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Abstract 

Detecting predators requires information, and many behavioral and environmental features are predicted to 

enhance or limit an animal’s ability to learn about potential danger. Animals living in groups are thought to 

be at an advantage for learning about predator presence, but individual safety also depends on cues 

spreading from detectors to non-detectors as unsuspecting individuals may still be vulnerable. In this study 

we simulated predator presence among two groups of wild samango monkeys (Cercopithecus albogularis 

schwarzi) to mimic natural encounters where only some individuals within a primate social group have 

access to personal information about potential threats. We did this using visual models of natural predators 

placed in positions for the monkeys to encounter within the landscape for a limited amount of time. We 

measured the number of individuals that were observed to detect and respond to these models with 

antipredator reactions, relative to subgroup size. While initial detectors that were able to spot the model 

themselves always reacted with overt behaviors such as alarm calling or staring at the model, responses did 

not typically spread to all group members. The number of initial detectors was also only weakly associated 

with the number of individuals that responded at the end of a trial. Initial responses to leopards were much 

stronger and more likely to spread than those given in response to pythons or eagles and the importance of 

behaviors assumed to have an antipredator function depended on the type of predator the samangos 

encountered.  

Significance Statement 

Early detection is critical for prey to survive an encounter with an ambush predator. Social prey have the 

advantage of being able to rely on cues from conspecifics, though individuals that do not detect a potential 

threat can still be susceptible to attack. Here we exposed wild samango monkeys to predator models to 

simulate predator presence to only part of a social group. Habitat visibility was a key predictor affecting 

collective detection, but the importance of other hypothesized factors– scanning and group spatial cohesion 

– depended on the predator species. Overall, our results indicate that the social effectiveness of purported 

risk-sensitive strategies varies based on the type of threat encountered. 

Keywords: Predator Detection, Antipredator behavior, Cercopithecus albogularis, Social Information 
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Introduction 

 In natural settings, the probability that most members of an animal group will respond to the 

presence of a predator prior to attack depends on multiple factors that can constrain or facilitate social 

information transfer. The outcome of information transfer from detectors to non-detectors is referred to as 

collective detection and is an important hypothesized benefit of group-living for social vertebrates (Lima 

1996; Bednekoff and Lima 1998). Early collective detection is especially important for avoiding mortality 

by ambush hunters that rely on remaining hidden until prey animals are within a certain distance (Caro 

1995; Cresswell and Quinn 2010). When an ambush predator learns that prey animals are aware of its 

presence, it may give up on an attack that is likely to be unsuccessful (Woodland et al. 1980; Zuberbühler et 

al. 1999). 

 Learning about predator presence is constrained by individuals’ abilities to monitor one another and 

the type of signal or cue given by an initial detector (Hochman and Kotler 2007; Pays et al. 2013). Local 

habitat characteristics, like visibility, should limit how quickly an initial detector can sense and respond to a 

threatening cue (Whittingham et al. 2004), but whether this information spreads throughout the rest of a 

group should also depend on the mechanism by which a species communicates alarm (e.g. visual cues or 

alarm calls) (Pays et al. 2013). General wariness or risk perceptions of group members might influence how 

much of a group is monitoring the environment versus engaged in other activities (Hochman and Kotler 

2007) or how close individuals are to their conspecifics (Frechette et al. 2014; LaBarge et al. 2020a). Both 

factors are hypothesized to limit the ability of individuals to personally collect information about potential 

risks (Fernández-Juricic and Kacelnik 2004). However, several studies indicate that animals typically do not 

act on social sources of information as readily as they do on their own detection (Lima 1995; Kendal et al. 

2004) and that more distant cues given by groupmates may be perceived as less reliable (King and 

Cowlishaw 2007). As such, the number of individuals who personally detect and conspicuously respond to a 

threat should subsequently determine whether non-detectors act on signals from conspecifics (King and 

Cowlishaw 2007; Ward et al. 2008). 

 In primates, information about predators is often conveyed through alarm calls that can reach a wide 

range of individuals (Caro 2005; Frechette et al. 2014). Emitting alarms can be risky if they attract the 
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attention of an approaching predator, but may also function to deter an attack if the signal informs an 

predator that it has been detected (Zuberbühler et al. 1999; Isbell and Bidner 2016; Adams and Kitchen 

2018). These signals may also function to solicit collective action, such as mobbing, which may cause a 

predator to retreat (Isbell 1994; Arlet and Isbell 2009). Yet, if an initial detection by one member goes 

unnoticed by the rest of the group, an ambush predator may be able to attack another unsuspecting 

individual (Lima 1995). In experiments in which individual birds foraging within flocks were exposed to 

visual cues indicating predator presence, collective responses were more likely when a greater number of 

individuals initially detected the stimulus and fled, whereas limited responses were common when only one 

individual was able to detect the cue (Lima 1995). Experiments with fish shoals have similarly revealed that 

group-wide antipredator reactions require that a threshold “quorum” number of individuals detect and 

respond to a cue before the rest of the group changes their behavior (Ward et al. 2008). In contrast, field 

experiments with primates have found evidence that alarms may function to alert non-detectors to a potential 

threat. Solitary male Thomas langurs (Presbytis thomasi) tend to alarm less to experimental tiger models 

than those within groups (Wich and Sterck 2003). Sooty mangabeys (Cercocebus atys) were more likely to 

emit an alarm to a model snake when fewer conspecifics were nearby at the encounter site and when others 

had not previously alarmed (Mielke et al. 2019). Similar experiments with chimpanzees (Pan troglodytes) 

and model snakes indicated that subjects were more likely to alarm when with another individual who had 

not previously encountered the potential threat (Crockford et al. 2012).  While these studies focused on 

individual alarms rather than collective responses, they may indicate that primates are more likely to respond 

to distant signals if alarms function to inform non-detectors of a potential threat. 

 Naturally occurring encounters with ambush hunters tend to be brief, and this is especially true if 

conspicuous indications of detection lead to a predator giving up an attack (Caro 1995; Zuberbühler et al. 

1999). In these scenarios it is likely that the accessibility of cues about potential threats will be uneven 

within large social groups. Several studies have examined the time to predator detection in primates and 

other animals (e.g. Pays et al. 2013; Janson et al. 2014), but few to our knowledge have actually examined 

how much of a social group ends up detecting and responding to a predator during a brief encounter. In this 

study we examined the contexts that lead to variation in detection of predators by wild samango monkey 
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groups (Cercopithecus albogularis schwarzi). We did not aim to completely isolate personal or social 

information acquisition in our field study, but aimed to mimic a natural scenario where several variables 

would lead to differences in the number of initial detectors (who could personally spot a predator) and 

subsequently enhance or limit responses spreading to other group members once a threat was no longer 

visible. Encounters with terrestrial predators were rare at our study site despite the resident leopard 

(Panthera pardus) population (Williams et al. 2017), probably due in part to the presence of humans (Isbell 

and Young 1993; Nowak et al. 2014). Therefore, we used experimental methods to overcome this issue 

following a long tradition of researchers using realistic looking visual models to simulate predator presence 

to wild primates (van Schaik and Mitrasetia 1990; Pereira and Macedonia 1991) and placed these in the 

landscape for an oncoming group to detect within a restricted time period. We chose visual models over 

auditory cues, because most group members would still be unaware of their presence even when one or more 

close individuals initially detected the potential threat (Arnold et al. 2008). Additionally, given that ambush 

predators often rely on surprise, the detection of cryptic or partially obscured visual cues would constitute a 

relatively natural situation. 

 Primate antipredator responses often vary with predator hunting mode and may also vary with the 

detectors’ perception of danger (Seyfarth et al. 1980; Zuberbühler et al. 1999; Coss et al. 2007). Thus, 

responses that reach the greatest number of detectors may occur simply when appropriate predator-specific 

responses are especially conspicuous (e.g. loud alarm calling or mobbing) or may also occur in response to 

predators that are most feared. The three models we used were replicas of a crowned eagle (Stephanoaetus 

coronatus), leopard, and rock python (Python sebae). Among samango predators at our field site, eagles 

likely pose the greatest threat because previous studies on this population have determined that samangos’ 

perception of eagle risk results in a ‘landscape of fear’ in which individuals tend to avoid dangerous 

locations (Coleman and Hill 2014).  Leopards also pose a risk, but it is likely they only rarely hunt arboreal 

samangos (Williams et al. 2018). Finally, snakes pose a risk to many primates, and detection often results in 

antipredator reactions across a range of species (Shibasaki and Kawai 2009; Isbell and Etting 2017; Mielke 

et al. 2019), but it is uncertain what risk they pose to samangos relative to other predators. These three 
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predators rely on concealment to attack unaware prey animals (Shultz 2001; Isbell and Bidner 2016), though 

eagles can either sit and wait in the forest canopy or attack on the wing (Shultz and Thomsett 2009).   

 Here we test the hypothesis that characteristics of the social group, local environment, and perception 

of the predator encountered can constrain or facilitate information transfer within samango groups. Our 

response variable was the final number of individuals who reacted with risk-sensitive/antipredator behaviors 

at the end of a trial, relative to subgroup size. Critical to this study is that these experiments occurred on two 

large groups where most individuals could not personally detect our models within the time limit (see 

Methods, Predator Exposure).  Specifically, we predicted the number of detectors would increase during 

trials if: 1. Habitat visibility was high; 2. Spatial cohesion, measured as the number of nearest neighbors, 

was greater; 3. A greater proportion of the group was monitoring the environment prior to a trial; 4. More 

individuals could personally detect the threat themselves by being near the model before removal; and 5. 

Predator-specific responses were especially conspicuous (alarm calling or other overt antipredator 

behaviors).  Based on previous observational data, we predicted that the eagle would elicit the strongest 

reaction, followed by the leopard, and then the python. 

 

Methods 

Study Site and Species 

 We conducted our study at the Lajuma Research Centre in the western Soutpansberg Mountains of 

Limpopo Province, South Africa (23 ̊ 02’S, 29 ̊ 26’E). The study site encompasses an array of habitat types 

including tall moist Afromontane forest, deciduous woodland, acacia bush, and rocky grassland/cliffsides. 

We studied two samango groups, “Barn” group (N~45) and “House” group (N~70-80), that were well-

habituated to direct observation. Samango monkeys are medium-sized (adult females ~ 4.4kg, adult males ~ 

7.6kg), arboreal guenons that live in single-adult male multi-female groups typically with 10 to 65 

individuals (Coleman and Hill 2014). Groups were not always a single unit and would sometimes fission 

into one or more subgroups during the day. Mean (sub)group size at the beginning of trials was ~55 for 

House group and ~40 for Barn group. House group contained 16 identifiable individuals and Barn group 

contained five. Observers could readily distinguish between age-sex classes. Natural predators of samangos 
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at the site include crowned eagles (S. coronatus) and black eagles (Aquila verreauxii), the African leopard 

(Williams et al. 2018), caracal (Caracal caracal) (Nowak et al. 2014), and rock pythons.  

Predator Models 

 Leopard and python models were realistic-looking plush toys, while the eagle model was created 

using mesh wire, papier-mâché, and chicken feathers and painted to mimic the colors of a crowned eagle 

(Fig S1). The leopard and eagle models were both larger than the python, reflecting their natural variation in 

size. Observers at this site have witnessed each of these predator types with one of these samango groups. 

To control for responses to novel but non-threatening stimuli, we used a penguin model which does not 

resemble any bird native to the Soutpansberg. 

Pilot trials 

 Between May and August 2017, we conducted pilot trials with our leopard model to assess whether 

samangos would respond to a visual model similarly to a live predator encounter. We used these preliminary 

trials to determine an adequate time between initial detection and covering the model that would minimize 

the possibility that the entire group could see it personally. This was necessary to avoid conflating social 

transmission of information with ongoing personal information acquisition. We placed the models 

approximately 100 m ahead of an oncoming group based on the direction individuals seemed to be moving 

and found it typically took 4 – 6 minutes following an initial detection for all of the remaining members of 

the (sub)group to respond. Detection was indicated by alarm calling, approaching, staring and/or bobbing 

their heads at the model. Thus, we determined that an exposure of 90 seconds after the initial reaction would 

be enough time to ensure that much of the group could not see the model, but that the response of the initial 

detector(s) would still be strong enough for others to respond.  

Predator Exposure 

 Following the pilot study, we conducted one or two predator model presentations per month on each 

group between June 2018 and June 2019. Experiments took place between 9:00 and 13:00. A research 

assistant followed the group from their sleeping site before dawn and collected behavioral data following the 

normal long-term research protocol (see Behavioral Data). Communication between the assistant and 

experimental researchers via two-way radio allowed us to ensure that we did not place predator models 
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during or following any natural predator encounters. Samango groups were generally cohesive (single 

group), but sometimes split into two or more subgroups. Our measure of ‘collective’ detection (our 

dependent variable) was linked to the size of the observable (sub)group, rather than absolute group size. 

Therefore, prior to initiating the trials, observers recorded the number of visible individuals within the 

subgroup. This was completed by LRL and/or one or more field assistants. 

 We placed models beyond the visual range of the samango monkeys and approximately 75 – 150 m 

ahead of an oncoming group and according to the predator’s respective hunting styles. The eagle model was 

placed on a branch or large boulder >2 m above the ground, the leopard was placed on the forest floor, and 

the python was placed either on the ground or on rocks/logs <1 m from ground level. Subsequently, 

observers that initiated the trial hid behind large rocks or trees to avoid subjects associating model predators 

with humans. Observers collecting general behavioral data made no attempt to conceal themselves. A video 

recording was made to confirm an identity and/or age-sex class for the initial detector (Sony handycam). At 

the time of this initial detection, observers recorded the number of individuals within 25 m of the model (at 

first detection and again at 90 sec) and the ID and age-sex class of the detector(s). The mean distance of the 

initial detector from the predator model was 10.3 m (standard deviation(SD): 7.49 m) for the eagle, 19.3 m 

(SD: 7.7 m) for the leopard, and 5.2 m (SD: 4.6 m) for the python.  All of these initial detectors were within 

the understory or subcanopy when we observed their response. Thus, it was unlikely that individuals beyond 

25 m could typically personally detect a threat in this densely vegetated habitat. Immediately following the 

first detection of the model, the observers waited 90 sec and then covered the model using a green canvas 

tarp. For leopard trials, the tarp was attached to ropes that allowed us to cover the model remotely. This was 

necessary because pilot trials indicated that detectors would approach this model, and we aimed to avoid 

being close to any of these individuals. For eagle and python trials, one of the observers would cover the 

model rapidly at 90 sec. Once models were covered, observers continued to monitor groups for delayed 

responses and, when necessary, agreed on a final count of responders. Following trials, we used data from 

the nearest preceding group scan sample (collected between 5-15 minutes prior) to obtain information on 

relative levels of cohesion and scanning behavior (see Behavioral data).  
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 In total, we completed 30 trials with 10 on each predator type (5 on each samango group). To control 

for potential reactions to novel stimuli, we also completed 10 trials with a non-threatening bird model 

(penguin). We did not repeat trials on the same group in the same location (<50 m) and recorded all the 

same behavioral and habitat data (see below) for both predator and control trials. Additionally, we left 

approximately two - three weeks, on average, between trials of the same predator type to minimize the 

potential for habituation. Our response measuring the variability in collective detection was the number of 

individuals within an immediate (sub)group reacting with obvious risk-sensitive behaviors before the end of 

a trial. We recorded the number of initial detectors and subsequently recorded the number of individuals 

who responded by the end of each trial. We note that these counts may slightly underestimate the true 

number as there may have been more responding individuals high in the trees or far out of sight. 

 Following each trial, we measured understory visibility by photographing a black and yellow 1 m2 

225-square checkerboard 10 m from where the model was placed at two meters high in each cardinal 

direction with the percentage of the squares visible recorded (each square = 6.6cm2) (LaBarge et al. 2020a). 

As groups tended to come down from the canopy during mid-morning to lower forest strata, this was a good 

proxy for the degree of visibility most samangos would have in that habitat. 

 Every predator trial resulted in detection by at least one individual as indicated by alarm calling, 

visual inspection, head bobbing, and/or approaching the model. All but three of the initial detectors were 

unmarked individuals; however, in most of these unmarked individuals, observers could confirm that their 

age/sex class was different than previous detectors of the same predator type. The exceptions to this were 

two of the eagle trials which resulted in an initial detection by unidentified subadults from the “House” 

group and two of the leopard trials resulted in detection by unidentified adult females in the “Barn” group. 

Because both groups were large, and because we left three to four weeks between predator trials of the same 

type, it is likely that these were not the same individuals. One python trial in January 2019 was terminated 

early because the model fell out of a tree, resulting in immediate alarm calls from all visible “House” group 

members. We did not use data from this trial. The control model trials did not result in apparent behavior 

changes in adult or subadult individuals, but in three instances (two in “House” group , one in “Barn” group) 

juveniles approached the model on the ground and investigated it before moving on. Thus, we assumed that 
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the novelty of predator models did not evoke antipredator reactions and that the responses recorded for other 

trials were appropriate for samangos encountering danger. 

Behavioral Data 

 Behavioral and location data were collected before, during, and following all predator trials via scan 

sampling (Altmann 1974) in a five-minute window every 20 minutes throughout the day. Day length ranged 

10.5 hours (06:40 – 17:20) to 14.5 hours (04:40 – 19:00). Each sample location was recorded with a 

handheld GPS (Garmin GPSmap 60Cx or 62s, Garmin, Olathe, Kansas, US). Within a scan sample, we 

attempted to record the behavior of as many individuals as possible within the group and minimized 

repeating individuals by moving throughout the group and collecting data only when certain an individual 

had not been previously observed (mean: 10.8 individuals; range: 6-14). Moving between spatial 

subsections, and between the periphery and center of the group minimized oversampling intra-group cliques. 

Thus, these group scans were comprised of information on individuals found in various positions throughout 

the group. Within these samples we recorded the date, time, group ID (“House” or “Barn”), individual 

age/sex class, and individual ID when known. For each subsampled individual, we recorded the number of 

non-infant neighbors each individual had within five meters (LaBarge et al. 2020a). Finally, we recorded 

whether an individual was scanning beyond an arm’s reach (Treves 1998). Data from each of these 

individuals within a group scan was converted into a proportion (of sampled individuals) as a proxy for how 

much of the group was monitoring the environment or conspecifics prior to an initial detection. Blinded 

methods were not possible for this study as we collected data on wild, habituated animals in their native 

habitat. 

Data Availability 

 All data used in this manuscript and corresponding R code can be found within supplementary 

materials. 

Analysis 

 To analyze these data, we used regression with a binomial distribution and logit link in the stan 

computational environment accessed through the R package brms (Bürkner 2017). We considered the count 

of the number of individuals that responded as the number of k successes in a binomial trial (relative to n 
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subgroup size). While frequentist methods might use an ‘exact’ logit for small-sample data, Bayesian 

analysis can also improve accuracy and minimize the risk of Type 1 and Type M errors at small sample sizes 

by incorporating information about prior probabilities, along with the likelihood, to form a posterior 

probability distribution. For additional details on our model fitting methods, see Supplementary Materials, 

Detailed Analysis Methods. 

 We did not fit any random factors into our model because we did not knowingly repeat trials on the 

same initial detector. Additionally, our data were clustered into two groups which is too few levels to 

include as a random factor. At best, random effects with too few levels produce similar estimates as models 

including the same term as a fixed effect (Moen et al. 2016). We assessed how much variation was due to 

“group” by calculating an intra-class correlation coefficient (ICC) with the package sjstats (0.24, Lüdecke 

2018) and retained this in our model as a fixed effect as this would help account for this between-group 

variation in this repeated-measures field experiment (Moen et al. 2016). Thus, we focus on population-level 

inferences and cannot make inferences about the differences between these two samango groups with this 

analysis.  

 Additional fixed effects were the categorical predator type (eagle, leopard, python, control), 

percentage understory visibility, mean number of nearest neighbors, the proportion of sampled individuals 

scanning/monitoring their surroundings, and the number of individuals within 25 m from the model at initial 

detection. The proportion scanning included individuals monitoring their surroundings or those that may 

have plausibly been looking in the direction of another monkey. We included ‘control’ trials so that this 

categorical level could serve as reference for the predator trials. Trial number was also included as a fixed 

effect to account for potential habituation to the same predator type. 80% of initial predator reactions came 

from adult female or subadult individuals, thus we did not include age-sex class within our model. Results of 

previous studies led us to include interactions between predator type and number of neighbors and the 

proportion of the group scanning (Whittingham et al. 2004; Frechette et al. 2014).  

 We used Markov Chain Monte Carlo sampling (MCMC) to obtain posterior estimates. We ran 

450,000 iterations across five unthinned chains with a warmup of 425,000 for a total of 25,000 samples 

because larger effective MCMC sample sizes can produce more stable and reliable estimates for small 
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sample problems (Forster et al. 2003; Kruschke 2014) (Fig. S1). We checked model residuals using the 

package DHARMa (Hartig 2016) and applied posterior predictive checks with brms by visual inspection 

(Bürkner 2017). Variance Inflation Factor (VIF) was <2.7 for all parameters and Monte Carlo standard 

errors were all under 1%. Finally, we used 95% credible intervals (CIs) along with probability of direction 

(PD) values to evaluate the relative level of evidence for each parameter. PD values range from 50-100% 

and describe how much of a posterior distribution is entirely positive or negative. Here we considered a 

parameter to have supporting evidence if a CI did not include zero and its PD was above 99.5%. 

 

Results 

 The probability of an initial reaction spreading to more of the group depended on the predator type 

(Fig. 1, Table 1). In eagle trials, a mean of 25.9% (1.7-100%) of “House” group and 39.7% (2.9 -100%) of 

“Barn” group responded during trials. In python trials a mean of 14.7% (1.7-35%) of “House” group and 

32.6% (6.7-71.4%) of “Barn” group responded and only one out of the total 10 trials resulted in more than 

50% of the (sub)group clearly reacting. Responses to leopard models were more intense, and a mean of 

80.80% (60-100%) of “House” group responded and 63.56% (8.88-86.66%) of “Barn” group responded to 

these trials. Only three out of the 30 predator trials resulted in 100% of visible subgroup members clearly 

responding – two of these responses were to eagle trials and one of these was a leopard trial. Nevertheless, 

leopard responses were more consistently strong (resulting in more individuals responding overall) and 

contained an entirely positive CI and PD of 99.98% which was not the case for either the eagle or python. 

 Reactions to all three predator types resulted in alarm calls, but leopard trials resulted in individuals 

approaching the model from trees, potentially providing an additional auditory or visual cue to non-detectors 

that were able to view conspecifics, but not the predator model. Four of 10 leopard trials resulted in male 

“pyow” and “ant” alarm calls. We did not record any male alarms during eagle or python trials, but males 

are known to alarm at these predators during natural encounters. Males were typically found towards the 

center or rear of an oncoming group and, to our knowledge, were not the initial detectors in any of these 

trials (Table 1). 
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 Greater visibility in understory habitat tended to positively predict wider responses overall (Fig. 2, 

Table 1); however, this trend was strong for just eagle and leopard trials. In contrast, the number of 

individuals within 25 m of the model during initial detection may have had a small positive effect on the 

percentage of the group engaged in antipredator responses at the end of the trial, although the CI for this 

value included zero and the PD for this parameter was lower than our threshold (Fig. S2, Table 1). We note 

that the mean number of individuals within 25 m at initial detection was 11.13% of the total subgroup and 

ranged from 2-28.8%. All of these individuals would have likely been able to personally detect the model 

before it was concealed after 90 sec. 

 Interactions between scanning behavior or number of neighbors and model used revealed predator-

specific differences. When a greater proportion of the group was engaged in scanning behavior prior to a 

leopard trial, more individuals tended to detect the model by the end, but this was not the case for the other 

predator types. Although this value had a PD below 99.5%, its CI did not cross zero (Fig. 3 and Table 1). 

Similarly, number of neighbors (spatial cohesion) was apparently a positive predictor of widespread 

detection for eagle models and, potentially, python responses as well. However, while values tended to be 

positive for leopard trials (Fig. 4), there was less evidence overall (Table 1). 

 Although we could not test explicitly for differences between the two study groups, we had no 

evidence indicating substantial differences between them. Trial number was weakly negatively associated 

with the percentage of a group that would respond at the end of a trial but did not reach our importance 

threshold (Table 1, Fig. S3). 

 

Discussion  

 While group living is hypothesized to be an effective strategy for mitigating predation risk, 

individuals within a group may still succumb to an attack if unaware of a predator. The goal of this study 

was to better understand whether factors hypothesized to facilitate or constrain information acquisition and 

transfer would predict the extent to which antipredator responses would spread in samango groups. Samango 

monkey groups that detected visual predator models reacted to all three with alarm calling, staring, and, in 

some cases, approaching the model, providing potential cues to non-detectors. Habitat visibility was a strong 
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predictor of the outcome of our trials, potentially because more individuals were able to personally detect 

the model prior to the 90 sec time limit. Yet, the number of individuals that were likely able to detect the 

model personally – those within 25 m of it upon first detection – was not a good predictor of trial outcome. 

Given the size of our study groups, the density of these forest/acacia bush habitats, and time-limited predator 

exposures, most individuals would likely have had to rely on cues from conspecifics to learn about the 

potential threat. Thus, once initial detection had occurred, information about the threat would have to travel 

throughout the group. Additionally, we found that the effectiveness of purported risk-sensitive behavioral 

strategies which should enhance collective detection, depended on the type of threat these samangos 

encountered. Specifically, scanning behavior prior to the trial was only a positive predictor for the extent of 

responses to leopard trials, but not the other predators. Spatial cohesion, as measured by the number of 

neighbors an individual had nearby (within 5m), was also a potential predictor for group responses to the 

eagle or python models, but not the leopard. Finally, differences between the predator types (holding other 

variables constant) indicated that there were differences either in samango monkeys’ ability to detect these 

predators or in the conspicuousness of predator-specific responses.  

 We assumed that high within-habitat visibility would lead to greater personal detection (Prediction 

1), but also that the number of individuals within close proximity to the model (<25 m) at initial detection 

would positively predict the extent of responses due to the higher likelihood that these individuals could 

personally detect the model (Prediction 4). Yet, we found positive support only for the former. This result is 

consistent with experiments conducted with birds and fish that suggest the importance of personal 

information to group-wide predator detection (Lima 1995; Ward et al. 2008; Conradt 2011), but contrasts 

with experiments with other primate species in which individuals were more likely to alarm call when 

conspecifics were presumably unaware of a predator (Crockford et al. 2012; Mielke et al. 2019). Our result 

likely stemmed from visibility enhancing detection for a few initial detectors at the start of a trial, but also 

allowing conspecifics to better monitor their neighbors. In this study we were not able to repeatedly measure 

responses from the same known individuals over time due to habituation concerns and a relatively low 

number of consistently identified individuals within these study groups. Yet, it is possible that potentially 

heritable inter-individual differences in anxiousness or similar traits would result in certain individuals being 
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particularly reactive (Brent et al. 2014; Watson et al. 2015). If this information was known to conspecifics, it 

could have influenced overall responses (Couchoux et al. 2018). 

  Many studies have suggested that social information is often perceived as less accurate than personal 

information (Kendal et al. 2004; King and Cowlishaw 2007). The exception to this may be that individual 

prey animals are more likely to act on social information when it comes from neighbors at close distance 

(Fernández-Juricic and Kacelnik 2004). Frechette et al. (2014) found that groups of squirrel monkeys 

(Saimiri sciureus) were more likely to react with escape responses to predator encounters when group spatial 

cohesion (measured as group spread) was high.  Cohesion itself is likely also important for baseline levels of 

risk perception (Treves 1998; Fernández-Juricic et al. 2007), because individuals with more neighbors are 

hypothesized to be able to learn about potential threats earlier than individuals further from groupmates 

(Prediction 2). We only found support for cohesion-enhancing responses to eagle and snake models. 

Personal detection of these two predators may have been more challenging if they were better hidden within 

these densely vegetated habitats (Fig. S1) as detection distance and the extent of collective response tended 

to be greater for leopard trials. Thus, social information may have been more important to the outcome of 

eagle or snake trials compared with leopard trials. This may also explain why scanning behavior was a good 

predictor for the outcome of leopard trials, but not eagle or snake trials (Prediction 3). 

 Trials with leopard models were the only ones that elicited consistently extensive responses and male 

alarm calls, although male responses were likely due to greater detection distances and the tendency for 

samango males to occupy positions near the center or rear of the group during the trials (LRL, personal 

obs.). This particular result does not fit with our initial prediction that perceived risk would be highest for 

eagles based on previous studies indicating their importance for samango landscape use (Prediction 5; 

Coleman and Hill 2014). This is compared with responses of vervets (Chlorocebus pygerythrus) at this site 

who appear to preferentially avoid high leopard and baboon risk, but do not respond similarly to eagle risk 

(Willems and Hill 2009). One potential explanation is that the post-detection strategies for avoiding these 

predators differ in their conspicuousness, because alarm calls and other overt antipredator reactions can 

serve as a particularly effective predator deterrent for leopards (Woodland et al. 1980; Isbell and Bidner 

2016; Adams and Kitchen 2018). As such, widespread and repeated alarm calling may not deter eagles or 
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snakes to the same extent. In each leopard trial, detecting individuals also tended to approach the model; 

however, this was the case in only one of the eagle trials that led to a collective response. In contrast, 

remaining in place may be a relatively effective strategy to avoid being taken by an eagle (Arlet and Isbell 

2009). Yet, we cannot rule out that these differences may be due to samangos perceiving a perched eagle as 

less dangerous than one flying overhead. While crowned eagles do drop down from dense canopy onto 

monkeys, samangos may not see these predators as often prior to an attack, which could explain this 

discrepancy.  

 Approaching a leopard, as we witnessed here, may help individuals avoid mortality as ambush 

predators are often less likely to continue a hunt if prey signal that they are aware of present danger 

(Woodland et al. 1980; Adams and Kitchen 2018). This response may also deter a leopard from concealing 

itself nearby but may also be a more noticeable reaction to other group members unaware of potential 

danger, leading to more widespread responses. In some instances, alarm calling may solicit help for 

mobbing (Isbell 1994). While we did not observe mobbing or harassment behavior following approaches, 

this was potentially due to our time-limited trials. Given that leopard models were approached more often, 

increased alarming could have also functioned to recruit more group members to participate in this 

potentially costly behavior. We also observed that initial detectors often continued alarming long after both 

eagle and leopard models were removed, but this was generally not the case with the python model. This 

may indicate that once detected, snakes pose less risk than the other ambush predators. For example, Mielke 

et al. (2019) found that sooty mangabeys (C. atys) react mildly to stationary snakes or snake models, 

potentially indicating that, once detected, a non-moving snake poses little risk.  

 Previous experiments with this population showed that samangos spend more time foraging on the 

ground while being observed by humans (Nowak et al. 2014). This is likely due to a “human-shield” effect 

where predators avoid contact with humans, and samangos take advantage of this increase in safety. 

Leopards may infrequently hunt samangos in this habitat compared with other available mammals (Williams 

et al. 2018), but it is uncertain where they are most frequently encountered on the landscape compared with 

eagles that are encountered more frequently (LaBarge et al. 2020a). From a prey animal’s perspective, 

encounters with a potential predator should elicit a response (including freezing or other cryptic reactions) 
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even if the predator itself is not engaged in an attack. Additionally, sit-and-wait terrestrial predators with 

relatively small hunting domains are expected to produce outsized risk effects in their prey (Schmitz 2007; 

Miller et al. 2014). It is possible here that our presence through general observation throughout the day 

would have led to relaxed risk perceptions prior to initiating trials. This could have led to delays in 

responses if most individuals are less reactive when humans are present. Conversely, if human presence 

produces relaxed perceptions of leopard risk across the landscape, this could lead to stronger responses if an 

unwary individual happens to encounter a predator while in a more vulnerable position. At minimum we 

have demonstrated here that observed encounter frequency does not necessarily track with the magnitude of 

antipredator response in this population of samangos.  

 Predator-primate interactions are difficult to observe because they are unpredictable, rapid, and 

relatively rare (Isbell 1994; Janson et al. 2014). Compounding this issue is that many unhabituated predators 

tend to avoid proximity to potentially dangerous humans (Ngoprasert et al. 2007; LaBarge et al. 2020b), 

minimizing the chances than an observer witnesses an encounter during data collection. Observational 

studies that look for correlations between antipredator behaviors and habitat or location-specific risk often 

overlook the possibility that prey perceive themselves to be relatively safe while accompanied by an 

observer (Nowak et al. 2014). Field experiments can ameliorate this problem by allowing researchers to 

control when and where predator cues are used (Adams and Kitchen 2018; LaBarge et al. 2020b). 

Limitations to our study included the presence of an observer collecting behavioral data on our habituated 

subjects while we conducted these experiments. This is because these samangos may have already perceived 

themselves to be relatively safe from certain predators while in proximity to humans (Nowak et al. 2014). 

This potential effect on perceived risk could have altered initial detection times. Nevertheless, these realistic 

reactions to visual models indicate that experiments are an effective means of simulating these encounters. 

Future studies with expanded numbers of groups should investigate whether presence/absence of an 

observer influences detection time and overall probability of collective response. Finally, we could not test 

how group size might have limited or enhanced the probability of a collective response, but future studies 

using random slopes models with many groups (>10) of varying sizes could provide information on the 

importance of this trait for samango predator detection (Grueber et al. 2011). Studies that can further 
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minimize the presence of observers or eliminate direct observation would be better positioned to investigate 

whether underlying spatial patterns of risk from various predators result in variation in detection time or 

overall response. 
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Table 1 Coefficients from the joint posterior distribution, estimated errors, and 95% credible intervals.  

Num. w/in 25 m is the number of individuals near the predator model during the initial detection (max. end 

of apparent visual range). Scanning refers to the proportion of the sampled group scanning prior to the trial. 

Pred.Type * Neighbors refers to the interaction between the type of model predator and the number of 

nearest neighbors per individual. Pred.Type*Scanning refers to the interaction between predator type and 

scanning. Rhat is the potential scale reduction factor on split chains which indicates convergence at 1.00 

(Gelman-Rubin Diagnostic). PD is the probability of direction where values above 99.5% are bolded 

    Estimate Est.Error L. 95% U. 95% Rhat PD 

       
 

Intercept  -5.46 1.37 -8.39 -2.99 1 100.00% 

Group  0.11 0.19 -0.26 0.47 1 72.24% 

Predator Type Eagle 1.93 1.38 -0.57 4.88 1  
93.02% 

 Leopard 4.21 1.37 1.74 7.15 1 99.98% 

 Snake 2.00 1.39 -0.52 4.95 1 93.61% 
 

    
 

 

Habitat Visibility 2.73 0.8 1.18 4.30 1 99.96% 

Num. of Neighbors -1.28 0.98 -3.42 0.46 1 91.92% 

Num. w/in 25m 0.05 0.02 -0.00 0.10 1 97.06% 

Scanning -0.69 1.22 -3.19 1.63 1 71.17% 

Trial Number -0.11 0.06 -0.22 -0.00 1 97.61% 

Pred. Type * Neighbors      
 

 Eagle 2.76 1.00 1.00 4.91 1 99.91% 
 Leopard 1.51 0.98 -0.22 3.66 1 95.39% 
 Snake 1.99 0.99 0.25 4.14 1 98.86% 

Pred. Type * Scanning 
    

 
 

 Eagle 1.28 1.28 -1.14 3.90 1 84.55% 

 Leopard 3.58 1.33 0.01 5.27 1 97.53% 
  Snake 0.32 1.31 -2.19 2.96 1 59.13% 
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Fig. 1 Marginal effects plot of differences in response (proportion of (sub)group responding) between the 

predator types. All other predictors held at their mean or reference values. Bars represent 95% CI 
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Fig. 2 Habitat visibility and the proportion of the group that responded at the end of a trial. PT is the 

predator type. Shaded area is  95% CI (credible interval) 
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Fig. 3 Proportion of sampled individuals scanning their environment / monitoring others prior to trial and 

the percent of the group that responded. PT is predator type. Shaded area is 95% CI 
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Fig. 4 Mean number of nearest neighbors/individual prior to detection and percent of the group that 

eventually detected/responded. PT is predator type. Shaded area is 95% CI 
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Fig S 1 Predator models A) leopard; B) python; C) Crowned eagle; D) control (penguin) 
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Fig S2 Observed data y versus the suggested distribution of the data yrep from the model 

 

  

D
en

si
ty

 o
f 

P
o

st
er

io
r 

D
ra

w
s 

Values of the Posterior Predictive Distribution 



33 

 

 

 

Fig S3 Coefficient plot with highest density intervals (dark blue) and 95% credible intervals (light blue). PT 

is predator type; Coh is number of neighbors (proxy for cohesion); PropLook is the proportion scanning 

prior to the trial as a proxy for how much of the group was looking around Hab.Vis is habitat visibility; 

PTrialNum is trial number 
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Fig S4 Raw data points for the percent of the group that responded during trials and trial number on each 

predator type within each group 
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Analysis Methods Continued: 

 

While we knew before running these trials that samangos would react with antipredator responses to the 

predator models given an unlimited amount of time, we did not have prior knowledge about the predictors’ 

effect on the probability of collective response in 90s trials. Thus, we determined that setting the prior 

distribution for β0 and βi as Cauchy or half student-t(5, 0, 2.5) would be justifiable as ‘weakly informative’ 

following Gelman et al. (2008) and is appropriate when researchers do not have extensive data from 

previous studies. Weakly informative priors are helpful for regularizing parameter estimates, and shrinkage 

is greater when power is low, which serves as a check on potentially noisy, small-sample data (Gelman et al, 

2008; Lemoine et al. 2016; Lemoine, 2019). This prior assumes most effects are unlikely to be far from zero 

which we believed was more biologically plausible than uninformative, flat priors with wide variances, 

which have been shown to bias estimates away from zero when sample size is small (Van Dongen, 2006).  

 

References: 

Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y. S. (2008). A weakly informative default prior distribution 

for logistic and other regression models. The Annals of Applied Statistics, 2(4), 1360-1383. 

Lemoine, N. P. (2019). Moving beyond noninformative priors: why and how to choose weakly informative 

priors in Bayesian analyses. Oikos, 128, 912–928. 

Lemoine, N.P., Hoffman, A., Felton, A.J., Baur, L., Chaves, F., Gray, J., Yu, Q., & Smith, M.D. (2016). 

Underappreciated problems of low replication in ecological field studies. Ecology, 97(10), 2554-2561. 

Van Dongen, S. (2006). Prior specification in Bayesian statistics: three cautionary tales. Journal of 

Theoretical Biology, 242(1), 90-100. 
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R Code: 

 

library(brms) 

library(readxl) 

PredModData <- read_excel("C:/Users/l/Documents/PredModData.xlsx") 

m1priors <- c(prior(student_t(5,0,2.5), class = "Intercept"), prior(student_t(5, 0,2.5), class = "b")) 

mod = brms::brm(Num.Res | trials(Subgroup.size) ~ PT*(Coh + PropLook) + Hab.Vis + NFR +PTrialNum 

+ Group, data = PredModData, family = 'binomial',  

                prior=m1priors, iter =450000, warmup = 425000, chains = 5,  

                thin = 1, cores = 5, control = list(adapt_delta = 0.99, max_treedepth=15)) 

 

> summary(mod) 

 Family: binomial  

  Links: mu = logit  

Formula: Num.Res | trials(Subgroup.size) ~ PT * (Coh + PropLook) + Hab.Vis + NFR + PTrialNum + 

Group  

   Data: PredModData (Number of observations: 40)  

Samples: 5 chains, each with iter = 450000; warmup = 425000; thin = 1; 

         total post-warmup samples = 125000 

 

Population-Level Effects:  

                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ES 

Intercept             -5.46      1.37    -8.39    -2.99 1.00    45425    5181 

PTEagle                1.93      1.38    -0.57     4.88 1.00    46214    5490 

PTLeopard              4.21      1.37     1.74     7.15 1.00    45700    5218 

PTSnake                2.00      1.39    -0.52     4.95 1.00    47510    5446 

Coh                   -1.28      0.98    -3.42     0.46 1.00    38153    4260 

PropLook              -0.69      1.22    -3.19     1.63 1.00    48825    5823 

Hab.Vis                2.73      0.80     1.18     4.30 1.00    97204    9062 

NFR                    0.05      0.02    -0.00     0.10 1.00   119701    8560 

PTrialNum             -0.11      0.06    -0.22    -0.00 1.00   122474    8989 

GroupHouse             0.11      0.19    -0.26     0.47 1.00   102406    9343 

PTEagle:Coh            2.76      1.00     1.00     4.91 1.00    38480    4357 

PTLeopard:Coh          1.51      0.98    -0.22     3.66 1.00    38454    4311 

PTSnake:Coh            1.99      0.99     0.25     4.14 1.00    38200    4265 
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PTEagle:PropLook       1.28      1.28    -1.14     3.90 1.00    52021    6152 

PTLeopard:PropLook     2.54      1.33     0.01     5.27 1.00    52870    6332 

PTSnake:PropLook       0.32      1.31    -2.19     2.96 1.00    53271    6439 

 

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS 

and Tail_ESS are effective sample size measures, and Rhat is the potential 

scale reduction factor on split chains (at convergence, Rhat = 1). 

 

 

 

library(BayestestR) 

pd <- p_direction(mod, method="direct") 

pd 

 

parameter          |      pd 

---------------------------- 

Intercept          | 100.00% 

PTEagle            |  92.92% 

PTLeopard          |  99.98% 

PTSnake            |  93.49% 

Coh                |  91.86% 

PropLook           |  71.01% 

Hab.Vis            |  99.97% 

NFR                |  97.26% 

PTrialNum          |  97.55% 

GroupHouse         |  72.24% 

PTEagle.Coh        |  99.92% 

PTLeopard.Coh      |  95.46% 

PTSnake.Coh        |  98.97% 

PTEagle.PropLook   |  84.56% 

PTLeopard.PropLook |  97.53% 

PTSnake.PropLook   |  59. 


