Advances in Engineering Software 139 (2020) 102748

journal homepage: www.elsevier.com/locate/advengsoft »

Contents lists available at ScienceDirect

Advances in Engineering Software 3

ENGINEERING
SOFTWARE

'

Research paper

AMPLE: A Material Point Learning Environment

William M. Coombs”, Charles E. Augarde

Department of Engineering, Durham University, UK

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Material point method
Elasto-plasticity

Finite deformation mechanics
MATLAB

Researcher development

The Material Point Method (MPM) is a computational tool ideally suited to modelling solid mechanics problems
involving large deformations where conventional mesh-based methods struggle. Explicit and implicit formula-
tions are available, but for both the learning curve for understanding the method and arriving at a useful im-
plementation is severe. Researchers must understand and implement finite element analysis, non-linear material
behaviour, finite deformation mechanics and non-linear solution methods before they can even verify their
formulations. This issue represents a significant barrier for post-doctoral researchers, graduate students and

undergraduate students to start working with (and understanding) the method. This paper presents A Material
Point Learning Environment (AMPLE) based around implicit variants of the method, with the aim of softening
this steep learning curve via MATLAB-based, accessible and compact scripts. The code is freely available from
github.com/wmcoombs/AMPLE.

1. Introduction

Mesh-based Lagrangian approaches such as the finite element
method dominate the analysis of solid mechanics problems. However
there are issues with these methods for problems involving very large
deformation in that the discretisation used (i.e. the mesh) becomes
distorted, leading to inaccurate results and in extreme cases, eventual
breakdown of the numerics due to element inversion. Various attempts
have been made to address this issue within mesh-based methods
themselves, notably with Arbitrary Lagrangian Eulerian (ALE) methods
[2] where a standard Lagrangian step determines material displace-
ments and is followed by an Eulerian step to generate a new mesh for
the deformed problem domain. Apart from the complexity of the ap-
proach, which is off-putting, the major error source in using ALE
methods comes in remapping of variables between the two meshes [27]

The Material Point Method (MPM) is an alternative to pure
Lagrangian approaches and is well suited to problems involving very
large deformations. The method was developed in the 1990s by Sulsky
et al. [31] as a solid mechanics extension to the FLuid Implicit Particle
(FLIP) method [4] which itself was developed from the Particle-In-Cell
(PIC) method [15]. The basic idea of the method is to discretise a
problem domain with material points (sometimes called particles)
which carry information (mass, volume, stress, state variables, etc.).
The information is then mapped to the nodes of a regular background
finite element grid where calculations are carried out. The results are
mapped back to the material points and the mesh is then discarded.

* Corresponding author.
E-mail address: w.m.coombs@durham.ac.uk (W.M. Coombs).

https://doi.org/10.1016/j.advengsoft.2019.102748

This cycle is then repeated, each step using a regular mesh to conduct
the calculations thus avoiding any issues with mesh distortion, as
translation is recorded only at the material points. The MPM has been
used for a variety of solid mechanics problems such as fracture [16,23],
contact [21], machining [13] and impact [34]. Recently the method has
caught the particular interest of the geotechnical community for the
modelling of landslides, where coupled displacement-pressure for-
mulations of the MPM have been used to model saturated and un-
saturated soils, examples include [29,35]. Outside solid mechanics it is
interesting to note that the MPM has also been used to create anima-
tions for films [18,30].

In the standard MPM, material points contribute stiffness to the
nodes of the grid in which they are currently located. When a material
point translates from one grid cell to another (often termed “cell-
crossing”) the jump in stiffness can cause problems such as oscillations
in the stress resultants and consequential instability in the solution. For
this reason, MPMs have been developed where each material point
“owns” a finite subvolume of the problem domain, which in some
methods can itself change shape. These so-called advanced domain
methods include the Generalised Interpolation material point method
(GIMPM), [1] and the more recent Convected Particle Domain Inter-
polation (CPDI) methods [25,26].

The material point method was initially developed in an explicit
format for purely dynamic problems where material stiffness is ignored
and a simple forward difference solution obtained for the particle ve-
locities over a number of time steps. Providing the mass matrix is

Received 17 May 2019; Received in revised form 23 July 2019; Accepted 22 October 2019
0965-9978/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/BY/4.0/).

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2019.102748
https://github.com/wmcoombs/AMPLE
https://doi.org/10.1016/j.advengsoft.2019.102748
mailto:w.m.coombs@durham.ac.uk
https://doi.org/10.1016/j.advengsoft.2019.102748
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2019.102748&domain=pdf

W.M. Coombs and C.E. Augarde

diagonal, an explicit approach avoids the need to solve a linear system
(as required by an implicit approach) however, there are well-known
restrictions on the step size possible without loss of stability, and a lack
of error control. The first implicit MPM appeared in [14], and a semi-
implicit approach for dynamics was presented in [32]. In the latter the
cost of forming the precise material tangent matrix was partially
avoided with an approximation, and an iterative method was then used
to solve the linear system of equations. A glance at citations for the
landmark papers in explicit and implicit MPM (i.e. [14] and [31]) in-
dicates a continuing preference for explicit MPM, however the ad-
vantages of an implicit approach when working in some areas of
modelling, such as materials with sensitive material nonlinearity, has
not been fully highlighted.

Guilkey and Weiss [14] highlight the clear links between implicit
MPM and standard finite elements, and indeed, one way to summarise
the implicit MPM is

a finite element method where the integration points (material points) are
allowed to move independently of the mesh.

The purpose of this paper is to introduce a Matlab-based “learning
environment” for those wishing to explore the MPM, based on the au-
thors’ own experiences working with students and other researchers
over the past five years.

1.1. Material point learning curve

Despite the clear links between the material point method and the
finite element method, the learning curve for researchers to arrive at a
useful material point method code is far more severe. The authors’ in-
terpretation of the learning curve for those attempting to understand,
and implement, the material point method is shown in Fig. 1. The
starting point for any researcher looking to use/investigate the material
point method is to understand finite elements. However, even if a small
strain assumption and linear material behaviour are adopted, the ma-
terial point method is still a globally non-linear method; each time step
will be linear but the overall response will be non-linear due to changes
in stiffness as material points move through the background mesh. This
means that, in order to obtain physically meaningful results, re-
searchers are forced to adopt a geometrically non-linear analysis fra-
mework and understand both finite deformation mechanics and non-
linear solution methods (implicit or explicit). In addition to this, the
types of problems that are normally investigated using the material

»
'

useful MPM O

cumulative effort

non-linear solution methods

/

/ non-linearity

Advances in Engineering Software 139 (2020) 102748

point method (geotechnical failures, impact, fragmentation, etc.) also
require non-linear material (or constitutive) models to be incorporated
into the code. Once all of these ingredients have been assembled one
can undertake useful material point analysis and start to add additional
features, such as advanced boundary conditions, etc.

1.2. Development principles

AMPLE has been developed as an environment through which re-
searchers, especially PhD/MSc students, can understand the material
point method. The development was guided by the following principles:

o MATLAB-based - as discussed in the previous section, the material
point method is scientifically complex and if users/developers also
have to understand thousands of lines of Fortran/C/C+ + code the
hurdle to its use may become insurmountable. AMPLE has been
developed in MATLAB to remove, or at least significantly lessen, the
syntax learning curve and allow researchers to concentrate on un-
derstanding the key elements of the material point method.

e Compact - AMPLE’s implementation was inspired by Trefethen’s
[33] philosophy of ten digit algorithms

“.. a little gem of a program to compute something numerical: Ten
digits, Five seconds, And just one page”

The basic idea is that if a program is compact enough to be viewed
on a single page it allows the structure of the whole algorithm to be
understood and visualised, making mistakes and misunderstandings
far less likely. Each of AMPLE’s scripts/functions have been written
so that they are readable on a single A4 page (or computer screen),
this allows users to understand the structure of each of the code
segments.

e Modular & expandable - AMPLE has been written as a series of
compact functions called by a core analysis script. For example, the
link between the material points and the background mesh is con-
tained within one function and all of the other functions remain
unchanged if the background mesh is changed. The continuum
mechanics formulation is contained in another function and the
material model (stress-strain relationship) in another. Although the
initial AMPLE release is focused on two-dimensional analysis, all of
the continuum mechanics is implemented for three-dimensional
analysis making it straightforward to reduce or increase the code to
one and three-dimensions, respectively. This allows users/

boundary
conditions

material

large deformation [
mechanics

»

finite
elements

usefulness

Fig. 1. Material point method learning curve.

W.M. Coombs and C.E. Augarde

developers to quickly understand the purpose of each of the func-
tions and adapt/modify/replace functions as required.

e Rigorous - all aspects of AMPLE have been verified and are based on
a rigorous updated Lagrangian continuum mechanics framework
[9]. The implemented algorithms are based on published material
[5,6,11], including convergence analysis to ensure that the funda-
mentals of the code are sound. This should provide confidence when
using/expanding AMPLE.

® Proof rather than performance - it is well documented that
MATLAB is not as computationally efficient as compiled languages
(such as Fortran or C/C+ +). However, the focus of AMPLE is on
proof of new concepts and ideas, not high performance computa-
tions. It provides a environment for researchers to understand the
material point method and test out new ideas and explore the im-
pact of these changes on the performance of the method.

1.3. Paper layout

The layout of the remainder of the paper is as follows: Section 2
details, as concisely as possible, the material point formulation im-
plemented within AMPLE; Section 3 describes some of the im-
plementation aspects associated with this formulation, such as the basis
functions of the implemented MPMs, amongst other details; Section 4
details AMPLE’s code structure including function formats and data
structures; Section 5 provides three demonstration cases that explore
key aspects of the AMPLE environment; finally, Section 6 briefly con-
cludes the paper. A mix of index and matrix-vector notation is used for
the continuum formulation and numerical implementation aspects of
the paper, respectively.

2. Material point formulation

AMPLE is an implementation of a quasi-static implicit finite de-
formation elasto-plastic material point method based on an updated
Lagrangian formulation' defined by the following weak statement of
equilibrium

S, o) @y = bmpdv = [(mds = o. 0
@, is the motion of the material body with domain, Q, which is sub-
jected to tractions, t;, on the boundary of the domain (with surface, s),
0Q, and body forces, b;, acting over the volume, v of the domain, which
lead to a Cauchy stress field, oy, through the body. The weak form is
derived in the current frame assuming a field of admissible virtual
displacements, 7;.

Note that AMPLE does not include tractions so the surface integral
term in (1) is neglected in what follows. Unlike finite element methods,
the imposition of tractions in the standard material point method is not
trivial and requires a representation of the physical boundary to be
constructed; see the work of Bing et al. [3] and Remmerswaal [24] for
methods of imposing traction boundary conditions in the material point
method.

2.1. Finite deformation mechanics

In finite deformation mechanics, the deformation gradient, Fy,
provides the fundamental link between the original and deformed
configurations

axi

5

VT @)

! AMPLE adopts the same formulation as implemented in the generalised
interpolation approach of Charlton et al. [5] but has been included here for
completeness.

Advances in Engineering Software 139 (2020) 102748

where X; are the original (reference) coordinates and x; = ¢ (X, t) are
the updated coordinates in the current (deformed) body, where @ is the
motion of the body. It is assumed that the deformation gradient can be
multiplicatively decomposed into elastic and plastic components
[19,20]

Fj = FicFg, (3)

where the superscripts e and p denote the elastic and plastic compo-
nents. In this paper we adopt logarithmic strains and Kirchhoff stresses
and combine these measures with an exponential map of the plastic
flow rule to allow the use of conventional small-strain stress integration
algorithms with a finite deformation framework. This is a powerful
combination as it allows existing constitutive formulations to be used
directly rather than reformulating them for the particular choice of
stress and strain measures used in the large deformation mechanics
[17,28]. Within this formulation, the elastic logarithmic strain is de-
fined as

1
s; = 5 ln(b,-;? s where b§ =

€ €

ikt jk (4)
is the left elastic Cauchy-Green strain and the Kirchhoff stress, z;;, can be
obtained using

p— € e
Tj = Dy (5)

where is the linear elastic stiffness matrix. The Cauchy stress can be
obtained from the Kirchhoff stress through

gy = %rij, where J = det(Fy)

(6)
is the volume ratio between the deformed and reference configurations.
In order to advance the non-linear solution, the finite deformation
equations are discretised in pseudo-time by imposing the deformation
over a number of load (or pseudo-time) steps. This allows the current
deformation gradient to be defined using

E; = AFy (F)yj» @

where AF; is the increment in the deformation gradient between the
previously converged state, denoted using a subscript n, and the current
state. In order to obtain the updated Kirchhoff stress state for the cur-
rent deformation gradient, a constitutive model requires an initial es-
timate (or trial) of the elastic strain (or stress) state. In this approach the
trial elastic Cauchy-Green strain tensor is given by

(bY)y = AFy (bpuAF, (8)

where the subscript t denotes a quantity defined in the trial state. The
previous elastic Cauchy-Green strain tensor, (b,);, can be obtained from
the previous elastic strain state through

(br)y = exp(2(e7)y) ©)

and the trial elastic strain state follows as

1
&)y = Eln((bpe)ij) (10)
The adopted constitutive algorithm can then be used to return the up-
dated elastic strain, ¢;, and Kirchhoff stress, z;;, states.
2.2. Constitutive formulations & stress updating

AMPLE includes two different constitutive models: (i) Isotropic
linear elasticity and (ii) isotropic linear elasticity with perfect plasticity
and a von Mises yield surface with associated plastic flow. In the case of
isotropic linear elasticity, the updated elastic strain, g, is equal to the
elastic trial strain, (¢°);, and the Kirchhoff stress is given by (5).

The elasto-plastic von Mises model is integrated using an implicit
elastic predictor, plastic corrector algorithm. The von Mises yield
function can be defined as

W.M. Coombs and C.E. Augarde

f=£ 1=y

Py 1D
where p = 2, J, = sysi/2, s =1 — 7a63/3 and p, is the yield
strength of the material. Within this algorithm the elastic trial strain,
(&), acts as the initial estimate for the updated elastic strain state. If
the corresponding trial Kirchhoff stress is inside the von Mises yield
envelope (f < 0), then the material is undergoing elastic behaviour and
the updated elastic strain is equal to the trial state. If the trial stress
state is outside of the yield envelope then it must be corrected back onto
the yield surface. AMPLE uses a backward Euler procedure to perform
this correction, details of which can be found in [6], amongst others.

2.3. Discrete material point formulation

The Galerkin form of the weak statement of equilibrium over each
background grid cell, E, can be obtained from (1) as

Sy VeSolltedd0 = [1S, kv = (0}, a2)

where [V,S,,] is the tensorial form of the strain-displacement matrix
containing derivatives of the shape functions with respect to the up-
dated coordinates.? The first term in (12) is the internal force within an
grid cell and the second term is the external force vector, in this case the
body forces. AMPLE adopts a standard implicit Newton-Raphson (N-R)
procedure to solve (12) for the unknown nodal displacements. This
requires (12) to be linearised with respect to the nodal displacements to
arrive at the stiffness of each cell in the background mesh
] = [) Vel [a][VeSipldv, a3
where a;j; = (90;j/0Fym) Fi, is the spatial consistent tangent modulus for
a point within the background grid cell (see Charlton et al. [5] for
details).

In material point methods the physical domain is discretised by a
number of material points. These points are used to numerically ap-
proximate the stiffness (13) of the grid cells in the background mesh,
essentially replacing the conventional Gauss-Legendre points (or other
integration method). The key difference between material point and
finite element methods is that these integration points move relative to
the background mesh rather than being directly coupled to the posi-
tions of the background grid nodes. The stiffness contribution of a single
material point to the background mesh is

[kp] = [szvp]T [a] [szvp] Vps 14)

where V}, is the volume associated with the material point in the spatial
(updated) frame

V, = det(AF)V} = det(F)VY, as)

where Vy; and V;,J are the volumes associated with the material point in
the previously converged state and the initial configuration, respec-
tively. Comparing (14) with conventional finite element literature, the
volume of the material point, V,, replaces the Gauss-Legendre quad-
rature weight and the determinant of the Jacobian that maps between
the local and global frames. The product of the determinant of the Ja-
cobian and the Gauss point weight provides the physical volume asso-
ciated with the Gauss point which is equivalent to V, in the material
point method. The internal force contribution of a single material point
to the background mesh is

{fp} = [szvp]T{G}Vp- (16)
Following the work of [5,10], the increment in the deformation
2 [V,S,p] is essentially the same as the conventional strain-displacement [B]

matrix found in finite element literature and [S,,] is the equivalent of the shape
function matrix, often denoted [N].

Advances in Engineering Software 139 (2020) 102748

gradient is obtained from

i u a(s
AR = 8+ 284 _ 5 3 au S,
a)(] v=1 a)(] (17)

where Au; is the displacement increment within the current load step, X;
are the coordinates at the start of the load step and n is the number of
nodes that influence the material point. This allows the increment in the
deformation gradient to be obtained from derivatives of the basis
functions based on the coordinates of the nodes at the start of the load
step. The spatial derivatives of the basis functions can subsequently be
calculated using the method proposed by Charlton et al. [5], that is
a(Sy) 0(Sy) 3% 3(Syy)

= 2 L (AR
an 6Xl ij aX, (1 8)

It is essential that the spatial derivatives are used in the strain-dis-
placement matrix, [V,S,,], to both ensure the correct order of con-
vergence in the N-R process and convergence towards the correct so-
lution based on the internal force contribution, (16), of each material
point [5,10].

It is not necessary to map the basis functions between the start of the
load step and the current configuration because it is assumed that,
during a load step, the displacement of a material point, (Auy,);, is linked
to the nodal displacements through the basis functions, S,,, that is

n
(Aup)i = Z Svp(Auv)i,

v=1 (1 9)
where n is the number of nodes that influence the material point and
(Au,); are the displacement of the nodes over the current load step.
Therefore the basis functions evaluated at the start or the end of the
load step are identical (see [9] for a detailed discussion on this point).

3. Implementation aspects

This section presents key information regarding the implementation
of AMPLE. This includes the basis functions for both the standard and
generalised interpolation material point methods, boundary conditions
and material point position/domain updating. An outline of the com-
putational procedure is also given at the end of the section.

3.1. Basis functions

The basis functions are one of the key areas where the material
point method and the finite element method diverge. For the standard
material point method the basis functions of a material point are simply
the basis functions of the underlying finite element grid. In this case,
one way to obtain the basis functions (and the spatial derivatives of
these functions, if required) is to calculate the local position of the
material point within its associated background grid cell and then
evaluate the basis functions as in the finite element method. However,
if the background grid comprises a regular grid with the cell boundaries
aligned with the global coordinate system, it is straightforward to
evaluate directly the basis functions of a material point. This is the
approach taken in this paper as the initial release of AMPLE assumes
that the background grid consists of regular two-dimensional bi-linear
quadrilateral grid cells with their edges aligned with the global
Cartesian coordinates. With this assumption, the basis functions for the
both the standard and generalised interpolation material point methods
can be expressed as the convolution of material point’s domain with the
basis functions of the underlying finite element grid, that is

1 -
Svp =Tn X Nv(Xp)dx,

vy ‘/f"p b (20)
where Q, is the influence domain associated with the material point, },
is the material point’s characteristic function which defines the zone of
influence (or domain) of a material point, N, are the underlying shape

W.M. Coombs and C.E. Augarde

functions of the finite element grid which are dependent of the position
of the material point at the start of the load step, X,. The basis function
is only given in one-dimension; the extension to higher dimensions is
obtained through the Cartesian product of the shape functions in each
direction.” The gradient of the basis function can be expressed as

1 ~
v)?svp = V_;l -/S;p Xp VxN, (Xp)dx @1
For multi-dimension problems the gradient of the basis functions are
obtained from the product of the gradient in one direction with the
shape function in the other direction, for example the derivative of the
basis functions with respect to X in a two dimensional problem is

35, (X,)

5 = VgSypX) X Sy (V).

(22)
The following sections provide the basis functions for the standard and
generalised interpolation material point methods.

3.1.1. Standard interpolation

The basis functions for the standard material point method are ob-
tained by replacing the characteristic function, y,, with a Dirac delta
function. With this substitution, (20) becomes

IA

Sp=1+ &, —X)/h
Sp=1-&X, —X)/h

-h < X,-X
0 < X,-X%

IN

h, (23)

where h is the size of the background grid (distance between the nodes
in each direction) and X, is the position of the node (or vertex) asso-
ciated with the basis function at the start of the load step. The gradients
of the basis functions with respect to the material point position are

ViSy = 1/h —h < % -X, <
ViSy = —1/h 0<X-X <h 24)

3.1.2. Generalised interpolation

The particular form of the generalised interpolation material point
method adopted in this paper assumes a unity characteristic function (a
hat function with the value of one inside the material point’s domain
and zero outside) of length 2I, centred on X,.* This characteristic yields
the following basis functions

_ (h+lp+Xp—X)?

A: S, = e —h—h <X =X, <-h+1
B: Sp=1+2% _hil <X -X <
Cosp=1- By % X<y

D: S,=1-% <% X <h-|,

B s,= "R % % <kt

4hlp (25)

These one-dimensional generalised interpolation basis functions are
shown in Fig. 2 for node 2 where the A through E regions correspond to
the five conditions in (25). In regions B and D, the generalised inter-
polation functions are the same as the conventional finite element
functions (and the same at the standard material point method). This is
because the material point’s characteristic function lies entirely within
the background grid cell. The basis functions in regions A, C and E (grey

3In two dimensions the basis functions of a point are obtained via
Sip X, ¥) = S,,(X) X S,p(Y), where S,,(+) is obtained from (20).

“# Generalised interpolation material point methods are restricted to regular
domains (line in 1D, rectangle in 2D and cuboid in 3D) which allows the basis
functions to be determined analytically for a regular background grid. Other
domain-based material point methods, such as CPDI1 or CPDI2, relax the re-
striction on the shape of the material point’s domain but approximate the
convolution by sampling at the vertices of the material point’s domain.

Advances in Engineering Software 139 (2020) 102748

f—s

XP
Fig. 2. Generalised interpolation basis functions (top) and standard (or stan-
dard material point) basis functions (bottom), where the numbers are asso-

ciated with the grid nodes and the letters with the different conditions in (25).
Reproduced with permission from Coombs et al. [10].

regions in the top figure) depart from the conventional finite element
functions due to the material point domain overlapping multiple grid
cells. The one-dimensional gradients of the basis functions with respect
to the material point position at the start of the load step are

1

(h+1p+Xp—X)

Vi Sy = s —h-1, < %,-X% < -h+},
ViSy = 1/h -h+l, < X,-X, < -1,
V;{S\,pz—% -, < X%-X < L
ViSyp = —1/h L < X-X, < h-1l,
VgS,y = — X+ X h—1, < 5, - % < h+l,

2hlp (26)

As with the basis functions in (25), when a material point’s domain lies
entirely within a background grid the gradient of the basis function
equals that of the standard finite element function.

3.2. Boundary conditions

In this paper we ignore the external tractions as their general im-
plementation within material point methods is complex. Dirichlet (es-
sential/displacement) boundary conditions are imposed directly on the
background mesh in the same way as the standard finite element
method. This imposes the restriction that essential boundary conditions
must be imposed along parts of the problem domain that are contiguous
with background grid cell boundaries, as with the majority of MPMs
presetned to date. Deviating from this requires special treatments such
as those developed in [12]. The nodal body forces in (12) are ap-
proximated using

{fl‘,} = [Svp]T{b}V = [Svp]T{g}mp, (27)

where {b} = ¢{g} is the body force associated with the material point.
For two dimensional analysis, {g} = g{0 — 1}, where @ is the material’s
density, g is gravitational acceleration and m, = ¢V}, is the mass asso-
ciated with the material point. Point forces, if required, are held and
convected with the material points. They are mapped to the background
grid using

{fp} = [Svp]T{fp}, (28)

W.M. Coombs and C.E. Augarde

Advances in Engineering Software 139 (2020) 102748

maplinternlal forcle&sltiffnesls to nlodes aSSém'b'é {f}I:[K}I{d} at :‘i"ite e|lem€nt Inodes
,‘ooo',: A
00|0 0|0, d
/0. eo oo o / ¥
/e eloo®e0®0|oe Vi o,
AR
ol@elegleo|0glee
©¢o(00(00®0 00|
e elo 0|0 gl0o00 0|00
0je o[® o[0 00 0|0 0|0 @
0o 00 |® 0 00 00 |®g

T T T
map nodal displacements

T T
to material points

Fig. 3. AMPLE load step phases.

loadstep |12 ... loadsteps

{dk}

mp

{re set the external force vector
[Sup] element-material point basis functions & gradients
NRit |1]2 WHILE [{ff}/I{fZ4} > tol
{6de} {6di} = K17 {fE1)

{di} = {dk—1} + {ddx }

1]2 - Mmp

{fint}

K]

direct material point contributions into
the global internal force and stiffness

{£i}

{fitt =A

ext

n+1} - {fligm

update MP positions & set converged reference variables

Fig. 4. AMPLE high level algorithm structure.

where {f,} is the point force associated with the material point and {fp}
are the equivalent nodal values.

3.3. Non-linear solution procedure
The nodal displacements within a load step, {Ad}, can be obtained

by iteratively updating the nodal displacements until (12) is satisfied
within a given tolerance using

k
Ady} = 5y}, h 8di} = [KT17{FR 3,
{Ady} mzzjl{ } where {0di} = [KI{fR |} 29

k is the current iteration within the load step, [K] is the global stiffness
matrix and {ddy} is the iterative increment in the displacements from
that iteration. The global stiffness matrix is obtained through assem-
bling the individual material point contributions, that is

[K]= é[kp]a 30)

W.M. Coombs and C.E. Augarde

Advances in Engineering Software 139 (2020) 102748

%AMPLE: A Material Point Learning Environment

Author: William Coombs
Date: 29/01/2019
Description:

quadrilateral background mesh.

Large deformation elasto-plastic (EP) material point method (MPM) code
based on an updated Lagrangian (UL) descripition of motion with a

See also:
SETUPGRID - analysis specific information
ELEMMPINFO - material point-element information
DETEXTFORCE - external forces
DETFDOFS - mesh unknown degrees of freedom
LINSOLVE - linear solver
DETMPS - material point stiffness and internal force
UPDATEMPS - update material points
POSTPRO - post processing function including vtk output
% e
01 clear;
02 addpath(’constitutive’,’functions’,’plotting’,’setup’);
03 [1stps,g,mpData,mesh]=setupGrid;
04 NRitMax = 10; tol = 1le-9;
05 [nodes,nD] = size(mesh.coord);
06 [nels,nen] = size(mesh.etpl);
07 nDoF = nodes*nD;
08 nmp = length(mpData);
09 for lstp=1:lstps

10 fprintf(1,’\n¥%s %4i %s %4i\n’,’loadstep ’,lstp,’ of ’,lstps); % text output
11 [mesh,mpData] = elemMPinfo(mesh,mpData) ; % material poi
12 fext = detExtForce(nodes,nD,g,mpData); % external fo
13 fext = fext*lstp/lstps; % current ext
14 oobf = fext; % initial out
15 fErr = 1; % initial err
16 frct = zeros(nDoF,1); % zero the re
17 uvw = zeros(nDoF,1); % zero the dis
18 fd = detFDoFs(mesh); % free degrees
19 NRit = 0; % zero the it
20 Kt = 0; % zero global
21 while (fErr > tol) && (NRit < NRitMax) || (NRit < 2) % global equi
22 [duvw,drct] = linSolve(mesh.bc,Kt,oobf,NRit,fd); % linear solv
23 uvw = uvw+duvw; % update disp
24 frct = frct+drct; % update react
25 [fint,Kt,mpData] = detMPs(uvw,mpData); % global stiff
26 oobf = (fext-fint+frct); % out-of-bala
27 fErr = norm(oobf)/norm(fext+frct+eps); % normalised
28 NRit = NRit+1; % increment t
29 fprintf(1,°%s %2i %s %8.3e\n’,’ iteration ’,NRit,’ error ’,fErr); % text output
30 end

31 mpData = updateMPs(uvw,mpData) ; % upate materi
32 run postPro; % Plotting an
33 end

% setup infor
% Newton Raphs
% number of n
% number of e
% total numbe
% number of m
% loadstep lo

Fig. 5. AMPLE main script: ample.m.

where A is the standard assembly operator acting over all of the ma-
terial points in the problem and [k,] is the stiffness contribution of a
single material point. {f\ ,} is the residual out of balance force vector
associated with the previous displacement value, i.e. the difference
between the internal forces due to the stresses within the material and
the applied boundary conditions, as given by (12). The global residual
vector is assembled through

= \é([VxSvp]T{U}%) - {4 @D

where the first term is the internal force vector and the external force
vector, {f*'}, which is constant over the load step, is given by

e} = é([svp]T{b}VS + Sl) (32)

3.4. Position and domain updating

At the end of each load step the material point positions, volumes
and (if using the generalised interpolation material point method) do-
main half-lengths, 1,, should be updated. The updated positions of the
material points at the end of the load step are given by

Gl = R+ D (Sup)(Buy),,

(Aup);

(33)

W.M. Coombs and C.E. Augarde

Advances in Engineering Software 139 (2020) 102748

Table 1
AMPLE function descriptions.
Function Description Called by Calls
setupGrid analysis-specific information including the initial mesh and mpData structured arrays ample formCoord2D detMpPos
shapefunc
elemMPinfo basis functions and spatial derivatives at, cells and nodes associated with, and the number of stiffness ample MPMbasis elemForMP
matrix entries for, each material point nodesForMP
detFDoF's free degrees of freedom of the background mesh based on the grid cells that contain material points and ample -
the displacement boundary conditions
detExtForce nodal external force vector based on body forces and point loads at material points ample -
linSolve linear solution of the global system of equations ample -
detMPs internal force and stiffness contribution of all of the material points to the background mesh (contains ample Hooke3D VMconst formULstiff
the updated Lagrangian mechanics)
updateMPs function to update the positions and internal variables (Cauchy stress, elastic logarithmic strain, domain ample -
size, etc.) of the material points
postPro script to generate the VTK files for both the background mesh and the material points ample makeVtk makeVtkMP
MPMbasis multi-dimensional basis functions and spatial derivatives elemMPinfo SvpMPM SvpGIMP
elemForMP background grid cell(s) associated with the material point elemMPinfo —
nodesForMpP nodes linked with the material point elemMPinfo -
Hooke3D linear elastic constitutive model detMPs -
VMconst von Mises perfectly plastic constitutive modelf detMPs -
formULstiff formation of the spatial consistent tangent matrixf detMPs -
detMpPos initial local grid cell positions of material points setupGrid -
formCoord2D background mesh generation (regular quads) setupGrid -
shapefunc finite element basis functions setupGrid -
SVpMPM 1D material point basis functions MPMbasis -
SvpGIMP 1D generalised interpolation basis functions MPMbasis -
makeVtk background mesh VTK file generation postPro -
makeVtkMP material point VTK file generation postPro -
‘fnote that these functions contain sub functions within the same.m file
rTTTTTTTTTTTTT T T T T T T T T T 1
setupGrid.m —»i elemForMP.m i
1 I
T
rTTTTT TS TSt T T T T T T T T T T T 1
> elemMPinfo.m r: nodesForMP.m i
1 J
MPMbasis.m
R
> SvpMPM.m 1
I

ample.m

postPro.m

— 00

VMconst.m

formULstiff.m

Fig. 6. AMPLE function dependencies: dashed and solid lines indicate functions with and without sub functions, respectively. VMconst.m and formULstiff.m
contain sub functions within the same.m file.

where (Aup); is the displacement of the material point over the load
step. In the case of the standard material point method the volume at
each material point is simply updated from the original volume using
the determinant of the deformation gradient, (15). For generalised in-
terpolation material point methods, one domain updating approach,
proposed by Charlton et al. [5] and adopted in AMPLE, is to map the

domain sizes according to the normal components

stretch tensor, that is

1P =1PU; (no implied sum on i),

where [/ are the original domain half lengths and U

of the material

= A\ Fkiij'

(34

W.M. Coombs and C.E. Augarde

Table 2
ample variable definitions (in order of appearance).
Variable Symbol Description Dimensions
lstps - total number of load steps (1)
g g gravitational acceleration (1)
mpData - material point structured array (see -
Table 3)
mesh - mesh structured array (see Table 4) -
NRitMax - maximum number of N-R iterations (1)
tol - N-R tolerance (1)
nodes - number of nodes in the background mesh (1)
nD - number of dimensions (1)
nels - number of elements in the background (1)
mesh
nen - number of element nodes (1)
nDoF - number of degrees of freedom of the (1)
background mesh
nmp - number of material points (1)
lstp - current loadstep number (1)
fext {% external force vector (nDoF, 1)
oobf {fr out of balance force residual (nDoF, 1)
fErr fR normalised N-R error measure (1)
frct {fre2y nodal reaction forces (nDoF, 1)
uvw {Ad} incremental nodal displacements in the (nDoF, 1)
load step
fd - free degrees of freedom of the background (*, 1)
mesh
NRit k current N-R iteration (1)
Kt [K] global stiffness matrix (sparse) (nDoF, nDoF)
duvw {8d,} iterative nodal displacements (nDoF, 1)
drct - iterative nodal reaction forces (nDoF, 1)
fint - nodal internal forces (nDoF, 1)

* depends on the active grid cells and the boundary conditions
3.5. Computational procedure

The steps in the implemented algorithm are concisely summarised
below. The applied body force and/or point forces are split into a
number of load steps and for each of these steps the following process is
adopted:

1. calculate the stiffness contribution, [k”], of all of the material points
using (14) and assemble the individual contribution of each material
point into the global stiffness matrix, [K];

2. calculate the internal force contribution, {f’}, of all of the material
points using (16) and assemble the contributions into the global
internal force vector, {fR}, in (12);

3. solve for the nodal displacements within a load step, using the N-R
process (29) until the out-of-balance force converges to a specified
tolerance;

4. update the material point positions, volumes and domain lengths
through interpolation from the incremental nodal displacements,
deformation gradient and stretch tensor using (33), (15) and (34);

5. reset the background grid.

These steps are displayed graphically in Fig. 3.
4. Code structure

AMPLE’s high-level structure is shown in Fig. 4 and comprises three
loops:

1. a loadstep for loop that first determines the external forces at the
nodes for the current step and then calculates the nodal basis
functions, S,;,, and spatial derivatives, VxS, for each material point.
The code then enters a while loop to find equilibrium between the
internal and external forces. Once equilibrium has been obtained the
material point positions and internal variables (deformation gra-
dient, stress, elastic logarithmic strain, domain size, etc.) are

Advances in Engineering Software 139 (2020) 102748

updated.

2. a Newton-Raphson while loop to solve the global equilibrium
equations on the background mesh. The loop first solves the non-
linear system of equations to determine the displacement and re-
action force increments at the nodes before moving onto the de-
termination of the current internal force and stiffness via a material
point for loop.

3. a material point for loop that determines the internal force and
stiffness contribution of each of the material points to the back-
ground mesh.

AMPLE’s main script, ample.m, is shown in its entirety in Fig. 5.
The format of the code aligns with the algorithm shown in Fig. 4.
Comments are shown in green and have been truncated on the right
hand side for clarity of the executed code. Only two of the three loops
described above can be seen in the main ample.m file: (1) A loadstep
for loop spanning lines 9 through 33 and (2) a Newton-Raphson
while loop over lines 21 through 30. The material point loop is con-
tained within the detMPs . m function on line 25.

The main ample.m script calls eight functions which are described
in Table 1. The purpose of each of these functions is explained below:

setupGrid: called on line 3 of ample.m, the function returns the
analysis-specific information such as details of the background grid
and any information held at material points (position, material
properties, etc.). This information is held in two structured arrays,
mpData and mesh, that are explained in Section 4.2. In addition to
this the function returns the total number of load steps, 1stps, and
the gravitational acceleration, g, which are returned as variables
independent of the material point and mesh data.

elemMPinfo: called on line 1 of ample.m, the function determines
the parent background grid cell(s) of each material point and the
nodes that the material point influences. Note that for the standard
material point method each material point will only have one parent
cell but in the generalised interpolation material point method the
domain of the point can overlap multiple grid cells. The function
also determines the basis functions at each of the material points
and their spatial gradients based on the nodal positions at the start
of the load step. The function calls three other functions:
elemForMP that finds the background grid cell(s) associated with
the material point, nodesForMP that determines a unique list of
nodes based on the cell(s) associated with the material point and
MPMbasis that determines the basis functions for the material
point. This function depends on the type of material point method
and the form of the background mesh.”

detExtForce: Called on line 12 of ample.m, the function de-
termines the external force vector, fext, at the start of the load step
based on the body (27) and point (28) forces at material points.
detFDoFs: Called on line 18 of ample . m, the function determines a
list of the unknown displacement degrees of freedom of the back-
ground mesh, £d, based on the grid cells that contain material points
and the displacement boundary conditions imposed on the mesh.
linSolve: Called on line 22 of ample.m, the function solves the
linear system of equations to determine the iterative increment in
the nodal displacements, {5d} or duvw, via (29) based on the cur-
rent out-of-balance force residual, oobf. The function also de-
termines the increment in the reaction forces, drct, due to the
constrained degrees of freedom on the background mesh.

°Note that elemMPinfo is the main function that needs to change if you
wish to change the form of the background mesh and the material point
method. The only other function that requires modification is updateMPs and
this is only if the user wishes to implement one of the newer domain based
material point methods, such as CPDI1 [25], CPDI2 [26], etc. If only changing
the mesh, only elemMPinfo requires modification.

W.M. Coombs and C.E. Augarde

Advances in Engineering Software 139 (2020) 102748

%Global external force determination

function [fext] = detExtForce(nodes,nD,g,mpData)

William Coombs
23/01/2019
Description:

Author:
Date:

and point forces at material points.

Function to determine the external forces at nodes based on body forces

[fbdy ,mpData] = DETEXTFORCE(coord,etpl,g,eIN,mpData)

nodes - number of nodes (total in mesh)
nD - number of dimensions
g - gravity
mpData - material point structured array. Function requires:
mpM : material point mass
nIN : nodes linked to the material point
Svp : basis functions for the material point
fp : point forces at material points

%
pA
pA
%
%
pA
%
%
pA
%
% Input(s):
%
%
%
%
yA
%
%
pA
pA
pA

Ouput(s) ;
% fext -

external force vector (nmodes*nD,1)

% See also:

= size(mpData,2);
zeros (nodes*nD,1) ;
zeros(nD,1); grav(nD) = -g;
for mp = 1:nmp

nIN = mpData(mp) .nIN;
length(nIN);

B

ed =

Svp = mpData(mp) .Svp;

end

reshape (ones (nD, 1) * (nIN-1)*nD+(1:nD) . > *ones(1,nn),1,nn*nD) ;

fext(ed) = fext(ed)+mpData(mp) .mpM*reshape (grav*Svp,nn*nD,1)...
+ reshape (mpData(mp) . fp*Svp,nn*nD,1) ;

% number of mat
% zero the exte
% gavity vecto

nodes associ
number of no
node degrees
basis functio
global body
material poi

Fig. 7. example function: detExtForce.m.

detMPs: Called on line 25 of ample.m, the function determines the
stiffness and internal force contribution of each material point to the
background mesh and assembles these into a global stiffness matrix,
Kt, and internal force vector, fint. This function contains the up-
dated Lagrangian formulation and the constitutive model control-
ling the stress-strain behaviour of each material point. The function
calls three other functions: Hooke3D a linear elastic constitutive
model, VMconst a linear elastic perfectly plastic von Mises con-
stitutive model and formULstiff a function to determine the
consistent spatial tangent modulus, [a].

updateMPs: Called on line 31 of ample . m, the function updates the
positions and volumes of the material points based on the incre-
mental nodal displacements, uvw, and the current value of the de-
formation gradient at each material point. For generalised inter-
polation material point methods, the function also updates the
domain lengths, ,, via (34). This function depends on the type of
material point method and will require modification if a user wishes
to implement other domain-based methods.

postPro: Called on line 32 of amp1le . m, the function produces VTK
output files that can be viewed when the analysis has finished via a
suitable VTK file visualised (such as VisIt or Paraview, amongst
others). The function calls two functions: makeVtk and makeVtkMP
that generate VTK files for the background mesh and the material
points, respectively.

The structure of these functions is shown diagrammatically in Fig. 6,
where the solid and dashed lines around the function boxes indicate

10

that the function does or does not call other functions, respectively. The
black arrows indicate the function calls and the locations of the loops in
the code are indicated by the grey lines. For example, Hooke3d.m is
called by detMPs.m; and linSolve.m and detMPs.m are called
within the equilibrium, or N-R, loop.

It is important to note that the majority of AMPLE’s functions do not
depend on: (i) The form of the background mesh, (ii) the type of ma-
terial point methods adopted or (iii) the number of physical dimensions
(1D, 2D plane strain or 3D). The exceptions to this are: elemMPinfo.m
which depends on the background mesh type and the material point
variant and updateMPs . m which depends on the material point variant
as different updating procedures are required for different material
point methods. Obviously setupGrid.m depends on all three of the
above points as it contains the analysis-specific information that will
change depending on the user’s requirements.

The functions are organised into a number of folders depending on
their purpose, specifically: constitutive contains the constitutive
functions, setup contains the functions that are required to provide the
analysis-specific information, plotting contains the post-processing
files and functions contains the remaining .m files. AMPLE’s file
structure also contains output and documentation that contain the
generated VTK files and AMPLE’s html documentation.

Table 2 lists all of the variables used in the main ample.m script
along with their mathematical symbol, size and description. The 24
variables are listed in terms of their order of appearance in the am-
ple.m script. Note that mesh and mpData are structured arrays con-
taining the mesh and material point data, respectively, and are

W.M. Coombs and C.E. Augarde

Table 3
mpData structured array: Field definitions, where nD is the number of dimen-
sions.

Field Variable Description Dimensions
mpType - material point type (1 = MPM, 2 = GIMP) (1)
cmType — constitutive model type (1 = linear elasticity, (1)
2 = von Mises elasto-plasticity)
mpC {5} material point Coordinate (1,nD)
vp A current material point volume (1)
vp0 VS original material point volume (1)
mpM m, material point Mass (1)
nIN - nodes linked to the material point (1,*)
eIN - cell(s) associated with the material point (1,%)
Svp [Syp] basis functions (1,*)
dsvp [VXSvp] derivative of the basis functions with respect (nD, *)
to the coordinates at the start of the loadstep
Fn [F.] deformation gradient at the start of the (3,3)
loadstep
F [F] current deformation gradient (3,3)
sig {0} Cauchy stress (6,1)
epsEn 4] logarithmic elastic strain at the start of the (6,1)
loadstep
epsE {e%} current logarithmic elastic strain (6,1)
mCst E, v, etc. material constants (Young’s modulus, etc.) (1, 1)
fp {for point forces at material points (nD, 1)
u {up} total material point displacement (nD, 1)
1p 1P material point domain length (MPM, I = 0) (1,nD)
1p0 ll_PO initial material point domain length (MPM, (1,nD)
170 = 0)
nSMe - number of Stiffness Matrix entries per (1)

material point

* depends on the number of nodes the material point influences (always nen for
MPM) # depends on the number of grid cells linked to the material point (al-
ways 1 for MPM) i depends on the adopted constitutive model (e.g. 2 for linear
elasticity; E, v)

Table 4

mesh structured array: Field definitions, where nels is the number of ele-
ments, nen the number of element nodes, nodes the number of nodes in the
mesh and nD the number of dimensions.

Field Variable Description Dimensions
etpl - element topology (one row per element) (nels,nen)
coord - nodal coordinates (nodes, nD)
h h background grid size in each direction (1,nD)
bc - Dirichlet boundary conditions with the (*,2)
following format: [degree of freedom,
displacement]
elnA - active elements In the Analysis (1 = active (nels, 1)

element containing MPs, 0 = inactive
element)

* depends on the problem analysed; number of displacement constraints.

described in detail in Section 4.2.

4.1. Function format

All of AMPLE’s functions share a common file format. Fig. 7 shows
an example AMPLE function, specifically the function to determine the
external forces on the background mesh based on body and point forces
at material points, detExtForce.m, which is called on line 12 of
ample.m. The function starts with a common comment block that in-
cludes the following information: (i) brief description/title; (ii) author
and date information with a more detailed description of the function’s
purpose; (iii) function call format; (iv) required input information; (v)
the function’s output; and (vi) a see also section detailing the functions
that are called by the function (in the case of detExtForce.m, none).

All of AMPLE’s functions support the MATLAB help command, for
example typing help detExtForce will return the top comment block

11

Advances in Engineering Software 139 (2020) 102748

shown in Fig. 7.

4.2. Data structures

The majority of the analysis information required by AMPLE is
stored in two structured arrays:

mpData: this structured array contains material point information,
such as the point’s position, deformation gradient, Cauchy stress,
etc. The 21 fields within mpData are detailed in Table 3, along with
their mathematical symbols and dimensions per material point. A
number of the quantities depend on the number of physical di-
mensions, nD.

mesh: this structured array contains information about the back-
ground mesh, such as the positions of the nodes and the topology of
each of the background mesh cells. The five fields of mesh are de-
tailed in Table 4, where nels, nodes and nen are the number of
background grid cells, the total number of nodes and the number of
nodes per background grid cell, respectively.

MATLAB’s structured arrays provide a convenient way to store the
material point data as different material points will potentially influ-
ence different numbers of nodes and therefore will require different
amounts of storage for, for example, the basis functions that influence
the point and their spatial derivatives.®

It is worth highlighting two of the fields that provide different op-
tions within AMPLE. mpType controls the material point type used in
the analysis: mpType=1 results in a standard material point whereas
when mpType=2 the point uses generalised interpolation basis func-
tions. cmType controls the constitutive model used by the material
point: cmType=1 specifies the isotropic linear elastic model contained
within Hooke3d.m, whereas cmType=2 calls the linear elastic-per-
fectly plastic von Mises constitutive model, VvMconst .m. Both of these
could be extended to include other material point variants, such as
CPDI methods, and different material models.

5. Demonstration cases

The analyses presented in this section explore changing a number of
AMPLE’s features/options. The physical problems modelled and the
features modelled are as follows:

1. Compaction of a two-dimensional column under self weight: chan-
ging numbers of material points, material point types and mesh
density;

2. A large deformation elastic beam subject to an end load: visualisa-
tion of material point data; and

3. Elasto-plastic collapse of a two-dimensional body: changing the
constitutive model.

In all cases the global tolerance on the normalised out of balance
force in the Newton—-Raphson process was set at 1 X 10~°, where the
normalised out of balance force was defined as

o
7=y =

[|()]| denotes the L2 norm of (-), {f'} includes the external forces
applied to the problem (body forces, tractions, point loads) and {f***“'}
are the reaction forces due to the prescribed displacement boundary
conditions.

(35)

61t is noted that structured arrays are not the most computationally efficient
way to store data in MATLAB, however AMPLE’s focus is on proof (and clarity)
rather than performance.

W.M. Coombs and C.E. Augarde

Advances in Engineering Software 139 (2020) 102748

E = 1le4; v = 0; % Young’s modulus, Poisson’s ratio
mCst = [E v]; % material constants
g = 10; % gravity
rho = 80; % material density
1stps = 40; % number of loadsteps
nelsx = 1; % number of elements in the x direction
nelsy = 276; % number of elements in the y direction
1y = 50; 1x = ly/nelsy; % domain dimensions
mp = 2; % number of material points in each direction per element
mpType = 2; % material point type: 1 = MPM, 2 = GIMP
cmType = 1; % constitutive model: 1 = elastic, 2 = vM plasticity
Fig. 8. setup information for compaction under self weight.
5 10° . T “» 104 T .
o 10 W 10
5 g —e—MPM
101k oo o o o o o oo ER= —0—GIMP
c
> 10% ¢ E
102 F Wz 3
10 107 ¢ 3
107 ¢ 3
10' .
108 —e—MPM 1E
—O0—GIMP
10-6 1 1 0 I .
102 10” 10° 10' 10? 103 10 10 10° 10' 102 10°
-1
1/h (m™1) 1/h (m™1)
Fig. 9. compaction under self weight: convergence and run time.
! lo |
[|
O 0|0 0|0 O|O0 O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|OC O|O O|OC O ‘
0 0|0 0O/O0 O|O0 O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|OC @ d
0 olo o|lo o|0 ©oJlO O|O O|O O|O O|O0 OlO O|O O|O OfO O|O O|O O|O O|O O|O O|O O|OC @ O
O 0|0 O/|0 O|0C O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|O O|OC O|O O|OC O
Y/o
y [
T

Fig. 10. elastic beam: initial discretisation and boundary conditions with 2 = 0.5m (only part of the background mesh is shown).

5.1. Convergence: Compaction under self weight

The first example is the one dimensional compaction of an elastic
column with an initial height of [, = 50m under its own self weight. The
material has a Young’s modulus of 10kPa and a Poisson’s ratio of zero.
The background mesh is comprised of square background grid cells’
with roller boundary conditions on the base and sides and the column is
discretised by a 2 x 2 grid of equally spaced material points in each
initially populated background grid cell. A body force of 800N/m?
(g = 10m/s> and an initial density of ¢, = 80kg/m?®) is applied over 40
equal loadsteps.

The basic setup information for this analysis, as contained on lines
57 through 67 of setupGrid, is shown in Fig. 8. The figure shows the
setup information for an analysis with 64 grid cells in the y-vertical
direction (nelsy) and a single grid cell in the x-direction (nelsx). The

7 Note that the width of the problem is changed depending on the number of
grid cells in the vertical direction to ensure that the cells remained square.

12

physical body is discretised by generalised interpolation material
points, mpType=2 (material point Type), with linear-elastic material
behaviour, cmType=1 (constitutive model Type).

The analytical solution for the normal stress in the y-direction for
this problem is

oy =9, 800 = Y), (36)

where Y is the original position of the point in the body and [, is the
original height of the column. Fig. 9 shows the convergence of the
standard and generalised interpolation material point methods with
background mesh and material point refinement. The reported error is

error — i llah, — og, (Y1l V)
pol (gl Vo (37)

where V; = Y, V) is the initial volume of the column and ¢}, is the
vertical stress at each of the material points. For the convergence
analysis, the number of background grid cells in the x-direction was
kept constant at nelsx=1 and the number of cells in the y-direction

W.M. Coombs and C.E. Augarde

Advances in Engineering Software 139 (2020) 102748

68 %% Mesh generation

69 [etpl,coord] = formCoord2D(nelsx,nelsy,lx,ly); % background m
70 [~ ,nen] = size(etpl); % number of el
71 [nodes,nD] = size(coord); % number of no
72 h = [1x 1ly]./[nelsx nelsyl; % element leng
73

74 %% Boundary conditions on background mesh

5 bc = zeros(nodes*nD,2); % generate emp
76 for node=1:nodes % loop over no
7 if coord(node,1)==0 % roller (x=0)
78 bc(nodex2-1,:)=[nodex2-1 0];

79 end

80 if coord(node,1)==0 && coord(node,2)==(1y-d/2) % mid-depth pin
81 bc(node*2 ,:)=[nodex2 0];

82 end

83 end

84 bc = bc(bec(:,1)>0,:); % remove empt
85

86 %% Mesh data structure generation

87 mesh.etpl = etpl; % element topo
88 mesh.coord = coord; % nodal coordi
8 mesh.bc = bc; % boundary con
90 mesh.h = h; % mesh size

91

92 %k Material point generation

93 ngp = mp~nD; % number of ma
94 GpLoc = detMpPos(mp,nD); % local MP loc
95 N = shapefunc (nen,GpLoc,nD); % basis functi
96 [etplmp,coordmp] = formCoord2D(20%a,2*a,1,d); % mesh for MP
97 coordmp(:,2)=coordmp(:,2)+(ly-d); % adjust MP lo
98 nelsmp = size(etplmp,1); % no. element
99 nmp = ngp*nelsmp; % total numbe
100
101 mpC=zeros (nmp,nD) ; % zero MP coor
102 for nel=1:nelsmp
103 indx=(nel-1)*ngp+1:nel*ngp; % MP location
104 eC=coordmp (etplmp(nel,:),:); % element coor
105 mpPos=N*eC; % global MP co
106 mpC (indx, :) =mpPos; % store MP pos
107 end
108 1lp = zeros(nmp,2); % zero domain
109 1p(:,1) = h(1)/(2*mp); % domain half
110 1p(:,2) = h(2)/(2*mp); % domain half
111 vp = 2°nD*1p(:,1) .x1p(:,2); % volume assoc

Fig. 11. elastic beam: setup file segment (lines 68 to 111), where: 1x and 1y are the x and y lengths of the background grid, d and 1 are the depth and length of the
beam and a is a scalar multiplier to control the number of background grid cells and material points. The other parameters are described in Fig. 8.

(nelsy) was varied between 22 and 2'3, that is between 4 and 8,192, in
powers of 2 while maintaining the same material point/cell ratio® It is
clear that the standard material point method (mpType=1) does not
converge with uniform h refinement due to cell-crossing errors whereas
the generalised interpolation method (mpType=2) converges at an ap-
proximately linear rate.

Fig. 9 also shows AMPLE’s run time with progressive background
mesh refinement® For most of the analyses, the run time scales ap-
proximately linearly with the number of material points (~ 4 x 1072
seconds per material point). However, when the number of grid cells in
the y-direction exceeds 4,096 the time spent in the linear solver starts to
dominate, with a corresponding increase in the gradient of the run time.
Interestingly the generalised interpolation analyses typically have a
slightly lower run time due to the Newton-Raphson process taking
fewer iterations to find convergence.

8 The number of material points in each grid cell was kept constant, therefore
the total number of material points increased from 16, for the 22 mesh, to
32,768, for the 2'® mesh.

9 All analyses were conducted using MATLAB R2017b within a macOS
V.10.14.5 environment on a 2.3GHz Intel Core i7 with 16GB of RAM.

13

5.2. Visualisation: Large deformation elastic beam

The second demonstration problem is the large deformation
bending of an elastic cantilever beam subjected to a point load at its
free end using the generalised interpolation material point method
(mpType=2). The beam is [, = 10m long and dy = 1m deep and the
material has a Young’s modulus of 12MPa and a Poisson’s ratio of 0.2
(cmType=1). The f; = 100kN end point load is split between the two
material points closest to the end of the beam either side of the neutral
axis and applied over 50 equal load steps. The initial discretisation of
the beam is shown in Fig. 10 with h = 0.5m and with 2% material points
per initially populated background grid cells. The loaded material
points are shown by the black-filled circles.

This elastic beam example differs from the previous demonstration
case in that only part of the background grid contains the physical
domain at the start of the analysis. Lines 68 through 111 of the setup
file for this analysis are shown in Fig. 11. The figure shows the fol-
lowing steps:

lines 68-72: Generation of the background grid information -
etpl, coord and h;

lines 74-84: Generation of the boundary conditions on the
background grid, which are stored within bc. In this case, roller

W.M. Coombs and C.E. Augarde

Advances in Engineering Software 139 (2020) 102748

(0]

—_

h = 0.125m

é 0

= gl — h=02m |

a -== h=0.125m

)

O 8¢]

L

° 7r i

@

o8

® 6t]

1S

A

2 5 horizontal disp. 1
4 vertical disp. 4
3
2 J
1 J

62 material points

O I

0.2 0.4 0.6

0.8 1

normalised displacement, u/ly and v/ly

Fig. 12. elastic beam: normalised force versus displacement (where the squares and circles show the analytical solution of Molstad [22] for the horizontal and
vertical displacements, respectively) and final deformed beam coloured according to g;, € [-500, 500]kPa with h = 0.125m.

%Post processing script for the AMPLE code
%
% Author: William Coombs
% Date: 29/01/2019
% Description:
% The script produces VTK output files based on the background mesh and
% material point data.
YA
Y - s s
% POSTPRO
Y% R i S
% See also:
% MAKEVTK - VIK file for background mesh
% MAKEVTKMP - VIK file for MP data
h
01 mpDataName = sprintf(’output/mpData_%i.vtk’,1lstp);
02 sig = reshape([mpData.sig]l,6,nmp)’;
03 mpC = reshape([mpData.mpC],nD,nmp)’;
04 mpU = [mpData.u]’;
05 makeVtkMP (mpC, sig,mpU,mpDataName) ;
06 if lstp==
07 makeVtk (mesh.coord,mesh.etpl, ’output/mesh.vtk’)
08 end

MP output dat
all material
all material
all material
generate mate

B

=

generate mesh

Fig. 13. postPro.m script for VIK file generation (comments truncated for clarity).

boundary conditions are applied at X = 0 and the beam is fully-fixed
at its mid-depth (1y-d/2);
lines 86-90: Storage of the background mesh information within
the mesh data structure;
lines 92-111: Generation of the material point information
which can be split down into a number of sub-steps:
lines 92-99: Construction of a background grid for material
point generation which, in this case, is different from the back-
ground grid used during the analysis as physical domain only
covers part of the grid used for computation;
lines 101-107: Determining the coordinates of each material
point based on the background grid shape functions, N, and the
coordinates of the nodes, eC, associated with the material point’s
parent grid cell; and
lines 108-11: Calculation of the domain half lengths, 1p, and

14

material point volumes, vp, based on the size of the background
grid, h, and the number of material points per grid cell in each
direction, mp.

The material point information would then be stored in the
mpData data structure but this has been omitted from the figure
for sake of brevity.

The normalised global force versus displacement response for
h =025 m and h = 0.125 m are shown in Fig. 12. In both cases 62
generalised interpolation material points were included within each
initially populated background grid cell, giving a total of 10,240 and
40,960 material points for the h = 0.25 m and h = 0.125 m analyses,
respectively. The analytical solution, as detailed in the thesis of Molstad
[22], is shown by the discrete points. The global response of both the
h = 0.25 m and h = 0.125 m show good agreement with the analytical

W.M. Coombs and C.E. Augarde

é 10 \ : o
= gl 22 MPs |
=T e 32 MPs
g gL ---42MPs J
L — 62 MPs
o 7]
2
© H J
£ 6
2 s5¢ horizontal disp. 1
4+ vertical disp. 4
3r J
2F J
final stable load step
1]
h =0.25m
0 1 1 L L
0 0.2 0.4 0.6 0.8 1

normalised displacement, u/ly and v/l

Fig. 14. elastic beam: normalised force versus displacement (where the white-
filled squares and circles show the analytical solution of Molstad [22] for the
horizontal and vertical displacements, respectively) for # = 0.25m and 4, 9, 16
and 36 material points per initially populated background grid cell. The grey-
shaded circles highlight the final stable load step with 4 material points.

solution and there is very little difference in the force-displacement
predictions of the two discretisations.

Fig. 12 also shows the deformed material point positions at the end
of the h = 0.125m analysis that have been coloured according to the
normal stress in the y-direction, oy,. The figure was produced from the
VTK output files that are generated on line 32 of the main ample.m
script (shown in Fig. 5) via postPro.m (shown in Fig. 13) and saved
into the output folder.'” The postPro.m script generates two dif-
ferent types of VTK files:

mpData_#.xtk: On line 5 where # is the current load step number
(1stp). A VTK file based on the converged state at the end of each
load step, including the following material point data: current po-
sition, total displacement between the current and initial positions
and the Cauchy stress (all components). The script could be ex-
tended to include other data as appropriate, such as the volume at
each material point, the level of straining, the deformation gradient,
etc. AMPLE generates one mpData_#.xtk file per load step.
mesh.vtk: On line 7 which includes the background mesh in-
formation. AMPLE assumes that the background mesh is unchanged
through the analysis and therefore only a single mesh. vtk file is
generated and this happens on the first load step (1stp=1). If the
mesh was different between loadsteps, a series of mesh.vtk files
could be generated in a similar way to the material point data.

The number of material points per background cell is a point of
debate in the material point method literature. In the authors’ experi-
ence 2° material points per element for a two dimensional problem
represents a reasonable balance between stability (in terms of con-
ditioning of the global stiffness matrix), accuracy (in terms of reducing
quadrature errors) and efficiency. In order to demonstrate this point,
Fig. 14 presents the normalised global force versus displacement re-
sponse for h = 0.25m with different numbers of material points per
background grid cell, alongside the analytical solution shown by

10 Although it is possible to plot material point data directly in MATLAB,
AMPLE adopts VTK files as MATLAB struggles to plot (or rather render) large
amounts of data in a computationally efficient manner. However, there is
nothing stopping a user of AMPLE plotting material point data if required.

15

Advances in Engineering Software 139 (2020) 102748

discrete white-filled circles and squares. The analysis with 4 material
points per cell fails to converge in the 8th load step due to ill con-
ditioning of the global stiffness matrix - the final stable load step for this
analysis is highlighted by the grey-filled circles. The analysis with 32
and 4% material points per cell have very good agreement with the 62
analysis for the vertical displacement and converge to the 6 analysis
for the horizontal displacement. The increase in accuracy is very minor
between the analysis with 3% material points and that with 67 if effi-
ciency is a user’s primary concern then 3> material points per back-
ground grid cell is a reasonable choice.

5.3. Material model: Elasto-plastic collapse

The final demonstration example is the elasto-plastic collapse of a
rectangular body of material subject to a gravitational body force using
the generalised interpolation material point method (mpType=2). Due
to symmetry only half of the body is modelled and the initial dis-
cretisation of the problem is shown in Fig. 15 with [y =8 m, h =1 m
and 22 material points per initially filled background cell (the grey-
shaded region). Roller boundary conditions are imposed on the base
and the left hand edge of the background mesh, as indicated by the
small circles in Fig. 15. These Dirichlet boundary conditions are im-
posed directly on the background grid by eliminating the degrees of
freedom associated with these constraints from the global system of
equations when solving the linear system during each N-R iteration.
The degrees of freedom associated with the nodes that do not have a
contribution from any material points are eliminated in the same way.

The material is modelled using a linear-elastic, perfectly-plastic von
Mises constitutive formulation with the yield function defined in (11).
In order for AMPLE to adopt this material behaviour it is necessary to
set cmType=2 for all of the material points in the analysis. For this
analysis, the yield strength of the material is p, = 20 kPa, the Young’s
modulus is 1MPa and Poisson’s ratio is 0.3. These material properties
are stored in mCst for each material point with the mpData structured
array (see Table 3) in the following order [E,v,p,]. A body force of
10 kN/m® (density of 1000 kg/m® and gravitational acceleration of
10 m/s?) is applied over 40 equal loadsteps.

Fig. 16 shows the deformed material point positions at the end of
the analysis for h = 0.5 m and h = 0.25 m. In both cases, 6> generalised
interpolation material points (cmType=2) were included within each
initially populated background grid cell; a total of 16,384 and 65,536
material points for the h = 0.5 m and h = 0.25 m analyses, respectively.
The material points are coloured according to oy, 0y, and o0,,, where the
blue and red regions show areas of low and high stress, respectively.
There is very little deformation for the first 20 loadsteps (up to a body
force of 5 kN/m?) but beyond this value the material rapidly collapses
and achieves the final deformed state shown in Fig. 16.

Table 5 presents the horizontal extent and maximum height of the
collapsed body at the end of the analysis for the generalised inter-
polation material point method with different numbers of material
points and background mesh sizes. The results from an updated La-
grangian finite element analysis using bi-linear (q;) and bi-quadratic
(g2) quadrilateral elements are shown for comparison''. The general-
ised interpolation material point method results are between the linear
and quadratic finite element results which is consistent with the basis
functions of the method being linear if the material point is contained
within an element and quadratic if the material point contributes to
multiple elements. In this case the analyses using 3% and 62 material
points give similar results.

All of the examples presented in this paper have assumed quasi-
static conditions - any inertia effects are ignored. However, in the case

11 Note that Charlton et al. [5] provides a more detailed comparison of the
results from the generalised interpolation material point and finite element
methods for this elasto-plastic collapse problem.

W.M. Coombs and C.E. Augarde

o~
o

Advances in Engineering Software 139 (2020) 102748

lo

0000000000000 O0O
O 0/0 0|0 O|O O|O O|O O|O O|O O
O 0/0 0|0 O|O O|O O|O O|O O|O O
O 0/0 0|0 O|O O|O O|O O|O O|O O
O 0/0 0|0 O|O O|O O|O O|O O|O O
O 0/0 0|0 OlO O|O O|O O|O O|O O
O 0|0 0|0 OflO O|O0 O|O O|O O|O O
O 0|0 0|0 OflO O|O0 O|O O|O O|O O
O 0|0 O|OC OflO O|O0 O|O0 O|O O|O O
O 0|0 O|OC OflO O|O0 O|O O|O O|O O
O 0/0 0|0 OlO O|O O|O O|O O|O O
O 0O/0 0|0 OlO O|O O|O O|O O|O O
0O 0/0 0|0 OlO O|O O|O O|O O|O O
O 0/0 0|0 OlO O|O O|O O|O O|O O
O 0/0 0|0 O|O O|O O|O O|O O|O O
O 0/0 0|0 O|O O|O O|O O|O O|O O
O 0/0 0|0 OlO O|O O|O O|O O|O O

Fig. 15. Elasto-plastic collapse: Initial discretisation and boundary conditions with 4 = 1 m.
O-ZZ’ J"L‘(L"
H
1
Oyy
T 1
I | i
SRR
Oy
L S T T—
max(crij)

Fig. 16. Elasto-plastic collapse: Final deformed configuration with h = 0.5 m (left) and h = 0.25 m (right) with 6 material points per grid cell coloured according to

Oxx Oyy and oy,

Table 5

Elasto-plastic collapse: Horizontal and vertical extents at the end of the ana-
lysis, where nPs denotes the number of integration or material points in each
element/cell. For the finite element analyses the g; and g, denote bi-linear and
bi-quadratic quadrilateral elements, respectively.

Horizontal extent Maximum height

Method nPs h=10 h=05 h=025 h=10 h=05 h=025
GIMPM 32 13.781 13.841 13.896 6.194 6.215 6.190
GIMPM 6> 13.773 13.832 13.882 6.256 6.240 6.213
FEM, q; 22 13.271 13.626 13.814 6.581 6.365 6.254
FEM, ¢, 3° 13.855 13.930 13.914 6.230 6.178 6.153

16

of elasto-plastic collapse it could be argued that dynamic effects would
impact on the physical process. We acknowledge this point, however
the focus of AMPLE is on quasi-static analysis. An interesting future
extension to this framework would be to dynamic problems via an
implicit or explicit time stepping procedure.

6. Conclusion

The MPM is a relatively new approach for the modelling of large
deformation solid mechanics problems and is attracting interest from a
diverse range of applications. However, those interested in exploring its
capabilities have to navigate their way through a number of challenging

W.M. Coombs and C.E. Augarde

aspects in order to understand the method and then have to turn the
understanding into code. AMPLE is software for quasi-static implicit
MPMs and has been developed to take some of the pain out of this
exploration process. It provides a robust framework in which to explore
MPMs and to develop new features appropriate for specific applica-
tions. AMPLE also provides a useful teaching tool for the MPM suitable
for graduate students and post doctoral researchers wishing to consider
using MPMs.

The code is available here [7] and more information is available on
the AMPLE web pages [8].

Acknowledgements

The development of AMPLE was supported by the Engineering and
Physical Sciences Research Council [grant numbers EP/N006054/1,
EP/MO017494/1 and EP/M000397/1]. The authors would also like to
acknowledge the input of Yun Bing, Tim J. Charlton (supported by the
Engineering and Phsyical Sciences Research Council [grant number EP/
K502832/1]), Michael Cortis, Yousef Ghaffari Motlagh and Lei Wang
who have all worked on the material point method at Durham
University and contributed to the development of AMPLE in some way.
All data created during this research are openly available at http://doi.
org/10.15128/r2f1881k91g.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.advengsoft.2019.102748.

References

[1] Bardenhagen SG, Kober EM. The generalized interpolation material point method.
Comput Model Eng Sci 2004;5(6):477-95.

Belytschko T, Liu W, Moran B. Nonlinear finite elements for continua and struc-
tures. John Wiley & Sons; 2000.

Bing Y, Cortis M, Charlton T, Coombs W, Augarde C. B-spline based boundary
conditions in the material point method. Comput Struct 2019;212:257-74.
Brackbill JU, Ruppel HM. FLIP - A Method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions. J Comput Phys 1986;65:314-43.
Charlton TJ, Coombs WM, Augarde CE. iGIMP: an implicit generalised interpolation
material point method for large deformations. Comput Struct 2017;190:108-25.
Coombs WM. Finite deformation of particulate geomaterials: frictional and aniso-
tropic critical state elasto-plasticity. Durham University; 2011.

Coombs W.M. AMPLE: a material point learning environment (GitHub code).
2019a. Accessed 22/07/2019; https://github.com/wmcoombs/AMPLE.

Coombs W.M.. AMPLE: a material point learning environment (project webpages).
2019b. Accessed 22/07/2019; https://wmcoombs.github.io/.

Coombs WM, Augarde CE, Brennan AJ, Brown MJ, Charlton TJ, Ghaffari Motlagh Y,
et al. On Lagrangian mechanics and the material point method for large deforma-
tion elasto-plasticity. Comput Methods Appl Mech Eng 2020;358:112622.

Coombs WM, Charlton TJ, Cortis M, Augarde CE. Overcoming volumetric locking in
material point methods. Compt Methods Appl Mech Eng 2018;333:1-21.

[2]
[3]

[4

=

[5

o

[6]
[71
[8]
[9]

[10]

17

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]
[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

Advances in Engineering Software 139 (2020) 102748

Coombs WM, Crouch RS, Augarde CE. 70-line 3D finite deformation elastoplastic
finite-element code. In: Benz T, Nordalm S, editors. 7th European Conference on
Numerical Methods in Geoetchnical Engineering (NUMGE). Trondheim, Norway.
2010. p. 151-6.

Cortis M, Coombs WM, Augarde CE, Brown MJ, Brennan A, Robinson S. Imposition
of essential boundary conditions in the material point method. Int J Numer Methods
Eng 2017;113(1):130-52.

Gu XY, Dong CY, Li JL, Liu ZY, Xu JY. MPM Simulations of high-speed and ultra
high-speed machining of titanium alloy (ti-6A1-4V) based on fracture energy ap-
proach. Eng Anal Bound Elements 2015;59:129-43.

Guilkey JE, Weiss JA. Implicit time integration for the material point method:
quantitative and algorithmic comparisons with the finite element method. Int J
Numer Methods Eng 2003;57(9):1323-38.

Harlow F. The particle-in-cell computing method for fluid dynamics. Methods
Comput Phys 1964;3(319-343).

Kakouris EG, Triantafyllou SP. Phase field material point method for brittle frac-
ture. Int J Numer MethodsEng 2017;112(12):1750-76.

Kim D-N, Monténs F, Bathe K. Insight into a model for large strain anisotropic
elasto-plasticity. Comput Mech 2009;44(5):651-68.

Klar G, Gast T, Pradhana A, Fu C, Schroeder C, Jiang C, et al. Drucker-Prager
elastoplasticity for sand animation. ACM Trans Graph 2016;35(4). 103:1-103:12.
Lee EH. Elastic-plastic deformation at finite strains. J Appl Mech 1969;36:1-6.
Lee EH, Lu DT. Finite-strain elastic-plastic theory with application to plane-wave
analysis. J Appl Phys 1967;38:19-27.

Ma J, Wang D, Randolph MF. A new contact algorithm in the material point method
for geotechnical simulations. Int J Numer Anal Methods Geomech
2014;38(11):1197-210.

Molstad T. Finite deformation analysis using the finite element method. University
of British Columbia; 1977.

Nairn JA. Material point method calculations with explicit cracks. Comput Model
Eng Sci 2003;4(6):649-63.

Remmerswaal G. Development and implementation of moving boundary conditions
in the material point method. TU Delft; 2017.

Sadeghirad A, Brannon RM, Burghardt J. A convected particle domain interpolation
technique to extend applicability of the material point method for problems in-
volving massive deformations. Int J Numer Methods Eng 2011;86(12):1435-56.
Sadeghirad A, Brannon RM, Guilkey JE. Second-order convected particle domain
interpolation (CPDI2) with enrichment for weak discontinuities at material inter-
faces. Int J Numer Methods Eng 2013;95(11):928-52.

Sheng D, Nazem M, Carter JP. Some computational aspects for solving deep pe-
netration problems in geomechanics. Comput Mech 2009;44(4):549-61.

Simo J. Algorithms for static and dynamic multiplicative plasticity that preserve the
classical return mapping schemes of the infinitesimal theory. Comput Methods Appl
Mechanics Eng 1992;99:61-112.

Soga K, Alonso E, Yerro A, Kumar K, Bandara S. Trends in large-deformation ana-
lysis of landslide mass movements with particular emphasis on the material point
method. Géotechnique 2016;66(3):248-73.

Stomakhin A, Schroeder C, Chai L, Teran J, Selle A. A material point method for
snow simulation. ACM Trans Graph 2013;32(4). 102:1-102:10.

Sulsky D, Chen Z, Schreyer HL. A particle method for history-dependent materials.
Comput Methods Appl Mech Eng 1994;118(1):179-96.

Sulsky D, Kaul A. Implicit dynamics in the material-point method. Comput Methods
Appl Mech Eng 2004;193:1137-70.

Trefethen L. Ten digit algorithms. Tech. Rep.. Numerical Analysis Report 05/13,
Oxford University; 2005.

Ye Z, Zhang X, Zheng G, Jia G. A material point method model and ballistic limit
equation for hyper velocity impact of multi-layer fabric coated aluminum plate. Int
J Mech Mater Des 2018;14(4):511-26.

Yerro A, Alonso EE, Pinyol NM. The material point method for unsaturated soils.
Géotechnique 2015;65(3):201-17.

https://github.com/wmcoombs/AMPLE
https://wmcoombs.github.io/
http://doi.org/10.15128/r2f1881k91g
http://doi.org/10.15128/r2f1881k91g
https://doi.org/10.1016/j.advengsoft.2019.102748
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0001
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0001
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0002
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0002
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0003
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0003
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0004
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0004
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0005
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0005
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0006
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0006
https://github.com/wmcoombs/AMPLE
https://wmcoombs.github.io/
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0007a
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0007a
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0007a
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0007
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0007
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0010
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0010
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0010
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0011
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0011
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0011
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0012
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0012
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0013
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0013
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0014
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0014
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0016
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0017
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0017
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0018
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0018
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0018
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0020
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0020
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0021
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0021
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0024
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0024
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0029
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0029
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0031
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0031
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0031
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0032
http://refhub.elsevier.com/S0965-9978(19)30464-8/sbref0032

	AMPLE: A Material Point Learning Environment
	Introduction
	Material point learning curve
	Development principles
	Paper layout

	Material point formulation
	Finite deformation mechanics
	Constitutive formulations & stress updating
	Discrete material point formulation

	Implementation aspects
	Basis functions
	Standard interpolation
	Generalised interpolation

	Boundary conditions
	Non-linear solution procedure
	Position and domain updating
	Computational procedure

	Code structure
	Function format
	Data structures

	Demonstration cases
	Convergence: Compaction under self weight
	Visualisation: Large deformation elastic beam
	Material model: Elasto-plastic collapse

	Conclusion
	Acknowledgements
	Supplementary material
	References

