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Abstract. We establish the convergence of pseudospectra in Hausdorff
distance for closed operators acting in different Hilbert spaces and con-
verging in the generalised norm resolvent sense. As an assumption, we
exclude the case that the limiting operator has constant resolvent norm
on an open set. We extend the class of operators for which it is known
that the latter cannot happen by showing that if the resolvent norm
is constant on an open set, then this constant is the global minimum.
We present a number of examples exhibiting various resolvent norm be-
haviours and illustrating the applicability of this characterisation com-
pared to known results.
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1. Introduction

For ε > 0 the ε-pseudospectrum of a closed operator T acting in a Banach
space X is defined as the set

σε(T ) :=

{
z ∈ C : ‖(T − z)−1‖ >

1

ε

}
, (1)

where we employ the convention that ‖(T −z)−1‖ = ∞ for z in the spectrum
of T . While the ε-pseudospectrum of a normal operator in a Hilbert space
coincides with the ε-neighbourhood of the spectrum, the situation is more
involved in the non-normal case or for operators acting in Banach spaces,
cf. [27, 11, 20]. In this paper we address the convergence of pseudospectra
for sequences of unbounded operators and the related problem when the
resolvent norm may be constant on an open set.

It is well known that spectra do not necessarily behave well under lim-
iting procedures, even for bounded operators converging in operator norm,
cf. [21, Ex. IV.3.8]. Stability problems are simpler when passing from spectra



2 Sabine Bögli and Petr Siegl

to pseudospectra. Consider a sequence {Tk}k of operators that converges (in
some sense) to an operator T . One might study convergence of pseudospec-
tra, i.e.

lim
k→∞

σε(Tk) = σε(T ) (2)

(where the limit is defined appropriately) or the analogous identity for the
closed sets. Such results were established for truncated Wiener-Hopf and
Toeplitz operators, cf. [3], and for constant-coefficient differential operators,
cf. [22, 10]; many results can also be found in the books [27, 5]. In [6, Prop. 4.2]
necessary conditions for the inclusion “⊇” in (2) are given for general ap-
proximations of a bounded operator. The identity (2) is known to hold for
a sequence of bounded operators that converges in operator norm, cf. [19].
The convergence of pseudospectra in Hausdorff distance was proved in [18,
Thm. 5.3] for (possibly unbounded) operators acting in the same Hilbert
space and converging in the gap topology. This convergence result extends
to the generalised ε-pseudospectrum, the so-called (n, ε)-pseudospectrum in-
troduced in [17], cf. (10) below. All the above pseudospectral convergence
results rely on the condition that the limiting operator does not have con-
stant resolvent norm on an open set (as probably first noted in [3]); for classes
of operators which do not a priori satisfy this condition, it needs to by guar-
anteed by assumption.

In view of applications in PDEs, e.g. the domain truncation method
where the operators act in different Hilbert spaces, cf. [7, 2] and the ref-
erences therein, we employ the so-called generalised norm resolvent conver-
gence, cf. Section 2. Our first main result is the pseudospectral convergence
for a sequence of operators that converges in the generalised norm resolvent
sense, cf. Theorem 2.1 for the ε-pseudospectra and Theorem 2.5 for its gen-
eralisation to (n, ε)-pseudospectra. Note that if all operators act in the same
space, generalised norm resolvent convergence coincides with usual norm re-
solvent convergence. If the resolvent set is non-empty, the latter convergence
is equivalent to convergence in the gap topology, cf. [21, Thm. IV.2.23]. Hence
our results generalise [18, Thm. 5.3]. Moreover, we show that if the operators
all act in the same Banach space and converge in the norm resolvent sense,
our pseudospectral convergence result remains valid, cf. Remark 2.2.

Besides generalised norm resolvent convergence, two additional assump-
tions are needed in Theorem 2.1 (and analogously in Theorem 2.5). The first
assumption guarantees a suitable selection of a compact set K ⊂ C in which
the pseudospectral convergence is shown. This assumption cannot be weak-
ened to the one in [18, Thm. 5.3], see the counterexample in Example 2.3.
The second assumption excludes the possibility of constant resolvent norm
on an open set. The necessity of this assumption is discussed in Example 2.4.

Whether the resolvent norm of a bounded operator in a Banach space
can be constant on an open set was first studied by Globevnik, cf. [15], see
also [26] for a history of the problem. He showed that this cannot happen
in the unbounded component of the resolvent set. Since then, the occurrence
of constant resolvent norm on an open set has been excluded for various
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classes of Banach spaces X and closed operators T acting in X , namely if
X is complex uniformly convex and T is bounded, cf. [15, 4, 23], or gener-
ates a C0 semigroup, cf. [25], or if X is complex strictly convex and T is
densely defined with compact resolvent, cf. [12]. Moreover, by duality, it suf-
fices that the condition on the Banach space is satisfied for X ∗. The definitions
of complex uniform and complex strict convexity can be found in [14, 24],
cf. also Definition 3.1 below. In particular, Hilbert spaces and Lp spaces with
1 ≤ p < ∞ are complex uniformly convex (and thus complex strictly convex),
cf. [9, 14].

On the other hand, several examples are known in which the resol-
vent norm is constant on an open set, cf. [23, 26]; both contain examples of
bounded operators in Banach spaces (that are not complex uniformly con-
vex), the former also includes the construction of an unbounded operator in
a Hilbert space.

As the second main result, we prove that if a closed operator T acts in
a complex uniformly convex Banach space and its resolvent norm is constant
on an open set, then this constant is the global minimum, cf. Theorem 3.2;
in Theorem 3.4 the result is generalised for higher powers of the resolvent.
As a consequence, a resolvent norm decay (for λ ∈ ρ(T ) tending to infinity
along some path) is a sufficient condition for excluding constant resolvent
norm on an open set. This applies in particular if T is bounded or generates
a C0 semigroup, cf. Corollary 3.3. Nonetheless, Theorem 3.2 enables one to
go beyond these two classes as shown in Example 3.9. The latter belongs to
a class of examples in Hilbert spaces, cf. the end of Section 3, that illustrates
various resolvent norm behaviours and also naturally includes Shargorodsky’s
example [23, Thm. 3.2] of an operator whose resolvent norm is constant on
an open set.

The possible occurrence of constant resolvent norm on an open set is also
relevant in the discussion about the definition of pseudospectra, cf. [8, 24].
Depending on the literature, for a closed operator T and ε > 0, both sets
σε(T ) and Σε(T ) are called ε-pseudospectrum, where σε(T ) is defined in (1)
and Σε(T ) is the same with strict inequality replaced by non-strict inequality.
This makes the set σε(T ) an open and Σε(T ) a closed subset of C. The closure
of σε(T ) is always contained in Σε(T ), but equality holds if and only if T does
not have constant resolvent norm on any open set.

Throughout this paper, we use the following notation: By ‖·‖ we denote
the norm of all considered Banach spaces (it should be clear from the context
what space is considered). For an operator T with domain Dom(T ), the spec-
trum, approximate point spectrum and resolvent set are denoted by σ(T ),
σapp(T ) and ρ(T ), respectively. For a sequence {Tk}k of bounded operators
acting in the same Banach space and converging strongly or in norm to an

operator T , we write Tk
s→ T and Tk → T , respectively. Finally, the open

ball with radius r > 0 around λ ∈ C is denoted by Br(λ).
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2. Convergence of pseudospectra

Our result on pseudospectral convergence is formulated for closed operators
T and Tk acting in (possibly different) Hilbert spaces H and Hk. A suit-
able convergence of operators in such a situation can be introduced following
e.g. [29]. Assume that H and Hk are subspaces of one “large” Hilbert space G
and P := PH, Pk := PHk

are the orthogonal projections onto the respective
subspaces. Then Tk is said to converge to T in the generalised norm resolvent
sense if

∃λ0 ∈
⋂
k∈N

ρ(Tk) ∩ ρ(T ) : (Tk − λ0)
−1Pk −→ (T − λ0)

−1P (3)

and we write Tk
gnr−→ T .

Analogously to [17, 18], we express the convergence of pseudospectra in
the sense of Hausdorff distance which is defined for two non-empty compact
sets K1,K2 ⊂ C as

dH(K1,K2) := max

{
sup
z∈K1

dist(z,K2), sup
z∈K2

dist(z,K1)

}
, (4)

where, for z ∈ C, dist(z,Kj) := infw∈Kj |z − w|.
The following result is proved in Section 4.

Theorem 2.1. Let T, Tk be closed, densely defined operators acting in Hilbert
spaces H, Hk, respectively, with non-empty intersection of the resolvent sets.
Let K ⊂ C be compact and ε > 0. If

i) σε(T ) ∩K = σε(T ) ∩K 6= ∅,
ii) λ 7→ ‖(T − λ)−1‖ is non-constant on any open subset of ρ(T ),

iii) Tk
gnr−→ T ,

then

dH

(
σε(Tk) ∩K,σε(T ) ∩K

)
−→ 0, k → ∞. (5)

Remark 2.2. The conclusion of Theorem 2.1 holds also if T and Tk act in the
same Banach space X , converge in the usual norm resolvent sense and the
assumptions i), ii) are satisfied. See Remark 4.4 below for the strategy of the
proof in this situation.

Example 2.3 shows that, in general, assumption i) cannot be weakened

to the condition σε(T ) ∩ K 6= ∅ or to the assumption σε(T ) ∩ K 6= ∅ used
in [18, Thm. 5.3]; in fact, the claim of [18, Prop. 4.1] does not hold under
this weaker condition.

We remark that if K is selected as a subset of σε(T ), then assumption ii)
is not needed, cf. Lemma 4.2. However, Example 2.4 shows that assumption ii)
cannot be omitted in general.

Example 2.3. Let H := C2 and T := diag(λ1, λ2) with λ1 < λ2. The ε-
pseudospectrum of T is the union of the two open ε-balls Bε(λ1) and Bε(λ2).
We choose K ⊂ C to be a rectangle that touches the first ball and contains
the second ball, i.e. Bε(λ1) ∩ K = {w0} and Bε(λ2) ⊂ K as indicated in



Remarks on the convergence of pseudospectra 5

Figure 1. As the approximating matrix, consider Tk := diag((1−1/k)λ1, λ2).
Its ε-pseudospectrum consists also of two ε-balls; the first one approaches
Bε(λ1) from the left and the second one coincides with Bε(λ2), cf. Figure 1.

0 Re z

Im z

Bε

((

1− 1

k

)

λ1

)

Bε(λ2)

d0λ1 λ2

(

1− 1

k

)

λ1

Bε(λ1)

K

w0

Figure 1. The choice of K.

Then the pseudospectra do not converge since

dH

(
σε(Tk) ∩K,σε(T ) ∩K

)
≥ dist

(
w0, σε(Tk) ∩K

)
= d0 > 0. (6)

Analogously, if we take the same operator T and compact set K, but
Tk := diag((1 + 1/k)λ1, λ2), the first ball of σε(Tk) approaches Bε(λ1) from
the right, so we obtain, for all sufficiently large k,

dH

(
σε(Tk) ∩K,σε(T ) ∩K

)
≥ dist

(
w0, σε(T ) ∩K

)
= d0 > 0. (7)

Therefore we cannot weaken assumption i) to σε(T ) ∩K 6= ∅, even with the
appropriate modification in the claim.

Example 2.4. Let T be a closed operator acting in a Hilbert spaceH such that
σ(T ) 6= ∅ and there exist an open set U ⊂ ρ(T ) and a constant M > 0 such
that ‖(T − λ)−1‖ = M for all λ ∈ U . Such operators exist, cf. for instance
Shargorodsky’s example [23, Thm. 3.2]. Note that U 6= C since σ(T ) 6= ∅. We

approximate T by Tk := (1− 1/k)T ; it is easy to see that Tk
gnr−→ T .

By Theorem 3.2 below, the constant M is the global minimum of
λ 7→ ‖(T − λ)−1‖ in ρ(T ). So we obtain, for all k and all λ ∈ ρ(Tk),

‖(Tk − λ)−1‖ =

(
1− 1

k

)−1
∥∥∥∥∥
(
T − λ

1− 1
k

)−1
∥∥∥∥∥ ≥

(
1− 1

k

)−1

M > M, (8)

hence σ1/M (Tk) = C. On the other hand, σ1/M (T ) ∩ U = ∅. Now take a
compact set K ⊂ C such that K ∩ U 6= ∅ and K ∩ σ(T ) 6= ∅, hence K * U .

Let z0 ∈ K ∩U . Then, for all k, we have z0 ∈ K = σ1/M (Tk)∩K, and hence

dH

(
σ1/M (Tk) ∩K,σ1/M (T ) ∩K

)
≥ dist

(
z0, σ1/M (T ) ∩K

)
≥ dist (z0,K \ U) > 0.

(9)

In summary, assumption ii) in Theorem 2.1 cannot be omitted in general.
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For n ∈ N0 and ε > 0 the (n, ε)-pseudospectrum of a closed operator T
acting in a Banach space X is defined as the set

σn,ε(T ) :=

{
z ∈ C :

∥∥∥(T − z)−2n
∥∥∥ 1

2n

>
1

ε

}
; (10)

note that for n = 0 the notion coincides with the usual ε-pseudospectrum.
The interesting property of the (n, ε)-pseudospectrum is that, for n tending
to infinity, it converges in Hausdorff distance to the ε-neighbourhood of the
spectrum, cf. [18, Thm. 5.1].

The pseudospectral convergence result can be generalised for the
n-pseudospectra; Theorem 2.1 is the formulation for n = 0. In Section 4
we indicate the different and additional steps that are needed for proving the
following claim for n > 0.

Theorem 2.5. Let n ∈ N0 and let T, Tk be closed, densely defined operators
acting in Hilbert spaces H, Hk, respectively, with non-empty intersection of
the resolvent sets. Let K ⊂ C be compact and ε > 0. If

i) σn,ε(T ) ∩K = σn,ε(T ) ∩K 6= ∅,
ii) λ 7→ ‖(T − λ)−2n‖ is non-constant on any open subset of ρ(T ),

iii) Tk
gnr−→ T ,

then

dH

(
σn,ε(Tk) ∩K,σn,ε(T ) ∩K

)
−→ 0, k → ∞. (11)

Remark 2.6. If assumption i) is omitted, the operators in Example 2.3 remain
relevant counterexamples since they are selfadjoint, hence σn,ε(T ) = σε(T )
for each n ∈ N.

If, for an n > 0, assumption ii) is omitted, an analogous counterex-
ample as Example 2.4 can be constructed. In order to find an operator T
with σ(T ) 6= ∅ whose 2n-th power of the resolvent has constant norm on an
open set, one may proceed as in Shargorodsky’s example [23, Thm. 3.2] for
n = 0. More exactly, let T := diag(B1, B2, B3, . . . ) with 2n+1×2n+1-matrices
Bk, k ∈ N, of the form

Bk :=

(
0 Ak

Ãk 0

)
. (12)

The entries of the 2n × 2n-matrices Ak, Ãk are chosen in such a way that
‖(Bk − λ)−2n‖ → 1 as k → ∞ and ‖(Bk − λ)−2n‖ < 1, k ∈ N, for all λ in a
neighbourhood of λ = 0. Then ‖(T − λ)−2n‖ ≡ 1 on this neighbourhood. For
instance for n = 1 such an example is T := diag(B1, B2, B3, . . . ) with

Bk :=


0 0 0 βk

0 0 αk 0
αk 0 0 0
0 βk 0 0

 , k ∈ N, (13)

where αk ≥ 2, αk → ∞ as k → ∞, and βk := 1 + 1/αk.
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3. Open sets with constant resolvent norm

We consider a closed operator T that acts in a complex uniformly convex
Banach space X . We recall here the definition, cf. [14].

Definition 3.1. A complex normed space X is called complex uniformly convex
if for every ε > 0 there exists δ > 0 such that for all x, y ∈ X :

∀ ζ ∈ B1(0) : ‖x+ ζy‖ ≤ 1, ‖y‖ > ε =⇒ ‖x‖ < 1− δ. (14)

Theorem 3.2. Let T be a closed operator in a complex uniformly convex Ba-
nach space X . If there exist an open subset U ⊂ ρ(T ) and a constant M > 0
such that

‖(T − λ)−1‖ = M, λ ∈ U, (15)

then ‖(T − λ)−1‖ ≥ M for all λ ∈ ρ(T ).

Proof. The proof is based on [16, Lem. 1.1] and a straightforward generali-
sation of [16, Lem. 3.0] to the complex uniformly convex spaces.

Without loss of generality we assume that M = 1. Let λ0 ∈ U . Then
the resolvent can be expanded as

f(ζ) := (T−(λ0+ζ))−1 =

∞∑
j=0

Aj ζ
j , A0 := (T−λ0)

−1, Aj := Aj+1
0 , (16)

for ζ ∈ C with |ζ| < 1/‖A0‖ = 1. So there exists a neighbourhood of
ζ = 0 where f is analytic and ‖f‖ ≡ 1 = ‖A0‖. Hence we can apply
[16, Lem. 1.1] which yields that for every index j > 0 there exists rj > 0
such that ‖A0 + ζAj‖ ≤ ‖A0‖ = 1, |ζ| ≤ rj . This implies that every u ∈ X
with ‖u‖ = 1 satisfies

∀ ζ ∈ B1(0) : ‖A0u+ ζ rjAju‖ ≤ 1. (17)

There exists a sequence {ek}k ⊂ X with ‖ek‖ = 1 such that

lim
k→∞

‖(T − λ0)
−1ek‖ = lim

k→∞
‖A0ek‖ = ‖A0‖ = 1. (18)

Define xk := A0ek. Then (18) can be rewritten as ‖xk‖ → 1. Assume that
there exist ε > 0 and an infinite subset I ⊂ N such that yk := r1A1ek satisfies
‖yk‖ > ε, k ∈ I. The inequality (17) with j := 1 and u := ek implies

∀ ζ ∈ B1(0) : ‖xk + ζyk‖ ≤ 1. (19)

The complex uniform convexity of X yields the existence of some δ > 0 such
that ‖xk‖ < 1 − δ, k ∈ I; this is a contradiction to ‖xk‖ → 1. Therefore
‖yk‖ → 0, and hence

lim
k→∞

‖(T − λ0)
−2ek‖ = lim

k→∞
‖A1ek‖ = 0. (20)

Now, for an arbitrary λ ∈ ρ(T ), using twice the first resolvent identity,
we obtain

(T − λ)−1 − (T − λ0)
−1

= (λ− λ0)(T − λ)−1(T − λ0)
−1

= (λ− λ0)
(
I + (λ− λ0)(T − λ)−1

)
(T − λ0)

−2.

(21)
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So we have∥∥(T − λ)−1
∥∥ ≥ ‖(T − λ0)

−1ek‖
− |λ− λ0|‖I + (λ− λ0)(T − λ)−1‖‖(T − λ0)

−2ek‖.
(22)

Finally, the limits (18) and (20) yield ‖(T − λ)−1‖ ≥ 1 = M . �

Theorem 3.2 yields another proof for the following result, cf. [23, 4, 25].

Corollary 3.3. Let X be a complex uniformly convex Banach space. If a closed
operator T is bounded or generates a C0 semigroup, then its resolvent norm
cannot be constant on any open subset of ρ(T ).

Proof. The claim immediately follows from Theorem 3.2 since the resolvent
norm decays along an infinite ray in both cases; for T bounded we have
‖(T−λ)−1‖ ≤ 1/(|λ|−‖T‖) for all λ ∈ C with |λ| > ‖T‖ and, for T generating
a C0 semigroup, the Hille-Yosida Theorem, cf. for instance [13, Thm. II.3.8],
yields the existence of C > 0, ω ∈ R such that ‖(T − λ)−1‖ ≤ C/(λ− ω) for
all real λ > ω. �

Theorem 3.2 can be generalised for higher powers of the resolvent. In
an application to n-pseudospectra we set l := 2n.

Theorem 3.4. Let l ∈ N and let T be a closed operator in a complex uniformly
convex Banach space X . If there exist an open subset U ⊂ ρ(T ) and a constant
M > 0 such that

‖(T − λ)−l‖ = M, λ ∈ U, (23)

then ‖(T − λ)−l‖ ≥ M for all λ ∈ ρ(T ).

Proof. Without loss of generality we assume that M = 1. For some λ0 ∈ U
we expand

f(ζ) := (T − (λ0 + ζ))−l = (T − λ0)
−l + l(T − λ0)

−(l+1)ζ +O(ζ2), (24)

for ζ ∈ C with |ζ| < 1/‖(T − λ0)
−1‖. By proceeding analogously as in the

proof of Theorem 3.2, we find a normalised sequence {ek}k ⊂ X such that

lim
k→∞

∥∥(T − λ0)
−lek

∥∥ = 1, lim
k→∞

∥∥∥(T − λ0)
−(l+1)ek

∥∥∥ = 0. (25)

Take an arbitrary λ ∈ ρ(T ). By the first resolvent identity and binomial
theorem, we obtain

(T − λ)−l − (T − λ0)
−l = Bλ (T − λ0)

−(l+1),

Bλ :=
l−1∑
j=0

(
l

j + 1

)
(λ− λ0)

j+1
(
I + (λ− λ0)(T − λ)−1

)j+1
(T − λ0)

−j .
(26)

Note that Bλ is a bounded operator. Now, in a way analogous to (22), one
may show that (25) implies ‖(T − λ)−l‖ ≥ 1 = M . �
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Remark 3.5. If a closed operator T in a complex uniformly convex Banach
space has decaying resolvent norm ‖(T − λ)−1‖ as λ ∈ ρ(T ) tends to infinity
along some path, then also each power of the resolvent has decaying norm.
In this case, by Theorem 3.4, no power of the resolvent can have constant
norm on any open subset of ρ(T ). Therefore assumption ii) of Theorem 2.5
is satisfied for any n ∈ N0. This applies in particular for operators that are
bounded or generators of C0 semigroups, cf. Corollary 3.3 and its proof.

We present several examples illustrating various behaviours of the re-
solvent norm. All belong to a class inspired by [1] and have the form of block
operator matrices acting in a Hilbert space H⊕H:

A :=

(
0 f(A)
A 0

)
, Dom(A) := Dom(A)⊕Dom(f(A)), (27)

where A = A∗ is a strictly positive operator and f : R → R is a contin-
uous positive function such that limx→∞ f(x) = C for some C ∈ [0,∞].
It is easy to verify that A is a closed operator. Moreover, it follows from
[28, Thm. 2.3.7 i)] that λ ∈ ρ(A) if and only if 0 ∈ ρ(f(A) − λ2A−1). If
C 6= 0, one may verify that the latter is equivalent to λ2 ∈ ρ(Af(A)); then

(A− λ)−1 =

(
λ(Af(A)− λ2)−1 f(A)(Af(A)− λ2)−1

A(Af(A)− λ2)−1 λ(Af(A)− λ2)−1

)
. (28)

Various further assumptions on the spectrum of A and the function f are
imposed in the individual examples below.

If the resolvent of A is assumed to be compact, we denote by {αk}k,
{ek}k the sets of eigenvalues and corresponding eigenvectors of A. Inspired
by the strategy in [23, Thm.3.2], we use that span{(ek, 0)t, (0, ek)t}, k ∈ N,
are orthogonal invariant subspaces of A and their span is dense in H ⊕ H.
The matrix representation of A with respect to {(ek, 0)t, (0, ek)t} is

Bk :=

(
0 f(αk)
αk 0

)
. (29)

If we take H := L2(Rd), A := ±∆, Dom(A) := W 2,2(Rd) and f(x) := 1,
then A corresponds to a generator of the Klein-Gordon or wave equation
(without potentials). However, the crucial point is that we consider a “wrong
space” for A, i.e. not the energy space, therefore A is non-selfadjoint in both
latter examples.

In spite of the simple structure of A, the variety of resolvent behaviours
appears to be quite rich:

i) If A has compact resolvent and f(x) → 0 as x → ∞, then ρ(A) = ∅,
cf. Example 3.6.

ii) Assume that A has compact resolvent and there exists a constant C > 0
such that f(x) → C as x → ∞. If, in addition,

∃m ≥ 0, ∀ k ∈ N : f(αk)
2 ≥ C2 − m

αk
, (30)

then A has constant resolvent norm on a non-empty open set, cf. Ex-
ample 3.7.
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Notice that Shargorodsky’s example, cf. [23, Thm. 3.2], can be
written in the form (27). To this end, set A := diag(α1, α2, α3, . . . ),
αk ≥ 2, αk → ∞, f(x) := 1 + 1/x and perform the unitary transform
(ek, 0)

t 7→ (0, ek)
t and (0, ek)

t 7→ (ek, 0)
t. Assumption (30) is satisfied

with C := 1 and m := 0.
iii) If A and f are as in ii), however, the condition (30) is not satisfied, then

the resolvent norm is not constant on any open set, cf. Example 3.8.
iv) Finally, if f(x) = |x|β with some β ∈ (0, 1), then, for λ := r eiϕ with

ϕ /∈ {0, π}, the resolvent norm decays in the limit r → ∞, with

‖(A− reiϕ)−1‖ = O(r−2β/(1+β)). (31)

If, in addition, [c,∞) ⊂ σ(A) for some c > 0, then for every ϕ /∈ {0, π}
there exists ω > 0 such that

r2β/(1+β)‖(A− reiϕ)−1‖ −→ ω, r → ∞, (32)

cf. Example 3.9. Note that 2β/(1+β) < 1. Hence, under the additional
assumption [c,∞) ⊂ σ(A), the constructed operator matrix A has non-
compact resolvent and does not generate any C0 semigroup, cf. the Hille-
Yosida Theorem e.g. in [13, Thm. II.3.8]; nonetheless, the resolvent norm
decay and Theorem 3.2 exclude the occurrence of constant resolvent
norm on any open set.

Example 3.6 (Empty resolvent set). Let A and f satisfy assumption i). Con-
sider unit vectors (ukek, vkek)

t, i.e. uk, vk ∈ C with |uk|2 + |vk|2 = 1, and
observe that, for any λ ∈ C,

(A− λ)

(
ukek
vkek

)
=

(
(−λuk + f(αk)vk)ek

(αkuk − λvk)ek

)
. (33)

If we set uk = λvk/αk, the norm of the r.h.s. of the equality (33) is equal to

|αk f(αk) − λ2|/
√
α2
k + |λ|2 and the latter tends to zero as k → ∞. This

implies that λ ∈ σapp(T ) ⊂ σ(T ).

Example 3.7 (Constant resolvent norm on an open set). Let A and f satisfy
assumption ii). Then, with Bk as defined in (29),

‖(A− λ)−1‖ = sup
k

‖(Bk − λ)−1‖. (34)

For λ ∈ ρ(A) we have

lim
k→∞

‖(Bk − λ)−1‖ = lim
k→∞

∥∥∥∥(αkf(αk)− λ2)−1

(
λ f(αk)
αk λ

)∥∥∥∥
=

∥∥∥∥( 0 0
1
C 0

)∥∥∥∥ =
1

C
.

(35)

It is shown below that assumption (30) yields the existence of an open subset
U ⊂ C such that ‖(Bk − λ)−1‖ < 1/C for all λ ∈ U and k ∈ N. Therefore
‖(A− λ)−1‖ = 1/C on U .
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We write λ = reiϕ. Simple manipulations reveal that

‖(Bk − λ)−1‖2 ≤ r2 + 2rmax{αk, f(αk)}+max{αk, f(αk)}2

r4 − 2αkf(αk)r2 cos 2ϕ+ α2
kf(αk)2

. (36)

We select k1 ∈ N such that , for all k ≥ k1, we have f(αk) ≤ αk and therefore
max{αk, f(αk)} = αk. We can find r1 > 0 such that the r.h.s. of (36) is
strictly less than 1/C2 for all r ≥ r1 and k < k1. Then, for r ≥ r1, the
inequality ‖(Bk − λ)−1‖ < 1/C is satisfied for all k ∈ N if

r2(r2 − C2)

α2
k

− 2r(C2 + f(αk)r cos 2ϕ)

αk
+ f(αk)

2 − C2 > 0, k ≥ k1. (37)

The assumption (30) guarantees that (37) holds if ϕ ∈ [0, 2π) is chosen such
that cos 2ϕ < 0 and r is sufficiently large, namely r ≥ r0 for some fixed
r0 ≥ max{r1, C} that satisfies

2r0
(
f(αk)r0| cos 2ϕ| − C2

)
> m, k ≥ k1. (38)

In Shargorodsky’s example the resolvent norm of the considered opera-
tor A is constantly equal to C := 1 on U := B1/2(0), cf. [23, Thm. 3.2]. By

the above reasoning, this is also true for all λ = reiϕ ∈ C such that cos 2ϕ < 0
and r ≥ r0 for some r0 ≥ 1 that satisfies (38) with k1 := 1, f(x) := 1 + 1/x
and m := 0. One may check that this is satisfied for r0 = 1/| cos 2ϕ|.

Example 3.8 (Non-constant resolvent norm on any open set). Let A and f
satisfy assumption iii). We show below that ‖(A − λ)−1‖ > 1/C for every
λ ∈ ρ(A). Then, for any fixed λ0 ∈ ρ(A) and δ0 := ‖(A− λ0)

−1‖ − 1/C > 0,
there exists an open bounded neighbourhood V0 of λ0 such that V0 ⊂ ρ(A)
and

‖(A− λ)−1‖ >
1

C
+

δ0
2
, λ ∈ V0. (39)

For any λ ∈ V0, by (35), we have ‖(Bk − λ)−1‖ → 1/C as k → ∞. Since V0

is compact, the convergence is uniform on V0 and hence there exists k0 ∈ N
such that

‖(Bk − λ)−1‖ ≤ 1

C
+

δ0
2
, λ ∈ V0, k > k0. (40)

Define Ak0 := diag(B1, . . . , Bk0). Then we have ‖(A−λ)−1‖ = ‖(Ak0 −λ)−1‖
for all λ ∈ V0. Since Ak0 acts in a finite-dimensional space, it is a bounded
operator and so its resolvent norm cannot be constant anywhere, hence
λ 7→ ‖(A − λ)−1‖ is nowhere constant in V0. Now because λ0 ∈ ρ(A) was
arbitrary, the same holds for the whole resolvent set.

It is left to show that ‖(A − λ)−1‖ > 1/C for every λ ∈ ρ(A). Let
λ = reiϕ ∈ ρ(A). It suffices to show the existence of a kλ ∈ N such that
‖(Bkλ

− λ)−1‖ > 1/C. With the use of

‖(Bk − λ)−1‖ ≥ ‖(Bk − λ)−1(ek, 0)
t‖ =

√
|λ|2 + α2

k

|λ2 − αkf(αk)|
, k ∈ N, (41)
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we see that, for every k ∈ N,

‖(Bk − λ)−1‖2 ≥ r2 + α2
k

r4 − 2αkf(αk)r2 cos 2ϕ+ α2
kf(αk)2

. (42)

The r.h.s. of the latter is strictly larger than 1/C2 if and only if

r2(r2 − C2)

α2
k

− 2f(αk)r
2 cos 2ϕ

αk
+ f(αk)

2 − C2 < 0. (43)

Since αk → ∞ and f(αk) → C as k → ∞, there exists mλ > 0 such that

r2(r2 − C2)

αk
− 2f(αk)r

2 cos 2ϕ ≤ mλ, k ∈ N. (44)

If assumption (30) is not satisfied, then there exists kλ ∈ N such that (43) is
satisfied for k := kλ, and hence the claimed estimate ‖(Bkλ

− λ)−1‖ > 1/C
holds.

Example 3.9 (Decaying resolvent norm and lack of semigroup generation).
Let A and f satisfy assumption iv). The resolvent formula (28) yields that
σ(A) = {±µ(1+β)/2 : µ ∈ σ(A)} ⊂ R. Let λ = reiϕ with some fixed angle
ϕ /∈ {0, π}.

In the limit |λ| → ∞, the dominant term in ‖(A − λ)−1‖ corresponds
to the down-left entry, cf. (28). The latter can be verified using

‖Aβ(A1+β − λ2)−1‖ ≤ ‖Aβ−1‖‖A(A1+β − λ2)−1‖,

‖λ(A1+β − λ2)−1‖ ≤ |λ|/dist(λ2, [0,∞)) = O(|λ|−1).
(45)

Since

‖A(A1+β − λ2)−1‖ = sup

{
µ

|µ1+β − λ2|
: µ ∈ σ(A)

}
, (46)

we analyse the behaviour of the following function (its supremum over
µ ∈ σ(A) is the square of the norm in (46)):

g(µ) :=
µ2

r4 − 2µ1+βr2 cos 2ϕ+ µ2(1+β)
, µ > 0. (47)

For every r > 0 the maximum of g is attained at some point µ0(r) > 0.
Elementary calculations show that µ0(r) ∼ const · r2/(1+β), hence the esti-
mate (31) on the decay of the resolvent follows.

If, in addition, [c,∞) ⊂ σ(A) for some c > 0, then µ0(r) ∈ σ(A) for all
sufficiently large r, and we obtain (32).

4. Proof of pseudospectral convergence

We divide the proof of Theorem 2.1 in several lemmas. First we recall that
the region of boundedness of a sequence of closed operators Tk acting in Hk
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is the set

∆b({Tk}k) :=
{
λ ∈ C : ∃ kλ ∈ N, ∃Mλ > 0, ∀ k ≥ kλ :

λ ∈ ρ(Tk) and ‖(Tk − λ)−1‖ ≤ Mλ

}
,

(48)

cf. [21, Sec. VIII.1.1]. To simplify the notation, in the sequel we denote the
resolvents by R(λ) := (T − λ)−1 and Rk(λ) := (Tk − λ)−1.

The following result is a generalisation of standard results; claim i) is a
generalisation of [19, Lem. 2.1] where bounded operators are considered that
converge in norm, claim ii) was shown in cf. [21, Thm. IV.2.25, Sec. IV.3.3]
for the case of the usual norm resolvent convergence.

Lemma 4.1. Let T, Tk be densely defined. If Tk
gnr−→ T , then

i) the region of boundedness is ∆b ({Tk}k) = ρ(T );
ii) for all λ ∈ ρ(T ),

‖Rk(λ)Pk −R(λ)P‖ −→ 0, k → ∞. (49)

Proof. We proceed in three steps:

a) If there exists λ0 ∈ ∩k∈Nρ(Tk) ∩ ρ(T ) such that Rk(λ0)Pk
s→ R(λ0)P ,

then σapp(T ) ⊂ C\∆b({Tk}k).
b) If there exists λ0 ∈ ∩k∈Nρ(Tk) ∩ ρ(T ) such that Rk(λ0)Pk

s→ R(λ0)P

and Rk(λ0)
∗Pk

s→ R(λ0)
∗P , then σ(T ) ⊂ C\∆b({Tk}k).

c) If there exists λ0 ∈ ∩k∈Nρ(Tk)∩ρ(T ) such that we have the convergence
‖Rk(λ0)Pk −R(λ0)P‖ → 0, then ρ(T ) ⊂ ∆b({Tk}k) and (49) holds for
all λ ∈ ρ(T ).

Claim b) implies ∆b({Tk}k) ⊂ ρ(T ); equality then follows from claim c).
Note that the generalised strong resolvent convergence of Tk and T ∗

k to the
respective limit is given by the generalised norm resolvent convergence.

Claim a): Let µ ∈ σapp(T ). If there exists an infinite set I ⊂ N such
that µ ∈ σ(Tk) for all k ∈ I, then obviously µ /∈ ∆b({Tk}k). In the other case
there exists k0 ∈ N such that µ ∈ ρ(Tk) for all k ≥ k0. Since µ ∈ σapp(T ),
there exists {xm}m ⊂ Dom(T ) such that ‖xm‖ = 1, ‖(T −µ)xm‖ → 0. Define

xm;k := Rk(λ0)Pk(T − λ0)xm, m ∈ N, k ≥ k0. (50)

Since, for all y ∈ H,

(Pk − P )R(λ0)y = (I − Pk)(Rk(λ0)Pk −R(λ0)P )y −→ 0, k → ∞, (51)

we have Pkx → Px = x for all x ∈ Dom(T ). By the density of Dom(T ) ⊂ H
and ‖Pk‖ = 1, the same is true for all x ∈ H. Then the assumptions imply
xm;k → xm and Tkxm;k → Txm as k → ∞. Hence there exists a strictly
increasing sequence {km}m ⊂ N such that, for every m ∈ N, the element
ym := xm;km satisfies

‖ym − xm‖+ ‖Tkmym − Txm‖ <
1

m
. (52)
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Therefore

‖Rkm(µ)‖ ≥ ‖ym‖
‖(Tkm − µ)ym‖

≥
1− 1

m

‖(T − µ)xm‖+ (1 + |µ|) 1
m

−→ ∞, (53)

thus µ /∈ ∆b ({Tk}k).
Claim b): We split σ(T ) = σapp(T )∪σapp(T

∗)∗, where, for a set Ω ⊂ C,
we denote Ω∗ := {z : z ∈ Ω}. The claim follows from a) applied to T, Tk or
T ∗, T ∗

k ; note that ∆b({Tk}k) = ∆b({T ∗
k }k)∗.

Claim c): Since ‖Rk(λ0)Pk − R(λ0)P‖ → 0 by the assumptions, we
have λ0 ∈ ∆b({Tk}k) ∩ ρ(T ). Let λ ∈ ρ(T ) \ {λ0}. The spectral mapping
theorem yields (λ − λ0)

−1 ∈ ρ (R(λ0)). Since the latter set may only differ
by the element 0 to ρ (R(λ0)P ), we have (λ−λ0)

−1 ∈ ρ (R(λ0)P ). By Kato’s
result [21, Theorem IV.2.25], there exists k0 ∈ N such that

(λ− λ0)
−1 ∈ ρ (Rk(λ0)Pk) ⊂ ρ (Rk(λ0)) , k ≥ k0. (54)

Again by the spectral mapping theorem, we obtain λ ∈ ρ(Tk), k ≥ k0. In
order that λ ∈ ∆b({Tk}k), it is left to show that ‖Rk(λ)‖, k ≥ k0, are uni-
formly bounded. The idea is to show (49), then, in particular, the resolvents
are uniformly bounded.

A straightforward application of the first resolvent identity yields

(Rk(λ)Pk −R(λ)P )Sk = (I + (λ− λ0)R(λ)P ) (Rk(λ0)Pk −R(λ0)P ) , (55)

where

Sk := I + (λ0 − λ)Rk(λ0)Pk. (56)

Since Rk(λ0)Pk → R(λ0)P and S := limk→∞ Sk has bounded inverse, the
operator Sk is boundedly invertible for all sufficiently large k, and ‖S−1

k ‖
is uniformly bounded, cf. [21, Sec. I.4.4, Thm. IV.1.16]. Now (49) follows
from (55) and Rk(λ0)Pk → R(λ0)P . �

Lemma 4.2. Let T, Tk be densely defined. Assume that Tk
gnr−→ T . Let

K ⊂ σε(T ) be compact. Then there exists k0 ∈ N such that K ⊂ σε(Tk)
for all k ≥ k0.

Proof. First we show that for every λ ∈ σε(T ) there exist rλ > 0 and kλ ∈ N
such that Brλ(λ) ⊂ σε(Tk) for all k ≥ kλ. Then the claim follows by the
compactness of K ⊂ σε(T ). We divide the proof into two cases: i) λ ∈ σ(T ),
ii) λ ∈ ρ(T ) ∩ σε(T ).

Case i): We proceed by contradiction. Assume that there exists λ ∈ σ(T )
such that for all k′ ∈ N and r > 0 there exist k ≥ k′ and λk ∈ Br(λ) with
λk /∈ σε(Tk), i.e. ‖Rk(λk)‖ ≤ 1/ε. If we relate k′ and r by rk′ := 1/k′, we
obtain an infinite set I ⊂ N and elements λk ∈ ρ(Tk), k ∈ I, such that

‖Rk(λk)‖ ≤ 1

ε
, k ∈ I, and λk −→ λ, k → ∞. (57)

Since λ /∈ ρ(T ), Lemma 4.1 i) implies λ /∈ ∆b({Tk}k). Hence there exist infi-
nite sets I1 ⊂ I, I2 ⊂ I such that either λ ∈ σ(Tk), k ∈ I1, or ‖Rk(λ)‖ → ∞,
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k ∈ I2. The first option contradicts the first property in (57) since, for k ∈ I1,

‖Rk(λk)‖ ≥ 1

dist(λk, σ(Tk))
≥ 1

|λ− λk|
−→ ∞, k → ∞. (58)

The second option also contradicts (57) since, for k ∈ I2,

‖Rk(λk)‖ ≥ ‖Rk(λ)‖ − ‖Rk(λ)−Rk(λk)‖ (59)

and the second term tends to zero as k → ∞. In order to justify the latter,
we expand the resolvents around the points λk and estimate

‖Rk(λ)−Rk(λk)‖ ≤ |λ− λk|‖Rk(λk)‖2

1− |λ− λk|‖Rk(λk)‖

≤
|λ− λk| 1

ε2

1− |λ− λk|1ε
−→ 0, k → ∞.

(60)

Case ii): As λ ∈ σε(T ) ∩ ρ(T ), we can write ‖R(λ)‖ = 1/ε + α with

some α > 0. Since λ ∈ ρ(T ), Lemma 4.1 i) implies that there exist k̃λ ∈ N
and Mλ > 0 such that λ ∈ ρ(Tk) and ‖Rk(λ)‖ ≤ Mλ for all k ≥ k̃λ. The

generalised norm resolvent convergence Tk
gnr−→ T and Lemma 4.1 ii) yield

the existence of kλ ≥ k̃λ such that ‖Rk(λ)Pk −R(λ)P‖ < α/2 for all k ≥ kλ.
The resolvent expansion around λ implies that, for every positive rλ < 1/Mλ

and k ≥ kλ, we have Brλ(λ) ⊂ ρ(Tk), and, for all µ ∈ Brλ(λ),

‖Rk(µ)−Rk(λ)‖ ≤ |µ− λ|‖Rk(λ)‖2

1− |µ− λ|‖Rk(λ)‖
≤ rλM

2
λ

1− rλMλ
. (61)

There exists rλ > 0 sufficiently small such that the r.h.s. of (61) is less than
α/2. Now we estimate, for all µ ∈ Brλ(λ) and all k ≥ kλ,

‖Rk(µ)‖ ≥ ‖R(λ)‖ − ‖Rk(λ)Pk −R(λ)P‖ − ‖Rk(µ)−Rk(λ)‖

>
(1
ε
+ α

)
− α

2
− α

2
=

1

ε
.

(62)
�

In the following lemma we abbreviate ωδ(Ω) := {z ∈ C : dist(z,Ω) < δ},
ωδ(Ω) := ωδ(Ω) for the open and closed δ-neighbourhood of a set Ω ⊂ C.

Lemma 4.3. Let assumptions i)–iii) of Theorem 2.1 be satisfied. Define

Λ := σε(T ) ∩K, Λk := σε(Tk) ∩K. (63)

Then for every δ > 0 there exists kδ ∈ N such that

Λk ⊂ ωδ(Λ), Λ ⊂ ωδ(Λk), k ≥ kδ. (64)

Proof. With regard to Lemma 4.2, we need to consider only compact sets
K ⊂ C that are not subsets of σε(T ).

We start with the proof of the first inclusion in (64). Let δ > 0. For
λ ∈ K \ ωδ(Λ) holds λ ∈ K \ Λ, hence

λ /∈ σε(T ) =

{
z ∈ C : ‖R(z)‖ ≥ 1

ε

}
, (65)
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where the equality is guaranteed by the assumption ii). Therefore

‖R(λ)‖ <
1

ε
, λ ∈ K\ωδ(Λ). (66)

We show that there exists kδ ∈ N such that ‖Rk(λ)‖ < 1/ε for all
k ≥ kδ and all λ ∈ K \ ωδ(Λ). As a consequence, for all k ≥ kδ holds

σε(Tk) ∩ (K \ ωδ(Λ)) = ∅, and so the first inclusion in (64) follows from

Λk ⊂ ωδ(Λ) ∪
(
σε(Tk) ∩ (K \ ωδ(Λ))

)
= ωδ(Λ) ⊂ ωδ(Λ). (67)

The existence of such a kδ ∈ N can be justified in the following way.

Let λ ∈ K\ωδ(Λ). It follows from (66) together with Tk
gnr−→ T and

Lemma 4.1 ii) that there exist kλ ∈ N and α > 0 such that ‖Rk(λ)‖ ≤ 1/ε−α
for all k ≥ kλ. Moreover, by proceeding analogously as in (61), we can verify
that there exists rλ > 0 such that, for all k ≥ kλ, we have Brλ(λ) ⊂ ρ(Tk),
and ‖Rk(λ) − Rk(µ)‖ < α for all µ ∈ Brλ(λ). Therefore, for all µ ∈ Brλ(λ),
we have

‖Rk(µ)‖ ≤ ‖Rk(λ)‖+ ‖Rk(λ)−Rk(µ)‖ <
1

ε
, k ≥ kλ. (68)

The existence of the desired kδ ∈ N now follows from the compactness of
K \ ωδ(Λ).

The second inclusion in (64) is proved by contradiction. Assume that
there exist δ > 0, an infinite subset I1 ⊂ N and {λk}k∈I1 ⊂ Λ such that
λk /∈ ωδ(Λk), k ∈ I1. Since Λ is compact, there exist λ0 ∈ Λ and an
infinite subset I2 ⊂ I1 such that λk → λ0 for k ∈ I2. Moreover, since

Λ = σε(T ) ∩K = σε(T ) ∩K by assumption i), there exists λ̃0 ∈ σε(T ) ∩K

such that |λ0 − λ̃0| < δ/2. By Lemma 4.2, there exists k0 ∈ N such that

λ̃0 ∈ σε(Tk) ∩K ⊂ Λk for all k ≥ k0. However,

|λk − λ̃0| ≤ |λk − λ0|+ |λ0 − λ̃0| < δ (69)

for all sufficiently large k ∈ I2; this is a contradiction to λk /∈ ωδ(Λk). �
Proof of Theorem 2.1. Take some arbitrary δ > 0. Then, using Lemma 4.3,
we obtain for all k ≥ kδ:

dH

(
σε(Tk) ∩K,σε(T ) ∩K

)
= dH(Λk,Λ) = max

{
sup
z∈Λk

dist(z,Λ), sup
z∈Λ

dist(z,Λk)

}
≤ max

{
sup

z∈ωδ(Λ)

dist(z,Λ), sup
z∈ωδ(Λk)

dist(z,Λk)

}
≤ δ. �

(70)

Remark 4.4. The Hilbert space structure is used only in the proof of
Lemma 4.1. If T and Tk act in the same Banach space X , then claim b)
in the proof of Lemma 4.1 can be proved using σ(T ) = σapp(T ) ∪ σapp(T

∗),
where T ∗ is the adjoint operator in the Banach space X ∗. Hence Theorem 2.1
remains valid for operators that act in the same Banach space and converge
in the norm resolvent sense.
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We indicate the different and additional steps that are needed to prove
Theorem 2.5 for an arbitrary n > 0. In Lemmas 4.1–4.2 and their proofs, we
replace all appearing pseudospectra by n-pseudospectra and all resolvents by
their 2n-th powers. In addition, we make the following modifications:

i) For an arbitrary n ∈ N, we define a notion that is analogous to the
region of boundedness, cf. (72). In Lemma 4.6 i) below, it is shown that

if Tk
gnr−→ T , then this notion coincides, for any n ∈ N, with the region of

boundedness (and thus with the resolvent set of T ). Moreover, for every
λ ∈ ρ(T ), we have norm convergence of the powers of the resolvents,
cf. Lemma 4.6 ii).

ii) The resolvent expansions used in equalities (60) and (61) are generalised
in Lemma 4.7 below; instead of (60), we use Lemma 4.7 with ν := λ,
and instead of (61), we use Lemma 4.7 with ν := µ, λk := λ.

iii) The estimate in (58) is replaced by
∥∥Rk(λk)

2n
∥∥ ≥ |λ− λk|−2n , k ∈ I1.

The following lemma is used as a tool in the subsequent Lemmas; it is
proved by induction over l and with the first resolvent identity.

Lemma 4.5. Let l ≥ 2. Then, for every k ∈ N and all λ, λ0 ∈ ρ(Tk),

Rk(λ) =

l−1∑
j=1

(λ− λ0)
j−1 Rk(λ0)

j

+ (λ− λ0)
l−1 (I − (λ− λ0)Rk(λ0))

l−1
Rk(λ)

l.

(71)

Let n ∈ N. Define a generalisation of the region of boundedness by

∆
(n)
b ({Tk}k) :=

{
λ ∈ C : ∃ kλ ∈ N, ∃M (n)

λ > 0, ∀ k ≥ kλ :

λ ∈ ρ(Tk) and
∥∥∥Rk(λ)

2n
∥∥∥ ≤ M

(n)
λ

}
.

(72)

Lemma 4.6. Let n ∈ N and let T, Tk be densely defined. If Tk
gnr−→ T , then

i) ∆
(n)
b ({Tk}k) = ∆b ({Tk}k) = ρ(T );

ii) for all λ ∈ ρ(T ),∥∥∥Rk(λ)
2nPk −R(λ)2

n

P
∥∥∥ −→ 0, k → ∞. (73)

Proof. i) The inclusion ∆b ({Tk}k) ⊂ ∆
(n)
b ({Tk}k) is implied by the es-

timate
∥∥Rk(λ)

2n
∥∥ ≤ ‖Rk(λ)‖2

n

. For the opposite direction we use
λ0 ∈ ∩k∈Nρ(Tk) ∩ ρ(T ) such that ‖Rk(λ0)‖, k ∈ N, are uniformly

bounded; such a λ0 exists by the assumption Tk
gnr−→ T . Now Lemma 4.5

with l := 2n implies that every λ ∈ ∆
(n)
b ({Tk}k) belongs to ∆b ({Tk}k).

ii) The claim is an immediate consequence of Lemma 4.1 ii) and

R(λ)2
n

P = (R(λ)P )
2n

, Rk(λ)
2nPk = (Rk(λ)Pk)

2n
. (74)

�
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Lemma 4.7. Let n ∈ N and Tk
gnr−→ T . Let {λk}k ⊂ C be a bounded sequence

such that ‖Rk(λk)‖ or
∥∥Rk(λk)

2n
∥∥ is uniformly bounded in k. Then there

exists C > 0 such that every ν ∈ C with |ν − λk| < 1/C, k ∈ N, satisfies∥∥∥Rk(ν)
2n −Rk(λk)

2n
∥∥∥

≤ C2n

(1− |ν − λk|C)2n

2n∑
j=1

(
2n

j

)
Cj |ν − λk|j , k ∈ N.

(75)

Proof. Since Tk
gnr−→ T , there exists λ0 ∈ ∩k∈Nρ(Tk) ∩ ρ(T ) such that

‖Rk(λ0)‖, k ∈ N, are uniformly bounded. The first resolvent identity and
binomial theorem yield the expansion

Rk(ν)
2n −Rk(λk)

2n

= −Rk(λk)
2n(I − (ν − λk)Rk(λk))

−2n
2n∑
j=1

(
2n

j

)
Rk(λk)

j(λk − ν)j .
(76)

If ‖Rk(λk)‖ is uniformly bounded in k, then the claim follows by setting
C := supk ‖Rk(λk)‖. If, on the other hand,

∥∥Rk(λk)
2n
∥∥ is uniformly bounded

in k, then the boundedness of {λk}k and Lemma 4.5 yield a uniform bound
for ‖Rk(λk)‖. �
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