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Abstract

Quantum computation using continuous-time evolution under a natural hardware Hamiltonian is a
promising near- and mid-term direction toward powerful quantum computing hardware. We
investigate the performance of continuous-time quantum walks as a tool for finding spin glass ground
states, a problem that serves as a useful model for realistic optimization problems. By performing
detailed numerics, we uncover significant ways in which solving spin glass problems differs from
applying quantum walks to the search problem. Importantly, unlike for the search problem,
parameters such as the hopping rate of the quantum walk do not need to be set precisely for the spin
glass ground state problem. Heuristic values of the hopping rate determined from the energy scales in
the problem Hamiltonian are sufficient for obtaining a better quantum advantage than for search. We
uncover two general mechanisms that provide the quantum advantage: matching the driver
Hamiltonian to the encoding in the problem Hamiltonian, and an energy redistribution principle that
ensures a quantum walk will find alower energy state in a short timescale. This makes it practical to
use quantum walks for solving hard problems, and opens the door for a range of applications on
suitable quantum hardware.

1. Introduction

Optimization problems need to be solved in a broad range of areas, such as scheduling, route planning, supply
chains, finance. This is often computationally intensive, so the prospect of quantum enhanced solution methods
is an important research direction for practical quantum computing. One way to tackle optimizationina
quantum setting is to use a device which realises an Ising Hamiltonian with a transverse field. Computing using
the Ising Hamiltonian works as follows: the optimization problem is encoded into the Ising Hamiltonian H;

n—1 n—1
B=— Y JaZiZi— > hiZj (1)
(j=k)=0 j=0

on 1 qubits, such that the solution corresponds to the ground state of H;. In our notation, the operator 2j on the
full Hilbert space applies the single qubit Pauli-Z operator Z tothe jth qubit,

. j—1, . n—1
Zj:(®ﬂz)®2® ® b, ®)

r=0 r=j+1

where 1, is the identity operator on a single qubit. The (real) values of the coupling strengths Jx and fields 4;
define the optimization problem, and efficient methods are known for expressing optimization problems in
terms of these coupling and field strengths (e.g. Choi 2010). The transverse field term Hr
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drives transitions between states, where I is a real-valued transverse field strength, and }A(]- is the operator on the
full Hilbert space that applies the single qubit Pauli-X operator to the jth qubit, defined by analogy with Zj in (2).
The qubits are initialised in the ground state of Hr, this is easy to do by applying a strong transverse field to align
all the qubits in the state |[+) = 271/2(]0) + |1)). Then, the computation is carried out by applying the full
transverse Ising Hamiltonian

A (t) = A(t)Hr + B()H,, 4

where tis time and A(t), B(t) are real-valued control functions. To obtain a candidate solution to the
optimization problem, the qubit register is measured after a time ¢ For some problems, sampling from the
distribution of low energy states provides the required solution—this can be done by repeating the computation,
which will in general not produce the lowest energy state with certainty.

The Ising Hamiltonian is a natural choice for encoding problems for two reasons. First, it is proven to be
universal for classical problems (De las Cuevas and Cubitt 2016). There are efficient methods for mapping NP-
hard optimization problems to the Ising model (Choi 2010, Lucas 2014), providing a practical route to quantum
algorithms. Since many optimization problems are NP-hard, an exponential speed up is not expected, but even
modest polynomial improvements are useful for practical applications. There is increasing interest in how to
obtain polynomial advantages through quantum algorithms (Moylett et al 2017, Montanaro 2018, Ambainis
etal2019). Interesting results have been presented for a wide range of applications, such as mathematics (Bian
etal2013, Lietal 2017), computer science (Chancellor et al 2016), computational biology (Perdomo-Ortiz et al
2012), finance (Marzec 2016), and aerospace (Coxson et al 2014). Second, the Ising Hamiltonian can be
implemented in a range of different physical systems. The quantum Ising Hamiltonian is the basic interaction
Hamiltonian in the D-Wave Systems Inc. programmable devices (Johnson etal2011, Boixo et al 2013).
Implementations in other promising architectures include Rydberg systems (Bernien et al 2017) and trapped
ions (Kim et al 2011). The Ising Hamiltonian is also the basic tool for specialised optimization hardware, such as
coherent Ising machines (Inagaki et al 2016, McMahon et al 2016). Optimization using the Ising Hamiltonian
can be implemented in digital quantum architectures by using the quantum approximate optimization
algorithm (QAOA) (Farhi et al 2014a, 2014b, Marsh and Wang 2019) or quantum alternating operator ansatz
(Hadfield et al 2019). Studies by Zhou et al (2018) show how to exploit non-adiabatic effects in QAOA on early
quantum hardware.

There are several known methods for driving the quantum system from its initial state into the ground state
of a Hamiltonian defining the problem to be solved. These methods correspond to different choices for the
control functions A(¥) and B(#) in (4). Adiabatic quantum computing (Kadowaki and Nishimori 1998, Farhi et al
2000, 2001) keeps the quantum system in the ground state while the initial Hamiltonian is slowly changed into
the problem Hamiltonian. Quantum annealing (Finnila et al 1994) takes advantage of open quantum systems
effects to cool the system towards the ground state. Continuous-time quantum walks evolve the system under a
time-independent Hamiltonian for a suitable time before measurement of the final state. Computation by
continuous-time quantum walk and adiabatic quantum computing are end points of a family of continuous-
time protocols that use the same Hamiltonian terms but are applied with different time dependent modulation
(Morley 2019). In this work, we focus on computation by quantum walk using time-independent transverse
Ising Hamiltonians.

Quantum walks can solve the search problem (Childs and Goldstone 2004), achieving the same quadratic
O(N'/?) quantum speed up as is obtained by Grover’s algorithm (Grover 1996). We describe the search problem
further in section 2.4. For particular graphs, quantum walks can solve problems exponentially faster (e.g. Childs
etal2003), and quantum walks are now widely used as subroutines in more complex quantum algorithms.
However, in the continuous-time setting, the application of quantum walks to optimization problems has not
been studied in detail. There is increasing interest in quenches (Amin et al 2018) or pauses (Marshall et al 2019,
Passarelli e al 2019) in quantum annealing, which effectively run an open-system version of a quantum walk
during part of the computation. Thermal relaxation effects dominate in the regime currently accessible by flux
qubit quantum annealers, which is the focus of these works. An algorithm which is essentially a quantum walk
on aspin glass, although presented using different terminology, has been analysed by Hastings (2019). Along
with the same energy conservation arguments we describe in section 6.2, Hastings’ findings suggest that
quantum walks on spin glasses will be interesting to explore. Given that quantum walks provide a better
performance for searching than adiabatic quantum computing, especially when limited coherence time and
other practical factors, such as precision of control settings, are considered (Morley 2019), itis important to
understand how they perform for a wider range of problems.
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Figure 1. A 3-dimensional hypercube (a cube) graph in which the vertices are labeled by the 2* = 8 computational basis states of
3-qubits, and the edges connect the states with Hamming distance 1 (single spin flips).

In this work, we tackle the question of if, and how, a quantum walk can be useful for practical quantum
optimization. We present a detailed numerical investigation of continuous-time quantum walks applied to
solving combinatorial optimization problems, using the Sherrington—Kirkpatrick spin glass ground state
problem as a prototypical example. Finding the ground state of a frustrated Sherrington—Kirkpatrick spin glass
(Sherrington and Kirkpatrick 1975) is known to be not only NP-hard, but also uniformly-hard, as suggested by
its finite-temperature spin glass transition. Without a finite temperature spin glass transition, a problem cannot
be uniformly hard, since the lack of a transition implies that typical cases will be easy for the Monte Carlo family
of algorithms, as discussed in Katzgraber et al (2014). As has been shown for a random problem type used in early
benchmarks of quantum annealing hardware (Katzgraber et al 2014), uniform hardness is crucial: without this
property, randomly generated instances of NP-hard problems are not necessarily hard to solve (Beier and
Vocking 2003, Krivelevich and Vilenchik 2006, Lucas 2014).

We use arandom energy model (Derrida 1980) for comparisons, to draw out the effects of the correlations
between energy difference and Hamming distance in the spin glass. A problem with perfect correlations is easy to
solve, like finding the ground state of a spin system with only local fields, no couplings. A completely random
problem, such as finding the ground state of a random energy model instance, has no correlation to exploit and
so is very hard to solve, essentially requiring random guessing. However, a completely random model is fully
characterised by average values of its properties, and finding exact ground states of specific instances is typically
not interesting. Intermediate problems with some correlations are both hard and interesting, with complex
behaviour and phase diagrams, like spin models with frustration and spin glass phases. Real optimization
problems typically have correlations; they are often hard to solve but also produce interesting solutions. The
inherent complexity of a problem comes from the structures of the problem and its correlations, not the
structure of the solution itself. One illustration of this is the construction of hard benchmarking problems with
‘planted’ solutions defined at the time of construction, which therefore have no special structure related to the
problem’s hardness, see for example Hen (2019), Hamze et al (2019).

The paper is structured as follows: in section 2, we review the setting for computation by continuous-time
quantum walk encoded into qubits, including application to the search problem. In section 3, we introduce the
Sherrington—Kirkpatrick spin glass model, and the random energy model we use for comparison. In section 4,
we describe the numerical methods used in this investigation. In section 5, we present the main results showing
how quantum walks can find spin glass ground states more effectively than a quantum search algorithm. In
section 6, we identify the computational mechanisms and important aspects of the problem structure that
contribute to the effectiveness of quantum walk computation. Finally, in section 7, we summarize and conclude.

2. Computing with quantum walks

Both discrete (coined) quantum walks (Aharonov et al 2001, Shenvi et al 2003 ) and continuous-time quantum
walks (Farhi and Gutmann 1998, Childs et al 2003) are used for computation. This work only uses the
continuous-time quantum walk, and also only as an encoded quantum walk, in which qubits are used to store the
binary labels of the positions of the quantum walker (see figure 1 for a simple example).

2.1. Continuous-time quantum walks

A continuous-time quantum walk is defined on an undirected graph G(V, E), with V = {j} ?7:’01 thesetof N
vertex labels and E the set of label-pairs (j, k) associated with edges. The vertices correspond to the positions of
the walker, and the edges indicate the allowed transitions between vertices. This is conveniently encoded in the
adjacency matrix A of the graph, which has entries Ay = 1for (j, k) € Eand Ay = 0 otherwise. The Laplacian
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of Gis L = A — D, where Dis a diagonal matrix formed from the degree of each vertex, Dj; = deg( ), where
deg(j) is the number of edges connected to vertex j. Both the adjacency matrix A and Laplacian L are symmetric
matrices which can thus be used to define a quantum Hamiltonian for the dynamics of the continuous-time
quantum walk on the graph. In this work, we only need regular graphs, for which deg( ) is constant with respect
toj. For regular graphs, the only difference between using the adjacency matrix A or Laplacian Lis an irrelevant
global phase (Childs and Goldstone 2004). We use the Laplacian form of the Hamiltonian for consistency with
prior work. We thus define the quantum walk Hamiltonian H; for a quantum walk on graph G by

(jl Helk) = =L, (5)

where is the hopping rate between connected vertices per unit time. The states | j), |k) for j, k € V are
associated with the vertices of G and form a basis for a Hilbert space of dimension N. In the Ising model context,
the dimension of the Hilbert space is N = 2" where nis the number of qubits, and {| j) ?7:’01 is the computational
basis. For a quantum walk starting in state |1/ (0)), the state of the walker evolves according to the Schrdinger
equation, with formal solution

[ (1) = exp{—iHgt}]1(0)), ©6)

using units in which 7 = 1.

2.2. Computing using a quantum walk
The task is to solve an optimization problem whose N = 2" candidate solutions j are represented in the
computational basis {| j) } ]N:—Ol, where j is a bit string corresponding to the state of n qubits. The problem is

encoded in an Ising Hamiltonian Hp, of the form described by H;in (1) and whose eigenbasis is the
computational basis. We write the basis state with eigenvalue E\ as |E”), with a € {0...N — 1},and adopt
the convention that E < E®),. In other words, {|E”) }N-is a reordering of {| ) } ;_\1:701 based on the

corresponding eigenenergies of Hp. The encoding is chosen such that the solution corresponds to the ground
state | ESP) of the problem Hamiltonian Hp.

To use a quantum walk to solve the problem, we must first choose a suitable state in which to initialize the
system. With no prior knowledge of the solution, the equal superposition of all basis states

N-1
() = N2 37 1j), @)
=0

is a sensible choice that avoids bias. More generally, the initial state can be prepared as weighted or biased
superposition, to incorporate prior knowledge about the solution (Perdomo-Ortiz etal 2011, Duan et al 2013,
Chancellor 2017, Graf8 and Lewenstein 2017, Baldwin and Laumann 2018, Kechedzhi et al 2018, Graf$ 2019).
Next, we choose a suitable walk graph G. The main requirement is that the ground state of the quantum walk
Hamiltonian H; coincides with the initial state, either biased or unbiased (see section 6.2). A simple way to
achieve a biased starting state would be to ‘tilt’ the driver fields so they are no longer completely transverse. We
only treat the unbiased case in this work, so our initial state will be |1/ (0)) throughout. The full Hamiltonian
H (7) is defined by adding the quantum walk Hamiltonian Hg to the problem Hamiltonian Hp

A(y) = Hg + Hp, ®)

where the key parameter is the hopping rate yin Hg, see (5). The computation is performed by evolving the
initial state (7) under the full Hamiltonian H () for a time t; then measuring the qubit register in the
computational basis. The intuition, based on the faster spreading of quantum walks over classical found in prior
work (Farhi and Gutmann 1998), is that the quantum walk dynamics provide rapid exploration of the basis
states, while the energy structure of the problem Hamiltonian Hp causes localisation around low-energy states.

The success probability P(t;) = (ESP |y (tp))? of finding the solution state when measuring will not in
general be unity. It will typically be necessary to repeat the protocol multiple times to obtain a high probability of
success over all the repeats. In general, it will be best to use different measurement times tfor each repeat.
Different measurement times will produce different success probabilities P(ty), and varying the measurement
time avoids repeatedly measuring at a time for which the probability P(t;) happens to be atypically small. More
precisely, we choose the measurement time tfuniformly at random in an interval [¢, t 4+ At], and define an
average single run success probability

_ t+At
B(t, At) = Ait [ apap. ©)

Operationally, choosing the measurement time ¢;randomly in the interval [¢, ¢ 4 At]samples success
probabilities from the distribution with P (¢, At)asits mean. Sampling measurement times in this way means
that the protocol typically needs to be repeated M, ~ 1 / P(t, At) times to achieve an overall O(1) success
probability. Note that it is not generally possible to check whether the state measured is indeed the ground state
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of Hp. However, it is easy to calculate the energy of the state measured in each repeat. If only the lowest energy
state is accepted, it is only necessary for the ground state of Fp to be measured once out of all the repeats. The
more repeats, the more confidence is gained that the lowest energy state found is the ground state. And studying
the distribution of the sampled energies can provide more information about the problem.

The procedure described in this subsection does not in general provide an optimal quantum algorithm,
because the repeats do not use information gained from the outcomes of previous runs. We will discuss this
further in section 7; for most of this paper we are concerned with understanding the average single run success
probability, as an essential prerequisite to building optimal algorithms.

In the limit of small interval width At, the average success probability defined in (9) reduces to the single
time probability P(t;) = lima,—o P (t, At). Thelong time limit of this average,

P.=P(0,00) = lim P(0, At), (10)
At—00
is particularly useful, because it can be calculated via a numerical diagonalization of the Hamiltonian (see
section 4) and it predicts the short time average well (see section 5.3). In this paper, we will often use the long
time average P, as an indication of the success probability achievable in a single run, and thus the number of
repeats required to achieve O(1) success probability overall. We will separately address the timescale required to
reach this probability in each run.

2.3. Graph choice for quantum walk computing

There are many graph-based Hamiltonians with the initial state |1/ (0)) defined in (7) as the ground state. A
common choice is the complete graph K, in which every vertex is connected to every other. This graph has the
quantum walk Hamiltonian Hy that couples every computational basis state | j) state to every other,

Hy = V[Nﬂ - Nil |k) <j|]

k=0
= N[ — [¢(0)) (¢ (0)]]. (11)

The complete graph is useful because it makes some algorithms analytically tractable (see, e.g. Childs and
Goldstone 2004). However, for implementation on qubit-based hardware, the complete graph is not in general
practical, requiring higher order interaction terms than the transverse Ising term (3). In this qubit setting, an
implementation of the complete graph requires a sum over every one-body term (e.g. Xj), every two-body term
(e.g. Xj}?k), every three-body term (e.g. f(jf(qu) ... up to the n-body term H?;Ol Xj, atotal of N terms. One- and
two-body terms are relatively easy to implement, since they correspond to Hamiltonians found naturally. Terms
in three or more Pauli-X operators are much more difficult and generally require extra qubits to engineer in real
physical systems.

A more natural choice of graph for qubits is the hypercube. The n-bit labels are associated with the vertices of
the graph such that the edges correspond to flipping one bit, as illustrated in figure 1. The hypercube quantum
walk Hamiltonian Hj;, on 2 qubits is composed of single-body terms

n—1
I:Ih = ’}/I:I’lﬂ - ZX;| (12)
j=0

With Hj, as the graph Hamiltonian, the full quantum walk computational Hamiltonian H () defined in (8) is a
transverse Ising Hamiltonian in the form of Hy; in (4), with the control functions A(#) and B(#) kept constant
throughout the computation.

In this work, we predominantly use the hypercube graph, with some comparisons made with the same
problems on the complete graph.

2.4. Solving the search problem using quantum walks

The simplest example of an algorithm in this continuous-time quantum walk setting is the search problem. The
problem is to find the marked state, a single bit-string m € {0, 1}" outof N = 2" possible bit strings. Finding a
marked state was shown to have a quantum algorithm with a speed up over classical algorithms by Grover
(1996). To map this problem to the continuous-time Hamiltonian setting, the marked basis state | m) is given
one less unit of energy than all the rest of the basis states, by defining the problem Hamiltonian H as

Hs = —|m) (m|. (13)

By construction, the problem Hamiltonian Hs has the marked state |1) as its ground state.

The continuous-time quantum walk search problem has been analytically solved (Childs and
Goldstone 2004) for several different walk graphs. For the complete graph and the hypercube graph, a quantum
speed up is obtained for carefully chosen optimal values of the hopping rate . For the complete
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Figure 2. The search problem solved using a continuous-time quantum walk on the hypercube using the optimal hopping rate Ayggt
given by (14). (a) The probability P(t) that a measurement at time #;results in successfully finding the marked state |m) for two
different numbers n = 30 (red, dashed line)and # = 11 (orange, solid line) of qubits (i.e. problem sizes N = 2*°and N = 2"
respectively). (b) Comparison of instantaneous success probabilities P(ty), at the asymptotically optimal (blue squares, dashed line)

and numerically determined best (red circles, solid line) measurement times ¢ and the infinite time average success probability Py,
(green triangles, dotted line) defined in (10).

graph Hamiltonian Hy, the optimal value is ’yff; z = 1/N, while for the hypercube Hamiltonian, Hj, the optimal
. OE
hopping rate Vopt 18 given by

1 &(n)1
R (14)
Yopt N ; )
where ™) = r‘(n”’ 5 is the binomial coefficient. For a quantum speed up, the hopping rate must be set to 'yg;)t
r =

as defined by (14) with high precision. It has been shown (Morley 2019) that the fractional tolerance to
misspecification of the optimal hopping rate fyf)h)t fallsas O(N—1/2).

The measurement time must also be chosen appropriately. In the limit of large problem size N, the marked
state can be found with unit success probability, limy_, ,.[P (t}OPt))] = 1, by measuring in the computational

basis at an optimal measurement time t](f’pt). For both the hypercube and complete graphs, the optimal time £loPY

scales with the square-root of the problem size N as t)(f’Pt) ~ gN 1/2, This corresponds to a quadratic speed up
compared to the best classical algorithm. Due to the absence of structure in the search problem specifically, such

a quadratic speed up has been proven to the best possible quantum speed up (Bennett et al 1997).
The variation of P(ty) with t¢is shown in figure 2(a) for search on hypercube graphs of size N = 2% (e,
n = 30 qubits)and N = 2'' (i.e.n = 11 qubits), using the optimal hopping rate fyf)’;)t. The sinusoidal
oscillations of the probability P(ty) occur because the quantum walk is performing Rabi oscillations between
the initial state and the marked state. The two lowest energy levels of the full Hamiltonian H (7) with
varying vy undergo an avoided level crossing at fyg;)t and the associated eigenstates | E (yg’w) and |E, (" )

opt
are approximately the orthogonal equal superpositions of the starting state and marked state, | Ey ; (7"

) =
opt

(11 (0)) + |m))/2:. The gap E, (’yggt — E, (V(D?t) scales with the problem size Nas O (N~!/2) (Childs and
Goldstone 2004).

These simple, two-level dynamics describe the quantum walk solution to the search problem well for large
problem size N: the oscillations in the N = 2°° case have no visible irregularities. For smaller sizes, finite-size
effects due to population of higher energy levels are apparent: the oscillations in the N = 2!! case have lower
probability peaks and show some irregular behaviour, such as the small dip on the first peak. These finite-size
effects are further illustrated in figure 2(b), which shows the instantaneous success probability P(t) at the
asymptotically optimal and numerically determined best times, as well as the infinite-time average success
probability P, defined in (10). All three probabilities show a pronounced dip around n = 8 qubits, with smooth
behaviour only settling in for # > 12 qubits. Figure 2(b) also shows that the infinite-time probability Py,

asymptotes to a half. Hence, a quantum walk search with a random measurement time should on average only
need to be repeated twice to locate the marked state; knowing the exact time to measure for the optimal success
probability is not necessary for the success of the algorithm. Fixed point quantum search algorithms (Yoder et al

2014, Dalzell et al 2017) are another approach that avoids the need to know how long to run the algorithm for.

The search problem in the continuous-time quantum computing setting has two important drawbacks.

Firstly, implementing the problem Hamiltonian Hg directly on 1 qubits requires O(2") terms of products of up
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to n Pauli-Z operators, similar to the problem with implementing the complete-graph Hamiltonian Hy, defined
in (11), on qubits. Implementing higher order Pauli-Z terms can be done using extra qubits as ‘gadgets’, e.g.
Jordan and Farhi (2008). An alternative type of gadget, specifically for permutation-symmetric problems like
search, is given in Dodds et al (2019), building on classical problem mapping techniques in Chancellor et al
(2016, 2017). Secondly, it is impossible to map the problem Hamiltonian to qubits without specifying the
solution outright. Hence, the search problem serves as a useful toy problem, especially in contexts where having
analytic, computational, and physical implementations available for comparisons facilitates benchmarking and
other testbed procedures.

3. Spin glass problem definitions

In this work we focus on spin glass problems that have features in common with real life hard optimizations
problems and, unlike the search problem, do not admit analytic solutions. The search problem solved by
quantum walk provides useful comparisons with these spin glass problems.

3.1. Sherrington—Kirkpatrick spin glass
The Sherrington—Kirkpatrick (SK) spin glass Hamiltonian Hgk (Sherrington and Kirkpatrick 1975) is defined on
nspins as

1 n—1
He = —= > JiSiSk (15)
(=k)=0

where S;are the classical spins (S; € {—1, 1})and the couplings i are drawn independently from the normal
distribution NV(u, o3x) with mean i and variance 0. Finding the ground state of this Hamiltonian is NP-hard
(Choi 2010), and uniformly hard, due to its finite-temperature phase transition (Sherrington and
Kirkpatrick 1975).

It is computationally convenient to break the spin inversion symmetry by adding single-body field terms of
the form Z;‘; ! h; Sy, where h;are the field strength values. Like the couplings Ji, the fields h; are also drawn

independently from Ny, od). When the fields strengths h; are drawn from the same distribution as the
coupling strengths Ji, the hardness of finding the ground state follows directly from the hardness of the h; = 0
case. The SK spin glass with such fields is mathematically equivalent to a zero field spin glass with one more spin
which is ‘fixed” in one orientation. This is not true in general for different distributions of field strength h;. There
are known examples in which fields can destroy spin glass behaviour (see, e.g. Young and Katzgraber 2004, Feng
etal 2014). In particular, if the field strengths are much larger than the coupling strengths (h;| > |Ji| for all j, k),
then the energy is minimized trivially when all the spins each minimize the energy with respect to their
individual fields. While the distribution of field strengths could be used to tune the problem hardness, we do not
use it in this way here, and only consider cases where the field and coupling strengths are drawn from the same
distribution.

An astute reader will notice that if one effectively un-fixes the spin which corresponds to the fields (thus
making all states two fold degenerate and converting the system to a double cover of the orignal system), these
couplings will effectively be on average stronger by a factor of </2 . As this increase in coupling strength does not
scale with the number of spins, it is going to become less and less significant as the size of the system is scaled up
the hardness will be preserved.

The mapping into the quantum Ising model is almost trivial: the classical spin variables S; are simply mapped
to Pauli-Z operators. Thus, the problem Hamiltonian Hsx becomes

n—1 n—1
Ag=—~ S 32— Y bz, (16)
2 (j=b=0 =0
The SK problem Hamiltonian differs from the search problem by having structure, produced by the ZjZk

terms As a result, the covariances between the energies of two basis states depends on the Hamming-distance
between them (Baldwin and Laumann 2018). Knowing the energy of one state gives some information about the
energy of states that differ by a small number of bit-flips. This results in a distribution of the eigenenergies that is
almost normal (as can be seen by plotting the distributions and numerically calculating moments), but which
deviates from normal in the tails of the distribution.

3.2.Random energy model

To isolate the effect of the correlations in the SK problem, we compare it with the random energy model (REM)
(Derrida 1980), in which the eigenenergies themselves are independently drawn from a normal distribution. The
problem Hamiltonian Hgey for REM is
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N-1
Hyem = > Flj) (jl, (17)
i=0
with {| ]> ' the computational (Z) basis and the energies F; drawn independently from the normal

dlstrlbutlon N (0, ohEn)-

REM has a similar energy level distribution to that of SK, apart from the tails. By definition it lacks the
correlations: knowing the energy of one state gives no information about the energies of other states.
Comparison between these two models highlights the effect of the pairwise structure in the SK model.

4. Numerical methods

The main tool used for the investigations in this work is numerical simulation. We are studying computationally
hard problems for which there are no tractable analytical solutions except in special cases.

For each number of qubits 5 < n < 20 we generated 10 000 random instances of the SK spin glass
Hamiltonian, defined in (16), with the couplings J;; and fields ; drawn with a standard deviation osx = wsk,
where wsy is an arbitrary energy unit. The value wsx = 5 was used for computational convenience. We also
generated 10 000 random instances of the REM Hamiltonian, defined in (17), for each number of qubits
5 < n < 15, with normally-distributed energies F; drawn with a standard deviation orgnv = wrem- The value
wrem = 1 was used for computational convenience. Note that choosing any arbitrary constant for w will only
affect overall time and energy scales by a constant factor, and the energy unit wsy has been scaled out of the plots
where relevant.

The key quantity to determine numerically is the probability that the ground state is found by running a
quantum walk computation on each spin glass instance. It is particularly convenient to compute the infinite-
time probability P, given by (20), for sizes where full diagonalization is possible. Writing the spectral expansion
of the full computational quantum walk Hamiltonian as

N-—1
H@) = > Ed(IE)) (Ea(D)], (18)

a=0

with indices ordered such that E,(y) < E,1(y)and |E, (7)) the eigenstate with eigenvalue E, (), we can write
the instantaneous probability in terms of the spectral expansions as

2

P(t) = [EP| exp(—itH () [ (0) > = Zexp( HEXESP |Ea ()X Ea()) 190 (0))
a=0
N—-1

N—1
Z CESPIEc D Ea 0O + Y [exp(—it(Ea — E)(EFEa(n)) x (Ea(N1¥(0) (Eo(MIE”) (4 (0) [Ey (1)].
a=0 a=b=0

(19)

Assuming no degeneracy (that is, all gaps E,—E,, are nonzero), which is justified for the randomized nature of the
SK and REM problems, the oscillatory terms cancel in the infinite limit (because fo dr exp(—itd) = 0 for
nonzero 0) to leave the infinite-time average probability P, given by

N—
Z KESP | Ea ()1 Ea() 1 (0))2. (20)

All of the numerical simulation in this work has been performed using the Python3 language (Van Rossum
and Drake 2003), aided extensively by the IPython (Perez and Granger 2007) interpreter and the Jupyter
Notebook (Kluyver et al 2016) system. The numerical heavy-lifting has been done using NumPy
(Oliphant 2006), SciPy (Virtanen et al 2019), and pandas (McKinney et al 2010), and the plotting has been done
using matplotlib (Hunter 2007). The dynamical simulations have been performed by computing the action of
the propagator exp(— itA (7)) on the initial state | (0)), using the sparse matrix functions within SciPy when
possible. For the more computationally demanding analyses, we were limited ton < 11 by the computational
resources available. Where relevant, figures in this paper have error bars included. However, in most cases the
error bars are much smaller than the size of the marker symbols used and so are not visible. This is due to the size
of the data sets (10k instances per value of ), which provides a good level of accuracy for the average quantities.

Simulations were run on the Imperial and Durham University high performance computing facilities. The
data for all the instances used is available on a permanent data archive (Chancellor et al 2019).

8
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Figure 3. Infinite-time success probability P, against hopping rate 7 scaled by the energy unit wp for 3 typical 11-qubit examples of
SK (left) and REM (right). Also indicated (for one example in each plot) is the width A’yff]’))‘ of the peak (also scaled by wp).

5. Quantum walks with spin glasses

In order to implement a quantum walk algorithm for finding the ground states of the spin glasses defined in
section 3, we follow the procedure described in section 2.2: choose a quantum walk graph G and associated
Hamiltonian H¢, and add the spin glass Hamiltonian to get the full computational quantum walk Hamiltonian
H(v) = Hg + Hp, where Hp refers to Hgg or Hrpm as appropriate. Since the hypercube is the natural choice of
graph for qubit implementations, we use this graph, with quantum walk Hamiltonian Hj, defined in (12), unless
otherwise indicated. For the initial state |1/ (0)), we use the equal superposition (7), which is the ground state of
the hypercube Hamiltonian Hj,.

5.1. Setting the hopping rate

In contrast to the search problem, for SK and REM it is impossible to efficiently calculate the optimal hopping
rate ’yﬁ,’;)t that maximizes the success probability. It is not even clear which measure of success probability should
be maximized because, unlike the search problem, there will be no efficient way to find the optimal
measurement time t}OPO for any choice of hopping rate 7. To bootstrap the investigation, we choose to define the

optimal hopping-rate vggt with respect to one of the average probabilities defined in (9); in particular, we choose
the hopping rate that maximizes the infinite-time average probability P, defined in (10). We make this choice
because the infinite-time average probability P,, is numerically convenient to calculate, and because it has been
seen to be a relevant measure of probability in the search example, see figure 2(b). We will see in section 5.3 that
the probability P, typically agrees well with probabilities averaged over shorter and more practical time
windows.

Some plots of the infinite-time probability P, against hopping rate 7 for typical 11-qubit examples of the SK
and REM are shown in figure 3. Note that the maximal success probability varies by an order of magnitude
between the two problem-types, with REM highest and SK lowest. While the optimal hopping rate 75)2 is
instance-dependent, these plots show that the dependence of infinite-time probability Py, on hopping rate 7yis
typically characterised by broad, bumpy peaks for SK, and by narrow, well-defined peaks for REM. This implies
that a precise value of the hopping rate yis needed for REM, while there is some tolerance to non-optimal values
of the hopping rate y for SK for the sizes that we have studied.

To investigate the success probability more systematically, we performed a brute-force numerical search to
find the optimal hopping rate vg’yt that maximizes the success probability P, for each spin glass instance from
the data sets of 10k random instances for 5 < #n < 11. This gives a baseline maximum average single run success
probability for the quantum walk algorithm.

The optimal hopping rates 'yf)’;)t correspond to the best a quantum walk algorithm on the hypercube can
possibly do in a single run. For practical algorithms, we need a heuristic method for choosing the hopping
rate that can be calculated from the known parameters. For the quantum walk search algorithm, the optimal
hopping rate balances the energy between the two components of the Hamiltonian, Hp and Hg. Guided by
this, we define the heuristic hopping rate fyg?ur for SK and REM such that it balances these overall energy-

scales on average. We match the energy-spread E{"’ ;| — E{" of the hypercube quantum walk Hamiltonian
Hj, with the average energy-spread (E{" | — E{P) of the problem Hamiltonian Hp. For the hypercube
Hamiltonian Hj, defined in (12), we have the energy spread E{ | — E{" = 2n7; hence, we define the

9
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To demonstrate that this heuristic is sensible, we compare in figure 4 the distributions of optimal hopping rates
’YE)];))t for SK (blue) and REM (red), as well as the heuristic hopping rates (black, dashed and dotted lines for SK and
REM respectively) calculated according to (21), for the 11-qubit data set. For both SK and REM, the heuristic
hoppingrate 7h ") falls in the centre of the y(h) distributions. Note that the SK distribution is much broader than

for REM: not only are the individual peaks for yggt for SK much broader than for REM (figure 3), but the
distribution of the maxima of those peaks is also much broader (figure 4). This may seem to be a problem for
specifying a heuristic value for -y for SK from average energies, but as we will show, it is actually REM that fails for
the heuristic vy, while SK works well.

For a normal distribution of energy levels, the average problem energy spread can be estimated as

1
(ED) | — EP)) ~ —(230'mr8) erf ! (N - 1), (22)
where o'5""® is the standard deviation of the energy eigenvalues of the problem Hamiltonian. For REM, the

standard deviation o'{r<r” is equal to the energy unit wrgy by definition (see section 3.2). For SK, the standard

deviation U(S‘i?ergy ) can be shown to be equalto “*[n(n + 3)]:. Equation (22) is accurate for REM (which has
normally-distributed energy levels by definition) but, as already noted, the distribution of the eigenenergies in
SK deviates from normal, especially in the tails. Numerically, we find that there is a multiplicative constant factor
of approximately 0.887 that corrects the formula in (22) for SK for the effects of the non-normal tails. For the
numerical analysis, we use the numerically calculated average energy-spread at each number of qubits 7.

Figure 5(a) compares the heuristic hopping rate *yh .., and average optimal hopping rate (*y(P) ) at different
numbers of qubits 5 < n < 11. The full width at half maximum (FWHM) has also been calculated for each
instance, to estimate the tolerance Aygl’;t to deviations from the optimal hopping rate ’yg;)t (illustrated in

figure 3). The width of the shaded regions in figure 5(a) corresponds to the average tolerance range (A'yg;)t> at
each number n of qubits. While the heuristic hopping rate differs slightly from the the average optimal hopping
rate for SK, the average tolerance range (A’yf)];)t> is much broader, and does not shrink with increasing number of
qubits n. For REM, however, while we see close agreement on average, the tolerance range shrinks quickly with
the number of qubits # as the peaks (as in figure 3, right) become narrower. This means that the heuristic
hoppingrate 7(}’) is more likely to lie further than ZA'y(h) outside of the actual probability peak for each

instance, even though it agrees well with the average optimal hopping rate (’y( ) .)- Consequently, a quantum walk

with the heuristic hopping rate fy(h) does not perform well for most REM instances.

Itis instructive to quantify this sensitivity to deviations from the optimal hopping rate y(h) Figure 5(b)

shows log-linear and log—log plots of the average fractional tolerance range Afyggt / 7(h) ) against number # of

qubits for SK (blue circles), REM (red squares) and search (green triangles) on the hypercube. For SK, the

fractional tolerance range Ayggt / fyg;)t ) decreases as approximately 1/n, while for REM and search the decrease
is approximately N=. This decrease is expected theoretically for search (Childs and Goldstone 2004). The
fitted lines do not show exactly a square-root dependence (exponent of —0.5) due to the finite size effects for

small numbers of qubits n < 12.

10
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Figure 5. (a) Average optimal (circles, solid line) and heuristic (squares, dashed line) hopping rates, (7)) and 1\ against number n
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illustrated in figure 3. (b) Log—linear plot (top) and log-log plot (bottom) of average fractional tolerance range <A7§;)t / 'yg;)t). REM (red
squares, dotted line) shows an exponential decrease, fitting to a line (red, solid line) with a gradient of —0.583 £ 0.006 in the log—
linear plot. SK (blue circles, dotted line) shows a polynomial decrease, fitting to a line (solid blue) in the log—log plot with a gradient of
—1.09 £ 0.04. The same quantity for the search problem calculated the same way is also shown (green triangles, dashed—dotted line),

and it fits well to a line (solid green) in the log—linear plot with a gradient of —0.546 + 0.004.

) to non-optimal hopping rates, defined as full width at half maximum (FWHM) of the probability peak surrounding y(o’;)t, as

Thus, we see that REM behaves like the search problem in a quantum walk setting. For a precisely optimal
hoppingrate 'yg;)t, the success probability is high, but this instance-dependent hopping rate is hard to predict,
unlike for the analytically tractable quantum walk search algorithm. Without this precise hopping rate, quantum
walks perform no better than guessing for the search problem and for REM. In contrast, quantum walks applied
to SK give a better-than-guessing success probability P,, > 1/N for the heuristic hopping rate q/g'e)ur calculated
accordingto (21).

With the conditions under which we can achieve a better-than-guessing success probability characterised for
the three problem types, SK, REM, and search, we turn to the scaling of this success probability with problem

size N.

5.2. Success probability

Figure 6 shows how the single-time success probability P(ty) varies with the measurement time #for two typical
11-qubit examples of SK and REM. In the REM case, the behaviour is similar to that shown in figure 2(a) for
search: an oscillatory nature indicating the dominance of a two-level avoided-crossing feature, but with evidence
of the population of other energy-levels that lead to finite-size effects in search. For REM, these finite-size effects
are more pronounced, and are instance-dependent. The random nature of the REM problems means there is not
such a clear cut off size, as there is for the search problem, above which finite size effects are negligible. In any
case, based on search, we expect finite size effects to be significantat # = 11. For SK, the behaviour is quite
different from search or REM. There is no indication of dominant oscillatory behaviour; instead, these plots
show unpredictable, highly instance-dependent fluctuating dynamics for all the sizes we are using. This indicates
that for SK, the behaviour is determined by the excitation of many energy levels.

As with finding a suitable hopping-rate 7, both REM and SK differ from the search problem in that there is
no practical way to find the optimal measurement time t}"pt); a different approach must be taken instead. As
already noted for the search problem, this can be handled by using the time averaged probabilities defined in (9).
We first consider the infinite-time probability P, as defined in (10), since it is easy to calculate (see section 4).
Figure 7 shows the average infinite-time success probability (P,.) against the number n of qubits for the two

problems using both the optimal V(J{i and heuristic vg’e)ur hopping rates. For SK, this gives exponential decay

with the number of qubits # in both cases: the average probability (P,.) changes with n according to

11
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Figure 6. Instantaneous success probability P(t;) against dimensionless measurement time wp t; for quantum walk on 2 typical 11-
qubit SK examples (a) and for 2 typical 11-qubit REM examples (b), using wggt.
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where O may neglect factors logarithmic in its argument. That is, using the heuristic hopping rate ’yg') instead
eur
of the optimal hopping rate 'yg;)t has only a minor impact on the average success probability (P,.).

For REM, the behaviour is quite different. With the optimal hopping rate ’YE)];))t we see a success probability

P, of constant order but with a pronounced dip. This behaviour is similar to that seen for the search problem,
where the dip seen in figure 2(b) is a finite-size effect. This similarity is expected, given the similarity between the
dynamical behaviour shown in figure 2(a) for search and in figure 6(b) for REM. With the heuristic hopping rate
7g‘gur for REM, we see a significantly reduced success probability P, compared to the optimal case. That s, the
heuristic is performing poorly, despite the good agreement shown in figure 5(a).

The clear difference in behaviour between SK and REM can be explained by the different tolerances Avggt to

(h)

deviations from the optimal hopping rate Y opt

shown in figures 5(a) and (b). For SK, the tolerance range is broad
enough for the heuristic to lie within it, while for REM the heuristic hopping rate 'yg?ur almost always misses this

range entirely even though it is close to the average optimal hopping rate (’yf)@t).

12



I0OP Publishing NewJ. Phys. 21 (2019) 123022 A Callison et al

2 18 | _A 2448
_r‘/‘
a ~ 946
o1t | Search 1/" 2 2
g o A « /\3 2444
SE roi g,
210 | L =) é* 19
p e 2
— ~—
x 24.0
26 | £
5 10 15 20 25 30 5 6 7 8 9 10 11
n n
(a) (b)
Figure 8. (a) Log-linear plot of the mixing time 72 for search, using A,/(Ol;)t. The solid line of best fit is log, 7%2? = (0.5000 £
0.0002)n + (3.424 + 0.006), with finite-size effects dominating at small numbers of qubits n < 20. (b) Log-log plot of the average
mixing time scaled by ws to give a dimensionless quantity (7027 wex) against system-size n for SK, using yff;’[. The solid line of best
fitis log, (T0:%wsk) = (0.74 £ 0.03)log,n + (2.23 £ 0.08).

5.3. Mixing times
We have thus numerically determined an average success probability scaling with problem size of ~O(N~042)
for a quantum walk finding SK spin glass ground states, using the heuristic hopping rate fyg'e)ur. This is based on
the infinite time-success probability P, i.e. uniform sampling from the distribution of all possible run times.
We now investigate the time dependence in more detail: can we sample from a finite run time and still obtain the
same speed up? Since P(0) = 1/N corresponds to random guessing, there must be a minimum time before
which itis not effective to measure.

We define a mixing-time Tffli)x to be the latest time, £, for which the time averaged probabilities P (0, t) and
P(0, 2t) at the two times tand 2t differ by a fraction greater than the fluctuation parameter €,

© — max {t: ‘ P(0, t) — P(0, 2t) 6}‘ o)

mix p (0, t)
This definition of Tf;fx is based on similar definitions found in prior work (Aharonov et al 2001), with
modifications for computational convenience. We numerically estimated the mixing-time 7%%% for each SK
instance up ton = 11 qubits, using the optimal hopping rate 75)’3 for each instance. We simulated the quantum
walk computation dynamics for a successively-doubling duration until a time at which the condition is met was
reached. The fluctuation parameter e = 0.05 corresponds to a deviation of 5%. To verify that the mixing-time
7099 correctly captures the relevant dynamical timescale, we also numerically estimated it for the search
problem at each system size from n = 5ton = 30 qubits. The search problem using continuous-time quantum
walks can be mapped to the symmetric subspace, allowing larger sizes to be analysed. The mixing-time 7% for
search exhibits the expected exponential timescale: the solid green line of best fit in figure 8(a) has the expected
scaling with problem size N of %% = O(N'/2).

For search, the scaling is dominated by the run time, the success probability is O(1). However, this behaviour
only emerges clearly above n ~ 20. Below this, the behaviour is influenced by the finite-size effects that arise due
to population of higher energy levels. This means it is not useful to analyse the behaviour of the REM time
scaling, finite size effects mask the scaling behaviour for computationally tractable sizes. However, unlike search
and REM, the SK behaviour is influenced by higher energy levels at all sizes, through the frustration provided by
the random couplings between the spins. Hence, we do not expect to see such finite-size effects in SK; the
behaviour is already dominated by the frustration at small sizes. Figure 8(b) shows a log—log plot of the mixing-
time (scaled by wsx) averaged over the ensemble (7927 wgy ). The solid blue line of best fit has a logarithmic
scaling with problem size N of

(r0%ugy) = O(P7409) ~ O([log, NI'7). 2

T

Thus it contributes a logarithmic factor to the overall scaling. We emphasise that while this single-run timescale
is polynomial in the number of spins 7, the overall timescale is still exponential in # due to the exponential
number of repeats required to achieve O(1) success probability.

To confirm the subsidiary nature of the time scaling for each SK run, we show in figure 9 alog-plot
comparing, for the heuristic hopping rate 'y;he)ur, the success probability P, in the infinite-time case (as in
figure 7) and in the case of an early, logarithmically-scaling (with respect to N) measurement window
12.5n fwex < t < 17.512/wsk = (Lhorts Atshort)- This 1% scaling of the window is even shorter than the fitted
scaling of n°7%, although at these sizes the difference is not significant. This finite-time probability
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Figure 9. Log-plot of average success probability using 'yﬂ?ur against number of qubits for infinite-time (blue circles and dotted line) as

in figure 7, and averaged over the short time window 12512 < twex < 17.5n1/2 (purple crosses and dashed line). The short time
dataare fitby log,(P) = (—0.410 = 0.002)n + (—0.37 % 0.02) (solid purple line). The 27" probability when measuringatt = 0,

equivalent to randomly guessing (solid black line), and its square-root 2~"/2 (dotted black line) are also shown for comparison.

P (thort> Atghort) is similar to the infinite-time probability P,.: the solid purple line of best fit in figure 9 has a
scaling with problem size N of

<P(tshort> Atshort)> = O(N70'410i0'002)- (26)

This should be compared with (23), where the value of the exponent for the average infinite time success
probability P, with the heuristic hopping rate Vggur isgiven by —0.417 £ 0.002.

As the dominant factor in the total runtime comes from the required number of repeats, and because the
single-run timescale contributes only a logarithmic factor, these results constitute good numerical evidence for
an average total runtime which scales with problem size N as ~O(N %4!) for using quantum walks to find spin
glass ground states, over the range of Nin our data sets. This scaling is a better than the best possible (quadratic)
speed up achievable for quantum walk search algorithms. Moreover, it comes without the requirement for
exponential precision in setting the hopping rate that renders practical use of quantum walk searching difficult

for large problems. We now present some insights into where the improvement over search comes from.

6. Computational mechanisms

6.1.Role of correlations in SK

To investigate whether the energy correlations with Hamming distance in SK play a significant role in the
computational process of finding the ground state with a quantum walk, we performed three additional sets of
numerical tests.

Firstly, we used the same SK instances but performed the quantum walk using a complete
graph Hamiltonian Hy, defined in (11), instead of the hypercube graph Hamiltonian Hj,. This removes the
correspondence of Hamming-distance between classical states with the distance between those states on the
graph—for the complete graph, every state is one unit (edge) away from every other state. In terms of the
Hamiltonian, the transverse Ising term is replaced by sums of products of up to n Pauli- X operators that flip up
to n qubits at the same time, in all possible combinations. For each SK instance up to n = 11, we estimated the
optimal hopping rate ngg for the complete graph, and then used it to calculate the infinite-time probability P...

Secondly, we constructed ‘scrambled SK’ instances, denoted sSK, by randomizing which state corresponds
to which energy in the SK instances. In doing so, we arrive at Hamiltonians with identical energy spectra to the
SKinstances, but without the correlations between energy difference and Hamming distance on the hypercube
graph. This approach has similarities with previous work (Farhi et al 2008, 2011, Hen 2014). For each sSK
instance, we estimated the optimal hopping rate yff;)t, which is different from that used for the ordinary SK
versions. This hopping rate was then used to calculate P...

Thirdly, we sorted the eigenenergies of each REM instance in increasing size and assigned them to the
computational basis states in the order of a binary-reflected Gray code on their bitstrings, to arrive at a problem
denoted REMGC. In doing so, we added some amount of Hamming-distance structure by ensuring that the
closest energies are assigned to states that differ by only a single bit-flip. For each REMGC instance, we estimated
an optimal hopping rate fyg}’))t, which is different from that used for the ordinary REM problem. This was used to
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Figure 10. Log-linear plot showing the dependence on number of qubits  of the average success probability P, for SK on hypercube
(blue circles, thick solid line), REM on hypercube (red crosses, dashed—dotted line), sSK on hypercube (green triangles, dotted line),
SK on complete-graph (orange squares, dashed line) and REMGC on hypercube (purple diamonds, thin solid line). The optimal
hopping rates ’yff’;t are used in all cases.

calculate the infinite-time probability P,,. While REMGC is not a hard problem as defined, it provides a useful
example to compare with how the quantum walk finds the ground state of a SK spin glass.

These three variants provide separate tests of the influence of the graph structure (choice of quantum walk
Hamiltonian) and problem structure (pairwise correlations in SK). Figure 10 shows how the infinite-time
probability P, varies with the number of qubits 7 for these three variants, alongside SK and REM on a hypercube
graph from figure 7. The variation of P, with the number of qubits 7 for the five variants is clearly split into two
groups, behaviour like REM and search on the one hand, and behaviour like SK on the other. Removing the
correlations from SK by scrambling the energies (sSK) results in behaviour like REM and search. Moreover,
removing the correspondence between distance and Hamming weight by using the complete graph instead of
the hypercube also changes the SK problem behaviour to be like REM and search. In the opposite direction,
inserting pairwise correlations into REM via a Gray code (REMGC) results in problems that are much more like
SK than like the REM problems on a hypercube graph.

From this, we infer that the problem structure—in this case the pairwise correlations in SK—needs to be
matched by a compatible driver Hamiltonian—in this case the hypercube/transverse Ising—to obtain better
than quadratic scaling. This type of local structure in the solution space is exploited in many classical algorithms.
For example, classical Monte Carlo optimizations that use a single bit flip update rule are naturally using this
hypercube structure. Using a complete graph instead would correspond to flipping a random number of bits,
which is equivalent to guessing at each step.

6.2. Energy conservation dynamics
Continuous-time quantum walk time evolution is unitary, and there is no time dependence in the Hamiltonian
that can lead to energy gain or loss by the system. Hence, it is important to consider how it can find a lower
energy state than it starts in (with respect to Hp) with any better-than-guessing probability. For the search
problem, this happens through an analog of Rabi flopping (see figure 2), cycling between the initial and solution
states. However, the dominant avoided level crossing structure is not present in the spin glasses to provide this
mechanism.

We now show that there is a very generic mechanism (also described independently by Hastings 2019) that
relies on starting in the ground state of the quantum walk part of Hamiltonian Hg. Let (O),, for operator O be
defined by () (t) |0 (1)) = <(§>@,(t). Then, by linearity, and the definition of H (7) in (8), the energy

expectation at time is

(HM)ewy = Hoowy + (Bp)p)- (27)

Due to the unitarity of the evolution under a time-independent Hamiltonian, this expectation energy will not
change over time, giving

(HO)wy = H)p)- (28)
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Figure 11. The expectation value <I—AI(,>L (v of the quantum walk Hamiltonian (green, thin solid line) and the expectation value (I:Ip) )
of the problem Hamiltonian (red, thick solid line) for a typical 10 qubit (a) SK and (b) REM instance. The ground state energy
eigenvalues of the quantum walk Hamiltonian (green, dashed line) and problem Hamiltonians (red, dashed—dotted line) are also
shown. To illustrate that significant dynamics take place over the timescales used, the instantaneous probabilities P(¢) are also shown
(grey, faint line). The energy values are on the left axes, while probability values are on the right axes.

which yields

A A

(He)py — (Hopo = (Hphpoy — (Hp)ur)- (29)

As [1(0)) is chosen to be the ground state of Hg, the lhs must be non-negative. Furthermore, as |1/ (0)) is not an
eigenstate of H (y), some dynamics are guaranteed to occur and so the LHS must become positive at early times.
Therefore, the rhs must also be non-negative always and positive at early times. Thus, taking any final time t; we
get the inequality

1 A A

— | de(Hp)ye) < (Hp)yo)- (30)

tr Jt=0

Equation (30) shows that performing time evolution under the computational quantum walk Hamiltonian
from the initial state |1 (0)) is guaranteed to lower the energy of the system with respect to Hjp (the expectation
value (I—AIPM(,)). This implies that the overlap with low energy eigenstates of Hp will increase, at least for short
times. A measurement in the computational basis will thus be on average more likely than a random guess to
produce alow energy state.

Starting in alow energy state is thus important for the success of the quantum walk algorithm (we have
checked this numerically). It also implies that encoding prior information into the initial state will help,
provided this is given in the form of a lower energy state than the uniform superposition state. This could be the
final state from a previous run, for example, which will be explored further in Nita et al (2020). It is also necessary
to bias the quantum walk Hamiltonian so that its ground state matches this biased initial state. Since this starting
state is a known computational basis state, it is possible to do this biasing for suitably designed hardware.

For many optimization problem applications, it is helpful to find alow energy state, even if it is not actually
the true ground state. From this point of view, that quantum walks necessarily lower the expectation energy with
respect to the problem Hamiltonian is very appealing as a computational mechanism. This argument by itself
does not provide a guaranteed scaling or quantum speed up, but it does explain how the quantum walk dynamics
work in this setting, where there is no way to lose (or gain) energy. It is possible to generalise these arguments
beyond time-independent Hamiltonians (Callison et al 2020a), to include monotonic functions A(¢) and B(t)
in (4).

To illustrate this energy redistribution mechanism, the plots in figure 11 show how the expectation value
(HG)y () of the quantum walk Hamiltonian (green solid-line) and the expectation value (Hp),; of the problem
Hamiltonian (red solid-line) vary during a quantum walk. We have included the instantaneous success
probability P(¢) (faint grey) to show that the timescale used is long enough for significant dynamics to take place.
A typical 10-qubit SK example is shown in figure 11(a) and a typical 10-qubit REM example is shown in
figure 11(b), both on the hypercube using their respective optimal hopping rates yggt. Also shown is the ground

state eigenvalue (Hjp) g of the problem Hamiltonian (red, dashed—dotted line) and the ground state eigenvalue

<I§TG>¢(O) of the quantum walk Hamiltonian (green, dashed line). In both SK and REM, the initial evolution takes
the state away from the H; ground state, raising the H; expectation value, and thereby lowering the Hjp
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expectation value to a point around which it fluctuates for the duration simulated. This clearly shows the energy
redistribution mechanism at work, and the short time scale over which it appears.

7.Summary and outlook

In this work, we have shown numerically that continuous-time quantum walks are a viable computational
method for finding ground states of hard spin glass problems. We have produced strong numerical evidence for
abetter-than-search polynomial quantum speed up over random guessing, with a scaling of the average single
run success probability ~O(N—04Y) using data sets of size 5 < n < 20spins (32 < N < 1048 576). Moreover,
and importantly, this is obtained without the need to set parameters exponentially precisely, as is required for
quantum walk search algorithms. The hopping rate -, that determines the relative strengths of the quantum walk
and problem Hamiltonians, can be estimated from the overall energy scales, which are determined by the
hardware and encoding of the problem.

To explain why quantum walks are able to do better than quantum searching in this case, we compared
variants on the spin glass problems that remove or add pairwise correlations, and compared the hypercube
graph quantum walk Hamiltonian with the complete graph quantum walk Hamiltonian. This showed that the
combination of pairwise correlations in the encoding of the problem and a matching single spin flip quantum
walk Hamiltonian is required to exploit the correlations. The single spin-flips driven by the transverse field
terms )?j in the hypercube quantum walk Hamiltonian are the correct operators for the pairwise interaction
terms 2j Zi in the spin glass Hamiltonian. A single spin flip on either qubit j or k changes the energy for that term
from high to low, or vice versa. Since we can choose how to encode the problems into the Hamiltonians, and
there are known methods to convert higher order terms to pairwise terms (Bremner et al 2002, Dattani 2019), we
can arrange to use this mechanism both for its computational advantages and practicality for hardware
implementation as the transverse Ising Hamiltonian.

To explain how quantum walks are able to find low energy states when the closed quantum dynamics have
no mechanism for losing energy, we showed how starting in the ground state of the quantum walk part of the
Hamiltonian guarantees dynamics that decrease the expectation value of the energy with respect to the problem
Hamiltonian. This also ensures that prior information can be provided by starting in lower energy states, from
which improved solutions can be found. Exploiting this process will allow an optimal quantum algorithm to be
built from multiple quantum walk runs that use the information gained from prior runs. Performing multiple
quantum walk runs in early, noisy quantum hardware is a more viable approach than maintaining coherence for
sufficiently accurate adiabatic algorithms. Quantum walks may also be simpler to implement since they do not
require time dependent controls. This work thus provides a significant advance in understanding how to exploit
quantum walks in practical hardware for optimization problems.

Itis likely that further insights into the computational effectiveness of quantum walks in this transverse Ising
Hamiltonian setting are to be found in current knowledge of spin glass phases in the presence of transverse fields.
The spin glass transition itself is not fully understood, in neither the quantum nor classical case (see, e.g.

Parisi 1980, Fisher and Huse 1987, 1988, Thirumalai et al 1989, Larson et al 2013, Magalhaes et al 2017,

Young 2017). However, the phases of interest for computation are not the spin glass phases themselves, but the
phases where transitions between states are still occurring at a rapid enough rate to find solution states.
Extremely long equilibration timescales are a defining property of all glass phases, including spin glasses
(Bouchaud et al 1998, Cugliandolo 2002). Since the equilibration (mixing) times 7). we find in section 5.3 for
the SK spin glass only scale polynomially with the number of spins, it is most likely that at the optimal hopping
rates 75)131’ our quantum walks are not in a finite size precursor to a spin glass phase, but rather in a precursor to a
paramagnetic phase, for which equilibration times can be fast. Given that the system should localize more in
lower energy states for smaller transverse fields, it is reasonable that our optimal hopping rates ’yggt occur near

the edge of the precursor to the spin glass phase. Furthermore, the mild scaling of the width Afyg;)t of the peak

around the optimal hopping rate ’yg;)t suggests that the regime where quantum walks performs well may
correspond to the second paramagnetic phase observed in Magalhaes et al (2017). Polynomial gaps have been
found around the spin glass—paramagnetic phase transition in a related model in Knysh (2016).

A numerical study such as this inevitably leaves open questions regarding the asymptotic scaling of the
problems. In particular, we observed a range of hardness in the SK data sets and future work will investigate what
fraction of the instances are actually hard for classical algorithms. Forthcoming work applying similar
techniques to Max2SAT (Callison et al 2020b) will characterise the hardness of small random instances in more
detail, and establish quantum walks as an effective tool for hard optimization problems more generally. While
general methods are known to speed up the best classical algorithms (Hartwig et al 1984) for this type of problem
(Montanaro 2018, 2019), further work is required to determine whether an optimal continuous-time quantum
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walk algorithm can be devised that fully leverages the advantage from the correlations. Nonetheless, our work
represents a significant advance in developing continuous-time quantum walk computation for hard
optimization problems, and provides key insights into the computational mechanisms that can be exploited
over short timescales, well-suited to the limited coherence times of noisy, intermediate scale quantum hardware.
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