid (1 mg, 12% over two steps); 

HRMS+ m/z 1562.38 [M+H]+ (C65H78N11O17P3S151Eu+ requires 1562.37); UPLC (ammonium bicarbonate 

buffer, 25 mM, 10 to 100% CH3CN in buffer over 10 min) tR = 2.75 min; �H2O = 1.09 ms; �max = 328 nm; 

�328 nm = 31000 M-1 cm-1; �H2O = 28%.
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The Eu complex peptide conjugate with a short tether to the ligand targets the endoplasmic 

reticulum effectively 
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