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Abstract
Quantum computation using continuous-time evolution under a natural hardwareHamiltonian is a
promising near- andmid-termdirection toward powerful quantum computing hardware.We
investigate the performance of continuous-time quantumwalks as a tool forfinding spin glass ground
states, a problem that serves as a usefulmodel for realistic optimization problems. By performing
detailed numerics, we uncover significant ways inwhich solving spin glass problems differs from
applying quantumwalks to the search problem. Importantly, unlike for the search problem,
parameters such as the hopping rate of the quantumwalk do not need to be set precisely for the spin
glass ground state problem.Heuristic values of the hopping rate determined from the energy scales in
the problemHamiltonian are sufficient for obtaining a better quantum advantage than for search.We
uncover two generalmechanisms that provide the quantum advantage:matching the driver
Hamiltonian to the encoding in the problemHamiltonian, and an energy redistribution principle that
ensures a quantumwalkwillfind a lower energy state in a short timescale. Thismakes it practical to
use quantumwalks for solving hard problems, and opens the door for a range of applications on
suitable quantumhardware.

1. Introduction

Optimization problems need to be solved in a broad range of areas, such as scheduling, route planning, supply
chains, finance. This is often computationally intensive, so the prospect of quantum enhanced solutionmethods
is an important research direction for practical quantum computing. Oneway to tackle optimization in a
quantum setting is to use a devicewhich realises an IsingHamiltonianwith a transverse field. Computing using
the IsingHamiltonianworks as follows: the optimization problem is encoded into the IsingHamiltonian ĤI
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on n qubits, such that the solution corresponds to the ground state of ĤI . In our notation, the operator Ẑj on the

fullHilbert space applies the single qubit Pauli-Z operator Ẑ to the jth qubit,
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where ̂2 is the identity operator on a single qubit. The (real) values of the coupling strengths Jjk andfields hj
define the optimization problem, and efficientmethods are known for expressing optimization problems in
terms of these coupling andfield strengths (e.g. Choi 2010). The transverse field term ĤT
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drives transitions between states, whereΓ is a real-valued transverse field strength, and X̂j is the operator on the

fullHilbert space that applies the single qubit Pauli-X operator to the jth qubit, defined by analogywith Ẑj in (2).
The qubits are initialised in the ground state of ĤT , this is easy to do by applying a strong transverse field to align
all the qubits in the state ∣ (∣ ∣ )+ñ = ñ + ñ-2 0 11 2 . Then, the computation is carried out by applying the full
transverse IsingHamiltonian

ˆ ( ) ( ) ˆ ( ) ˆ ( )= +H t A t H B t H , 4TI T I

where t is time andA(t),B(t) are real-valued control functions. To obtain a candidate solution to the
optimization problem, the qubit register ismeasured after a time tf. For some problems, sampling from the
distribution of low energy states provides the required solution—this can be done by repeating the computation,
whichwill in general not produce the lowest energy state with certainty.

The IsingHamiltonian is a natural choice for encoding problems for two reasons. First, it is proven to be
universal for classical problems (De las Cuevas andCubitt 2016). There are efficientmethods formappingNP-
hard optimization problems to the Isingmodel (Choi 2010, Lucas 2014), providing a practical route to quantum
algorithms. Sincemany optimization problems areNP-hard, an exponential speed up is not expected, but even
modest polynomial improvements are useful for practical applications. There is increasing interest in how to
obtain polynomial advantages through quantum algorithms (Moylett et al 2017,Montanaro 2018, Ambainis
et al 2019). Interesting results have been presented for awide range of applications, such asmathematics (Bian
et al 2013, Li et al 2017), computer science (Chancellor et al 2016), computational biology (Perdomo-Ortiz et al
2012), finance (Marzec 2016), and aerospace (Coxson et al 2014). Second, the IsingHamiltonian can be
implemented in a range of different physical systems. The quantum IsingHamiltonian is the basic interaction
Hamiltonian in theD-Wave Systems Inc.programmable devices (Johnson et al 2011, Boixo et al 2013).
Implementations in other promising architectures include Rydberg systems (Bernien et al 2017) and trapped
ions (Kim et al 2011). The IsingHamiltonian is also the basic tool for specialised optimization hardware, such as
coherent Isingmachines (Inagaki et al 2016,McMahon et al 2016). Optimization using the IsingHamiltonian
can be implemented in digital quantum architectures by using the quantumapproximate optimization
algorithm (QAOA) (Farhi et al 2014a, 2014b,Marsh andWang 2019) or quantum alternating operator ansatz
(Hadfield et al 2019). Studies by Zhou et al (2018) showhow to exploit non-adiabatic effects inQAOAon early
quantumhardware.

There are several knownmethods for driving the quantum system from its initial state into the ground state
of aHamiltonian defining the problem to be solved. Thesemethods correspond to different choices for the
control functionsA(t) andB(t) in (4). Adiabatic quantum computing (Kadowaki andNishimori 1998, Farhi et al
2000, 2001) keeps the quantum system in the ground state while the initial Hamiltonian is slowly changed into
the problemHamiltonian. Quantumannealing (Finnila et al 1994) takes advantage of open quantum systems
effects to cool the system towards the ground state. Continuous-time quantumwalks evolve the systemunder a
time-independentHamiltonian for a suitable time beforemeasurement of the final state. Computation by
continuous-time quantumwalk and adiabatic quantum computing are end points of a family of continuous-
time protocols that use the sameHamiltonian terms but are appliedwith different time dependentmodulation
(Morley 2019). In this work, we focus on computation by quantumwalk using time-independent transverse
IsingHamiltonians.

Quantumwalks can solve the search problem (Childs andGoldstone 2004), achieving the same quadratic
O(N1/2) quantum speed up as is obtained byGrover’s algorithm (Grover 1996).We describe the search problem
further in section 2.4. For particular graphs, quantumwalks can solve problems exponentially faster (e.g. Childs
et al 2003), and quantumwalks are nowwidely used as subroutines inmore complex quantum algorithms.
However, in the continuous-time setting, the application of quantumwalks to optimization problems has not
been studied in detail. There is increasing interest in quenches (Amin et al 2018) or pauses (Marshall et al 2019,
Passarelli et al 2019) in quantumannealing, which effectively run an open-system version of a quantumwalk
during part of the computation. Thermal relaxation effects dominate in the regime currently accessible by flux
qubit quantum annealers, which is the focus of theseworks. An algorithmwhich is essentially a quantumwalk
on a spin glass, although presented using different terminology, has been analysed byHastings (2019). Along
with the same energy conservation arguments we describe in section 6.2,Hastings’findings suggest that
quantumwalks on spin glasses will be interesting to explore. Given that quantumwalks provide a better
performance for searching than adiabatic quantum computing, especially when limited coherence time and
other practical factors, such as precision of control settings, are considered (Morley 2019), it is important to
understand how they perform for awider range of problems.
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In this work, we tackle the question of if, and how, a quantumwalk can be useful for practical quantum
optimization.We present a detailed numerical investigation of continuous-time quantumwalks applied to
solving combinatorial optimization problems, using the Sherrington–Kirkpatrick spin glass ground state
problem as a prototypical example. Finding the ground state of a frustrated Sherrington–Kirkpatrick spin glass
(Sherrington andKirkpatrick 1975) is known to be not onlyNP-hard, but also uniformly-hard, as suggested by
itsfinite-temperature spin glass transition.Without afinite temperature spin glass transition, a problem cannot
be uniformly hard, since the lack of a transition implies that typical cases will be easy for theMonte Carlo family
of algorithms, as discussed inKatzgraber et al (2014). As has been shown for a randomproblem type used in early
benchmarks of quantumannealing hardware (Katzgraber et al 2014), uniformhardness is crucial: without this
property, randomly generated instances ofNP-hard problems are not necessarily hard to solve (Beier and
Vöcking 2003, Krivelevich andVilenchik 2006, Lucas 2014).

We use a random energymodel (Derrida 1980) for comparisons, to draw out the effects of the correlations
between energy difference andHamming distance in the spin glass. A problemwith perfect correlations is easy to
solve, likefinding the ground state of a spin systemwith only localfields, no couplings. A completely random
problem, such asfinding the ground state of a random energymodel instance, has no correlation to exploit and
so is very hard to solve, essentially requiring randomguessing. However, a completely randommodel is fully
characterised by average values of its properties, and finding exact ground states of specific instances is typically
not interesting. Intermediate problemswith some correlations are both hard and interesting, with complex
behaviour and phase diagrams, like spinmodels with frustration and spin glass phases. Real optimization
problems typically have correlations; they are often hard to solve but also produce interesting solutions. The
inherent complexity of a problem comes from the structures of the problem and its correlations, not the
structure of the solution itself. One illustration of this is the construction of hard benchmarking problemswith
‘planted’ solutions defined at the time of construction, which therefore have no special structure related to the
problem’s hardness, see for exampleHen (2019), Hamze et al (2019).

The paper is structured as follows: in section 2, we review the setting for computation by continuous-time
quantumwalk encoded into qubits, including application to the search problem. In section 3, we introduce the
Sherrington–Kirkpatrick spin glassmodel, and the random energymodel we use for comparison. In section 4,
we describe the numericalmethods used in this investigation. In section 5, we present themain results showing
howquantumwalks canfind spin glass ground statesmore effectively than a quantum search algorithm. In
section 6, we identify the computationalmechanisms and important aspects of the problem structure that
contribute to the effectiveness of quantumwalk computation. Finally, in section 7, we summarize and conclude.

2. Computingwith quantumwalks

Both discrete (coined) quantumwalks (Aharonov et al 2001, Shenvi et al 2003) and continuous-time quantum
walks (Farhi andGutmann 1998, Childs et al 2003) are used for computation. This work only uses the
continuous-time quantumwalk, and also only as an encoded quantumwalk, inwhich qubits are used to store the
binary labels of the positions of the quantumwalker (see figure 1 for a simple example).

2.1. Continuous-time quantumwalks
A continuous-time quantumwalk is defined on an undirected graphG(V, E), with { }= =

-V j j
N

0
1 the set ofN

vertex labels and E the set of label-pairs ( j, k) associatedwith edges. The vertices correspond to the positions of
thewalker, and the edges indicate the allowed transitions between vertices. This is conveniently encoded in the
adjacencymatrixA of the graph, which has entriesAjk=1 for ( ) Îj k E, andAjk=0 otherwise. The Laplacian

Figure 1.A3-dimensional hypercube (a cube) graph inwhich the vertices are labeled by the 23=8 computational basis states of
3-qubits, and the edges connect the states withHamming distance 1 (single spinflips).
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ofG is = -L A D, whereD is a diagonalmatrix formed from the degree of each vertex, ( )=D jdegjj , where
( )jdeg is the number of edges connected to vertex j. Both the adjacencymatrixA and Laplacian L are symmetric

matrices which can thus be used to define a quantumHamiltonian for the dynamics of the continuous-time
quantumwalk on the graph. In this work, we only need regular graphs, for which ( )jdeg is constant with respect
to j. For regular graphs, the only difference between using the adjacencymatrixA or Laplacian L is an irrelevant
global phase (Childs andGoldstone 2004).We use the Laplacian formof theHamiltonian for consistencywith
prior work.We thus define the quantumwalkHamiltonian ĤG for a quantumwalk on graphG by

∣ ˆ ∣ ( )gá ñ = -j H k L , 5G jk

where γ is the hopping rate between connected vertices per unit time. The states ∣ ∣ñ ñj k, for Îj k V, are
associatedwith the vertices ofG and form a basis for aHilbert space of dimensionN. In the Isingmodel context,
the dimension of theHilbert space is =N 2n where n is the number of qubits, and {∣ }ñ =

-j j
N

0
1 is the computational

basis. For a quantumwalk starting in state ∣ ( )y ñ0 , the state of thewalker evolves according to the Schrödinger
equation, with formal solution

∣ ( ) { ˆ }∣ ( ) ( )y yñ = - ñt H texp i 0 , 6G

using units inwhich = 1.

2.2. Computing using a quantumwalk
The task is to solve an optimization problemwhoseN=2n candidate solutions j are represented in the
computational basis {∣ }ñ =

-j j
N

0
1, where j is a bit string corresponding to the state of n qubits. The problem is

encoded in an IsingHamiltonian ĤP , of the formdescribed by ĤI in (1) andwhose eigenbasis is the
computational basis.Wewrite the basis statewith eigenvalue ( )Ea

P as ∣ ( )ñEa
P , with { }Î -a N0 ... 1 , and adopt

the convention that ( ) ( )
+E Ea

P
a

P
1. In otherwords, {∣ }( )ñ =

-Ea
P

a
N

0
1 is a reordering of {∣ }ñ =

-j j
N

0
1 based on the

corresponding eigenenergies of ĤP . The encoding is chosen such that the solution corresponds to the ground
state ∣ ( )ñE P

0 of the problemHamiltonian ĤP .
To use a quantumwalk to solve the problem,wemustfirst choose a suitable state inwhich to initialize the

system.With no prior knowledge of the solution, the equal superposition of all basis states

∣ ( ) ∣ ( )åy ñ = ñ-

=

-

N j0 , 7
j

N
1 2

0

1

is a sensible choice that avoids bias.More generally, the initial state can be prepared as weighted or biased
superposition, to incorporate prior knowledge about the solution (Perdomo-Ortiz et al 2011, Duan et al 2013,
Chancellor 2017, Graß and Lewenstein 2017, Baldwin and Laumann 2018, Kechedzhi et al 2018, Graß 2019).
Next, we choose a suitable walk graphG. Themain requirement is that the ground state of the quantumwalk
Hamiltonian ĤG coincides with the initial state, either biased or unbiased (see section 6.2). A simple way to
achieve a biased starting state would be to ‘tilt’ the driverfields so they are no longer completely transverse.We
only treat the unbiased case in this work, so our initial statewill be ∣ ( )y ñ0 throughout. The full Hamiltonian
ˆ ( )gH is defined by adding the quantumwalkHamiltonian ĤG to the problemHamiltonian ĤP

ˆ ( ) ˆ ˆ ( )g º +H H H , 8G P

where the key parameter is the hopping rate γ in ĤG, see (5). The computation is performed by evolving the
initial state (7) under the full Hamiltonian ˆ ( )gH for a time tf, thenmeasuring the qubit register in the
computational basis. The intuition, based on the faster spreading of quantumwalks over classical found in prior
work (Farhi andGutmann 1998), is that the quantumwalk dynamics provide rapid exploration of the basis
states, while the energy structure of the problemHamiltonian ĤP causes localisation around low-energy states.

The success probability ( ) ∣ ∣ ( ) ∣( ) y= á ñP t E tf
P

f0
2 offinding the solution state whenmeasuringwill not in

general be unity. It will typically be necessary to repeat the protocolmultiple times to obtain a high probability of
success over all the repeats. In general, it will be best to use differentmeasurement times tf for each repeat.
Differentmeasurement timeswill produce different success probabilities P(tf), and varying themeasurement
time avoids repeatedlymeasuring at a time forwhich the probability P(tf) happens to be atypically small.More
precisely, we choose themeasurement time tfuniformly at random in an interval [ ]+ Dt t t, , and define an
average single run success probability

¯ ( ) ( ) ( )òD º
D

+D
P t t

t
t P t,

1
d . 9

t

t t

f f

Operationally, choosing themeasurement time tf randomly in the interval [ ]+ Dt t t, samples success
probabilities from the distributionwith ¯ ( )DP t t, as itsmean. Samplingmeasurement times in this waymeans
that the protocol typically needs to be repeated ¯ ( )~ DM P t t1 ,rep times to achieve an overallO(1) success
probability. Note that it is not generally possible to checkwhether the statemeasured is indeed the ground state
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of ĤP . However, it is easy to calculate the energy of the statemeasured in each repeat. If only the lowest energy
state is accepted, it is only necessary for the ground state of ĤP to bemeasured once out of all the repeats. The
more repeats, themore confidence is gained that the lowest energy state found is the ground state. And studying
the distribution of the sampled energies can providemore information about the problem.

The procedure described in this subsection does not in general provide an optimal quantum algorithm,
because the repeats do not use information gained from the outcomes of previous runs.Wewill discuss this
further in section 7; formost of this paperwe are concernedwith understanding the average single run success
probability, as an essential prerequisite to building optimal algorithms.

In the limit of small interval widthΔt, the average success probability defined in (9) reduces to the single
time probability ( ) ¯ ( )= DD P t P t tlim ,f t f0 . The long time limit of this average,

¯ ( ) ¯ ( ) ( )º ¥ º D¥
D ¥

P P P t0, lim 0, , 10
t

is particularly useful, because it can be calculated via a numerical diagonalization of theHamiltonian (see
section 4) and it predicts the short time averagewell (see section 5.3). In this paper, wewill often use the long
time average ¥P as an indication of the success probability achievable in a single run, and thus the number of
repeats required to achieveO(1) success probability overall.Wewill separately address the timescale required to
reach this probability in each run.

2.3. Graph choice for quantumwalk computing
There aremany graph-basedHamiltonianswith the initial state ∣ ( )y ñ0 defined in (7) as the ground state. A
common choice is the complete graphK, inwhich every vertex is connected to every other. This graph has the
quantumwalkHamiltonian ĤK that couples every computational basis state ∣ ñj state to every other,





⎡
⎣
⎢⎢
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The complete graph is useful because itmakes some algorithms analytically tractable (see, e.g. Childs and
Goldstone 2004). However, for implementation on qubit-based hardware, the complete graph is not in general
practical, requiring higher order interaction terms than the transverse Ising term (3). In this qubit setting, an
implementation of the complete graph requires a sumover every one-body term (e.g. X̂j), every two-body term
(e.g. ˆ ˆX Xj k), every three-body term (e.g. ˆ ˆ ˆX X Xj k l) ... up to the n-body term ˆ =

- Xj
n

j0
1 , a total ofN terms. One- and

two-body terms are relatively easy to implement, since they correspond toHamiltonians found naturally. Terms
in three ormore Pauli-X operators aremuchmore difficult and generally require extra qubits to engineer in real
physical systems.

Amore natural choice of graph for qubits is the hypercube. The n-bit labels are associatedwith the vertices of
the graph such that the edges correspond toflipping one bit, as illustrated infigure 1. The hypercube quantum
walkHamiltonian Ĥh on n qubits is composed of single-body terms


⎡
⎣
⎢⎢

⎤
⎦
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ˆ ˆ ( )åg= -
=

-

H n X . 12h
j

n

j
0

1

With Ĥh as the graphHamiltonian, the full quantumwalk computational Hamiltonian ˆ ( )gH defined in (8) is a
transverse IsingHamiltonian in the formof ĤTI in (4), with the control functionsA(t) andB(t) kept constant
throughout the computation.

In this work, we predominantly use the hypercube graph, with some comparisonsmadewith the same
problems on the complete graph.

2.4. Solving the search problemusing quantumwalks
The simplest example of an algorithm in this continuous-time quantumwalk setting is the search problem. The
problem is tofind themarked state, a single bit-string { }Îm 0, 1 n out ofN=2n possible bit strings. Finding a
marked state was shown to have a quantumalgorithmwith a speed up over classical algorithms byGrover
(1996). Tomap this problem to the continuous-timeHamiltonian setting, themarked basis state ∣ ñm is given

one less unit of energy than all the rest of the basis states, by defining the problemHamiltonian ĤS as

ˆ ∣ ∣ ( )= - ñáH m m . 13S

By construction, the problemHamiltonian ĤS has themarked state ∣ ñm as its ground state.
The continuous-time quantumwalk search problemhas been analytically solved (Childs and

Goldstone 2004) for several different walk graphs. For the complete graph and the hypercube graph, a quantum
speed up is obtained for carefully chosen optimal values of the hopping rate γ. For the complete
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graphHamiltonian ĤK , the optimal value is ( )g = N1K
opt , while for the hypercubeHamiltonian, Ĥh, the optimal

hopping rate ( )g h
opt is given by

⎜ ⎟⎛
⎝

⎞
⎠ ( )( ) åg =

=N

n

r r
2

1 1
, 14h

r

n

opt
1

where ⎜ ⎟⎛
⎝

⎞
⎠

!
!( !)

=
-

n

r
n

r n r
is the binomial coefficient. For a quantum speed up, the hopping ratemust be set to ( )g h

opt

as defined by (14)with high precision. It has been shown (Morley 2019) that the fractional tolerance to
misspecification of the optimal hopping rate ( )g h

opt falls as ( )-O N 1 2 .

Themeasurement timemust also be chosen appropriately. In the limit of large problem sizeN, themarked
state can be foundwith unit success probability, [ ( )]( ) =¥ P tlim 1N f

opt , bymeasuring in the computational

basis at an optimalmeasurement time ( )tf
opt . For both the hypercube and complete graphs, the optimal time ( )tf

opt

scales with the square-root of the problem sizeN as ( )  pt Nf
opt

2
1 2. This corresponds to a quadratic speed up

compared to the best classical algorithm.Due to the absence of structure in the search problem specifically, such
a quadratic speed up has been proven to the best possible quantum speed up (Bennett et al 1997).

The variation ofP(tf)with tf is shown infigure 2(a) for search on hypercube graphs of sizeN=230 (i.e.
n=30 qubits) andN=211 (i.e. n=11 qubits), using the optimal hopping rate ( )g h

opt
. The sinusoidal

oscillations of the probability P(tf) occur because the quantumwalk is performing Rabi oscillations between
the initial state and themarked state. The two lowest energy levels of the fullHamiltonian ˆ ( )gH with
varying γ undergo an avoided level crossing at ( )g h

opt and the associated eigenstates ∣ ( )( )g ñE h
0 opt and ∣ ( )( )g ñE h

1 opt

are approximately the orthogonal equal superpositions of the starting state andmarked state, ∣ ( )( ) g ñE h
0,1 opt

(∣ ( ) ∣ )y ñ  ñm0 2
1
2 . The gap ( ) ( )( ) ( )g g-E Eh h

1 opt 0 opt scales with the problem sizeN as ( )-O N 1 2 (Childs and
Goldstone 2004).

These simple, two-level dynamics describe the quantumwalk solution to the search problemwell for large
problem sizeN: the oscillations in theN=230 case have no visible irregularities. For smaller sizes,finite-size
effects due to population of higher energy levels are apparent: the oscillations in the =N 211 case have lower
probability peaks and show some irregular behaviour, such as the small dip on the first peak. Thesefinite-size
effects are further illustrated infigure 2(b), which shows the instantaneous success probability P(tf) at the
asymptotically optimal and numerically determined best times, as well as the infinite-time average success
probability ¥P defined in (10). All three probabilities show a pronounced dip around n=8 qubits, with smooth
behaviour only settling in for n> 12 qubits. Figure 2(b) also shows that the infinite-time probability ¥P
asymptotes to a half. Hence, a quantumwalk searchwith a randommeasurement time should on average only
need to be repeated twice to locate themarked state; knowing the exact time tomeasure for the optimal success
probability is not necessary for the success of the algorithm. Fixed point quantum search algorithms (Yoder et al
2014,Dalzell et al 2017) are another approach that avoids the need to knowhow long to run the algorithm for.

The search problem in the continuous-time quantum computing setting has two important drawbacks.
Firstly, implementing the problemHamiltonian ĤS directly on n qubits requiresO(2

n) terms of products of up

Figure 2.The search problem solved using a continuous-time quantumwalk on the hypercube using the optimal hopping rate ( )g h
opt

given by (14). (a)The probabilityP(tf) that ameasurement at time tf results in successfully finding themarked state ∣ ñm for two
different numbers n=30 (red, dashed line) and n=11 (orange, solid line) of qubits (i.e. problem sizesN = 230 andN = 211

respectively). (b)Comparison of instantaneous success probabilities P(tf), at the asymptotically optimal (blue squares, dashed line)
and numerically determined best (red circles, solid line)measurement times tf, and the infinite time average success probability ¥P
(green triangles, dotted line) defined in (10).
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to nPauli-Z operators, similar to the problemwith implementing the complete-graphHamiltonian ĤK , defined
in (11), on qubits. Implementing higher order Pauli-Z terms can be done using extra qubits as ‘gadgets’, e.g.
Jordan and Farhi (2008). An alternative type of gadget, specifically for permutation-symmetric problems like
search, is given inDodds et al (2019), building on classical problemmapping techniques inChancellor et al
(2016, 2017). Secondly, it is impossible tomap the problemHamiltonian to qubits without specifying the
solution outright. Hence, the search problem serves as a useful toy problem, especially in contexts where having
analytic, computational, and physical implementations available for comparisons facilitates benchmarking and
other testbed procedures.

3. Spin glass problemdefinitions

In this workwe focus on spin glass problems that have features in commonwith real life hard optimizations
problems and, unlike the search problem, do not admit analytic solutions. The search problem solved by
quantumwalk provides useful comparisonswith these spin glass problems.

3.1. Sherrington–Kirkpatrick spin glass
The Sherrington–Kirkpatrick (SK) spin glassHamiltonianHSK (Sherrington andKirkpatrick 1975) is defined on
n spins as

( )
( )
å= -
¹ =

-

H J S S
1

2
15

j k

n

jk j kSK
0

1

where Sj are the classical spins ( { }Î -S 1, 1j ) and the couplings Jjk are drawn independently from the normal
distribution ( )m s , SK

2 withmeanμ and variance sSK
2 . Finding the ground state of thisHamiltonian isNP-hard

(Choi 2010), and uniformly hard, due to itsfinite-temperature phase transition (Sherrington and
Kirkpatrick 1975).

It is computationally convenient to break the spin inversion symmetry by adding single-body field terms of
the formå =

- h Sj
n

j k0
1 , where hj are thefield strength values. Like the couplings Jjk, thefields hj are also drawn

independently from ( )m s , SK
2 .When thefields strengths hj are drawn from the same distribution as the

coupling strengths Jjk, the hardness offinding the ground state follows directly from the hardness of the hj=0
case. The SK spin glass with suchfields ismathematically equivalent to a zerofield spin glass with onemore spin
which is ‘fixed’ in one orientation. This is not true in general for different distributions offield strength hj. There
are known examples inwhich fields can destroy spin glass behaviour (see, e.g. Young andKatzgraber 2004, Feng
et al 2014). In particular, if thefield strengths aremuch larger than the coupling strengths (∣ ∣ ∣ ∣h Jj jk for all j, k),
then the energy isminimized trivially when all the spins eachminimize the energy with respect to their
individualfields.While the distribution offield strengths could be used to tune the problemhardness, we do not
use it in this way here, and only consider cases where the field and coupling strengths are drawn from the same
distribution.

An astute reader will notice that if one effectively un-fixes the spinwhich corresponds to the fields (thus
making all states two fold degenerate and converting the system to a double cover of the orignal system), these
couplingswill effectively be on average stronger by a factor of 2 . As this increase in coupling strength does not
scale with the number of spins, it is going to become less and less significant as the size of the system is scaled up
the hardness will be preserved.

Themapping into the quantum Isingmodel is almost trivial: the classical spin variables Sj are simplymapped
to Pauli-Z operators. Thus, the problemHamiltonian ĤSK becomes

ˆ ˆ ˆ ˆ ( )
( )
å å= - -
¹ =

-

=

-

H J Z Z h Z
1

2
, 16

j k

n

jk j k
j

n

j jSK
0

1

0

1

The SKproblemHamiltonian differs from the search problemby having structure, produced by the ˆ ˆZ Zj k

termsAs a result, the covariances between the energies of two basis states depends on theHamming-distance
between them (Baldwin and Laumann 2018). Knowing the energy of one state gives some information about the
energy of states that differ by a small number of bit-flips. This results in a distribution of the eigenenergies that is
almost normal (as can be seen by plotting the distributions and numerically calculatingmoments), but which
deviates fromnormal in the tails of the distribution.

3.2. Randomenergymodel
To isolate the effect of the correlations in the SK problem,we compare it with the random energymodel (REM)
(Derrida 1980), inwhich the eigenenergies themselves are independently drawn from anormal distribution. The
problemHamiltonian ĤREM for REM is
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ˆ ∣ ∣ ( )å= ñá
=

-

H F j j , 17
j

N

jREM
0

1

with {∣ }ñ =
-j j

N
0
1 the computational (Z) basis and the energies Fj drawn independently from the normal

distribution ( )s 0, REM
2 .

REMhas a similar energy level distribution to that of SK, apart from the tails. By definition it lacks the
correlations: knowing the energy of one state gives no information about the energies of other states.
Comparison between these twomodels highlights the effect of the pairwise structure in the SKmodel.

4.Numericalmethods

Themain tool used for the investigations in this work is numerical simulation.We are studying computationally
hard problems forwhich there are no tractable analytical solutions except in special cases.

For each number of qubits 5�n�20we generated 10 000 random instances of the SK spin glass
Hamiltonian, defined in (16), with the couplings Jjk andfields hj drawnwith a standard deviation s w=SK SK,
whereωSK is an arbitrary energy unit. The valueωSK=5was used for computational convenience.We also
generated 10 000 random instances of the REMHamiltonian, defined in (17), for each number of qubits
5�n�15, with normally-distributed energies Fj drawnwith a standard deviationσREM=ωREM. The value
ωREM=1was used for computational convenience. Note that choosing any arbitrary constant forωwill only
affect overall time and energy scales by a constant factor, and the energy unitωSK has been scaled out of the plots
where relevant.

The key quantity to determine numerically is the probability that the ground state is found by running a
quantumwalk computation on each spin glass instance. It is particularly convenient to compute the infinite-
time probability ¥P given by (20), for sizes where full diagonalization is possible.Writing the spectral expansion
of the full computational quantumwalkHamiltonian as

ˆ ( ) ( )∣ ( ) ( )∣ ( )åg g g g= ñá
=

-

H E E E , 18
a

N

a a a
0

1

with indices ordered such that ( ) ( )g g+E Ea a 1 and ∣ ( )g ñEa the eigenstate with eigenvalue Ea(γ), we canwrite
the instantaneous probability in terms of the spectral expansions as

( )

( ) ∣ ∣ ( ˆ ( )) ∣ ( ) ∣ ( ) ∣ ( ) ( ) ∣ ( )

∣ ∣ ( ) ∣ ∣ ( ) ∣ ( ) ∣ [ ( ( )) ∣ ( ) ( ) ∣ ( ) ( ) ∣ ( ) ∣ ( ) ]

( ) ( )

( ) ( ) ( )

å

å å

g y g g y

g g y g g y g y g

= á - ñ = - á ñá ñ

= á ñ á ñ + - - á ñ ´ á ñá ñá ñ

=

-

=

-

¹ =

-

19

P t E tH tE E E E

E E E t E E E E E E E E

exp i 0 exp i 0

0 exp i 0 0 .

P

a

N

a
P

a a

a

N
P

a a
a b

N

a b
P

a a b
P

b

0
2

0

1

0

2

0

1

0
2 2

0

1

0 0

Assuming no degeneracy (that is, all gapsEa–Eb are nonzero), which is justified for the randomized nature of the
SK andREMproblems, the oscillatory terms cancel in the infinite limit (because ( )ò q- =

¥
t td exp i 0

0
for

nonzero θ) to leave the infinite-time average probability ¥P given by

∣ ∣ ( ) ∣ ∣ ( )∣ ( ) ∣ ( )( )å g g y= á ñ á ñ¥
=

-

P E E E 0 . 20
a

N
P

a a
0

1

0
2 2

All of the numerical simulation in this work has been performed using the Python3 language (VanRossum
andDrake 2003), aided extensively by the IPython (Perez andGranger 2007) interpreter and the Jupyter
Notebook (Kluyver et al 2016) system. The numerical heavy-lifting has been done usingNumPy
(Oliphant 2006), SciPy (Virtanen et al 2019), and pandas (McKinney et al 2010), and the plotting has been done
usingmatplotlib (Hunter 2007). The dynamical simulations have been performed by computing the action of
the propagator ( ˆ ( ))g- tHexp i on the initial state ∣ ( )y ñ0 , using the sparsematrix functionswithin SciPywhen
possible. For themore computationally demanding analyses, wewere limited to n�11 by the computational
resources available.Where relevant,figures in this paper have error bars included.However, inmost cases the
error bars aremuch smaller than the size of themarker symbols used and so are not visible. This is due to the size
of the data sets (10k instances per value of n), which provides a good level of accuracy for the average quantities.

Simulations were run on the Imperial andDurhamUniversity high performance computing facilities. The
data for all the instances used is available on a permanent data archive (Chancellor et al 2019).
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5.Quantumwalkswith spin glasses

In order to implement a quantumwalk algorithm forfinding the ground states of the spin glasses defined in
section 3, we follow the procedure described in section 2.2: choose a quantumwalk graphG and associated
Hamiltonian ĤG, and add the spin glassHamiltonian to get the full computational quantumwalkHamiltonian
ˆ ( ) ˆ ˆg = +H H HG P, where ĤP refers to ĤSK or ĤREM as appropriate. Since the hypercube is the natural choice of

graph for qubit implementations, we use this graph, with quantumwalkHamiltonian Ĥh defined in (12), unless
otherwise indicated. For the initial state ∣ ( )y ñ0 , we use the equal superposition (7), which is the ground state of
the hypercubeHamiltonian Ĥh.

5.1. Setting the hopping rate
In contrast to the search problem, for SK andREM it is impossible to efficiently calculate the optimal hopping
rate ( )g h

opt thatmaximizes the success probability. It is not even clearwhichmeasure of success probability should

bemaximized because, unlike the search problem, therewill be no efficient way tofind the optimal
measurement time ( )tf

opt for any choice of hopping rate γ. To bootstrap the investigation, we choose to define the

optimal hopping-rate ( )g h
opt with respect to one of the average probabilities defined in (9); in particular, we choose

the hopping rate thatmaximizes the infinite-time average probability ¥P defined in (10).Wemake this choice
because the infinite-time average probability ¥P is numerically convenient to calculate, and because it has been
seen to be a relevantmeasure of probability in the search example, see figure 2(b).Wewill see in section 5.3 that
the probability ¥P typically agrees well with probabilities averaged over shorter andmore practical time
windows.

Some plots of the infinite-time probability ¥P against hopping rate γ for typical 11-qubit examples of the SK
andREMare shown infigure 3. Note that themaximal success probability varies by an order ofmagnitude
between the two problem-types, with REMhighest and SK lowest.While the optimal hopping rate ( )g h

opt is

instance-dependent, these plots show that the dependence of infinite-time probability ¥P on hopping rate γ is
typically characterised by broad, bumpy peaks for SK, and by narrow, well-defined peaks for REM. This implies
that a precise value of the hopping rate γ is needed for REM,while there is some tolerance to non-optimal values
of the hopping rate γ for SK for the sizes that we have studied.

To investigate the success probabilitymore systematically, we performed a brute-force numerical search to
find the optimal hopping rate ( )g h

opt thatmaximizes the success probability ¥P for each spin glass instance from

the data sets of 10k random instances for 5�n�11. This gives a baselinemaximumaverage single run success
probability for the quantumwalk algorithm.

The optimal hopping rates ( )g h
opt correspond to the best a quantumwalk algorithm on the hypercube can

possibly do in a single run. For practical algorithms, we need a heuristicmethod for choosing the hopping
rate that can be calculated from the known parameters. For the quantumwalk search algorithm, the optimal
hopping rate balances the energy between the two components of theHamiltonian, ĤP and ĤG. Guided by
this, we define the heuristic hopping rate ( )g h

heur
for SK and REM such that it balances these overall energy-

scales on average.Wematch the energy-spread ( ) ( )--E EN
h h

1 0 of the hypercube quantumwalkHamiltonian

Ĥh with the average energy-spread
( ) ( )á - ñ-E EN
P P

1 0 of the problemHamiltonian ĤP . For the hypercube

Hamiltonian Ĥh defined in (12), we have the energy spread ( ) ( ) g- =-E E n2 ;N
h h

1 0 hence, we define the

Figure 3. Infinite-time success probability ¥P against hopping rate γ scaled by the energy unit wP for 3 typical 11-qubit examples of
SK (left) andREM (right). Also indicated (for one example in each plot) is the width ( )gD h

opt of the peak (also scaled byωP).
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heuristic hopping rate ( )g h
heur

by

( )( ) ( ) ( )g º á - ñ-n
E E

1

2
. 21h

N
P P

heur 1 0

Todemonstrate that this heuristic is sensible, we compare infigure 4 the distributions of optimal hopping rates
( )g h
opt for SK (blue) andREM (red), as well as the heuristic hopping rates (black, dashed and dotted lines for SK and

REMrespectively) calculated according to (21), for the 11-qubit data set. For both SK andREM, the heuristic
hopping rate ( )g h

heur
falls in the centre of the ( )g h

opt distributions. Note that the SKdistribution ismuch broader than

for REM: not only are the individual peaks for ( )g h
opt for SKmuch broader than for REM (figure 3), but the

distribution of themaxima of those peaks is alsomuch broader (figure 4). Thismay seem to be a problem for
specifying a heuristic value for γ for SK from average energies, but as wewill show, it is actually REM that fails for
the heuristic γ, while SKworkswell.

For a normal distribution of energy levels, the average problem energy spread can be estimated as

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( ) ( ) ( ) sá - ñ - --

-E E
N

2 erf
1

1 , 22N
P P

P1 0
energy 13

2

where ( )sP
energy is the standard deviation of the energy eigenvalues of the problemHamiltonian. For REM, the

standard deviation ( )sREM
energy is equal to the energy unit wREM by definition (see section 3.2). For SK, the standard

deviation ( )sSK
energy can be shown to be equal to [ ( )]+w n n 3

2
SK 1

2 . Equation (22) is accurate for REM (which has
normally-distributed energy levels by definition) but, as already noted, the distribution of the eigenenergies in
SK deviates fromnormal, especially in the tails. Numerically, we find that there is amultiplicative constant factor
of approximately 0.887 that corrects the formula in (22) for SK for the effects of the non-normal tails. For the
numerical analysis, we use the numerically calculated average energy-spread at each number of qubits n.

Figure 5(a) compares the heuristic hopping rate ( )g h
heur

and average optimal hopping rate ( )gá ñh
opt at different

numbers of qubits 5�n�11. The full width at halfmaximum (FWHM)has also been calculated for each
instance, to estimate the tolerance ( )gD h

opt to deviations from the optimal hopping rate ( )g h
opt (illustrated in

figure 3). Thewidth of the shaded regions infigure 5(a) corresponds to the average tolerance range ( )gáD ñh
opt at

each number n of qubits.While the heuristic hopping rate differs slightly from the the average optimal hopping
rate for SK, the average tolerance range ( )gáD ñh

opt ismuch broader, and does not shrinkwith increasing number of

qubits n. For REM, however, while we see close agreement on average, the tolerance range shrinks quickly with
the number of qubits n as the peaks (as infigure 3, right) become narrower. Thismeans that the heuristic
hopping rate ( )g h

heur
ismore likely to lie further than ( )gD2 h

opt outside of the actual probability peak for each

instance, even though it agrees well with the average optimal hopping rate ( )gá ñh
opt . Consequently, a quantumwalk

with the heuristic hopping rate ( )g h
heur

does not performwell formost REM instances.

It is instructive to quantify this sensitivity to deviations from the optimal hopping rate ( )g h
opt. Figure 5(b)

shows log–linear and log–log plots of the average fractional tolerance range ( ) ( )g gáD ñh h
opt opt against number n of

qubits for SK (blue circles), REM (red squares) and search (green triangles) on the hypercube. For SK, the
fractional tolerance range ( ) ( )g gáD ñh h

opt opt decreases as approximately 1/n, while for REMand search the decrease

is approximately -N 0.5. This decrease is expected theoretically for search (Childs andGoldstone 2004). The
fitted lines do not show exactly a square-root dependence (exponent of−0.5) due to thefinite size effects for
small numbers of qubits n�12.

Figure 4.Histograms (relative frequency ( )( )g wp h
Popt ) of the numerically-found optimal hopping rates ( )g h

opt scaled by the energy unit

wP for the 10 000 11-qubit instances of SK (blue) andREM (red). The dashed and dotted lines show the heuristic hopping rate ( )g h
heur,

calculated according to (21), for SK andREMrespectively (also scaled byωP).
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Thus, we see that REMbehaves like the search problem in a quantumwalk setting. For a precisely optimal
hopping rate ( )g h

opt, the success probability is high, but this instance-dependent hopping rate is hard to predict,

unlike for the analytically tractable quantumwalk search algorithm.Without this precise hopping rate, quantum
walks performno better than guessing for the search problem and for REM. In contrast, quantumwalks applied
to SK give a better-than-guessing success probability >¥P N1 for the heuristic hopping rate ( )g h

heur
calculated

according to (21).
With the conditions underwhichwe can achieve a better-than-guessing success probability characterised for

the three problem types, SK, REM, and search, we turn to the scaling of this success probability with problem
sizeN.

5.2. Success probability
Figure 6 shows how the single-time success probability P(tf) varies with themeasurement time tf for two typical
11-qubit examples of SK andREM. In theREMcase, the behaviour is similar to that shown infigure 2(a) for
search: an oscillatory nature indicating the dominance of a two-level avoided-crossing feature, but with evidence
of the population of other energy-levels that lead tofinite-size effects in search. For REM, thesefinite-size effects
aremore pronounced, and are instance-dependent. The randomnature of the REMproblemsmeans there is not
such a clear cut off size, as there is for the search problem, abovewhich finite size effects are negligible. In any
case, based on search, we expect finite size effects to be significant at n=11. For SK, the behaviour is quite
different from search or REM. There is no indication of dominant oscillatory behaviour; instead, these plots
showunpredictable, highly instance-dependent fluctuating dynamics for all the sizes we are using. This indicates
that for SK, the behaviour is determined by the excitation ofmany energy levels.

Aswith finding a suitable hopping-rate γ, both REMand SKdiffer from the search problem in that there is
no practical way tofind the optimalmeasurement time ( )t ;f

opt a different approachmust be taken instead. As
already noted for the search problem, this can be handled by using the time averaged probabilities defined in (9).
Wefirst consider the infinite-time probability ¥P , as defined in (10), since it is easy to calculate (see section 4).
Figure 7 shows the average infinite-time success probability á ñ¥P against the number n of qubits for the two

problems using both the optimal ( )g h
opt and heuristic

( )g h
heur

hopping rates. For SK, this gives exponential decay

with the number of qubits n in both cases: the average probability á ñ¥P changes with n according to

Figure 5. (a)Average optimal (circles, solid line) and heuristic (squares, dashed line) hopping rates, ( )gá ñh
opt and ( )g h

heur, against number n

of qubits for SK (top, blue) andREM (bottom, red). The shaded regions bordered by dotted lines indicate the average tolerance range
( )gáD ñh
opt to non-optimal hopping rates, defined as full width at halfmaximum (FWHM) of the probability peak surrounding ( )g h

opt , as

illustrated in figure 3. (b) Log–linear plot (top) and log–log plot (bottom) of average fractional tolerance range ( ) ( )g gáD ñh h
opt opt . REM (red

squares, dotted line) shows an exponential decrease,fitting to a line (red, solid line)with a gradient of−0.583±0.006 in the log–
linear plot. SK (blue circles, dotted line) shows a polynomial decrease, fitting to a line (solid blue) in the log–log plot with a gradient of
−1.09±0.04. The same quantity for the search problem calculated the sameway is also shown (green triangles, dashed–dotted line),
and it fits well to a line (solid green) in the log–linear plot with a gradient of−0.546±0.004.
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˜ ( )
˜ ( )

( )
( )

( )

g

g
á ñ =¥

- 

- 
P

O N

O N

with

with
, 23

h

h

0.402 0.001
opt

0.417 0.002
heur

where Õ mayneglect factors logarithmic in its argument. That is, using the heuristic hopping rate ( )g h
heur

instead

of the optimal hopping rate ( )g h
opt has only aminor impact on the average success probability á ñ¥P .

For REM, the behaviour is quite different.With the optimal hopping rate ( )g h
opt we see a success probability

¥P of constant order but with a pronounced dip. This behaviour is similar to that seen for the search problem,
where the dip seen infigure 2(b) is afinite-size effect. This similarity is expected, given the similarity between the
dynamical behaviour shown infigure 2(a) for search and infigure 6(b) for REM.With the heuristic hopping rate

( )g h
heur

for REM,we see a significantly reduced success probability ¥P compared to the optimal case. That is, the
heuristic is performing poorly, despite the good agreement shown infigure 5(a).

The clear difference in behaviour between SK andREMcan be explained by the different tolerances ( )gD h
opt to

deviations from the optimal hopping rate ( )g h
opt shown infigures 5(a) and (b). For SK, the tolerance range is broad

enough for the heuristic to lie within it, while for REM the heuristic hopping rate ( )g h
heur

almost alwaysmisses this

range entirely even though it is close to the average optimal hopping rate ( )gá ñh
opt .

Figure 6. Instantaneous success probability P(tf) against dimensionlessmeasurement time w tP f for quantumwalk on 2 typical 11-
qubit SK examples (a) and for 2 typical 11-qubit REMexamples (b), using ( )g h

opt .

Figure 7.Blue, left: log–linear plot of average infinite time success probability á ñ¥P against number of qubits n for SK, using optimal
(circles, dotted line) and heuristic (squares, dashed line) hopping rates ( )g h

opt and
( )g h
heur. The datafit ( )á ñ = -  +¥P nlog 0.402 0.0012

( )- 0.174 0.008 and ( ) ( )á ñ = -  + - ¥P nlog 0.417 0.002 0.32 0.012 respectively. Red, right: log–linear plot of the same
quantities for REM. In this case, the probability stays at constant order for the optimal rate and decays for the heuristic rate.
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5.3.Mixing times
Wehave thus numerically determined an average success probability scalingwith problem size of ˜ ( )~ -O N 0.42

for a quantumwalk finding SK spin glass ground states, using the heuristic hopping rate ( )g h
heur

. This is based on
the infinite time-success probability ¥P , i.e. uniform sampling from the distribution of all possible run times.
We now investigate the time dependence inmore detail: canwe sample from afinite run time and still obtain the
same speed up? Since P(0)=1/N corresponds to random guessing, theremust be aminimum time before
which it is not effective tomeasure.

We define amixing-time ( )t mix to be the latest time, t, for which the time averaged probabilities ¯ ( )P t0, and
¯ ( )P t0, 2 at the two times t and 2t differ by a fraction greater than the fluctuation parameter ò,

⎧⎨⎩
⎫⎬⎭

¯ ( ) ¯ ( )
¯ ( )

( )( )t =
-

>  t
P t P t

P t
max :

0, 0, 2

0,
. 24mix

This definition of ( )t mix is based on similar definitions found in prior work (Aharonov et al 2001), with
modifications for computational convenience.We numerically estimated themixing-time ( )tmix

0.05 for each SK
instance up to n=11 qubits, using the optimal hopping rate ( )g h

opt for each instance.We simulated the quantum

walk computation dynamics for a successively-doubling duration until a time at which the condition ismetwas
reached. Thefluctuation parameter ò=0.05 corresponds to a deviation of 5%. To verify that themixing-time

( )tmix
0.05 correctly captures the relevant dynamical timescale, we also numerically estimated it for the search

problem at each system size from n=5 to n=30 qubits. The search problemusing continuous-time quantum
walks can bemapped to the symmetric subspace, allowing larger sizes to be analysed. Themixing-time ( )tmix

0.05 for
search exhibits the expected exponential timescale: the solid green line of bestfit infigure 8(a) has the expected
scalingwith problem sizeN of ˜ ( )( )t = O Nmix

0.05 1 2 .
For search, the scaling is dominated by the run time, the success probability isO(1). However, this behaviour

only emerges clearly above n∼20. Below this, the behaviour is influenced by thefinite-size effects that arise due
to population of higher energy levels. Thismeans it is not useful to analyse the behaviour of the REM time
scaling,finite size effectsmask the scaling behaviour for computationally tractable sizes. However, unlike search
andREM, the SK behaviour is influenced by higher energy levels at all sizes, through the frustration provided by
the random couplings between the spins.Hence, we do not expect to see suchfinite-size effects in SK; the
behaviour is already dominated by the frustration at small sizes. Figure 8(b) shows a log–log plot of themixing-
time (scaled byωSK) averaged over the ensemble ( )t wá ñmix

0.05
SK . The solid blue line of best fit has a logarithmic

scalingwith problem sizeN of

( ) ([ ] ) ( )( ) t wá ñ = O n O Nlog . 25mix
0.05

SK
0.74 0.03

2
0.75

Thus it contributes a logarithmic factor to the overall scaling.We emphasise that while this single-run timescale
is polynomial in the number of spins n, the overall timescale is still exponential in n due to the exponential
number of repeats required to achieveO(1) success probability.

To confirm the subsidiary nature of the time scaling for each SK run, we show infigure 9 a log-plot
comparing, for the heuristic hopping rate ( )g h

heur
, the success probability ¥P in the infinite-time case (as in

figure 7) and in the case of an early, logarithmically-scaling (with respect toN)measurement window
( )w w º D n t n t t12.5 17.5 ,SK SK short short

1
2

1
2 . This n0.5 scaling of thewindow is even shorter than the fitted

scaling of n0.75, although at these sizes the difference is not significant. Thisfinite-time probability

Figure 8. (a) Log–linear plot of themixing time ( )tmix
0.05 for search, using ( )g h

opt . The solid line of bestfit is (( )t = log 0.50002 mix
0.05

) ( )+ n0.0002 3.424 0.006 , withfinite-size effects dominating at small numbers of qubits n20. (b) Log–log plot of the average
mixing time scaled byωSK to give a dimensionless quantity ( )t wá ñmix

0.05
SK against system-size n for SK, using ( )g h

opt . The solid line of best

fit is ( ) ( )( )t wá ñ =  + nlog 0.74 0.03 log 2.23 0.082 mix
0.05

SK 2 .
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¯ ( )DP t t,short short is similar to the infinite-time probability ¥P : the solid purple line of bestfit infigure 9 has a
scalingwith problem sizeN of

¯ ( ) ˜ ( ) ( )á D ñ = - P t t O N, . 26short short
0.410 0.002

This should be comparedwith (23), where the value of the exponent for the average infinite time success
probability ¥P with the heuristic hopping rate ( )g h

heur
is given by−0.417±0.002.

As the dominant factor in the total runtime comes from the required number of repeats, and because the
single-run timescale contributes only a logarithmic factor, these results constitute good numerical evidence for
an average total runtimewhich scales with problem sizeN as ˜ ( )~O N 0.41 for using quantumwalks tofind spin
glass ground states, over the range ofN in our data sets. This scaling is a better than the best possible (quadratic)
speed up achievable for quantumwalk search algorithms.Moreover, it comeswithout the requirement for
exponential precision in setting the hopping rate that renders practical use of quantumwalk searching difficult
for large problems.Wenowpresent some insights intowhere the improvement over search comes from.

6. Computationalmechanisms

6.1. Role of correlations in SK
To investigate whether the energy correlations withHamming distance in SK play a significant role in the
computational process offinding the ground statewith a quantumwalk, we performed three additional sets of
numerical tests.

Firstly, we used the same SK instances but performed the quantumwalk using a complete
graphHamiltonian ĤK , defined in (11), instead of the hypercube graphHamiltonian Ĥh. This removes the
correspondence ofHamming-distance between classical states with the distance between those states on the
graph—for the complete graph, every state is one unit (edge) away from every other state. In terms of the
Hamiltonian, the transverse Ising term is replaced by sums of products of up to nPauli-X operators thatflip up
to n qubits at the same time, in all possible combinations. For each SK instance up to n= 11, we estimated the
optimal hopping rate ( )g K

opt for the complete graph, and then used it to calculate the infinite-time probability ¥P .

Secondly, we constructed ‘scrambled SK’ instances, denoted sSK, by randomizingwhich state corresponds
towhich energy in the SK instances. In doing so, we arrive atHamiltonians with identical energy spectra to the
SK instances, butwithout the correlations between energy difference andHamming distance on the hypercube
graph. This approach has similarities with previouswork (Farhi et al 2008, 2011,Hen 2014). For each sSK
instance, we estimated the optimal hopping rate ( )g h

opt, which is different from that used for the ordinary SK

versions. This hopping ratewas then used to calculate ¥P .
Thirdly, we sorted the eigenenergies of eachREM instance in increasing size and assigned them to the

computational basis states in the order of a binary-reflectedGray code on their bitstrings, to arrive at a problem
denotedREMGC. In doing so, we added some amount ofHamming-distance structure by ensuring that the
closest energies are assigned to states that differ by only a single bit-flip. For eachREMGC instance, we estimated
an optimal hopping rate ( )g h

opt, which is different from that used for the ordinary REMproblem. This was used to

Figure 9. Log-plot of average success probability using ( )g h
heur against number of qubits for infinite-time (blue circles and dotted line) as

in figure 7, and averaged over the short timewindow / /w n t n12.5 17.51 2
SK

1 2 (purple crosses and dashed line). The short time
data arefit by ¯ ( ) ( )á ñ = -  + - P nlog 0.410 0.002 0.37 0.022 (solid purple line). The -2 n probability whenmeasuring at t=0,
equivalent to randomly guessing (solid black line), and its square-root -2 n 2 (dotted black line) are also shown for comparison.

14

New J. Phys. 21 (2019) 123022 ACallison et al



calculate the infinite-time probability ¥P .While REMGC is not a hard problem as defined, it provides a useful
example to comparewith how the quantumwalkfinds the ground state of a SK spin glass.

These three variants provide separate tests of the influence of the graph structure (choice of quantumwalk
Hamiltonian) and problem structure (pairwise correlations in SK). Figure 10 shows how the infinite-time
probability ¥P varies with the number of qubits n for these three variants, alongside SK andREMon a hypercube
graph fromfigure 7. The variation of ¥P with the number of qubits n for thefive variants is clearly split into two
groups, behaviour like REMand search on the one hand, and behaviour like SK on the other. Removing the
correlations fromSKby scrambling the energies (sSK) results in behaviour like REMand search.Moreover,
removing the correspondence between distance andHammingweight by using the complete graph instead of
the hypercube also changes the SK problembehaviour to be like REMand search. In the opposite direction,
inserting pairwise correlations into REMvia aGray code (REMGC) results in problems that aremuchmore like
SK than like the REMproblems on a hypercube graph.

From this, we infer that the problem structure—in this case the pairwise correlations in SK—needs to be
matched by a compatible driverHamiltonian—in this case the hypercube/transverse Ising—to obtain better
than quadratic scaling. This type of local structure in the solution space is exploited inmany classical algorithms.
For example, classicalMonte Carlo optimizations that use a single bit flip update rule are naturally using this
hypercube structure. Using a complete graph insteadwould correspond toflipping a randomnumber of bits,
which is equivalent to guessing at each step.

6.2. Energy conservation dynamics
Continuous-time quantumwalk time evolution is unitary, and there is no time dependence in theHamiltonian
that can lead to energy gain or loss by the system.Hence, it is important to consider how it can find a lower
energy state than it starts in (with respect to ĤP)with any better-than-guessing probability. For the search
problem, this happens through an analog of Rabi flopping (see figure 2), cycling between the initial and solution
states. However, the dominant avoided level crossing structure is not present in the spin glasses to provide this
mechanism.

Wenow show that there is a very genericmechanism (also described independently byHastings 2019) that
relies on starting in the ground state of the quantumwalk part ofHamiltonian ĤG. Let ˆ ( )á ñyO t for operator Ô be

defined by ( )∣ ˆ∣ ( ) ˆ ( )y yá ñ = á ñyt O t O t . Then, by linearity, and the definition of ˆ ( )gH in (8), the energy
expectation at time t is

ˆ ( ) ˆ ˆ ( )( ) ( ) ( )gá ñ = á ñ + á ñy y yH H H . 27t G t P t

Due to the unitarity of the evolution under a time-independentHamiltonian, this expectation energywill not
change over time, giving

ˆ ( ) ˆ ( ) ( )( ) ( )g gá ñ = á ñy yH H . 28t 0

Figure 10. Log–linear plot showing the dependence on number of qubits n of the average success probability ¥P for SK onhypercube
(blue circles, thick solid line), REMonhypercube (red crosses, dashed–dotted line), sSK onhypercube (green triangles, dotted line),
SK on complete-graph (orange squares, dashed line) andREMGConhypercube (purple diamonds, thin solid line). The optimal
hopping rates ( )g h

opt are used in all cases.
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which yields

ˆ ˆ ˆ ˆ ( )( ) ( ) ( ) ( )á ñ - á ñ = á ñ - á ñy y y yH H H H . 29G t G P P t0 0

As ∣ ( )y ñ0 is chosen to be the ground state of ĤG, the lhsmust be non-negative. Furthermore, as ∣ ( )y ñ0 is not an
eigenstate of ˆ ( )gH , some dynamics are guaranteed to occur and so the LHSmust become positive at early times.
Therefore, the rhsmust also be non-negative always and positive at early times. Thus, taking anyfinal time tf, we
get the inequality

ˆ ˆ ( )( ) ( )ò á ñ < á ñy y
=t

t H H
1

d . 30
f t

t

P t P
0

0
f

Equation (30) shows that performing time evolution under the computational quantumwalkHamiltonian
from the initial state ∣ ( )y ñ0 is guaranteed to lower the energy of the systemwith respect to ĤP (the expectation
value ˆ ( )á ñyHP t ). This implies that the overlapwith low energy eigenstates of ĤP will increase, at least for short
times. Ameasurement in the computational basis will thus be on averagemore likely than a randomguess to
produce a low energy state.

Starting in a low energy state is thus important for the success of the quantumwalk algorithm (wehave
checked this numerically). It also implies that encoding prior information into the initial statewill help,
provided this is given in the formof a lower energy state than the uniform superposition state. This could be the
final state from a previous run, for example, whichwill be explored further inNita et al (2020). It is also necessary
to bias the quantumwalkHamiltonian so that its ground statematches this biased initial state. Since this starting
state is a known computational basis state, it is possible to do this biasing for suitably designed hardware.

Formany optimization problem applications, it is helpful tofind a low energy state, even if it is not actually
the true ground state. From this point of view, that quantumwalks necessarily lower the expectation energywith
respect to the problemHamiltonian is very appealing as a computationalmechanism. This argument by itself
does not provide a guaranteed scaling or quantum speed up, but it does explain how the quantumwalk dynamics
work in this setting, where there is noway to lose (or gain) energy. It is possible to generalise these arguments
beyond time-independentHamiltonians (Callison et al 2020a), to includemonotonic functionsA(t) andB(t)
in (4).

To illustrate this energy redistributionmechanism, the plots infigure 11 showhow the expectation value
ˆ ( )á ñyHG t of the quantumwalkHamiltonian (green solid-line) and the expectation value ˆ ( )á ñyHP t of the problem

Hamiltonian (red solid-line) vary during a quantumwalk.We have included the instantaneous success
probability P(t) (faint grey) to show that the timescale used is long enough for significant dynamics to take place.
A typical 10-qubit SK example is shown infigure 11(a) and a typical 10-qubit REMexample is shown in
figure 11(b), both on the hypercube using their respective optimal hopping rates ( )g h

opt. Also shown is the ground

state eigenvalue ˆ ( )á ñHP E
P

0
of the problemHamiltonian (red, dashed–dotted line) and the ground state eigenvalue

ˆ ( )á ñyHG 0 of the quantumwalkHamiltonian (green, dashed line). In both SK andREM, the initial evolution takes

the state away from the ĤG ground state, raising the ĤG expectation value, and thereby lowering the ĤP

Figure 11.The expectation value ˆ ( )á ñyHG t of the quantumwalkHamiltonian (green, thin solid line) and the expectation value ˆ ( )á ñyHP t

of the problemHamiltonian (red, thick solid line) for a typical 10 qubit (a) SK and (b)REM instance. The ground state energy
eigenvalues of the quantumwalkHamiltonian (green, dashed line) and problemHamiltonians (red, dashed–dotted line) are also
shown. To illustrate that significant dynamics take place over the timescales used, the instantaneous probabilities P(t) are also shown
(grey, faint line). The energy values are on the left axes, while probability values are on the right axes.
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expectation value to a point aroundwhich itfluctuates for the duration simulated. This clearly shows the energy
redistributionmechanism atwork, and the short time scale over which it appears.

7. Summary and outlook

In this work, we have shownnumerically that continuous-time quantumwalks are a viable computational
method forfinding ground states of hard spin glass problems.We have produced strong numerical evidence for
a better-than-search polynomial quantum speed up over randomguessing, with a scaling of the average single
run success probability ˜ ( )~ -O N 0.41 , using data sets of size 5�n�20 spins (32�N�1048 576).Moreover,
and importantly, this is obtainedwithout the need to set parameters exponentially precisely, as is required for
quantumwalk search algorithms. The hopping rate γ, that determines the relative strengths of the quantumwalk
and problemHamiltonians, can be estimated from the overall energy scales, which are determined by the
hardware and encoding of the problem.

To explainwhy quantumwalks are able to do better than quantum searching in this case, we compared
variants on the spin glass problems that remove or add pairwise correlations, and compared the hypercube
graph quantumwalkHamiltonianwith the complete graph quantumwalkHamiltonian. This showed that the
combination of pairwise correlations in the encoding of the problem and amatching single spin flip quantum
walkHamiltonian is required to exploit the correlations. The single spin-flips driven by the transverse field
terms X̂j in the hypercube quantumwalkHamiltonian are the correct operators for the pairwise interaction

terms ˆ ˆZ Zj k in the spin glassHamiltonian. A single spin flip on either qubit j or k changes the energy for that term
fromhigh to low, or vice versa. Sincewe can choose how to encode the problems into theHamiltonians, and
there are knownmethods to convert higher order terms to pairwise terms (Bremner et al 2002,Dattani 2019), we
can arrange to use thismechanism both for its computational advantages and practicality for hardware
implementation as the transverse IsingHamiltonian.

To explain how quantumwalks are able tofind low energy states when the closed quantumdynamics have
nomechanism for losing energy, we showed how starting in the ground state of the quantumwalk part of the
Hamiltonian guarantees dynamics that decrease the expectation value of the energywith respect to the problem
Hamiltonian. This also ensures that prior information can be provided by starting in lower energy states, from
which improved solutions can be found. Exploiting this process will allow an optimal quantumalgorithm to be
built frommultiple quantumwalk runs that use the information gained fromprior runs. Performingmultiple
quantumwalk runs in early, noisy quantumhardware is amore viable approach thanmaintaining coherence for
sufficiently accurate adiabatic algorithms. Quantumwalksmay also be simpler to implement since they do not
require time dependent controls. This work thus provides a significant advance in understanding how to exploit
quantumwalks in practical hardware for optimization problems.

It is likely that further insights into the computational effectiveness of quantumwalks in this transverse Ising
Hamiltonian setting are to be found in current knowledge of spin glass phases in the presence of transverse fields.
The spin glass transition itself is not fully understood, in neither the quantumnor classical case (see, e.g.
Parisi 1980, Fisher andHuse 1987, 1988, Thirumalai et al 1989, Larson et al 2013,Magalhaes et al 2017,
Young 2017). However, the phases of interest for computation are not the spin glass phases themselves, but the
phaseswhere transitions between states are still occurring at a rapid enough rate tofind solution states.
Extremely long equilibration timescales are a defining property of all glass phases, including spin glasses
(Bouchaud et al 1998, Cugliandolo 2002). Since the equilibration (mixing) times ( )t mix wefind in section 5.3 for
the SK spin glass only scale polynomially with the number of spins, it ismost likely that at the optimal hopping
rates ( )g h

opt, our quantumwalks are not in a finite size precursor to a spin glass phase, but rather in a precursor to a

paramagnetic phase, for which equilibration times can be fast. Given that the system should localizemore in
lower energy states for smaller transverse fields, it is reasonable that our optimal hopping rates ( )g h

opt occur near

the edge of the precursor to the spin glass phase. Furthermore, themild scaling of thewidth ( )gD h
opt of the peak

around the optimal hopping rate ( )g h
opt suggests that the regimewhere quantumwalks performswellmay

correspond to the second paramagnetic phase observed inMagalhaes et al (2017). Polynomial gaps have been
found around the spin glass–paramagnetic phase transition in a relatedmodel in Knysh (2016).

A numerical study such as this inevitably leaves open questions regarding the asymptotic scaling of the
problems. In particular, we observed a range of hardness in the SK data sets and futureworkwill investigate what
fraction of the instances are actually hard for classical algorithms. Forthcomingwork applying similar
techniques toMax2SAT (Callison et al 2020b)will characterise the hardness of small random instances inmore
detail, and establish quantumwalks as an effective tool for hard optimization problemsmore generally.While
generalmethods are known to speed up the best classical algorithms (Hartwig et al 1984) for this type of problem
(Montanaro 2018, 2019), further work is required to determine whether an optimal continuous-time quantum
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walk algorithm can be devised that fully leverages the advantage from the correlations. Nonetheless, ourwork
represents a significant advance in developing continuous-time quantumwalk computation for hard
optimization problems, and provides key insights into the computationalmechanisms that can be exploited
over short timescales, well-suited to the limited coherence times of noisy, intermediate scale quantumhardware.
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