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ABSTRACT
We introduce a simple analytic model of galaxy formation that links the growth of dark matter
haloes in a cosmological background to the build-up of stellar mass within them. The model aims
to identify the physical processes that drive the galaxy-halo co-evolution through cosmic time. The
model restricts the role of baryonic astrophysics to setting the relation between galaxies and their
haloes. Using this approach, galaxy properties can be directly predicted from the growth of their
host dark matter haloes. We explore models in which the effective star formation efficiency within
haloes is a function of mass (or virial temperature) and independent of time. Despite its simplicity,
the model reproduces self-consistently the shape and evolution of the cosmic star formation rate
density, the specific star formation rate of galaxies, and the galaxy stellar mass function, both at the
present time and at high redshifts. By systematically varying the effective star formation efficiency in
the model, we explore the emergence of the characteristic shape of the galaxy stellar mass function.
The origin of the observed double Schechter function at low redshifts is naturally explained by two
efficiency regimes in the stellar to halo mass relation, namely, a stellar feedback regulated stage,
and a supermassive black hole regulated stage. By providing a set of analytic differential equations,
the model can be easily extended and inverted, allowing the roles and impact of astrophysics and
cosmology to be explored and understood.
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1 INTRODUCTION

The co-evolution between galaxies and their haloes is per-
haps one of the most fundamental aspects of every galaxy
formation model. In the current paradigm of galaxy forma-
tion, every galaxy forms within a dark matter halo. How-
ever, understanding the relationship between a dark matter
halo and the galaxies it hosts is not a trivial exercise due to
our lack of detailed understanding of the complex baryonic
process involved.

In a standard Lambda Cold Dark Matter (ΛCDM) cos-
mology, gravitationally bound dark matter structures build
up hierarchically, by a combination of the smooth accretion
of surrounding matter and continuous merging with smaller
structures (White & Rees 1978; Qu et al. 2017). The forma-
tion and evolution of galaxies within these haloes is thought
to be a highly self-regulated process, in which galaxies tend
to evolve towards a quasi-equilibrium state where the gas
outflow rate balances the difference between the gas inflow
rate and the rate at which gas is locked up in stars and black
holes (BHs) (e.g. White & Frenk 1991; Finlator & Davé
2008; Bouché et al. 2010; Schaye et al. 2010; Davé et al.
2012a; Bower et al. 2017). Consequently, galaxy formation
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is thought to be determined on the one hand by the for-
mation and growth of dark matter haloes, which depends
solely on the cosmological background, and on the other
hand, by the regulation of the gas content in these haloes,
which in turn depends on complex baryonic processes such
as radiative cooling, stellar mass loss, and feedback from
stars and accreting BHs. This co-evolution process results
in a tight correlation between the properties of galaxies and
their dark matter haloes (see e.g. Wechsler & Tinker 2018
for a review).

A fundamental requirement for a successful galaxy for-
mation model, is to reproduce the relation between stellar
mass and halo mass inferred from observations. However
probing the dark matter distribution and its evolution repre-
sents an observational challenge. Direct observational probes
include galaxy-galaxy lensing (e.g. Brainerd & Specian
2003; Hoekstra et al. 2004; Hudson et al. 2015) and the
kinematics of satellite galaxies (e.g. Zaritsky et al. 1993;
van den Bosch et al. 2004; Norberg et al. 2008). However,
direct observation techniques are limited to low redshifts
(z < 1), due to the difficulty of resolving individual dis-
tant galaxies. Indirect methods include, for example, com-
paring the abundance and clustering properties of galaxy
samples with predictions from phenomenological halo mod-
els (e.g. Neyman & Scott 1952; Berlind & Weinberg 2002;
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Cooray & Sheth 2002; Cowley et al. 2018). This method
however, depends heavily on the underlying modelling and
assumptions, for example, the bias with which haloes trace
the underlying matter distribution.

From the theoretical point of view, the formation
and evolution of dark matter haloes is largely consid-
ered a “solved problem” (see however, van den Bosch et al.
2018). Using extremely accurate measurements of the
density perturbations imprinted onto the cosmic mi-
crowave background radiation fluctuations as initial condi-
tions (e.g. Planck Collaboration et al. 2016), many differ-
ent groups have produced convergent results using large
cosmological N-body simulations (e.g Springel et al. 2005;
Klypin et al. 2011; Trujillo-Gomez et al. 2011; Angulo et al.
2012; Fosalba et al. 2015).

On the other hand, the complex physics of galaxy
formation still has many open questions. Different ap-
proaches have been used to model the intricate baryonic
physics of galaxy formation. The most widely used tech-
nique combines the evolution of dark matter with either a
semi-analytical (e.g. Cole et al. 1994; Somerville et al. 2008;
Henriques et al. 2015; Lacey et al. 2016) or hydrodynamical
(e.g. Vogelsberger et al. 2014; Schaye et al. 2015; Davé et al.
2016; Dubois et al. 2016; Pillepich et al. 2018a) treatment of
the baryonic processes involved. A key ingredient in both
methods that has led us to a better understating of the
physics of galaxy formation is the use of physically moti-
vated models for feedback processes (see Somerville & Davé
2015; Naab & Ostriker 2017 for a comprehensive review).

An alternative approach known as empirical modelling
takes the advantage of the vast number of observational data
sets from large galaxy surveys and relate statistical galaxy
scaling relations to the evolution of dark matter haloes with-
out assuming strong physical priors (e.g. Behroozi et al.
2013; Moster et al. 2013; Rodŕıguez-Puebla et al. 2016;
Behroozi et al. 2019; Moster et al. 2018; Grylls et al. 2019).

While all of these approaches have been very produc-
tive, the increasing complexity of the models and simulations
make it difficult to pinpoint and understand the fundamen-
tal physics driving the results. For instance, in cosmologi-
cal simulations, “sub-grid” physics are implemented as micro
phenomena that depend only on local gas properties from
which macroscopic patterns emerge. However, it is hard to
track down the link between what emerges and why (e.g.
Bower et al. 2017). In this paper, we examine this issue in
detail by adopting the opposite approach. We develop a fully
analytic model of galaxy formation derived from a simple re-
lation between the star formation rate and halo growth rate
that disentangles the role of cosmology from the role of astro-
physics in the galaxy formation process. Our model restricts
the role of baryonic astrophysics to setting the relation be-
tween galaxies and their haloes. With this simple relation,
we can use an analytic approximation to the growth of dark
matter haloes to predict galaxy properties. By providing a
set of analytic equations, the model can be easily “inverted”
and allows for rapid experiments to be conducted, providing
a powerful tool to explore the differential effects of bary-
onic physics, averaged over galaxy scales. Despite its sim-
plicity, the model reproduces self-consistently the shape and
evolution of the cosmic star formation rate (SFR) density,
the specific star formation rate (sSFR) of galaxies, and the

galaxy stellar mass function (GSMF), both at the present
time and at high redshift.

We validate our results by comparing to numerical hy-
drodynamic simulations from the eagle project. The ea-
gle simulation suite1 (Schaye et al. 2015; Crain et al. 2015)
consists of a large number of cosmological hydrodynamical
simulations that include different resolutions, simulated vol-
umes and physical models. These simulations use advanced
smoothed particle hydrodynamics (SPH) and state-of-the-
art subgrid models to capture the unresolved physics. A
complete description of the code and physical parameters
used can be found in Schaye et al. (2015). Here we compare
to the eagle reference simulations that used a flat, ΛCDM
cosmology with parameters (Ωm = 0.307, ΩΛ = 0.693,
h = 0.6777, σ8 = 0.8288, ns = 0.9611) consistent with the
Planck Collaboration et al. (2014) results. The calibration
strategy of the eagle simulations is described in detail by
Crain et al. (2015), who also presented additional simula-
tions to demonstrate the effect of parameter variations.

The layout of this paper is as follows: In Section 2 we in-
troduce the analytic model of galaxy formation. We present
two models of the effective star formation efficiency: A time-
independent efficiency which depends only on halo mass, and
an efficiency that depends on the virial temperature of the
halo. In Section 3, we explore the effect of the different effi-
ciency parameters in the galaxy formation outputs. Namely,
the cosmic star formation rate density, the specific star for-
mation rate of galaxies, and the galaxy stellar mass function.
In Section 4 we compare the results from our model to dif-
ferent observational datasets. We also discuss the need for
a time-evolving efficiency in order to reproduce the rapid
evolution of the GSMF. We discuss the limitations of our
model, and summarise our conclusions in Section 5.

2 AN ANALYTIC MODEL OF GALAXY
FORMATION

2.1 The effective star formation efficiency

The formation, evolution and abundance of dark matter
haloes can be predicted accurately when the cosmology and
dark matter model (i.e. cold, warm, self-interacting, etc.) is
known. Although these processes are highly non-linear, the
underlying physics is well understood. However, the gas and
stellar content of haloes is much less well understood because
of the intrinsic complexity of the baryonic processes, such
as cooling, star formation and feedback, that drive it. An
empirical approach to populating dark matter haloes with
galaxies is to focus on the relation between stellar mass and
halo mass inferred from observations. We write this relation
as

log10


 M∗

1012 M�


 = ε(Mh , t) log10


 Mh

1012 M�


 + log10N (t), (1)

where M∗ and Mh are the central galaxy stellar mass and
host halo mass respectively, N (t) is a normalisation factor,

1 The galaxy and halo catalogues of the simulation suite,

as well as the particle data, are publicly available at
http://www.eaglesim.org/database.php (McAlpine et al.

2016).
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and ε(Mh , t) is the logarithmic slope of the stellar to halo
mass relation (SHMR). Allowing N (t) to be a random vari-
able would account for the scatter in the relation, but in
this paper we will focus on the mean relation and replace N
by its expectation value. ε is closely related to the galaxy
formation efficiency of haloes, and we will explore this con-
nection further below.

Probing the dark matter distribution and its evolution
directly represents an observational challenge. Perhaps the
simplest, and most commonly used alternative technique is
to use (sub-) halo abundance matching to determine the typ-
ical SHMR (e.g. Behroozi et al. 2013; Moster et al. 2013).
In essence, the SHMR is derived by mapping the theoretical
halo mass function and the observed abundance of galaxies
given by the GSMF,

φ(M∗) ≡
dngal

dlog10 M∗
= ε−1 dnh

dlog10 Mh
, (2)

where ngal and nh are the co-moving abundances of galaxies
and haloes respectively. A subtlety here is that M∗ refers
to the stellar mass of the central object in the halo. More
complex formulations of the abundance matching method
allow for the contribution of satellite galaxies to the mass
function, but we will keep to the simple approach. This is
adequate if the stellar mass function is dominated by central
galaxies (e.g. Yang et al. 2009; Lan et al. 2016).

Abundance matching studies have consistently shown
that a simple picture of the galaxy population is consistent
with much of the observational data. The SHMR is a strong
function of halo mass but a weak function of cosmic time; it
can be approximated well by two power laws that connect
at a stellar mass that corresponds roughly to the knee of
the stellar mass function (e.g. Moster et al. 2010; Yang et al.
2012; Mitchell et al. 2016). We use this as the basis of a
simple model that couples the build-up of dark matter haloes
and the build-up of galaxy stellar mass.

We must be careful, however, to distinguish the instan-
taneous efficiency with which infalling baryons are converted
into stars,

ε∗ =
Ṁ∗

fb Ṁh
(3)

(where fb = Ωb/Ωm is the cosmic baryon fraction) and the
integral of this growth over the history of the halo, Eq. (1).
Note that Ṁ∗ includes both star formation within the central
object, and the accretion of infalling stars. We will need to
distinguish between the two in order to relate the stellar
mass growth to the observed star formation rate density.

In Appendix A, we show that the build up of dark
matter haloes can be described analytically using recent
developments of the linear theory original described by
Press & Schechter (1974). This allows the abundance and
growth rates of haloes to be derived from the power spec-
trum of density fluctuations in the early universe. Equa-
tion (2) provides a promising approach to connect the
growth of haloes to the formation of galaxies, and the ob-
servational results suggest that a good starting point is to
consider a time-independent SHMR that depends only on
halo mass. In addition, we will examine a model in which
the efficiency of star formation depends on the halo’s virial
velocity, as it reflects the evolution of the gravitational po-
tential of the halo (e.g. Sharma & Theuns 2019).
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Figure 1. Parametrisation of the effective star formation effi-

ciency ε∗ provided in Eq. (4). εN is the normalisation parameter,
α and β determine the slope of the efficiency at low and high

masses respectively, and Mcrit locates the transition mass, or peak
efficiency. The SHMR is shown for comparison. ε∗ has the same

slopes as M∗/Mh , i.e. α and β, but the normalisation of M∗/Mh

is different by a factor of 1/(1+α), and 1/(1− β) for low and high
mass haloes respectively.

• Halo mass-dependent efficiency (Model I)

In order to model ε∗ in Eq. (3), we begin by assuming that
the efficiency of conversion of infalling baryons into stars
depends only on halo mass (e.g. Rodŕıguez-Puebla et al.
2016; Salcido et al. 2018; Tacchella et al. 2018). Motivated
by the results from abundance matching techniques (e.g.
Behroozi et al. 2013; Rodŕıguez-Puebla et al. 2016), that es-
timate a galaxy formation efficiency that peaks at masses
similar to Milky-Way sized haloes (∼1012 M�) and falls
steeply for higher and lower masses, we model ε∗ as a dou-
ble power law, a similar parametrisation as that proposed
by Moster et al. (2010):

ε∗ (Mh ) = 2εN


(

Mh

Mcrit

)−α
+

(
Mh

Mcrit

)β
−1

, (4)

where εN is a normalisation parameter, and α and −β are
the power-law slopes at low and high mass respectively. The
maximum efficiency occurs at halo mass Mcrit. To agree with
observational data, the values of α and β are typically posi-
tive, i.e. at low masses, star formation is suppressed because
of the efficiency of feedback from star formation, and at
higher masses, the cooling of the inflowing gas is suppressed
by heating from BHs (e.g. White & Frenk 1991; Bower et al.
2006; Benson 2012; Haas et al. 2013).

Because of our assumption that ε∗ depends only on Mh ,
we can integrate to determine M∗ without needing to know
the time evolution of the halo mass.

M∗ =
∫ Mh

0
ε∗ fbdM′h

=
2εN

1 + α
fbMcrit

(
Mh

Mcrit

)1+α
F (η,z)

(5)
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Cosmic expansion
!(#) - Eq. (A1)

%& Λ (&

Linear growth of 
density perturbations 
)(#) - Eq. (A8)

Specific growth rates of 
haloes 

*

+,

-+,
-.

- Eq. (A12)

Halo mass history
/0(#) - Eq. (A15)

Effective star formation 
efficiency 

1∗ - Eq. (4) or Eq. (8)

Star formation rate
SFR - Eq. (16) to (20) 

Halo mass function
-3(+,,.)

-+,
- Eq. (A19)

Variance	of	
the	density	

field

E

Slope	of	the	
matter	power	
spectrum

K

/LMN. 1O P Q

Stellar mass function
R(/∗) - Eq. (2), (13) and 

(16)

Cosmic star formation 
rate density
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Figure 2. A schematic diagram of the analytic model of galaxy formation. All components in the blue block depend solely on cos-

mology. By using the Taylor expansion solution to the Friedmann equations in Salcido et al. (2018), all the cosmological components
can be calculated analytically for a given cosmology defined by the parameters ρ0, Λ, H0, and the shape of the matter power-spectrum

parametrised by S and γ. All astrophysical processes (green) enter into the model in terms of the effective star formation efficiency ε∗ ,

which is fully described by the four free parameters Mcrit, εN, α and β in Eq. (4). The galaxy formation outputs are summarised in the
orange block.

where η = (1 + α)/(α + β), z =
(
Mh/Mcrit

)α+β and

F (η,z) =η
∫ 1

0

xη−1

(1 + zx)
dx

=2F1(1, η; 1 + η;−z),
(6)

where2
2F1(a,b; c; z), is the Gaussian hypergeometric func-

tion. For values of α > 0 and 0 < β < 1, in the limit
Mh�Mcrit, limz→0 F (η,z) = 1, while for Mh�Mcrit, F (η,z) ≈
1/((η − 1) z). Differentiating Eq. (5), the logarithmic slope
of the stellar mass halo mass relation, ε, can be written in
a simple analytic form,

ε =
dlogM∗
dlogMh

=
1 + α

(1 + z)F (η,z)
. (7)

Equation (7) describes a smooth transition in slope from
(1 + α) for Mh�Mcrit, to (1 − β) for Mh�Mcrit.

Figure 1 shows an illustration of the effective star forma-
tion efficiency ε∗ as a function of Mh . The parametrisation

2 We have used the symbol z to differentiate from redshift z.

provides a smooth a transition from the α dominated regime
(for low halo masses), to the β dominated regime (for high
halo masses). The figure shows that ε∗ has the same slopes
as M∗/Mh , i.e. α and β, but the normalisation of M∗/Mh is
different by a factor of 1/(1 + α), and 1/(1 − β) for low and
high mass haloes respectively. We note that for our chosen
parametrisation, M∗/Mh is closely approximated by a double
power law.

• Virial temperature-dependent efficiency (Model II)

As we will discuss in Section 3, an efficiency dependent
only on halo mass turns out to be a very good approxima-
tion of the stellar mass build up of galaxies because most
of the stellar mass builds up when the mass of the halo has
roughly its current value. However, a time-independent ef-
ficiency model significantly under predicts the abundance
galaxies at high redshifts (z > 4), which hints at the need
for a time-evolving efficiency model. A purely empirical ap-
proach (e.g Moster et al. 2018; Behroozi et al. 2019) would
relax the physical priors and let, in this case, the four ef-
ficiency parameters in the model to evolve freely in time.
Instead, we consider an alternative model in which ε∗ de-
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pends only on the virial temperature of the halo Tvir (and
hence the gravitational potential of the halo).

Considering the energetics of galaxy winds suggests that,
wind that marginally escape the gravitational binding en-
ergy of the galaxy’s halo can carry a higher mass loading in
lower mass haloes (Dekel & Silk 1986; White & Frenk 1991;
Davé et al. 2012b; Sharma & Theuns 2019). Since the en-
ergy required for escape depends on the halo virial temper-
ature, Tvir, this leads to an inverse scaling of the mass load-
ing, and hence, star formation efficiency. At sufficiently high
mass, the energy associated with individual supernovae be-
comes smaller than the halo binding energy. This may lead
to the accumulation of gas around the central BH, and con-
sequently a wind driven by BH accretion, rather than star
formation (Dubois et al. 2015). A related argument can also
be made based on the buoyancy of gas heated by star forma-
tion. Bower et al. (2017) discusses a possible physical origin
of a transition from where star formation driven outflows
get hotter than the virial temperature of the halo and can
escape (i.e. supernovae energy, or entropy, is much greater
than the halo binding energy), to where outflows stall inside
the halo triggering star formation and BH growth.

In order to explore these effects, we model the effective
star formation efficiency as a function of the halo’s virial
temperature using the same double power law parametrisa-
tion as in Eq. (4),

ε∗ (Tvir) = 2εN


(

Tvir
Tcrit

)−α
+

(
Tvir
Tcrit

)β
−1

, (8)

Note that the relation between halo mass and virial tem-
perature depends on redshift (see Eqs. (9) and (10)), as
the density of collapsed haloes decrease as the universe ex-
pands. As a result, it is not possible to analytically determine
M∗ (Mh , t), but the required integrals can easily be evaluated
numerically. We discuss this model further in Section 4.1.

2.2 Halo definition

Dark matter haloes are typically identified by growing a
sphere outwards from the potential minimum of the dark
matter halo out to a radius where the mean interior den-
sity equals a fixed multiple of the critical or mean den-
sity of the Universe, causing an artificial ‘pseudo-evolution’
of dark matter haloes by changing the radius of the halo
(Diemer et al. 2013). Star formation, however, is governed
by the amount of gas that enters these haloes and reaches
their central regions. Wetzel & Nagai (2015) show that the
growth of dark matter haloes is subject to this ‘pseudo-
evolution’, whereas the accretion of gas is not. Because gas
is able to cool radiatively, it decouples from the dark mat-
ter, tracking the accretion rate near a radius of R200m, the
radius within which the mean density is 200 times the mean
density of the universe, ρ̄. As we try to connect the mass
accretion rate of dark matter haloes to star formation, we
define halo masses as the total mass within R200m,

Mh = 200
4π
3

R3
200m ρ̄, (9)

where ρ̄(t) = ρ0a(t)−3.
We assume that during gravitational collapse, the gas

experiences strong shocks and thermalises its kinetic infall

10−1 100 101

Age of the Universe [Gyr]
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109

1011

1013

1015

M
h
(t

)
[M
�

]

108 109 1010 1011 1012 1013 1014 1015

Mh(t0)

012345678101520
Redshift z

Figure 3. Average halo mass as a function of cosmic time

derived in Eq. (12). A model for the cosmological param-

eters for a standard ΛCDM universe as inferred by the
Planck Collaboration et al. (2014) is shown with solid lines.

Colour coding represents different halo masses, M0, at the present
cosmic time t0, M0 = Mh (t0).

energy to the virial temperature of the halo,

Tvir =
µmpGMh

5kBR200m
, (10)

where we have assumed a uniform cloud of monatomic gas.
Mh is the mass of the halo, µ is the mean molecular weight
of the gas in the halo, which we have assumed µ ≈ 0.6 for
a fully ionized plasma of primordial composition, kB is the
Boltzmann constant, and mp the proton mass. Note from
Eq. (9) that for a given halo mass, the radius of the halo,
R200m, changes with time as the mean density of the Universe
evolves.

2.3 The model

The analytical galaxy formation model developed here is
comprised of three main components, which are summarised
in the schematic diagram of Fig. 2:

• A cosmological model (blue block)
• An astrophysical model that sets the relation between

galaxies and their haloes (green block)
• The galaxy formation outputs (orange block)

By using the Taylor expansion solution of the Fried-
mann equations introduced by Salcido et al. (2018), the for-
mation and evolution of dark matter haloes can be described
analytically. This component is shown as the blue block in
Fig. 2. The growth rates of haloes depend on the cosmologi-
cal parameters ρ0, Λ, H0 and the shape of the matter density
fluctuation power-spectrum. We parametrise the variance of
the spherically averaged smoothed density field, S = σ2, as
a power law S ≈ S0(Mh/1012M� )−γ with slope γ. Since we
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6 J. Salcido et al.

Figure 4. A schematic illustration of the role played by the low-mass and high-mass end slopes of the SHMR in shaping the GSMF

(see Eq. (2)). Two arbitrary models are shown. A model with both α and β large is shown in blue. The orange line illustrates a model
with smaller α and β. Top-Left: Product of the halo mass function and the inverse of the logarithmic slope of the SHMR, ε, given in
Eq. (7). The halo mass function is shown in black. For the blue line, the low-mass end is multiplied by a factor 1/(1 + α), while the

high-mass end is multiplied by a factor of 1/(1 − β). As both α and β are positive, this creates an inflection point (shown as a red dot)
in the distribution. Top-Right: Logarithmic derivative of (φh/ε). The different changes in the normalisation cause a maximum in the

distribution. Hence, there is an inflection point as the second derivative vanishes and changes sign at ∼ Mcrit. The black line shows the
logarithmic slope of the halo mass function. Bottom-Left: The SMHR is shown. The black line shows a relationship of M∗ ∝ Mh . At

low masses, SFR is suppressed because of the efficiency of feedback from star formation, yielding a slope of (1 + α). At higher masses a

slope of (1 − β) is expected as cooling of the inflowing gas is suppressed by heating from BHs. Bottom-Right: The GSMF is shown. The
black line shows a relationship of φ∗ ∝ φh . The low-mass and high-mass end slopes of the SHMR suppress the abundance of low and

high mass galaxies respectively, but also create a characteristic “bump” at the knee of the GSMF.

are interested in only a small range of halo mass, this is
a sufficiently accurate description. The derivation of these
equations are presented in Appendix A. For convenience,
we define the cosmology dependent approximations for the
equations that appear bellow using the function,

fΛ(t, A,B) = 1 + A
(

t
tΛ

)2
+ B

(
t

tΛ

)4
, (11)

where tΛ =
√

3/Λc2, Λ is the value of the cosmological con-
stant, and the coefficients A and B are obtained by using
the Taylor expansion solution of the Friedmann equations
in Salcido et al. (2018).

Astrophysical processes (shown in green in Fig. 2), en-
ter into the model through the effective star formation effi-

ciency, which is fully described by the efficiency ε∗ (Eq. (3)).
We consider two models, in which ε∗ is a function of halo
mass or virial temperature. This component of the model is
described by four parameters, Mcrit (or Tcrit), εN, α and β

following Eq. (4) or Eq. (8).
In order to simplify the numerical constants in

the equations presented in this section, we have sub-
stituted the numerical values for the cosmological pa-
rameters for a standard ΛCDM universe as inferred
by the Planck Collaboration et al. (2014), i.e. Ωm=0.307,
ΩΛ=0.693, Ωb=0.04825, H0=67.77 km s−1Mpc−1, ρ0 = 3.913×
1010 M�Mpc−3, γ=0.3, t0=13.8 Gyr and S0=3.98. The full
cosmology dependence of the numerical constants is given
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How feedback shapes galaxies 7

in Appendix A, and are highlighted using a coloured super-
script (c

∗

).

• Halo mass history

The analytic form of the growth rate equations allows us to
simply describe the growth of haloes as a function of their
present-day mass, M0:

Mh (t )
1012M�

=


(

M0

1012M�

)−γ/2
+ 0.31γ


(
t

tm

)−2/3
fΛ (t, 0.16, −0.01) − 1.67



−2/γ

(12)

where tm =
√

3/8πGρ0, and ρ0 is the mean matter
density of the Universe at the present time. For the
Planck Collaboration et al. (2014) cosmological parameters,
tm=26.04 Gyr and tΛ=17.33 Gyr. Figure 3 shows the indi-
vidual mass histories for haloes of a given mass M0 at the
present cosmic time (represented by the colour coding).

• Halo mass function

Using the Press & Schechter formalism
(Press & Schechter 1974), the co-moving abundance of
haloes of mass Mh at time t is given by,

dn(Mh, t )
dlog10Mh

= 5.43 × 10−3 cMpc−3
(

Mh

1012M�

)− (
1− γ2

)
×(

t

tm

)−2/3
fΛ (t, 0.16, −0.01) ×

exp
−0.13

(
Mh

1012M�

)γ (
t

tm

)−4/3
fΛ (t, 0.32, 0)

 .
(13)

This equation consists of two parts, a low-mass power law
dependence close to M−1

h
, and an exponential cut-off at high

masses. For a given halo mass, the abundance initially in-
creases as the exponential suppression is reduced, but at
late times the halo abundance slowly decreases because of
the power-law term.

• The galaxy stellar mass function and the origin of the
Schechter function

The galaxy stellar mass function (GSMF) has been rea-
sonably well measured over much of cosmic time, so that, for
a know cosmology, the GSMF provides a good measurement
of the efficiency by which haloes convert their baryons into
stars. Typically, the GSMF (Eq. (2)) is parameterised by a
Schechter function (Schechter 1976),

φ(M) = φ∗
(

M
M∗

)α
e−M/M ∗ , (14)

where φ∗ provides the normalisation, and M∗ is a charac-
teristic galaxy stellar mass where the power-law form of
the function cuts off. The form of this function was orig-
inally motivated by the halo mass dependence given in
Eq. (13). Importantly, however, the shape GSMF is only in-
directly related to the halo mass function (eg., Benson et al.
(2003)), with observations showing that the power-law slope
is much flatter than that expected for the halo mass function.
Moreover, recent measurements of the GSMF at low red-
shift (e.g. Baldry et al. 2008; Li & White 2009; Baldry et al.
2012; Moustakas et al. 2013), have proven that a single
Schechter function is insufficient to describe the density of

galaxies. Specifically, the low redshift GSMF shows a clear
evidence for a low-mass upturn, or equivalently, a ”pile-up”
in the abundance of galaxies around M∗. Typically, a double
Schechter function parametrisation has been used to better
describe observational data,

φ(M) =
φ
∗
1

(
M

M∗

)α1

+ φ∗2

(
M

M∗

)α2 e−M/M ∗ . (15)

In the model presented here, the GSMF can be com-
puted as a function of time, by combining the halo mass
function (Eq. (13)) and the efficiency of star formation
through Eq. (2) and Eq. (7). These equations link the ob-
served shape of the GSMF, to the underlying dark matter
halo distribution, and hence to the cosmological background.
They also link galaxies to their dark matter haloes, provid-
ing valuable information about the efficiency by which haloes
convert their baryons into stars.

Further consideration shows that they provide a de-
scription of the non-trivial shape of the GSMF and the
need for a double Schechter function to describe it. While
the underlying distribution of dark matter haloes is the-
oretically predicted to be a single Schechter function
(Press & Schechter 1974), its transformation to the GSMF
relies on Eq. (2). When the halo mass function is multiplied
by the inverse of the logarithmic slope of the SHMR, the
low-mass end is multiplied by a factor 1/(1 + α), while the
high-mass end is multiplied by a factor of 1/(1− β). As both
α and β are positive, this creates an a kink in the gradi-
ent, shown with a red dot in the top-left panel of Fig. 4.
These different changes in the normalisation cause a maxi-
mum in the logarithmic derivative of (φh/ε) shown top-right
panel of the figure. Hence, there is an inflection point in the
distribution, as the second derivative vanishes and changes
sign at ∼ Mcrit. At this point, the abundance of galaxies
decreases slowly, or even rises, as a function of mass, cre-
ating a “bump” at the knee of the GSMF. The sharper the
transition (ie., the larger α + β), the more pronounced the
bump at the knee of the GSM. These effects are illustrated in
Fig. 4. Physically, this can interpreted as galaxies of similar
masses “piling up” at the peak star formation efficiency, i.e.
Mh ≈ Mcrit, as they rapidly stop forming many more stars.
In Section 3, we will systematically vary the four parameter
in the efficiency model in Eq. (4) to investigate their effect
on different galaxy formation outputs.

• The galaxy stellar mass growth

We now have all the necessary ingredients to calculate
the stellar mass growth of individual galaxies through cosmic
time. Substituting Eq. (A12) into Eq. (3), the stellar mass
is given by the integral of,

dM∗
dt
= ε∗ fb

[
1

Mh

dMh

dt

]
Mh

= ε∗ fb 1.6 × 1010M� Gyr−1
(
t

tm

)−5/3
×

fΛ (t, −0.32, 0.06)
(

Mh

1012M�

) (
1+ γ2

)
.

(16)

where ε∗ is given by either Eq. (4) or Eq. (8).
Assuming an instantaneous recycling approximation

(Schmidt 1963), the relation between the stellar mass growth
due to star formation and the observed galaxy SFR is simply
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8 J. Salcido et al.

given by,

SFR =
Ṁ∗

(1 − R)
, (17)

where R is the fraction of mass of gas that is instantaneously
returned into the interstellar medium by an entire stellar
generation. For a universal Chabrier (2003) initial mass func-
tion (IMF), R = 0.41.

Furthermore, both in situ star formation and galaxy
mergers contribute to the total stellar build up of galaxies.
In low mass haloes, most of the stellar build up is expected
to come from in situ star formation, while the most mas-
sive galaxies experience almost no internal star formation
and grow mainly by mergers with smaller satellite galaxies.
Hence, the fractional contribution of accreted stars to the
total stellar mass build up of galaxies is a steep function
of halo mass (e.g. Rodriguez-Gomez et al. 2016; Qu et al.
2017; Pillepich et al. 2018b). Assuming that all of the stellar
growth of haloes of mass Mcrit and bellow is due to internal
star formation, we parametrise the fraction of stellar mass
growth from in situ SFR by a broken power law as,

fSFR =


1 for Mh ≤ Mcrit(

Mh
Mcrit

)η
for Mh > Mcrit,

(18)

where Mcrit is the effective star formation peak efficiency
defined in Eq. (4). For the virial temperature-dependent ef-
ficiency model (Model II), Mcrit also varies with time, and
can be calculated using the critical virial temperature in
Eq. (10). We fix the value of η by assuming that at red-
shift z = 0, where Mcrit ≈ 1012M� , fSFR(1013M� ) is ∼ 50%
(Pillepich et al. 2018b), hence,

η = log10(0.5)/(13 − 12) = −0.3. (19)

Putting Eqs. (17) and (18) together, the fraction of stel-
lar mass growth of central galaxies due to in situ formation
is given by,

SFR =
Ṁ∗

(1 − R)
× fSFR. (20)

• The cosmic star formation rate density

The total cosmic SFR density is given by the integral of all
star formation in all haloes,

ρ̇SFR (t ) =
∫

Ṁ∗
fSFR

(1 − R)
dn(Mh, t )
dlog10Mh

dlog10Mh

=

∫
ε∗ fb Ṁh

fSFR

(1 − R)
dn(Mh, t )
dlog10Mh

dlog10Mh .

(21)

Using the stellar mass growth rate from Eq. (16), the halo
mass function from Eq. (13), together with the effective star
formation efficiency from Eq. (3), the contribution to the
cosmic SFR density from haloes of mass Mh (the integrand
of Eq. (21)) is given by,

dρ̇SFR

dlog10Mh
= ε∗ fb

fSFR

(1 − R)
8.7 × 107 M� Gyr−1cMpc−3 ×(

Mh

1012M�

)γ (
t

tm

)−7/3
fΛ (t, −0.16, 0) ×

exp
−0.13

(
Mh

1012M�

)γ (
t

tm

)−4/3
fΛ (t, 0.32, 0)

 ,
(22)

where ε∗ is modelled using Eq. (4) or Eq. (8). The differen-
tial form of Eq. (22) explicitly shows the contribution from

1010 1011 1012 1013 1014 1015

M200 [M�]

10−2

10−1

100

(M
∗/
M

2
0
0
)/

(Ω
b
/Ω

m
)

Fiducial

ε∗ = constant

No AGN

No SN

Figure 5. Median stellar-halo mass ratio for central galaxies

for three variations of the eagle (50cMpc)3 simulations at red-

shift z=0 (dashed lines), compared to their equivalent analytic
effective star formation efficiency model (solid lines). The orange

line shows the Ref-L050N0752 eagle model (Schaye et al. 2015;
Crain et al. 2015), which uses the same calibrated sub-grid pa-

rameters as the reference model (100cMpc)3, ran with the same

resolution, but in a smaller volume. The “No AGN” run (green)
uses the same calibrated sub-grid parameters as the reference

model but removing feedback from BHs. For the “No SN” model

(red), feedback from star formation has been removed. We note
that there is no eagle equivalent to the “constant” (or “no feed-

back”) model. The faint shaded regions enclose the 10thâĂŞ90th

percentiles. While much more computationally expensive, the be-
haviour of the full hydrodynamical simulations is well approxi-

mated by the analytic models introduced here.

haloes of different masses Mh , to the total cosmic SFR den-
sity.

Equations (2), (12), (13), (16), (20) and (22), together
with a model of the effective star formation efficiency, Eq. (4)
or Eq. (8), provide a full mathematical framework to explore
the effects of cosmology and baryonic physics on galaxy for-
mation. In the next section, we will explore the effect of the
different efficiency parameters on the galaxy SFR, GSMF
and the cosmic SFR density.

3 THE IMPACT OF THE EFFECTIVE STAR
FORMATION EFFICIENCY

We now use our model to explore the effect of the different
efficiency parameters in the galaxy formation outputs in the
orange block of Fig. 2. It is common to characterise galaxy
properties over halo masses, and for simplicity, in this sec-
tion we will only use a halo mass-dependent star formation
efficiency model (i.e. ε∗ is constant across cosmic time).

It has been estimated that the SHMR peaks at masses
similar to Milky-Way sized haloes (∼1012 M�). Typically, at
low masses, the SFR is suppressed because of the efficiency
of stellar feedback. On the other hand, at higher masses the
cooling of the inflowing gas is suppressed by heating from
supermassive BHs (e.g. White & Frenk 1991; Bower et al.
2006; Benson 2012). The “Fiducial” model captures this be-
haviour with both α and β being positive and equal to 0.75.

We consider five alternative models varying the effi-
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10−3

10−2

10−1

100

101

ε ∗
(M
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Mcrit = 1010
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Figure 6. The effective star formation efficiency ε∗ as a function

of halo mass for the six models described in Table 1. For the
“Fiducial” model, the efficiency peaks at masses similar to Milky-

Way sized haloes (1012 M�) and fall steeply for higher and lower
masses with α = 0.75 and β = 0.75. For the “Constant” model, a

fixed fraction of the baryon budget is turned into stars, regardless

of the halo mass. The“No AGN”model describes a scenario where
the efficiency of feedback process is weak for massive objects.

The “No SN” model describes a scenario where the efficiency of

feedback process is weak in small haloes. The “Mcrit = 1010” model
explore the effect of changing the critical halo mass. The “High

efficiency” model has the same slopes as the fiducial model, but

with a higher normalisation. A 100% efficiency is shown with a
grey dotted line.

Table 1. Effective star formation efficiency parameters for the
six idealised models. To agree with observational data, the values

of α and β are typically positive. The “Fiducial” model captures

this behaviour while the five variations systematically explore the
effect of the effective star formation efficiency on the physics of

galaxy formation.

εN Mcrit α β

Fiducial 0.125 1012 0.75 0.75

Constant 0.250 1012 0 0

No AGN 0.125 1012 0.75 0

No SN 0.125 1012 0 0.75

Mcrit = 1010 0.125 1010 0.75 0.75

High Efficiency 0.320 1012 0.75 0.75

ciency parameters systematically to explore the physics of
galaxy formation. An extreme idealised case label as “Con-
stant”, describes a model where a fixed fraction of the baryon
budget is turned into stars, regardless of the halo mass. The
“No AGN” model describes a scenario where the efficiency
of feedback processes is weak for massive objects. Physi-
cally, this could be thought as a model where feedback from
active galactic nuclei is inefficient. The “No SN” model de-
scribes a scenario where the efficiency of feedback processes
is weak in small haloes. Physically, this could be thought
as a model where feedback from supernovae is inefficient.
While much more computationally expensive, a similar be-
haviour to these models is reproduced in full hydrodynami-
cal simulations (see Appendix B for a couple of examples). In
Fig. 5 we show the median stellar-halo mass ratio for three
variations of the eagle simulations where the subgrid pre-
scription for stellar and AGN feedback have been removed.

10−1 100 101

Age of the Universe [Gyr]

105

106

107

108

109

1010

1011

1012
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M
∗(
t)

[M
�

]

Fiducial

ε∗ = constant

No AGN

No SN

Mcrit = 1010

High efficiency

012345678101520
Redshift z

Figure 7. An example of the evolution of the stellar mass in a

halo of mass M0 = 1013M� at the present time calculated by in-
tegrating Eq. (16). The different colours represent the different

efficiency models. For the constant efficiency model, the stellar

mass grows steadily with time tracking the mass assembly of the
dark matter halo. For the fiducial, Mcrit = 1010M� and high ef-

ficiency models, the build up of stellar mass is faster (steeper

slope), but once the corresponding critical halo mass is reached,
the stellar mass plateaus and the halo hardly produces any addi-

tional stellar mass. The high efficiency model has the same shape
as the fiducial model, but a higher normalisation. As expected,

the No SN and No AGN models build up more stellar mass before

and after the halo reaches critical halo mass respectively.

Indeed, our models capture the overall behaviour attained
in simulations. An additional model labelled “Mcrit = 1010”
explores the effect of changing the critical, or transition, halo
mass. A final model labelled “High efficiency” has the same
slopes as the fiducial model, but with a different normalisa-
tion. We show in Fig. 6 the effective star formation efficiency
for the six models, and their parameters are summarised in
Table 1.

3.1 The build up of stellar mass

First, we explore the effect of the star formation efficiency
in the build up of stellar mass in individual haloes for the
six models, which can be calculated by integrating Eq. (16).

Fig. 7 shows an example of the evolution of the stellar
mass in a halo of mass M0 = 1013M� at the present time for
the six efficiency models. For the constant efficiency model,
the stellar mass grows steadily with time, and starts to slow
down only at late times due to cosmic expansion, tracking
the mass assembly of the dark matter halo. For the fiducial
model, the build up of stellar mass is faster (steeper slope).
Once the critical halo mass is reached (Mcrit = 1012M� , cor-
responding to M∗ ≈ 1010M� for this model), the stellar mass
plateaus. The No AGN model has a similar behaviour at
early times, but once the critical halo mass is reached, star
formation does not slow down and the halo reaches a higher
stellar mass at the present time. On the other hand, the No
SN model produces much more stellar mass at early times,
but once the critical halo mass is reached, star formation
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Figure 8. The GSMF at the present time for the six efficiency

models described in Table 1. All models with β = 0.75, i.e. at high
masses cooling is suppressed by AGN feedback, exhibit a sharp

cut-off at the critical halo mass (Fiducial, No SN, Mcrit = 1010M�
and high efficiency). This shows that AGN feedback is mainly
responsible for the characteristic knee of the GSMF. The location

of the knee is determined both by the critical halo mass in the

star formation efficiency, and the normalisation εN, as this causes
a horizontal shift of the whole distribution. For the No SN model,

the slope of the faint end of the GSMF is much steeper. If feedback

process are inefficient both at the low mass and high mass end (a
constant fraction of the baryon budget is turned into stars), the

GSMF is identical to the halo mass function (dotted grey line)

but shifted in mass by a constant value.

slows down, and the halo reaches a similar final stellar mass
as the fiducial model. The Mcrit = 1010M� model presents
a similar behaviour to the fiducial model, i.e. once the halo
reaches the critical mass it hardly produces any additional
stellar mass. However, as the critical mass is lower for this
model, the transition happens at earlier times. The high ef-
ficiency model has the same shape as the fiducial model, but
as expected, a higher normalisation.

3.2 The stellar mass function

We use Eqs. (2), (5) and (13) to calculate the GSMF at
redshift z=0 for the six efficiency models. We note that for a
time evolving efficiency, Eq. (16) should be used to calculate
the stellar mass of any halo as a function of time. These
equations allow us to obtain the SHMR and convolve it with
the halo mass function to calculate the GSMF.

Fig. 8 shows the GSMF at the present time for the six
efficiency models. For the constant model, as it has been
pointed out before (e.g Benson et al. 2003), if feedback pro-
cess are inefficient both at the low mass and high mass end,
i.e. a constant fraction of the baryon budget is turned into
stars in every halo, the GSMF does not exhibit the charac-
teristic knee obtained in observations and is identical to the
halo mass function (dotted grey line) but shifted in mass by
a constant value. Once feedback processes are implemented,
the location of the knee of the GSMF is determined by
the critical mass in the star formation efficiency (fiducial,
Mcrit = 1010). Changing the critical mass also changes the
normalisation of the distribution. All models with β = 0.75,

i.e. at high masses cooling is suppressed by AGN feedback,
exhibit a sharp cut-off at the transition mass. Hence, AGN
feedback is mainly responsible for the knee of the GSMF.
The No AGN model has the same shallow slope at the faint
end of the GSM function as the fiducial model, with a slight
bend at high masses driven only by the exponential cut-off
of the halo mass function. The No SN model presents the
same knee as the fiducial model, but the slope of the faint
end of the GSM function is much steeper. As discussed in
Section 2, the low-mass and high-mass end slopes of the
SHMR produce a “bump” at the knee of the GSMF. Finally,
the high efficiency model, as α and β are the same as for
the fiducial model, the shape of the GSMF is the same. i.e.
the relative abundance of galaxies to their haloes, and hence
the shape, is independent of the normalisation (as ε does not
depend on εN in Eq. (7)). For a given halo mass, changing
the normalisation maps that halo mass to a different galaxy
mass. Hence, a change in the normalisation, εN, shifts the
whole distribution only horizontally. In this case, the high
efficiency model shifts the GSMF to the right compared to
the fiducial model.

3.3 The cosmic SFR density

The cosmic history of star formation is perhaps one of
the most fundamental observables of our Universe. It has
been observed to peak approximately 3.5 Gyr after the
Big Bang (z ≈ 2), and decline exponentially thereafter (for
a review see Madau & Dickinson 2014). Different groups
have tried to model the complex physics driving the cosmic
SFR by using, for example, full hydrodynamical simulations
(e.g. Schaye et al. 2015; Davé et al. 2016; Dubois et al. 2016;
Pillepich et al. 2018a). Our analytic model disentangles the
role of cosmology from the role of astrophysics, which in
turn, allows us to examine the effect of the different effi-
ciency parameters on the cosmic SFR density.

We begin by noting that the behaviour of Eq. (22) is
governed by two main factors. First, a multiplier term that
originates from both, the halo accretion rate, and the halo
mass function, and is ∝ t−7/3. This, comes from the dy-
namical timescale of the universe getting larger. Second, an
exponential term contribution due to the build up of haloes

in the halo mass functions that is ∝ e−t
−4/3

. For a given halo
mass then, the exponential term dominates at early times,
and the contribution to the cosmic SFR density is driven by
the exponential build up of haloes. At late times, the expo-
nential term asymptotically tends to a constant value, and
the further evolution of the cosmic SFR is dominated by the
multiplier term, i.e., it behaves as a power law. As discussed
in Salcido et al. (2018), the contribution of dark energy is
only relevant at late times, and at its observed value, it has
a negligible impact on the star formation in the Universe.

Figure 9 shows the integrated cosmic SFR density for
the six efficiency models computed using Eq. (22). For the
fiducial model, while smaller haloes are more abundant than
large objects, a smaller fraction of the inflowing material is
converted into stars. As a result, the SFR density is domi-
nated by the largest haloes in which star formation is able to
proceed without generating efficient feedback. The smaller
haloes only contribute significantly at very early times, when
the abundance of larger objects is strongly suppressed by
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Figure 9. The cosmic SFR density for the six efficiency models.

As small haloes only contribute significantly at very early times,

when the abundance of larger objects is strongly suppressed by
the exponential term in the mass function, all models with α =

0.75, i.e. at low masses the SFR is suppressed because of the

efficiency of stellar feedback, exhibit the characteristic peak in
the observed cosmic history of star formation (Fiducial, No AGN,

Mcrit = 1010M� and high efficiency). On the other hand, both

models with α = 0 (constant and No SN), do not exhibit the
peak. This shows that supernovae feedback is mainly responsible

for shaping the cosmic SFR density of the Universe. The figure

shows that changing the transition mass Mcrit has a great impact
on the localisation and normalisation of the SFR peak, i.e. the

SFR density is dominated by the largest haloes in which star
formation is able to proceed without generating efficient feedback.

AGN feedback only has a moderate effect on shaping the cosmic

star formation, changing mildly its amplitude and localisation
(No AGN model). The high efficiency model the same shape as

the fiducial model, but with a higher normalisation.

the exponential term in the mass function. We see therefore
that the contribution of haloes of mass ≈ Mcrit = 1012 M� , is
representative of most of the SFR in the model.

If star formation is efficient at all halo masses (constant
model), then the cosmic SFR behaves like a power law with
time, which only deviates from this behaviour at late times
due to the suppression due to the cosmological constant.

Examining the No SN model reveals the origin of the
peak in the cosmic history of star formation is the efficient
feedback in low mass galaxies. Without a mechanism to sup-
press star formation in small haloes, the history of the cosmic
SFR density would not have its characteristic peak. Super-
novae feedback is then mainly responsible for shaping the
cosmic SFR density of the Universe. On the other hand, ex-
amining the No AGN model reveals that efficient feedback in
high mass haloes only has a moderate effect on shaping the
cosmic star formation. Without a mechanism to prevent star
formation in massive galaxies, the cosmic SFR density would
still exhibit a peak, only changing mildly its amplitude and
localisation. However, the slope of the decline would be sim-
ilar (orange vs green dashed lines).

Changing the transition mass Mcrit has a great impact
on the localisation of the SFR peak. As in the fiducial model,
the contribution of haloes of mass ≈ Mcrit, is representative
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Figure 10. Redshift z = 0.1 GSMF for the best fit pa-

rameters for the halo mass-dependent model (ε∗ (Mh )) and
the virial temperature-dependent model (ε∗ (Tvir)). Observational

data with their associated uncertainties from Li & White (2009);

Baldry et al. (2012); Moustakas et al. (2013) are shown with sym-
bols. Both efficiency models provide a good fit to the present-day

GSMF (see also the reduced χ2 statistics in Table 2). Results from

the eagle reference simulation are shown in green for reference.

of most of the SFR in the Mcrit = 1010. Hence, the peak
happens at earlier times, but also has a higher normalisation,
as 1010M� haloes are more abundant than 1012M� haloes.

Finally for the high efficiency model, the shape of the
SFR of the Universe is identical to the fiducial model, but
with a higher normalisation.

4 FITTING OBSERVATIONS

In this section we compare the galaxy formation out-
puts from our analytic model with different observational
datasets. We begin by calibrating our model to reproduce
the GSMF at z ∼ 0 using observations from the Galaxy
And Mass Assembly (GAMA) survey (Baldry et al. 2012)
and the Sloan Digital Sky Survey (SDSS) (Moustakas et al.
2013)3. We use the reduced chi-squared statistic to derive
the best-fitting effective star formation efficiency ε∗ (Mh ).
Because the model is fully analytic, this calibration process
is fast and easy to perform. Figure 10 shows the best fit
model in orange. Results from the eagle reference simula-
tion are shown in green for reference. The figure shows that
a constant halo mass-dependent efficiency model provides
an excellent fit to the present-day GSMF (with reduced χ2

ν
= 1.5). The best best fit efficiency parameters are shown in
Table 2.

3 In this paper we used the standardised GSMF data from
Behroozi et al. (2019), which assumes a Chabrier (2003) IMF,

a Bruzual & Charlot (2003) stellar population synthesis model,
dust corrections from Calzetti et al. (2000), and UV-stellar mass

corrections.
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Figure 11. Evolution of the predicted GSMF for the halo mass-dependent, and the virial temperature-dependent star formation efficiency

models. Different panels and colours represent different redshifts. Observational data with their associated uncertainties from Baldry et al.

(2012); Moustakas et al. (2013); Tomczak et al. (2014); Ilbert et al. (2013); Muzzin et al. (2013); Song et al. (2016) are shown by coloured
symbols. The halo mass-dependent model is shown in dashed lines (ε∗ (Mh )). The virial temperature-dependent model is shown in solid

lines (ε∗ (Tvir)). The redshift z ∼ 0 halo mass-dependent model is reproduced in each panel as a grey dashed curve, to highlight the

evolution. While both models have been calibrated to reproduce the GSMF at z ∼ 0, the halo mass-dependent model reproduces very
well the evolution of the GSMF up to redshift z = 4, but significantly under predicts the abundance of galaxies at higher redshift. On the

other hand, the virial temperature model provides a good fit both at low and high redshift, but the evolution is too rapid at intermediate
redshift (z=1 to z=4).

Table 2. Best fit parameters for the halo mass-dependent (Model

I, ε∗ (Mh )), and virial temperature-dependent (Model II, ε∗ (Tvir))
star formation efficiency models. For the virial temperature-

dependent model, Mcrit is given at redshift z = 0, which corre-
sponds to a critical virial temperature Tcrit = 105.3K. As Tcrit is
kept constant, Mcrit ∝ a(t )3/2 (see Section 2.1). χ2

ν is the reduced
chi-squared statistic used for goodness of fit testing.

Model εN Mcrit [M� ] α β χ2
ν

Mass-dependent 0.178 1011.68 1.537 0.656 1.5

Temp-dependent 0.140 1012 2.377 0.834 1.6

4.1 Contrasting halo mass and virial temperature
efficiency models

Having established the best-fit efficiency parameters for the
model, we can study the evolution of the model outputs.
By construction, ε∗ (Mh ) is only a function of halo mass and

is fixed in time. Hence, the evolution of the GSFM depends
only on the evolution of the abundance of haloes of mass Mh

as a function of time, as described by the halo mass func-
tion. Figure 11 shows the evolution of the predicted GSMF
for the halo mass-dependent star formation efficiency model
in dashed lines. Different panels and colours represent differ-
ent redshifts. Observational data from Baldry et al. (2012);
Moustakas et al. (2013); Tomczak et al. (2014); Ilbert et al.
(2013); Muzzin et al. (2013); Song et al. (2016)4 are shown
with coloured symbols.

Remarkably, a simple halo mass-dependent efficiency

4 In this paper we used the standardised GSMF data from

Behroozi et al. (2019), which assumes a Chabrier (2003) IMF,
a Bruzual & Charlot (2003) stellar population synthesis model,
dust corrections from Calzetti et al. (2000), and UV-stellar mass

corrections.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz3156/5637900 by U

niversity of D
urham

 user on 26 N
ovem

ber 2019



How feedback shapes galaxies 13

model reproduces very well the evolution of the GSMF up
to redshift z ≈ 4. While the observed data at higher red-
shifts is highly uncertain, the halo mass-dependent model
significantly under predicts the abundance of distant galax-
ies. This may hint to the need of a time-evolving efficiency
model. As discussed in Section 2.1, it is reasonable to assume
that the efficiency of star formation should be a function of
the halo’s virial temperature, which naturally evolves with
cosmic time. In. this section, we investigate an effective star
formation efficiency model that depends on virial temperate.

4.1.1 The three stages of galaxy formation

An effective star formation efficiency model characterised by
a time-independent critical virial temperature Tcrit assumes
that there exists a critical halo virial temperature at which
there is a transition from where star formation driven out-
flows can escape, to where outflows stall inside the halo.
Using the viral temperature of the halo to parameterise this
tipping point, provides a natural evolution of the star forma-
tion efficiency. For a fixed halo mass, early collapsed haloes
are more compact (denser), and one might expect a higher
efficiency (for haloes with Tvir < Tcrit).

In this simple picture, we can distinguish three stages of
galaxy formation5, characterised by the virial temperature
of the halo:

• Stellar feedback regulated stage: star formation
driven outflows effectively regulate the gas content of galax-
ies residing in haloes with virial temperature Tvir < Tcrit. In
this stage, efficient outflows prevent the density of central
star forming gas building up, suppressing the growth of the
central BH.
• Efficient star forming/rapid growing black hole

stage: as haloes grow, the virial temperature increases to the
point that the stellar outflows are no longer buoyant relative
to their surroundings, and therefore stall (i.e Tvir ≈ Tcrit). The
density of gas builds up within the halo triggering high star
formation rates and rapid BH growth.
• Black hole feedback regulated stage: In haloes

with Tvir > Tcrit, the central BH is massive enough to produce
efficient AGN feedback, in turn, regulating the gas content
of the halo and preventing further star formation.

An additional advantage of using the virial temperature
to characterise the star formation efficiency, is that we can
add a proxy for the effect of cosmic reionisation. Ultraviolet
radiation from the first stars formed reionised neutral hy-
drogen, raising its entropy to a temperature of ≈ 104K. This
process prevented further cooling, hence preventing star
formation in haloes with Tvir < 104K (Doroshkevich et al.
1967; Couchman & Rees 1986; Rees 1986; Efstathiou 1992;
Loeb & Barkana 2001). As a result of this suppression of
star formation, only a fraction of the haloes with present-
day mass ≈ 1010M� form a galaxy, and no galaxies form
below a halo mass of ≈ 107M� (Sawala et al. 2013, 2016;

5 While perhaps closely related, we distinguish these three stages

of galaxy formation from the three phases in Clauwens et al.
(2018), as the latter refer mainly to a morphological evolution,

rather than the entropy state and buoyancy of the gas.
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Figure 12. Evolution of the stellar mass within haloes using the

best-fit parameters for both models (Table 2). The halo mass-

dependent model is shown in dashed lines, while the virial tem-
perature efficiency model is shown in solid lines. Colour coding

represents different present-day halo masses Mh (t0). Once mas-
sive haloes reach the critical mass, the build up of stellar mass

slows down significantly, i.e. the change in slope of the curves is

due to AGN feedback becoming effective in those haloes.

Fitts et al. 2017; Bose et al. 2018). We therefore include the
effect of reionisation by setting ε∗ (Tvir < 104K) = 0.

Of course, one could think of more complex ways in
which the expected star formation efficiency might evolve
with cosmic time. For instance, the evolution of cooling ver-
sus free-fall time of a cloud of gas, the evolution of metallicity
and the UV background radiation, might all result in a more
complex evolution. However, the aim here is to describe the
main features of the universe as simply as possible, and so we
leave exploration of more complex models for future work.

We calibrate the ε∗ (Tvir) model to the GSMF at z = 0
using the reduced chi-squared statistic to derive the best-
fitting parameters. The best fit efficiency parameters are
shown in Table 2.

It is important to highlight that the models were cali-
brated to reproduce only the observed GSMF at redshift z ∼
0. Figure 10 shows the best fit virial temperature model in
blue. The figure shows that both the halo mass-dependent ef-
ficiency ε∗, and the virial temperature-dependent efficiency
ε∗ (Tvir) models, provide a good fit to the present-day GSMF,
both at the faint end and at the knee. Figure 11 shows that
a star formation efficiency as a function of the virial tem-
perature of the halo provides a good fit to the abundance of
galaxies both at low and high redshift, but the evolution is
too rapid at intermediate redshift (z=1 to z=4).

Figure 12 shows the build up of the stellar mass within
haloes using both models (calculated integrating Eq. (16)).
Colour coding represents different present-day halo mass
Mh (t0). The transition of the star formation efficiency at
Mcrit can be clearly seen in very massive haloes, where there
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Figure 13. The predicted SFR history of the Universe for the
two efficiency models presented in this paper. Coloured lines show

the contributions from dark matter haloes of different masses (per

dex), using the star formation efficiency described by Eq. (22),
and using the virial temperature efficiency model. The total SFR

for the virial temperature efficiency model is shown in blue. The
time-independent efficiency model is shown in orange. Results

from the eagle simulation are shown in green for reference. Ob-

servational data compiled by Behroozi et al. (2013) are shown as
grey symbols. Observational data from Driver et al. (2018) are

shown as black symbols. The analytic model using a halo mass-

dependent star formation efficiency reproduces the amplitude and
shape of the cosmic SFR density remarkably well.

is a rapid rise of stellar mass, then, when the halo reaches the
critical mass (or virial temperature), the build up of stellar
mass slows down significantly. The change in slope is due to
AGN feedback becoming efficient in those haloes, preventing
any further star formation.

Figure 13 shows the predicted cosmic SFR for the two
efficiency models. Using the analytic model, we can clearly
see the contribution to the integrated SFR density from
dark matter haloes of different masses (per dex) shown
as coloured dashed lines (only shown for the halo mass-
dependent efficiency model). The total SFR for the virial
temperature efficiency model is shown in blue. The halo
mass-dependent efficiency model is shown in orange. Results
from the eagle simulation are shown in green for reference.
Observational data compiled by Behroozi et al. (2013) are
shown as grey symbols. The latest observational results from
the GAMA survey from Driver et al. (2018) are shown as
black symbols. The model using a halo mass efficiency re-
produces the amplitude and shape of the observed SFR den-
sity remarkably well, while the virial temperature-dependent
efficiency model, produces a higher SFR at high redshift.

Figure 14 shows the predicted SHMR from both effi-
ciency models. Colour coding represents different redshifts.
The virial temperature efficiency model is shown in solid
lines. The halo mass-dependent efficiency model is shown
with a dashed line (only shown for z = 0 as the halo mass-
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Figure 14. Predicted SHMR for the time-independent, and

evolving star formation efficiency models. Colour coding repre-
sents different observed redshifts. The halo mass-dependent model

is shown as a dashed black line. Vertical dotted lines indicate the
critical mass derived in Bower et al. (2017), which tracks the trig-

gering of a rapid black hole growth stage in the eagle simulations

(McAlpine et al. 2018).

dependent efficiency model is constant in time). The criti-
cal halo mass predicted in Bower et al. (2017) is shown in
vertical dotted lines, which roughly coincide with the peak
efficiency for a viral temperature efficiency model. Recently,
McAlpine et al. (2018) showed that the critical halo mass
predicted in Bower et al. (2017) agrees remarkably well with
the triggering of a rapid black hole growth stage in the ea-
gle simulations.

The model using a virial temperature efficiency predicts
a SHMR relation that differs from observational contains us-
ing abundance and clustering properties of galaxy samples
with predictions from a phenomenological halo models. For
example, recently Cowley et al. (2018) calculated that the
peak of the SHMR shifts to higher masses at earlier times.
These methods however, depend heavily on the underlying
modelling and assumptions. More sophisticated empirical
models (e.g. Behroozi et al. 2019; Moster et al. 2018) find
that the peak in the SHMR moves first to higher masses for
low redshifts, and then to lower masses at high redshifts.

Finally, in Fig. 15 we show the sSFR of galaxies for dif-
ferent redshifts. The halo mass-dependent model is shown in
dashed lines. The model using a virial temperature efficiency
is shown in solid lines. Results for central galaxies from the
eagle simulations are shown in dotted lines for reference.
Observational data from Gilbank et al. (2010); Karim et al.
(2011); Tomczak et al. (2016) are shown as symbols. While
not calibrated to reproduce the sSFR of galaxies, the agree-
ment of the halo mass-dependent model with the observa-
tional data is remarkable.

5 DISCUSSION AND CONCLUSIONS

In our current paradigm of galaxy formation, every galaxy
forms within a dark matter halo. Due to the tight cor-
relation observed between the properties of galaxies and
their host haloes, it is natural to expect that individual
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Figure 15. The sSFR of galaxies at different redshifts. The model using a virial temperature efficiency is shown in solid lines. The halo
mass-dependent model is shown in dashed lines. Results from the eagle simulations are shown in dotted lines for reference. Observational

data from Gilbank et al. (2010); Karim et al. (2011); Tomczak et al. (2016) are shown as symbols. The halo mass-dependent model is in

remarkable agreement with observational datasets.

galaxy assembly could be correlated with halo assembly (see
Wechsler & Tinker 2018 for a review).

In this paper we developed a fully analytic model of
galaxy formation that connects the growth of dark matter
haloes in a cosmological background, with the build up of
stellar mass within these haloes. The model restricts the
role of baryonic astrophysics to setting the relation between
galaxies and their haloes. We assume an effective star for-
mation efficiency which captures all the physical processes
involved in the conversions of gas into stars, i.e. cooling, star
formation law, feedback mechanisms, etc.

We show that galaxy formation is revealed as a simple
process where the effective star formation efficiency within
haloes is only a function of their mass. We show that all
the complex physics of galaxy formation, the interplay be-
tween cosmology and baryonic process can be understood as
a simple set of equations. Despite its simplicity, the model
reproduces self-consistently the shape and evolution of the
cosmic star formation rate density, the specific star forma-
tion rate of galaxies, and the galaxy stellar mass function,
both at the present time and at high redshift.

We use our model to investigate the origin of the char-
acteristic shape of the GSMF and the need for a double
Schechter function to describe it. Using the logarithmic slope
of the SHMR, the model naturally explains an inflection
point in the distribution causing the characteristic “bump”
observed at the knee of the GSMF.

To demonstrate the flexibility and power of our math-
ematical framework, we introduced a physically motived
model for the effective star formation efficiency, charac-
terised by a time-independent critical virial temperature,
Tcrit. The model assumes that there exists a critical halo
virial temperature at which there is a transition from where
star formation driven outflows can escape, to where out-
flows stall, triggering high star formation rates and rapid
BH growth. We demonstrate that this model can reproduce
the GSMF at high redshift (z > 4) better than a simple halo
mass-dependent model, but the evolution at intermediate
redshifts is to rapid to reproduce observations.

While the aim of this paper is not to present a “per-

fect” model fitted to reproduce a large set of observational
constraints, the two variations of an effective star forma-
tion efficiency presented here, already provide very valuable
information about the average evolution of the galaxy pop-
ulation within a cosmological background. Furthermore, the
model can be easily extended to include further modelling
(such as time evolution of the model parameters, or a pre-
scription for satellite galaxies, e.g. Grylls et al. 2019) or the
use of advanced gradient-based minimization and Markov
Chain Monte Carlo algorithms to fit to a larger number of
datasets. Additionally, the model can be easily adapted to
combine the equations developed here, with for example,
halo merger trees from a dark matter simulation.

Our model is limited to the connection between haloes
and central galaxies only. Sub-haloes and satellite galaxies
are subject to complex processes, such as tidal and ram pres-
sure stripping, which are not included.

Finally, one of the main advantages of the model is that
by providing a set of analytic equations, the model can be
easily “inverted” and allows for rapid experiments to be con-
ducted, providing a great tool to explore the differential ef-
fects of baryonic physics, averaged over galaxy scales. We
conclude therefore that there is a clear opportunity to use
the analytic model developed in this paper to improve the-
oretical galaxy formation models.
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APPENDIX A: DERIVATION OF THE MODEL

A1 Cosmological expansion

Here we provide a brief summary of the analytic solution of
the Friedmann equation developed in Salcido et al. (2018).
Equations with full cosmology dependence of the numerical
constants are highlighted using a coloured superscript (c

∗

),
and can be used for arbitrary flat ΛCDM cosmologies.

Using a Taylor expansion, the expansion factor of the
Universe can be written as,

ac
∗

(t) ∝
[

3
2

t
tm

]2/3

1 + 1

4

(
t

tΛ

)2
+

1
80

(
t

tΛ

)4
+ ...


 , (A1)

where the matter timescale is given by,

tc
∗

m =

√
3

8πGρ0
=

1

H0
√
Ωm,0

, (A2)

and the dark energy timescale is given by,

tc
∗

Λ
=

√
3
Λc2 =

1

H0
√
ΩΛ,0

. (A3)

For the cosmological parameters given at the end of Sec-
tion 1, tm = 26.04 Gyr and tΛ = 17.33 Gyr. At the present
day, t ≡ t0 = 13.82 Gyr, so that t0

tm
= 0.53 and t0

tΛ
= 0.8. By

convention, Eq. (A1) is normalised so that a(t0) = 1.

A2 The growth of density perturbations and the
halo accretion rates

Dark matter structures are assumed to have grown from
small initial density perturbations. Expressing the density,
ρ, in terms of the density perturbation contrast against a
density background,

ρ(x, t) = ρ̄(t)[1 + δ(x, t)], (A4)

the differential equation that governs the time dependence
of the growth of linear perturbations in a pressureless fluid,
such as e.g. dark matter, can be written as

d2δ

dt2 + 2
ȧ
a

dδ
dt
− 4πG ρ̄δ = 0. (A5)

The growing mode of Eq. (A5) can be written as,

δ(t) = D(t)δ(t0), (A6)

where D(t) is the linear growth factor, which determines the
normalisation of the linear matter power spectrum relative
to the initial density perturbation power spectrum, and is
computed by the integral

Dc∗ (t) ∝
ȧ
a

∫ t

0

dt′

ȧ2(t′)
. (A7)

Using the power-series approximation for a(t) from Eq. (A1),

keeping the leading order terms and using the definition
of fΛ in Eq. (11), we can obtain an analytic solution of
Eq. (A7),

Dc∗ (t ) =
[

3
2

t

tm

]2/3 2
5
t2
mKD fΛ (t, −0.16, 0.04), (A8)

where KD is a normalisation constant with units of
time−2. By convention, KD is chosen so that D(t0) =
1. For the cosmological parameters inferred by the
Planck Collaboration et al. (2014), KD = 4.7 × 10−3 Gyr−2.
Collecting the numerical and cosmology dependent con-
stants together gives,

D(t ) ≈ 1.671
[
t

tm

]2/3
fΛ (t, −0.16, 0.04). (A9)

The growth rates of linear perturbations do not di-
rectly predict the growth rates of haloes; however, we can
directly connect the two through the approach developed
by Press & Schechter (1974). Correa et al. (2015) showed
that the accretion rates of haloes can be written as (see
also Neistein et al. 2006),(

1
Mh

dMh

dt

)c∗
=

√
2
π

(δc/D)

S1/2 (
qγ − 1

)1/2
1
D

dD
dt
, (A10)

where Mh is the halo mass and S is the variance of the den-
sity field on the length scale corresponding the halo mass.
δc is a parameter that represents a threshold in the lin-
early extrapolated density field for halo collapse. We as-
sume δc = 1.68 (Press & Schechter 1974). The parameters,
q and γ, are related to the shape of the power-spectrum
around the halo mass Mh . The scale dependence of the den-
sity field is approximated as a power-law around 1012 M�
haloes as S = S0(Mh/1012M� )−γ . Correa et al. (2015) find
that this prescription works for different cosmologies because
the halo mass histories are mainly driven by changes in σ8
and Ωm . For the cosmological parameters inferred by the
Planck Collaboration et al. (2014), S0 ≈ 3.98, γ ≈ 0.3 and
q ≈ 3.16. Collecting the numerical and cosmology dependent
constants together yields,

1
Mh

dMh

dt
= 1.05


 Mh

1012M�



−γ/2

1
D2

dD
dt
. (A11)

Using the series approximation Eq. (A9), the specific
growth rate of haloes can be written as,(

1
Mh

dMh

dt

)c∗
=

2.66
√
S0KD t3

m

(
t

tm

)−5/3 (
Mh

1012M�

)γ/2
fΛ (t, −0.32, 0.06).

(A12)

This differential equation can be solved by separation of
variables to obtain the average mass history of dark matter
haloes,∫ M0

M


 M ′h

1012M�



−

( γ
2 +1

)
dMh

1012M�

=
2.66

√
S0KD t3

m

∫ t0

t

(
t ′

tm

)−5/3
fΛ (t, −0.32, 0.06) dt ′

(A13)

where M0 is the mass of a halo today. Integrating both sides
and solving for M (t) yields,

2
γ


(

Mh

1012M�

)−γ/2
−

(
M0

1012M�

)−γ/2 =
4

√
S0KD t2

m


(
t

tm

)−2/3
fΛ (t, 0.16, −0.01) −

(
t0

tm

)−2/3
fΛ (t0, 0.16, −0.01)

 .
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(A14)

Note that in the case γ → 0 the LHS becomes the loga-
rithm of the mass ratio Mh/M0, and all haloes grow by the
same factor in a given time interval. For realistic power spec-
tra, however, the relative growth rate increases with mass
because massive haloes arise from increasingly rare fluctua-
tions in the initial density perturbation field. We can re-write
Equation (A14) as an explicit equation for the halo mass as
a function of time. This form is useful for symbolic substi-
tution into calculations that are driven by the halo mass.

Mc∗

h (t )

1012M�
=

(

M0

1012M�

)−γ/2
+

2γ
√
S0KD t2

m


(
t

tm

)−2/3
fΛ (t, 0.16, −0.01) −

(
t0

tm

)−2/3
fΛ (t0, 0.16, −0.01)



−2/γ

.

(A15)

As t → 0, the mass of the halo becomes small compared
to the final mass so that we can write,

Mh (t)
1012M�

≈



 M0

1012M�



−γ/2

+
2γ

√
S0KDt2

m

(
t

tm

)−2/3
−2/γ

,

(A16)

where the first term in the RHS is much smaller than the
second term. This shows that masses of early haloes depend
very weakly on their average final mass, and that the halo
mass initially grows roughly ∝ t4, (since γ ≈ 1/3).

Finally, collecting the numerical and cosmology depen-
dent constants together, we can write Eq. (A15) as,

Mh (t )
1012M�

=


(

M0

1012M�

)−γ/2
+ 0.31γ


(
t

tm

)−2/3
fΛ (t, 0.16, −0.01) − 1.67



−2/γ

(A17)

A3 The halo mass function

In the Press & Schechter analysis, the co-moving abundance
of haloes of mass Mh at time t is given by (Press & Schechter
1974),

dnc
∗

(Mh , t)
dMh

=
ρ0

M2
h

δcγ
√

2πS1/2

1
D

exp


− δ2

c

2SD2


 (A18)

where we have assumed that the density power spectrum is a
power law with exponent γ and written the co-moving mat-
ter density of the Universe as ρ0 following our convention.
Using the evolution of the growth factor given by Eq. (A9)
and keeping the leading order terms we obtain,

dnc∗ (Mh, t )
dlog10Mh

=
2.94 × 10−12 M−1

� ρ0γ
√
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 .
(A19)

For the cosmological parameters adopted in this pa-
per, ρ0 = 3.913 × 1010 M�Mpc−3. Substituting for values

of the constants and cosmological parameters, we can write
Eq. (A19) as,

dn(Mh, t )
dlog10Mh

= 5.43 × 10−3 cMpc−3
(

Mh

1012M�

)− (
1− γ2

)
×(

t
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)−2/3
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exp
−0.13
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)γ (
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)−4/3
fΛ (t, 0.32, 0)

 .
(A20)

APPENDIX B: COMPARISON WITH
HYDRODYNAMICAL SIMULATIONS

In this section, we compare three variations of the eagle
(50cMpc)3 simulations to their equivalent analytic effective
star formation efficiency model. The Ref-L050N0752 eagle
model (Schaye et al. 2015; Crain et al. 2015; McAlpine et al.
2016), uses the same calibrated sub-grid parameters as the
reference model (100cMpc)3, ran with the same resolution,
but in a smaller volume. The “No AGN” run uses the same
calibrated sub-grid parameters as the reference model but
removing feedback from BHs. For the “No SN” model (red,
introduced in Bower et al. 2017), feedback from star forma-
tion has been removed. We note that, while the eagle “No
SN”simulation removes the effect of star formation feedback,
it still includes the effect of cosmic reionisation. Hence, there
is a suppression of star formation is small haloes. In order to
compare with the simulations, we have included the effect
of cosmic reionisation, ε∗ (Tvir < 104K) = 0 in both the “No
SN”and“constant”star formation efficiency models. Finally,
there is no eagle equivalent to the “constant” (or “no feed-
back”) model. In Fig. B1 we compare the GSMF at z = 0.1,
and in Fig. B2, we compare the SFR history of the Universe.

While much more computationally expensive, the be-
haviour of the full hydrodynamical simulations is well ap-
proximated by the analytic models introduced here.
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Figure B1. Redshift z = 0.1 GSMF for three variations of the

eagle (50cMpc)3 simulations at redshift z=0 (dashed lines), com-

pared their equivalent analytic effective star formation efficiency
model (solid lines). The orange line shows the Ref-L050N0752

eagle model. The “No AGN” and “No SN” models are shown
in green and red respectively. While the models were not cali-

brated to reproduce their hydro simulation equivalent, they cap-

ture their overall behaviour reasonably well. The small differences
are consistent with the differences in the efficiency parameters (see

Fig. 5).
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Figure B2. SFR history of the Universe for three variations of
the eagle (50cMpc)3 simulations (dashed lines), compared their
equivalent analytic effective star formation efficiency model (solid
lines). The orange line shows the Ref-L050N0752 eagle model.

The “No AGN” and “No SN” models are shown in green and red

respectively. In order to compare with the simulations, we have
included the effect of cosmic reionisation, ε∗ (Tvir < 104K) = 0 in

both the“No SN”and“constant”star formation efficiency models.
While the models were not calibrated to reproduce their hydro
simulation equivalent, they capture their overall behaviour rea-

sonably well. The small differences are consistent with the differ-

ences in the efficiency parameters (see Fig. 5).
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