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Abstract 

Thermally activated delayed fluorescence (TADF) has revolutionized the field of organic light 

emitting diodes owing to the possibility of harvesting non-emissive triplet states and 

converting them in emissive singlet states. This mechanism generates a long-lived delayed 

fluorescence component which can also be used in sensing oxygen concentration, measuring 

local temperature, or on imaging. Despite this strong potential, only recently TADF has 

emerged as a powerful tool to develop metal-free long-lived luminescent probes for imaging 

and sensing. The application of TADF molecules in aqueous and/or biological media requires 

specific structural features that allow complexation with biomolecules or enable emission in 

the aggregated state, in order to retain the delayed fluorescence that is characteristic of these 

compounds. Herein we demonstrate a facile method that maintains the optical properties of 

solvated dyes by dispersing TADF molecules in nanoparticles. TADF dye -doped silica 

nanoparticles are prepared using a modified fluorescein fluorophore. However, the strategy 

can be used with many other TADF dyes. The covalent grafting of the TADF emitter into the 

inorganic matrix effectively preserves and transfers the optical properties of the free dye into 

the luminescent nanomaterials. Importantly, the silica matrix is efficient in shielding the dye 

from solvent polarity effects and increases delayed fluorescence lifetime.  The prepared 

nanoparticles are effectively internalized by human cells, even at low incubati on 

concentrations, localizing primarily in the cytosol, enabling fluorescence microscopy imaging at 
low dye concentrations. 
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Introduction 

Fluorescence imaging and sensing methodologies have met a rapid growth in recent years and 

are increasingly gaining importance in detection and quantification of analytes due to their 

cost-effectiveness and notable sensitivity.1,2 However, these techniques are affected by 

nonspecific and nonnegligible signals due to autofluorescence and light-scattering phenomena, 

which limit signal-to-noise ratio and resolution.3 Time-gated acquisition using long-lived 

luminescence has been proven as an effective strategy to eliminate background and scattering 

interference. However, typical long-lived probes include phosphorescent transition-metal and 

lanthanide complexes that pose toxicity, stability and availability problems. 3 Therefore, 

developing metal-free emitters with long-lived luminescence is of great scientific and 

technological relevance. Small-molecule organic luminophores are particularly interesting 

candidates due to their established chemistry, scalability, and tunable physicochemical and 

biological properties. Amongst these, thermally activated delayed fluorescence (TADF) 

emitters have recently emerged as a powerful tool in the development of energy efficient 

organic light-emitting diodes (OLEDs).4-6 These emitters display both conventional fluorescence 

- lifetime in the nanosecond range - and delayed fluorescence - lifetime ranging from micro- to 

milliseconds-, which result from the up-conversion of triplet states due to thermally-activated 

reversed intersystem crossing (RISC) from the triplet excited state (T1) to the singlet excited 

state (S1). Due to these two distinct emission lifetimes, TADF emitters are particularly 

interesting as optical probes, since they allow time-resolved and ratiometric detection with 

high signal-to-noise ratio without requiring transition-metal complexes.7 Furthermore, the 

thermal activation of the RISC process grants these dyes the ability to optically measure 

temperature. However, despite these attractive properties, TADF emitters are so far rarely 

used in imaging and sensing applications in biological media, mainly due to their poor solubility 

and weak performance in water. In fact, TADF molecules rarely show strong luminescence in 

polar medium due to their charge transfer properties.6 To overcome these limitations, several 

strategies have been recently tested.7-12 For example, the complexation of TADF emitters with 

biomacromolecules7 protects the dye from oxygen quenching, enhances the delayed emission 

and enables cell penetration. However, this approach relies on specific host-guest interactions 

and cannot be generalized to most TADF molecules. The precipitation of dyes into hydrophobic 

aggregates8-10 has also been shown as a viable approach to achieve TADF emission i n aqueous 

media, but the addition of amphiphilic agents or charged moieties is required to achieve cell 

penetration for imaging studies. Furthermore, this strategy can only be applied in TADF dyes 

that do not undergo self-quenching at high concentration or in the aggregated state and 

display aggregation-induced emission (AIE). Although several reported dyes display AIE, this 

phenomenon usually results in a change in the emission wavelength to lower energies, and is 

often accompanied by low quantum efficiencies and a decrease in delayed emission lifetime.8-

11 The most generalizable approach thus far proved to be the inclusion of native TADF emitters 

in vesicle-like structures of modified lipids, resulting in optically stable and oxygen-quenching 

resistant probes.11-13 Nonetheless, this approach did not result in long delayed emission 

lifetimes that are desirable for time-resolved imaging. Therefore, methodologies that allow the 

detection of TADF in aqueous media and preserve the optical properties of the prist ine emitter 

are desirable for time-resolved optical imaging and sensing.  

Herein, we describe a method for the preparation of doped silica-based nanoparticles that 

exhibit TADF with long lifetime in aqueous media. This approach has been extensively applied 
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to conventional fluorescent dyes allowing their application in optical imaging and sensing by 

increasing their biocompatibility, enhancing emission and/or circumventing solubility 

problems,14-16 but to the best of our knowledge has never been successfully  used with TADF 

emitters. Silica was selected due to its proven good dye encapsulation and stabilization and 

biocompatibility in live cell fluorescence imaging.17-19 
 

 

Experimental 

 

Materials and Synthesis 

Tetraethyl orthosilicate (TEOS, > 99%), (3-aminopropyl) triethoxysilane (APTES), acetophenone, 

4’-acetyl-benzoic acid, thionyl chloride and aqueous ammonium hydroxide (28 wt %; NH4OH) 

were purchased from Sigma Aldrich. 2,7–dichlorofluorescein, hexamethylenetetramine and 

piperidine were purchased from TCI Europe. 1,3,5-trioxane was purchased from Fluka. 2-

[methoxy(polyethylene)9-12propyl]trimethoxysilane was purchased from Fluorochem. Absolute 

ethanol (EtOH) was purchased from Fisher Chemical. Deionized water purified using a 

Millipore Milli-Q system to a resistivity of 18.2 MΩ was used throughout the experiments 

unless otherwise stated. Argon (Ar) gas (Alphagaz 1, 99,999%) was purchased from Air Liquid.  

Reagents and solvents used in synthesis were all analytical grade. All the reactions were 

carried out in dry conditions under inert atmosphere. Solvents were degassed by standing with 
4 Å molecular sieves for 48 hours.20  

NMR Spectroscopy  

1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz respectively using a Bruker 

Avance III 400 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany)  in CDCl3, DMSO-d6 
or D2O, referenced to the solvent for both proton and carbon spectra.  

Electron Microscopy 

Scanning Electron Microscopy (SEM) images were obtained for vacuum dried nanoparticles 

deposited in silicon wafer substrate and coated with gold layer ( 5 nm thickness) with an 

acceleration voltage of 2 kV and aperture size of 30 μm. The size distribution was determined 
by measuring a minimum of 100 individual particles. 

Transmission Electron Microscopy (TEM) images were obtained with a Hitachi 8100 electron 

microscope operating at 200 kV and 20μA. The SiNPs samples were dispersed in ethanol, 

sonicated and drop-casted onto Formvar-coated copper grids. The dry nanoparticle size was 
estimated by measuring the average diameter of 100 nanoparticles by using ImageJ software.  

Optical Spectroscopy 

Absorption and reflectance spectra were collected using a Shimadzu UV -3600 double beam 

spectrophotometer. Reflectance spectra were obtained for silica nanoparticles dispersed in 

BaSO4. Emission spectra were collected in a Jobin Yvon Fluorolog fluorescence spectrometer, 

respectively. Emission is independent of excitation wavelength. The luminescence 

temperature dependence measurements were acquired using a model liquid nitrogen cryostat 

(Janis Research). Fluorescence decays of dyes were measured by the single-photon timing 
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method using nanoLED (IBH) excitation at 373 nm, with 500 ps pulse width. The electronic 

start pulses are shaped in a constant fraction discriminator (Canberra 2126) and directed to a 

time to amplitude converter (TAC, Canberra 2145). Emission wavelength (450 nm) is selected 

by a monochromator (Oriel 77250) imaged in a fast photomultiplier (9814B Electron Tubes 

Inc.), the PM signal is shaped as before and delayed before entering the TAC as stop pulses. 

The analogue TAC signals are digitized (ADC, ND582) and stored in a PC. For luminescent 

nanoparticles, fluorescence decays were measured by the single-photon timing method with 

laser excitation (365 nm) and emission at 550-620 nm. The setup consisted of a diode-pumped 

solid state (DPSS) continuous wave green Nd:YVO4laser (Millennia Xs, Spectra Physics) that 

pumped a mode locked Ti:sapphire laser (Tsunami, Spectra Physics, with tuning range 700–

1000 nm, output pulses of 100 fs, and 80 MHz repetition rate that can be reduced down to 4 

MHz by a pulse picker) or mode locked DPSS Nd:YVO4green laser (Vanguard 2000-

HM532,Spectra Physics) synchronously pumping two cavity dumped dye lasers (701, Coherent, 

delivering 3–4 ps pulses of about 40 nJ/pulse at 3.4 MHz) working with rhodamine 6G and 

DCM. Intensity decay measurements were made by an alternating collection of impulses and 

decays with the emission polarizer set at the magic angle position. Impulses were recorded 

slightly away from the excitation wavelength with a scattering suspension, thus defining the 

instrument response function (IRF). Particle samples were prepared either as suspensions in 

solvent (0.1-0.5 % w/v) or immobilized in quartz plates using zeonex (20% in toluene) as 

binder.  

Temperature dependent time-resolved emission spectra were focused onto a spectrograph 

and detected on a sensitive gated iCCD camera (Stanford Computer Optics) with sub-

nanosecond resolution. Solutions were prepared with concentrations in the 10 -5-10-4 M range 

in different solvents, and samples were degassed using 5 freeze-pump-thaw cycles or bubbling 

Argon for 1 hour. Films for optical characterization were prepared in zeonex or 

poly(vinylalcohol) matrix by drop-casting onto a quartz substrate with an emitter 

concentration of 1% (w/w). Prompt fluorescence quantum yields (ϕPF) were determined using 

the standard method for free dye (vs rhodamine B), and with an integrating sphere for 

luminescent nanomaterials. Delayed fluorescence quantum yields (ϕDF) were determined in 

two different ways depending on the degree of oxygen quenching. In systems where the 

delayed emission was completely quenched by oxygen, ϕDF was determined using ϕPF as 

internal reference and the ratio of integrated areas of luminescence spectra acquired with and 

without oxygen, as given by equation 1, where Idegassed and Iaerated are the integrated spectra on 

a wavelength scale:  

𝜙𝐷𝐹 = 𝜙𝑃𝐹 (
𝐼𝑑𝑒𝑔𝑎𝑠𝑠𝑒𝑑

𝐼𝑎𝑒𝑟𝑎𝑡𝑒𝑑
−1)        (1) 

Where air equilibrated samples at room temperature showed delayed emission, ϕF was 

determined in degassed conditions at ca. 80 K (LT) where only prompt fluorescence is 

observed, and 298 K (RT), where both prompt and delayed fluorescence are observed. ϕDF was 

estimated using the ratio of integrated spectra acquired at both temperatures, as given by 
equation 2: 

𝜙𝐷𝐹 = 𝜙𝐹 (
𝐼𝐿𝑇

𝐼𝑅𝑇
−1)         (2) 

where ILT and IRT are the integrated spectra on a wavelength scale. Equation 2 is valid only if 

the variation of the radiative and internal conversion rates with temperature can be neglected, 

in this case the 𝜙𝐷𝐹 𝜙𝑃𝐹⁄  ratio varies only due to the TADF contribution. To evaluate whether 
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this is a reasonable assumption in our case, the prompt-fluorescence lifetime, τPF, was 

measured at 80 K and 298 K. No significant variation was observed, confirming that 𝜙𝑃𝐹  can be 

taken in a good approximation as temperature independent.  A strong indication that any 

variation observed in 𝜙𝐷𝐹 𝜙𝑃𝐹⁄  is mostly due to the variation on the TADF contribution with 

temperature is obtained from Fig. S10. The PF decay of compound 4 in PVA shows no variation 

with temperature, whereas the DF component shows a pronounced variation, decreasing at 

low temperatures. Delayed fluorescence decays were measured in a Jobin Yvon Fluorolog 

fluorescence spectrometer with a pulsed xenon lamp with full-width at half-maximum of 3 μs. 

Decays were collected with a minimum 100 µs delay to remove any interference from the 
lamp. 

Triplet formation quantum yields were determined using the singlet depletion method with 

benzophenone as standard (εT = 5750 M-1cm-1, ΦT =1) with a flash photolysis setup composed 

of a LKS 60 ns laser photolysis spectrometer from Applied Photophysics, with a Brilliant Q-

Switch Nd:YAG laser from Quantel, using the third harmonics (λex = 355 nm, laser pulse half-

width equal to 6 ns). First-order kinetics were observed for the decay of the lowest triplet state 

(T–T annihilation was prevented by the low excitation energy and/or low optical density at 
excitation wavelength, A355nm ≤0.1).  

The transient spectra were obtained with the same apparatus by monitoring the optical 

density change at intervals of 10 nm over the 300–600 nm range and averaging at least 32 
decays at each wavelength.  

Dynamic Light Spectroscopy (DLS) was carried out on a Horiba nanoPartica SZ-100V2 

Nanoparticle Analyzer. Nanomaterials were suspended in water (1 mg/mL) and the analysed 

samples were prepared by diluting the stock suspensions (1:100). Measurements were carried 

out at 90° scattering angle on quartz cuvettes at 25 °C. All tests were run six times for 30 

seconds and the average values were presented and particle size was calculated by fitting the 
correlation curves using solver mathematical software from the Stokes-Einstein equation. 

ζ-potential values were determined by laser doppler electrophoresis technique (SZ-100 

nanopartica, Horiba). The Smoluchowski approximation was applied. For each sample the 
mean value of three determinations was established.  

 

 

Live cell imaging 

HeLa cell line (European Collection of Authenticated Cell Cultures, ECACC) were cultured in 

DMEM (ThermoFisher Scientific) supplemented with 10% fetal bovine serum (FCS) (GIBCO) and 

1% of penicillin-streptomycin (Sigma Chemical Co., St. Louis, MO) at the incubator with 

controlled temperature (37 ˚C), humidity and CO2 levels (5%). For confocal and two-photon 

excitation microscopic studies, the cells were grown on Ibidi µ-Slide 8 well glass bottom with 

an initial density of 1×104 cells per well. After cell confluency reached ~70%, 6.25-100 µg/mL of 

SiNPs and PEG-SiNPs or 0.75-200 µM of 4 were added separately in two different sets of 

experiments and maintained/cultured for a period of 0.5-24 h. After the desired incubation 

time, cells were carefully washed with DPBS (Thermo Fisher Scientific) and labelled with WGA-

Alexa Fluor 633 and Hoechst 33342 according with instructions of the supplier (Thermo Fisher 

Scientific, Plasma Membrane and Nuclear Labeling dyes). A final washing step with DPBS was 
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also included. The cells were imaged using a laser scanning confocal microscope (Leica TCS-

SP5) equipped with a continuous Ar-ion, HeNe and a Ti:sapphire laser. Hoechst 33342 dye 

emission was collected from 400 to 500 nm, WGA – Alexa Fluor 633 emission was collected 

from 640 to 700 nm and nanoparticle emission was collected from 500 to 600 nm. A 63x (1.2 

N.A.) water immersion objective was used in the experiments.  

Quantification analysis was carried out using the ImageJ software (version 1.48, 

http://imagej.nih.gov/ij/). For each image, individual cells are selected using membrane 

staining with WGA-Alexa 633, and a mask is attributed to each cell. The total fluorescence 

signal in the nanoparticle channel (500-600 nm) was integrated for cells incubated with and 

without (autofluorescence) nanoparticles, in order to determine the concentration dependent 

intracellular nanoparticle fluorescence signal and the fraction of cells that exhibit nanoparticle 

internalization. Number of cells analyzed per condition > 40. 

MTT Tetrazolium Assay 

The effect of the synthesized NPs on cell metabolic activity was determined by MTT [3-(4,5-

dimethylthiazol-2-yl-2,5-tetrazolium bromide)] assay previously described.21 Briefly, HeLa cells 

were plated at a density of 2×104 cells per well into the 96-well plate and cultured for 24 h at 

37 ˚C in 5% CO2 atmosphere. Then, the synthesized NPs at different concentrations (0– 200 

µg/mL) were added in duplicate and incubated for additional 24 h. After the incubation period, 

media was carefully replaced with 100 µl of fresh complete media without disturbing cell 

contents followed by addition of 20 µl of MTT solution (5 mg/ml) and incubated for 3-4 h. 

Finally, the formazan crystals formed in the wells were dissolved using 150 µl of MTT solvent 

and the absorbance was read at 590 nm using a microplate reader (bmg labtech 96 Spectrostar 

Nano). 

 

Dye and Particle Synthesis 

 

Dichlorofluorescein dialdehyde (1) 

The synthesis of compound 1 was carried out using a modified procedure from literature.22 

To a solution of dichlorofluorescein (5 g, 12.5 mmol) in trifluoroacetic acid (25 mL), urotropine 

(8.75 g, 62.5 mmol) was added. The solution was stirred at 90 °C for 16 hours. To the resulting 

slurry, acetic acid (120 mL) and water (80 mL) were added and the mixture was stirred at room 

temperature for 24 hours, after which a red solid precipitated. The solid was filtered off and 

washed with water (50 mL) three times. The solid (4.2 g, 73%) was dried under reduced 

pressure and was used in the subsequent reactions without further purification. For analytical 
purposes, the orange solid was recrystallized from dichloromethane/DMSO mixture.  

1H NMR (400 MHz, DMSO-d6) δ 10.71(s, 2H, Ar-CHO), 8.05 (d, J = 7.4 Hz, 1H, C6’-H), 7.85 (t, J = 

7.4 Hz, 1H, C4’-H), 7.78 (t, J = 7.4 Hz, 1H, C5’-H), 7.39 (d, J = 7.6 Hz, 1H, C3’-H), 7.26 (s, 2H, C1-H 
and C8-H). EA calc. for (C22H10Cl2O7·0.3 CH2Cl2): C 55.49, H 2.21; found: C 55.87, H 2.35. 

 

4-acetyl-N-(3-(triethoxysilyl)propyl)benzamide (2) 
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To a solution of 4-acetylbenzoic acid (2g, 12 mmol) in dry chloroform (30 mL), thionyl chloride 

(5 mL) was added dropwise. The solution was refluxed under reduced pressure while stirring 

for 16 hours. After cooling to room temperature, dichloromethane (100 mL) was added to the 

reaction mixture and the solution was washed with water (20 mL) until no gas evolution was 

observed. The organic phase was washed with aqueous 1% NaHCO3 solution (2 x 50 mL) and 

brine (50 mL) and dried with anhydrous MgSO4. The solvent was removed by rotatory 

evaporation to yield 1.8 g (81%) of 4-acetylbenzoyl chloride as a pale yellow liquid, which was 

used in subsequent reactions without further purification.  

To 0.55 g (3 mmol) of 4-acetylbenzoyl chloride in dry dichloromethane (10 mL), a solution of 

diisopropylethyl amine (0.78 g, 6 mmol) and 3-(aminopropyl)triethoxysilane (0.66 g, 3 mmol) in 

dry dichloromethane (20 mL) was added dropwise at 0 ˚C. The mixture was stirred under inert 

atmosphere at room temperature for 8 hours. Dichloromethane (100 mL) was then added and 

the solution was washed with aqueous 5% HCl (3 x 30 mL) and brine (50 mL) and dried with 

MgSO4. The solvent was removed by rotatory evaporation to yield 0.72 g (71%) of compound 2 

as a colorless liquid.  

1H NMR (400 MHz, CDCl3) δ (ppm): 8.02 (d, J = 8.0 Hz, 2H, C2-H and C6-H), 7.89 (d, J = 8.1 Hz, 

2H, C3-H and C5-H), 6.68 (bs, 1H, CONH), 3.85 (q, J = 7.0 Hz, 6H, Si-O-CH2-CH3), 3.51 (q, J = 5.8 

Hz, 2H, CH2-CH2-CH2-Si), 2.66 (s, 3H, Ar-COCH3), 1.80 (m, 2H, CH2-CH2-Si), 1.24 (t, J = 6.9 Hz, 9H, 

Si-O-CH2-CH3), 0.74 (t, J = 7.8 Hz, 2H, CH2-Si). 13C NMR (133 MHz, CDCl3) δ (ppm): 139.9, 138.0, 

129.1, 127.0, 56.2, 43.7, 27.1, 25.0, 18.0, 12.5. EA calc. for (C18H29NO5Si·CHCl3): C 46.87, H 6.21, 
N 2.88; found: C .94, H 6.04, N 2.75. 

4,5-di(4’-(N-3-(triethoxysilyl)propyl)amide)phenylprop-2-enone)-2,7-dichloro-fluorescein (3) 

To a solution of compound 2 (0.23 g, 0.6 mmol) in dry ethanol (10 mL), compound 1 (0.1 g, 0.2 

mmol) and dry piperidine (0.16 g, 2 mmol) were added. The reaction mixture was refluxed and 

stirred under inert atmosphere for 2 hoursa. After cooling down to room temperature, the 

solvent was partially removed by rotatory evaporation and diethylether (50 mL) was added. 

The precipitate was filtered off, washed with diethyl ether (3x50 mL) and purified by column 

chromatography using ethanol/chloroform (2:8) as eluentb. Compound 3 was obtained as a 
dark-red solid (0.14 g, 60%). 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.56 (d, J = 14.2 Hz, 2H, Ar-CH=CH), 8.47 (d, J = 14.2 Hz, 

2H, Ar-CH=CH), 7.98 (bs, 1H, C6’-H), 7.89 (d, J = 7.2 Hz, 4H, C2’’-H and C6’’-H), 7.74 (s, 2H, CONH), 

7.66 (d, J = 7.2 Hz, 4H, C3’’-H and C5’’-H) 7.51 (bs, 3H, C3’-H, C4’-H and C5’-H), 7.29 (bs, 1H, C3’-

H), 6.99 (s, 2H, C1-H and C8-H), 3.69 (q, J = 6.4 Hz, 12H, Si-O-CH2-CH3), 3.22 (t, J = 7.0 Hz, 4H, 

CH2-CH2-CH2-Si), 1.59 (m, 4H, CH2-CH2-Si), 1.07 (t, J = 6.4 Hz, 18H, Si-O-CH2-CH3), 0.55 (t, J = 8.5 

Hz, 4H, CH2-Si). 13C NMR (400MHz, DMSO-d6) δ (ppm): 189.1, 173.1, 156.2, 142.2, 137.2, 

133.0, 129.6, 128.9, 128.0, 120.5, 118.7, 114.7, 110.3, 109.7, 58.1, 56.4, 43.9, 25.3, 19.3, 18.7, 

7.54. EA calc. for C58H64Cl2N2O15Si2·-C12H30O3)c: C 59.16, H 3.67, N 3.00; found: C 59.65; H 3.81; 

N 2.85. 

                                                                 
a
 After 2 hours the reaction is only partially complete. However, longer reaction times resulted in silane condensation, leadin g to 

the formation of an insoluble red solid.  
b
 Ethanol was used in place of methanol in the eluent is necessary to prevent silane condensation during silica -gel column 

chromatography. 
c Upon drying compound 3 undergoes rapid condensation through silane moieties, with consequent elimination of ethoxy groups.  
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4,5-di(phenylprop-2-enone)-2,7-dichloro-fluorescein (4) 

The synthesis of compound 4 was carried out using a modified procedure from the literature.22 

To a solution of acetophenone (0.36 g, 3 mmol) in dry ethanol (50 mL), dry piperidine (0.26 g, 3 

mmol) and compound 1 (0.55 g, 1.2 mmol) were added. The mixture was refluxed and stirred 

under inert atmosphere for 16 hours. After cooling to room temperature, the solvent was 

removed by rotatory evaporation to obtain a dark red viscous liquid. To this mixture, diethyl 

ether (200 mL) was added and a dark solid precipitated off. The solid was filtered off and 

washed with diethyl ether (3x100 mL). The crude product was purified by silica-gel column 

chromatography using methanol/chloroform (1:9) as eluent, to yield 0.15 g (30 %) of 
compound 4 as a red solid.  

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.77 (d, J = 15.0 Hz, 2H, Ar-CH=CH), 8.40 (d, J = 15.0 Hz, 

2H, Ar-CH=CH), 8.20 (d, J = 7.3 Hz, 1H, C6’-H), 7.92 (d, J = 8.0 Hz, 4H, C2’’-H and C6’’-H), 7.55 – 

7.42 (m, 9H, C3’-H, C4’-H, C5’-H, C3’’-H, C4’’-H and C5’’-H), 6.83 (s, 2H, C1-H and C8-H). 13C NMR 

(400MHz, DMSO-d6) δ 190.2, 173.2, 172.5, 155.9, 139.1, 135.3, 134.0, 132.8, 131.2, 130.2, 

129.2, 129.0, 128.4, 127.1, 121.7, 110.6, 109.3. EA calc. for C38H22Cl2O7·CHCl3: C 59.99, H 2.97; 

found C 59.62, H 3.05.  

Dye-doped silica nanoparticles (SiNPs) 

Silica nanoparticles were prepared according to literature procedures, by a modified Stöber 

method.23 At room temperature, water (9 mL), ethanol (83 mL) and aqueous ammonia solution 

(28 %, 1.5 mL) were mixed in a 250 mL polypropylene flask. The flask was submerged in an oil 

bath at 50 °C. When the reaction temperature reached a stable temperature of 44  °C, a 

mixture of TEOS (4.5 mL, 20 mmol) and compound 3 (3 mL, 5.5 mg/mL in ethanol) was added 

dropwise to the above solution and the reaction proceeded at 44  °C for 24 hours. Thereafter, 

the particles were collected by centrifugation (30 000 g, 15 min), and washed once with 

ethanol/water 1:1 and thrice with ethanol. The resultant pink pellet was dried in vacuum 
overnight to obtain dye-doped silica nanoparticles in powder form (1.11 g). 

 

Dye-doped PEGylated silica nanoparticles (PEG-SiNPs) 

PEG-modified SiNPs were prepared according to the previously described procedure. In brief, a 

mixture composed of water (2 mL), ethanol (18.4 mL) and aqueous ammonia solution (28 %, 

0.33 mL) were mixed in a 250 mL polypropylene flask and allowed to reach a stable 

temperature of 44  °C. Separately, 0.65 mL of a 5.5 mg/mL ethanolic solution of compound 3, 

were mixed with TEOS (1 mL, 4.4 mmol) and 2-[methoxy(polyethylene)9-

12propyl]trimethoxysilane (0.32 mL, 0.66 mmol). This mixture was added dropwise to the 

above solution and the reaction proceeded at 44 °C for 24 hours. The gel was centrifuged (10 

000 rpm, 10 min) and then washed with ethanol three times, followed by drying in vacuum 

overnight. The presence of PEG attached on the silica was verified using nuclear magnetic 

resonance spectroscopy (NMR).23 An incorporation of 0.564 mmol/g of particles were 
calculated by NMR with 1,3,5-trioxane as internal standard (singlet at δ = 5.18 ppm). 

 

Results and Discussion 
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TADF-emitting silica nanoparticles (SiNPs), were prepared by chemical derivatization of a 

known emitter with silane moieties. A recently reported fluorescein derivative was selected for 

its known TADF emission properties and easily addressable chemistry that allows 
functionalization for nanoparticle doping (Scheme 1).22  

 

 

 

Scheme 1 Synthetic pathway for the preparation of TADF emitting fluorescein derivatives  

 

Conditions: i ) hexamethylenetetramine, tri fluoroacetic acid, acetic acid; ii) thionyl  chloride, chloroform; i ii) (3-

aminopropyl)triethoxysilane, dichloromethane; iv) piperidine in ethanol 

 

The synthesis of this dye (3) is achieved in three steps. Initially, 2,7-dichlorofluorescein is 

formylated via a Duff reaction. In parallel, a triethoxysilane moiety is appended to an 

acetophenone derivative. Finally, the acetophenone is then conde nsed via a Knœvenagel 

reaction. In order to compare the optical properties of SiNPs with those of the free dye and 

determine the effects of dye-grafting in the photophysics, a non-silanized analog (4) was also 
prepared using the same synthetic procedure. 

SiNPs were prepared using a modified Stöber process from tetraethoxysilane  and 3 in water.23 

Evident from TEM image analysis (Figure 1), silica nanospheres (Stöber) with ca. 35 nm in 
diameter were obtained. 
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Figure 1 TEM image (a) and size distribution (b) of prepared SiNPs doped with compound 3. (ø = 35 nm, 

scale bar = 100 nm) 

The optical properties of the prepared SiNPs and compound 4 were characterized using 

steady-state and time-resolved absorption and emission spectroscopy. Figure 2 depicts the 

normalized emission spectra of the SiNPs in water and of 4 in water and ethanol, which 

evidence the effect of the silica matrix on the photophysical properties of the dye. While the 

emission maximum of compound 4 is centered at ca. 530 nm, consistent with the emission of 

phenylenone fluorescein derivatives in water,22 the emission maxima of the prepared particles 

is shifted to lower energies, similar to the emission spectra of 4 in ethanol and other less polar 

organic solvents (Supplementary Material, Figure S6). Furthermore, the emission maximum 

centered at 585 nm for the SiNPs is consistent with a homogeneous dispersion of the dye in 

the silica matrix, as the aggregation shifts the emission to even longer wavelengths (ca. 660 

nm, Supplementary Material, Figure S8). The contribution of an emission appearing at 530 nm 

as a shoulder in the SiNPs spectrum can be attributed to the outermost dyes that are in 

contact with water. 

To evaluate the effect of dye-doping silica in the delayed emission properties, time-resolved 

emission spectra were collected. Since the delayed fluorescence of these fluorescein 

derivatives is not detectable in water,7,22 the prompt and delayed fluorescence spectra of 4 

were collected in ethanol for comparison. Figures 3a and 3b show the time -resolved spectra of 

the prepared SiNPs dispersed in water and compound 4 dissolved in ethanol, respectively. It is 

clear that, in both cases, the presence of oxygen in the sample greatly decreases the delayed 

component of the emission, demonstrating that the silica matrix of the SiNPs is permeable to 

gasses and is not effective at preventing oxygen quenching of excited triplet states. 

Nonetheless, grafting to the silica matrix significantly increases the delayed emission lifetime, 

as evidenced by the emission decays depicted in insets of Figure 3. Whereas compound 4 

exhibits a delayed fluorescence lifetime of ca. 0.11 ms in ethanol, SiNPs suspended in water 

exhibit a lifetime ca.  10 times longer (τDF = 1.20 ms), similar to that of compound 4 in solid film 
(Supplementary Material, Figure S11).  
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Figure 2 Normalized steady-state emission spectra of SiNPs (red lines) and compound 4 (black l ines) in 

water and ethanol. 

 

 

Figure 3 Time-resolved spectra of a) SiNP dispersed in water and b) compound 4 dissolved in ethanol. 

Delay = 0.1 ms, Integration = 2 ms. Insets show normalized emission decays in degassed conditions.  

These results suggest that the grafting of the dye reduces the non-radiative decay pathway by 

restricting molecular vibrations, which is desirable for time-resolved imaging applications. 

Thus, this strategy effectively enables detection of TADF in aqueous media, where the SiNPs 

are suspended. Table 1 summarizes the effects of dye grafting in the photophysical properties, 

regarding prompt (ϕPF) and delayed (ϕDF) fluorescence quantum yields, lifetime (τPF and τDF), 

and emission maxima wavelength (λem). It is evidenced that doping silica nanoparticles has an 

overall positive effect on the emissive properties of this fluorescein derivative in  aqueous 
media, with an increase in the photoluminescence quantum yield (PLQY) and τ DF. 

 

Table 1 Prompt and delayed fluorescence quantum yield (ϕPF, ϕDF), l ifetime (τPF, τDF) and wavelength 

(λPF, λDF) of SiNPs and compound 4. 
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SiNPs 0.06a 1.88 0.01 1.20 577 585 

4 
H2O 0.02b 0.19 N/D N/D 538 N/D 

EtOH 0.24b 2.48 0.04 0.11 581 582 

a) determined using an Integrating Sphere; b) determined using the comparative method against fluorescein; c)determined from 

the ratio 
𝐼𝑑𝑒𝑔𝑎𝑠𝑠𝑒𝑑

𝐼𝑎𝑒𝑟𝑎𝑡𝑒𝑑
 

 

However, the PLQY of SiNPs is significantly lower than that of compound 4 in ethanol. This 

result can be attributed to the high polarity of the silica matrix, since the optical properties of 4 

are affected by media polarity.22 To test this hypothesis, we prepared luminescent 

nanoparticles using a modified silica source bearing small polyethyleneglycol (PEG) chain 

(Scheme 2). The TEM image depicted in Figure 4 shows that changing the silica source did not 

significantly change particle morphology but resulted in an increase in size (from 35 to 73 nm). 

In addition, dynamic light scattering (DLS) measurements show that the modified silica 

nanoparticles (PEG-SiNPs) increased the absolute value of the zeta-potential compared to the 
pristine silica counterparts (-84 mV vs 38 mV, Figure S24-25). 

In principle, the presence of oligoether chains inside the silica matrix also lowers its polarity 

and enhances dye PLQY. Thus, the optical properties of PEG-SiNPs were investigated. Figure 5 

depicts the steady state and time-resolved spectra of PEG-SiNPs in water, and Table 2 
summarizes their PLQY and emission lifetime values. 

Scheme 2 Chemical structure of oligoether-modified sil ica source 

 
 

 

 

Figure 4 TEM image (a) and size distribution (b) of prepared PEG-SiNPs doped with compound 3. (ø = 73 

nm, scale bar = 100 nm) 
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Figure 5 a) Steady-state (black l ine) and time-resolved (red line) emission spectra of PEG-SiNPs in water. 

Delay = 0.1 ms, Integration = 2 ms. Inset s hows the delayed emission decay; b) time-resolved spectra 

collected before (black) and after (red) degassing. Delay = 0.1 ms, Integration = 2 ms. Inset shows the 

emission decay in both conditions. 

 

 

 

Table 2 Prompt and delayed fluorescence quantum yield (ϕPF, ϕDF), l ifetime (τPF, τDF) and wavelength 

(λPF, λDF) of PEG-SiNPs  

 ϕPF
a 

τPF 

(ns) 
ϕDF

b 
τDF 

(ms) 

λPF 

(nm) 

λDF 

(nm) 

PEG-SiNPs 0.20 2.57 0.07 1.25 599 610 

a) determined using an Integrating Sphere; b) determined from the ratio 
𝐼𝑅𝑇

𝐼𝐿𝑇
 

 

The data show that the modification of the silica matrix has a marked effect both in the PLQY 

of the grafted dye and its emission wavelength, which are consistent with a decrease in matrix 

polarity. Moreover, the PEGylated silica matrix prevents oxygen quenching and TADF is 

detected even without degassing (Figure 5b). Overall, these results show that the addition of 

the oligoether-modified siloxane in the preparation of PEG-SiNPs led to an improvement of 

their optical properties towards application in fluorescence imaging. Thus, to assess the 

applicability of the luminescent silica nanoparticles as optical probes, cytotoxicity and cell  

internalization were evaluated for immortalized human cervical cancer (HeLa) cells.  Figure 6 

shows that the cell viability, evaluated using the MTT assay, gradually decreases upon 

increasing concentration of silica nanoparticles. At concentrations above 25 µg/mL, PEG-SiNPs 

show less toxicity than their pristine silica counterparts. Confocal microscopy images were 

acquired for HeLa cell cultures incubated in the presence of SiNPs and PEG-SiNPs at 

concentrations of 6.25 - 100 µg/ml (Figures 7-9). The images evidence that the nanomaterials 

internalize after 24 hours of incubation and their emission is detectable inside the cells. 

Through selective staining of nuclei and membrane, it is shown that both pristine and 

PEGylated silica nanoparticles accumulate primarily in the cytosol. At incubation concentration 

of 100 µg/ml, corresponding to a cell viability of ca. 50%, images with excellent contrast are 

acquired for both SiNPs and PEG-SiNPs (Figure 7). Through the quantification of dye grafted 
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onto the nanoparticle matrix, a incubation concentration of 100 µg/ml corresponds to a dye 

concentration of 0.16 µM for SiNPs and 0.53 µM for PEG-SiNPs (Table S2), which is significantly 

lower than the concentration previously reported for compound 4 in fluorescence imaging (20 
µM).22 
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Figure 6 Effect of SiNPs and PEG-SiNPs on HeLa cell  viability. HeLa were treated with various 

concentrations of SiNPs (blue) and PEG-SiNPs (red) (0-200 µg/mL) during 24h. HeLa cells viability was 

measured by the MTT assay. The percentages refer to relative cell  via bility represented as percentage of 

control. Incubation time = 24 hours. 

 

 

Figure 7 Confocal microscopy images of HeLa cells incubated for 24h in the presence of SiNPs (a and b) 

and PEG-SiNPs (c and d). Images show cell  nuclei labelled with Hoechst 33342 (blue) and plasma 

membrane labelled with WGA-Alexa Fluor 633 (red). Fluorescence from TADF emitting nanoparticles is 

shown in green. The cells were incubated with NPs (100 μg/mL) for 24 hours at 37 °C. 
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At high cell viability conditions (>80%, 6.25 – 25 µg/mL) both types of nanomaterials also 

undergo efficient cell internalization, with measured fluorescence intensity proportional to 

concentration in incubation medium (Supplementary Material, Figure S27). When compared to 

the images obtained for 100 µg/mL, it is clearly evidenced that the decrease in nanoparticle 

concentration in the incubation medium leads to a significant decrease in the measured 

fluorescence (Figures 8 and 9). Nonetheless, for both pristine and modified silica nanoparticles, 

luminescence in the cytosol is easily detected, with over 50% of cells exhibiting nanoparticle 

internalization, even for incubation concentrations as low as 6.25 µg/mL, for which cytotoxicity 

levels are very low (Supplementary Material, Figure S28). Compared to compound 4, the 

grafting of the dye in pristine and modified silica improves its applicability in fluorescence 

microscopy, enabling internalization, improving optical properties and allowing its detection at 
significantly lower concentrations.22 

 

 

Figure 8 Confocal microscopy images of HeLa cells incubated for 24h in the presence of SiNPs at 

different concentrations: a) 25 µg/mL; b) 12.5 µg/mL; c) 6.25 µg/mL. Blue = cell  nucleus labelled with 

Hoechst 33342; Red = Cell membrane labelled with WGA – Alexa Fluor 633; Green = TADF emitting 

nanoparticles. The cells were incubated with SiNPs for 24 hours at 37 °C. 

 

Figure 9 Confocal microscopy images of HeLa cells i ncubated for 24h in the presence of PEG-SiNPs at 

different concentrations: a) 25 µg/mL; b) 12.5 µg/mL; c) 6.25 µg/mL. Blue = cell  nucleus labelled with 

Hoechst 33342; Red = Cell membrane labelled with WGA – Alexa Fluor 633; Green = TADF emitting 

nanoparticles. The cells were incubated with PEG-SiNPs for 24 hours at 37 °C. 

 

Conclusions 
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In conclusion, a known TADF emitter with weak emission in water was used to dope water-

dispersible silica nanoparticles with diameter below 100 nm. The dye-doping strategy proved 

successful in maintaining the optical properties of the dye in aqueous media without 

depending on host-guest complexation or aggregation induced emission phenomena. 

Furthermore, the delayed fluorescence lifetime increased over 10-fold upon inclusion in silica 

nanoparticles. The polarity of the nanoparticle matrix was tuned through the addition of a 

modified silane derivative, which resulted in a marked enhancement of the optical properties 

of the dye, leading to an increase in overall fluorescence quantum yield and enabling delayed 

fluorescence emission even in the presence of oxygen. Silica has been used extensively as a 

prime nanocarrier material for conventional fluorescent probes, and these results 

demonstrate its applicability also for developing TADF-emitting nanomaterials for time-

resolved fluorescence microscopy imaging of live-cells. We expect that this strategy can be 

generalized to a wide variety of TADF emitters and, thus, pave the way for further 

development in time-resolved biological and medical imaging research applications.  
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