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ABSTRACT
Observations of galaxy clustering are made in redshift space, which results in distortions to the underlying isotropic distribution
of galaxies. These redshift-space distortions (RSDs) not only degrade important features of the matter density field, such as the
baryonic acoustic oscillation (BAO) peaks, but also pose challenges for the theoretical modelling of observational probes. Here,
we introduce an iterative non-linear reconstruction algorithm to remove RSD effects from galaxy clustering measurements, and
assess its performance by using mock galaxy catalogues. The new method is found to be able to recover the real-space galaxy
correlation function with an accuracy of ∼1 per cent, and restore the quadrupole accurately to 0, on scales s � 20 h−1 Mpc.
It also leads to an improvement in the reconstruction of the initial density field, which could help to accurately locate the
BAO peaks. An ‘internal calibration’ scheme is proposed to determine the values of cosmological parameters, as a part of the
reconstruction process, and possibilities to break parameter degeneracies are discussed. RSD reconstruction can offer a potential
way to simultaneously extract the cosmological parameters, initial density field, real-space galaxy positions, and large-scale
peculiar velocity field (of the real Universe), making it an alternative to standard perturbative approaches in galaxy clustering
analysis, bypassing the need for RSD modelling.
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1 IN T RO D U C T I O N

The observed large-scale cosmic structures today encode information
about the primordial matter density field – the earliest memory of
our own Universe, that came from a time when the Universe was
in a simpler form, where density perturbations can be described
by linear perturbation theory and the non-linear structure formation
had not made the picture more complicated. As an example, the
nearly Gaussian curvature fluctuations, as supported by observations
(Ade et al. 2014, 2016; Planck Collaboration et al. 2019), can teach
us a lot about what has happened during inflation. The observed
Universe today, however, can look very different from its initial
conditions, due largely to the growth of tiny density perturbations
by gravitational instability to form large, non-linear, dark matter
clumps in which galaxies, stars, and planets evolve. Inevitable in this
process is the permanent loss of certain details of the primordial state
of the Universe, but it still possible to retrieve the remaining useful
information by ‘reconstructing’ the initial condition. The latter is a
topic which has been investigated for several decades, with increasing
interest in recent years (see e.g. Peebles 1989; Croft & Gaztanaga
1997; Brenier et al. 2003; Eisenstein et al. 2005; Zhu et al. 2017;
Zhu, Yu & Pen 2018; Schmittfull, Baldauf & Zaldarriaga 2017; Shi,
Cautun & Li 2018; Hada & Eisenstein 2019, 2018; Birkin et al.
2019; Bos, Kitaura & van de Weygaert 2019; Wang & Pen 2019;
Yu & Zhu 2019; Zhu et al. 2019; Kitaura et al. 2019; and references
therein).
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marius.cautun@gmail.com (MC)

One of the main motivations of initial density reconstruction
is related to the extraction of the baryonic acoustic oscillation
(BAO) signal from galaxy surveys. BAO is a cosmological relic
of the random density fluctuations that propagated in the primor-
dial photon-electron-nuclei plasma before recombination. At the
epoch of recombination, the disappearance of free electrons stopped
this propagation, so that the perturbations and their interference
were frozen, leaving an imprint in the matter distribution that is
detectable at late times in the galaxy distribution (Eisenstein &
Hu 1998).

This imprint is a typical length scale corresponding to the sound
horizon, the largest distance sound waves in the plasma could have
travelled by a given time, at recombination. For this reason, BAO
serves as valuable standard ruler that can be used to study the
expansion history of the Universe.

Precise measurements of cosmological distances using BAO can
improve the prospective of constraining cosmological models and
shedding light on the mystery of the cosmic acceleration (Weinberg
et al. 2013), with forthcoming galaxy surveys (Johnston et al. 2008;
DESI Collaboration et al. 2016; Laureijs et al. 2011).

However, the BAO peaks found through the observed galaxy
correlation function and power spectrum are shifted, weakened and
broadened (Eisenstein et al. 2007; Crocce & Scoccimarro 2008) by
the process of non-linear gravitational evolution and bulk motions
of matter (Obuljen et al. 2017), making it harder to accurately de-
termine the peak positions and to use them to measure cosmological
distances. This is further complicated by the fact that galaxies are
biased tracers of the large-scale structure, and by redshift space
distortions (RSDs), a phenomenon that arises because we measure
the redshifts, rather than real distances, of galaxies, and the former
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can be affected by the large-scale peculiar velocity field, leading to
incorrect interpreted galaxy coordinates. Both of the latter effects
can further degrade the potential of BAO as a standard ruler (Zhu
et al. 2017; Birkin et al. 2019). The idea is that with reconstruction
we can at least partially remove these effects, therefore improving
the accuracy of cosmological constraints.

A variety of previous reconstruction methods have found success
in reducing of the effects of cosmic structure formation in the
recovery of the BAO peaks. Starting from the first attempt (which is
now called standard reconstruction) reversing the motion of galaxies
(Eisenstein et al. 2007), which has been proved to be effective in
observations (Padmanabhan et al. 2012), improvement has been
found in methods using iterations (Schmittfull et al. 2017). Inspired
by Lagrangian perturbation theory, which uniquely maps the final Eu-
lerian coordinates of galaxies to a set of initial Lagrangian positions,
recent developments propose that the process of reconstruction can be
treated as solving an optimal mass assignment problem (Frisch et al.
2002; Brenier et al. 2003; Mohayaee et al. 2003). This problem has
been lately solved as a non-linear partial differential equation (PDE)
using different algorithms (Zhu et al. 2017; Shi et al. 2018). Forward-
modelling reconstruction methods are also studied extensively (e.g.
Kitaura & Enßlin 2008; Jasche & Wandelt 2013; Wang et al. 2014;
Lavaux 2016), where efficient Monte Carlo samples of the initial
density field phases are combined with non-linear evolution to select
the initial condition that would match well late-time observations of
the local Universe.

The reconstruction method proposed by Shi et al. (2018) is the
starting point of the iterative reconstruction scheme to be described
in this work. This method reduces the reconstruction problem into
solving a Monge-Ampere-type PDE, which gives the mapping
between the initial, Lagrangian, and final, Eulerian, coordinates
of particles. In three spatial dimensions, the PDE contains up
to cubic powers of second-order derivatives, and can be solved
using a slightly modified multigrid relaxation technique. Although
originally developed for reconstructions from a dark matter field,
its generalization for reconstructions from biased tracers, such as
galaxies and dark matter haloes, turned out to be straightforward
(Birkin et al. 2019). In this work, we will further extend this method
for reconstructions from biased tracers in redshift space, by making
use of the relation between the displacement field and the peculiar
velocity field.

As mentioned above, RSD means that the inferred galaxy coordi-
nate is different from its true coordinate. There are two regimes of the
RSD effect, as can be illustrated by considering two galaxies, both
along the line of sight (LOS), one in front of and the other behind
a galaxy cluster which is along the same LOS. If these galaxies are
distant from the central cluster, they fall towards the latter but the
infall velocity is generally not very high – the galaxy in front of the
cluster experiences an additional redshift due to the infall velocity,
making it appear further away from us, whilst the one behind has an
additional blueshift that makes it appear to be closer to observer than
its true distance. In this regime, the two galaxies would appear closer
to each other, leading to a squashing (Kaiser) effect along the LOS in
the galaxy correlation function. On the other hand, if the two galaxies
are both much closer to the cluster centre, their velocities are likely
much larger; the one in front could appear to be behind the cluster
and vice version, which causes a strongly elongated feature along the
LOS in the galaxy correlation function, known as the finger-of-God
(FoG) effect. The large-scale Kaiser effect can be well described
by linear perturbation theory, whilst the FoG effect, being on small
scales, is non-linear. The FoG effect causes ‘trajectory crossing’,
i.e. it changes the ranking order of the distances of galaxies, and in

general this poses a limitation on reconstruction as we will discuss
later.

Assuming no trajectory crossing and a curl-free velocity field,
the peculiar velocity field induced gravitationally by overdensities
can be derived from the density field itself in the real space.
Intuitively, the RSD effect can be described as a ‘more evolved matter
field’ (Taylor & Rowan-Robinson 1993), recognizing this intimate
relationship between RSD and gravitational process. Accordingly,
in the standard reconstruction approach, the RSD effect has been
considered as an additional linear factor on the displacements of
galaxies following Kaiser’s equation that links the displacement field
to the compression effect due to galaxy coherent motion (but neglects
the FoG effect).

Obtaining velocity field from density field through non-linear
reconstruction has been explored by Yu & Zhu (2019). Their result
suggests that the correlation between the matter density field and
the velocity field can be more complicated than the linear theory
prediction. Since the non-linear displacement field can be obtained
from new reconstruction methods, including that of Shi et al.
(2018), we are interested to infer the peculiar velocity from it
and subsequently use this information to ‘undo’ the RSD effect on
measured galaxy coordinates.

However, estimating velocities from a density field in redshift
space is an inverse problem – no real-space density field is known a
priori in practice. A reliable way to approach the problem could be
to use an iterative approach similar to self-calibration between the
real- and redshift-space density fields until one obtains a converged
result. It was proposed by Yahil et al. (1991) and Strauss (1989)
that an iteration scheme can be used to recover the density field in
real space from observations. In the linear regime, N-body simulation
results confirmed the potential of this method (Davis, Strauss & Yahil
1991). However, non-linear effect caused by the random motions of
galaxies can lead to erroneous estimations, especially in high-density
clusters. This can be mitigated by a smoothing of the velocity field,
echoing the result found by Cole, Fisher & Weinberg (1994) where
the smoothed field gave a significantly more accurate estimation of
redshift distortion parameter, β. A second-order improvement of the
method was proposed by Gramann, Cen & Gott (1994), and a quasi-
non-linear treatment by Taylor & Rowan-Robinson (1993). They
both found a strong correlation with the true density field of the
density reconstructed from redshift space. More recently, iterative
constructions of the initial density field have been proposed by
Hada & Eisenstein (2018), Hada & Eisenstein (2019), extending
the work of Monaco & Efstathiou (1999), and by Burden, Percival &
Howlett (2015). Our approach follows a similar iterative procedure
as these more recent works, but has a number of differences. For
examples, instead of reconstructing the initial density field, we
aim to reconstruct the galaxy coordinates in real space because
we are more interested in the removal of RSD effects from real
observational data; our displacement field is obtained from non-linear
reconstruction; and we have defined different estimators (mainly in
configuration space) to quantitatively examine the reconstruction
results during iterations. We are interested in reconstruction in
an internal-calibration sense, namely the physical and technical
parameters used for reconstruction are tuned by inspecting the
reconstruction outcome itself.

The paper is organized in the following way. In Section 2, we
describe our methodology. In Section 2.1, we introduce the basics
of the reconstruction method proposed in Shi et al. (2018). In
Section 2.2, we relate the displacement field to the peculiar velocity
field, arguing that this link enables an iterative method in which,
starting with some rough initial guess of these fields, we can gradually

MNRAS 497, 3451–3471 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/3/3451/5875929 by D
urham

 U
niversity user on 21 August 2020



Iterative RSD reconstruction 3453

Table 1. A short summary of the symbols used throughout this paper. The first block (from x to K) contains the various quantities used in the
reconstruction process, the second block (f to bsim) are physical parameters related to the galaxy catalogues, the third block (ng to Cani) are

technical parameters used in the reconstruction, and the last block [E1 to R
′
(s)] are estimators defined to check the convergence of reconstruction.

The first column contains the symbols, the second column their physical meaning and the last column the default values (a ‘−’ is used for
quantities without default values). We find that for estimators E1 and E2 the number of iterations required before convergence is generally
smaller than for estimators E3 and E4, and so a range of values is given for K.

Symbol Physical meaning Value

x Real-space galaxy coordinate –
r Real-space distance –
s Redshift-space galaxy coordinate –
s Redshift-space distance –
q Initial (Lagrangian) coordinate –
x(k) Reconstructed real-space galaxy coordinate (kth iteration) –
�

(k)
S Displacement field from reconstruction on smoothed galaxy density field (kth iteration) –

�(k) Displacement field from reconstruction on un-smoothed galaxy density field (kth iteration) –
δini Initial matter density field –
δr

g Final real-space galaxy density field –
δs

g Final redshift-space galaxy density field –
δrec Reconstructed matter density field from final real-space galaxy catalogue –
δ

(k)
rec Reconstructed matter density field from reconstructed real-space galaxy catalogue (kth iteration) –

δ
(k)
g Galaxy density field of reconstructed real-space galaxy catalogue (kth iteration) –

δ
(k)
g,S Smoothed galaxy density field of reconstructed real-space galaxy catalogue (kth iteration) –

r[a, b] Cross-correlation coefficients between fields a and b –
ξgg(r) Real-space galaxy autocorrelation function –
ξgm(r) Real-space galaxy-matter cross-correlation function –
ξ s

gg(s) Redshift-space galaxy autocorrelation function –
ξ0, 2, 4(s) Redshift-space galaxy correlation function monopole, quadrupole and hexadecapole –
K Value of iteration number k at convergence 3–6

f Linear growth rate 0.735
b(k) Linear galaxy bias (kth iteration) –
bsim Linear galaxy bias measured in simulation 1.95

ng Galaxy number density 3.2 × 10−4[ h−1 Mpc]−3

dx Reconstruction grid cell size 2 h−1 Mpc
S Isotropic Gaussian smoothing scale 9 h−1 Mpc
Cani Anisotropic smoothing parameter 1.0

E1 r[δ(k)
rec, δini] –

E2 r[δ(k)
g , δr

g] –

E3 ξ2[x(k)](s) –

E4 ξ0[x(k)](s)/ξgg(r) –

R(s) ξ0(s)/ξ0[x(k)](s) –
R

′
(s) ξ0(s)/ξgg(r) –

improve our knowledge of them during each iteration. In Section 2.4,
we describe in great details how the method is implemented in
practice and define four estimators to assess its performance. Because
of the large number of symbols used in this paper, we summarize them
in Table 1 to aim the reader. In Section 3, we test the effect of choosing
different physical and technical parameters in our pipeline on the
reconstruction result and performance; this section is technical and
readers who are more interested in the results can skip it. Section 4
is the main result of this paper, where we show an application of the
new method, in which we use mock galaxy catalogues constructed
from a suite of N-body simulations to assess the potential of using this
method to simultaneously obtain the real-space galaxy coordinates,
the real-space initial matter density field and determine the physical
parameters of the cosmological model. Finally, we summarize the
main results, discuss the outlook and future applications of the
method, and conclude in Section 5.

The main figures of this paper are Fig. 1 (schematic description of
the method) and Figs 11 and 12 (performance illustration).

2 M E T H O D O L O G Y

2.1 Non-linear reconstruction in real space

The iterative RSD reconstruction method described in this paper is
based on the real-space non-linear reconstruction method introduced
by Shi et al. (2018); see also Li (2018). For completeness, here we
briefly recap the basic idea behind that method.

Our main objective is to identify a mapping between the initial
Lagrangian coordinate, q, of a particle and its Eulerian coordinate,
x(t), at some later time t. Such a mapping can be uniquely obtained,
at least under the condition that the trajectories of particles have not
crossed each other, by starting from the following equation:

ρ(x)d3x = ρ(q)d3q ≈ ρ̄d3q, (1)

which is based on continuity equation stating that mass is conserved
in an infinitesimal volume element. ρ(q) and ρ(x) are, respectively,
the initial density field and the density field at time t. As the density
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3454 Y. Wang, B. Li and M. Cautun

Figure 1. The flowchart indicating the different steps of the iterative reconstruction pipeline introduced in this paper. The light blue boxes (in the third and
fourth rows) are the physical quantities as input, intermediate result or output of the pipeline; the grey boxes (in the first and last rows) are operations that take
these inputs to produce intermediate results or outputs; the pink diamonds (in the last row) are the estimators defined to assess the performance of reconstruction,
and the dark green boxes (in the last row) are the real-density fields that are used for evaluating two of these estimators (E1 and E2); the pink lines with arrows
(which link boxes to diamonds) show which quantities are needed to evaluate each estimator; the light green circles indicate the parameters used in the process,
which need to be tested and optimized, as we will see in the next section, and the dotted green lines indicate in which operations are these parameters used. See
the main text for more details.

field is very close to homogeneous at early times, we can approximate
the initial ρ(q) as a constant, ρ(q) � ρ̄.

The displacement field, �(x) = x − q, between the final and initial
positions of a particle can be rewritten as

∇x�(x) ≡ q = x − �(x), (2)

where �(x) is the displacement potential, whose gradient is q.
Underlying these definitions is another approximation in this method,
namely the displacement field is curl-free, ∇ × � = 0, which
should break down on small scales. Substituting equation (2) into
equation (1), we get

det[∇ i∇j�(x)] = ρ(x)

ρ̄
≡ 1 + δ(x), (3)

where i, j runs over 1, 2, 3, and δ(x) is the density contrast at time
t. The symbol ‘det’ denotes the determinant of a matrix, in this case
the Hessian of �(x). A new algorithm to solve equation (3) was
developed in Shi et al. (2018), which reduces the problem into the
numerical solution for a non-linear PDE that contains up to the third
(in 3D) power of the second-order derivatives of �. It was later
generalized by Birkin et al. (2019) to more generic cases where δ(x)
in equation (3) is a biased description of the true underlying matter
density field. As this work does not extend the numerical algorithm
to solve this PDE, we shall omit the technical details here and refer
interested readers to those references.

Once �(x) and therefore �(x) are obtained, the reconstructed
density field is calculated using

δr = −∇q · �(q), (4)

where we have used the same symbol � to denote the displacement
field but note that it is now a function of the Lagrangian coordinate
q, and the divergence is with respect to q too. To calculate �(q) on a
regular q-grid, we use the Delaunay tessellation field estimator code
(DTFE; Schaap & van de Weygaert 2000; van de Weygaert & Schaap
2009; Cautun & van de Weygaert 2011), which is used to interpolate
�(x) to a regular q-grid.

2.2 Reconstruction in redshift space

In observations, what is measured is the redshift-space coordinate, s,
of a particle (such as a galaxy), rather than the real-space position,
x. The two are related by

s = x + vlos

aH (a)
n, (5)

where a is the scale factor, H(a) is the Hubble expansion rate at
a, n is the line-of-sight (LOS) direction, and vlos = v · n is the
peculiar velocity of the galaxy along the LOS direction. As a result,
galaxies infalling toward massive clusters or receding from void
regions can cause redshift-space distortions – the RSD – to the
isotropic spatial distribution they would have otherwise. For it to
be practically useful, therefore, the reconstruction method described
above must be extended to account for the RSD effect.

We remark that equation (1) contains only x and q. A similar
equation that contains s and q may be obtained, allowing one to
directly map between the s and q coordinates without having to
worry about the x coordinate. In other words, an equation similar
to equation (3) can be written down, and the process depicted in
Section 2.1 repeated, but with x replaced by the observed coordinate

MNRAS 497, 3451–3471 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/3/3451/5875929 by D
urham

 U
niversity user on 21 August 2020



Iterative RSD reconstruction 3455

s: with the assumption of no shell crossing, a unique solution of the
s-to-q mapping is still guaranteed. However, the derivative in the
left-hand side of equation (3) is formally isotropic, whereas δ(s) is
anisotropic due to RSD, which means that the solutions �(s) and
�(s) must be anisotropic. It is not clear whether this anisotropy
would simply go away (as one would hope for) in the reconstructed
density calculated using equation (4).

A different way to view this point is the following: our non-
linear reconstruction method starts from a set of inhomogeneously
distributed particles, and gradually moves the particles to a uniform
distribution; in this process, particles can be moved in all directions
as the algorithm sees necessary. If we knew how to correct s to get
x exactly, the reconstruction would take two steps – first doing that
correction to get x and then solving equations (3) and (4); in the first
step particles are moved along the LOS direction only, whilst in the
second step they are moved in all directions. If we attempt to directly
map s to q, the first step in the above is omitted, and it is highly
probable that the final solution obtained in this ‘crude’ way differs
from that of the previous, ‘correct’, approach. One possible way to
overcome this issue is to account for the additional displacements
of galaxy LOS positions due to RSD by including extra terms in
the equation for � (Nusser & Davis 1994); the resulting equation at
linear order can be solved in configuration space by finite difference
(e.g. Padmanabhan et al. 2012) or in Fourier space by fast Fourier
transform (FFT; see e.g. Burden et al. 2014). In the latter case, the
extra term breaks the translational invariance of the problem, which
prevents the use of simple FFT and leads to the development of
schemes to improve the solution iteratively (e.g. Burden et al. 2015).
As stated, these schemes are based on the solution to a linearized
equation for �, whilst we want to find a solution to the non-linear
reconstruction equation derived from equation (3), and it is unclear
how straightforward it is to generalize them here.

An alternative method is to keep using the x coordinate in
the reconstruction equation (3), but add a conversion from s to
x somewhere before that equation is solved. In the Zel’dovich
approximation (ZA), the displacement field � and peculiar velocity
field v are related as

v(x)

aH
= f ∇	v = f � [q(x)] , (6)

where 	v is the velocity potential, f ≡ dln D+/dln a is the linear
growth rate, and D+ the linear growth factor. This suggests that,
in equation (5), s can be written as a function of x and �(x) (the
latter is the potential for �). However, the function that connects
the three quantities – δ(s), δ(x), and �(x) – does not have an a
priori known form, making it impossible to replace δ(s) with δ(x) in
equation (3). This motivates a new iterative method here, which can
be schematically summarized as

x(k+1) = s − v(k) · n
aH (a)

n ←− v(k) ←− � (k) ←− δ(k) ←− x(k), (7)

where k = 0, 1, 2, 3, ··· is the iteration number, and v(k) the velocity
field after the kth iteration, which is given by equation (6) with �

replaced by

� (k) ≡ �
(

x(k)
)
, (8)

i.e. � (k) is obtained by solving equation (3) using the particle
coordinate after the kth iteration, x(k), to calculate the density field
on the right-hand side:

δ(k) ≡ δ
(

x(k)
)
. (9)

At the first iteration step, k = 0, we simply set x(0) = s as
our ‘initial guess’, such that v(0) = 0: this is equivalent to doing
the reconstruction by assuming that the particles’ redshift-space
coordinates are identical to their real-space coordinates. Note that
in equation (7) s is the observed coordinate in redshift space, which
is fixed during the iterations.

The first equality of equation (7) merits further comment as its
simple form could obscure a subtle point, namely � (k), and hence v(k),
are evaluated at the x, which is not known prior to the reconstruction,
rather than s coordinate. This indicates that in principle this is a non-
linear equation for x. Accurate solution can be found numerically
once the � (k)(x) or v(k)(x) fields are known. This can be done as
follows: start with the approximate solution from v(k) ≈ v(k)(s) as an
initial trial solution to x, xj = 1, then take v(k) ≈ v(k)(xj = 1) to obtain an
improved solution, xj = 2, and so on, until xj converges for the galaxy
considered under the velocity field v(k). Schematically, this can be
viewed as an iterative procedure to solve the equation,

x(k+1)
g = sg − n

1

aH
v(k)

(
x(k+1)

g

)
· n, (10)

where the explicit dependence of v(k) on x(k + 1) makes it a non-linear
algebraic equation for x(k + 1), and we have used the subscript ‘g’ as
a reminder that the coordinates are for galaxies. In practice, we used
a simplified version of this scheme, described by

x(k+1)
g = sg − n

1

aH
v(k)

(
x(k)

g

)
· n, (11)

namely the iterations for k and j are approximately done together. If
convergence is achieved for x(k)

g , we expect these two approaches to
give consistent results with the latter one easier to implement. We
plan to implement the full (iterative) solution to equation (10) as a
future extension of the current pipeline.

2.3 Simulation

As a proof-of-concept study, in this paper we consider galaxy
catalogues whose number density, ng, and redshift match that of the
BOSS CMASS data. More explicitly, the mock galaxy catalogues,
first used in Cautun et al. (2018), were constructed using the
halo occupation distribution (HOD) model and parameters given in
Manera et al. (2013), and halo catalogues from N-body simulations
of the 
CDM model. The simulations were run using the RAMSES

code (Teyssier 2002), employing 10243 particles in a cubic box of
co-moving size 1024 h−1 Mpc, and the cosmological parameters are

{�m, �
, h, ns, σ8} = {0.281, 0.719, 0.697, 0.971, 0.8}, (12)

in which �m and �
 are, respectively, the density parameters for mat-
ter and the cosmological constant (
), h ≡ H0/(100 km s−1 Mpc−1)
with H0 the Hubble constant, ns is the primordial power spectrum
index and σ 8 denotes the rms matter density fluctuation smoothed
on scales of 8 h−1 Mpc. Further details of the simulations and of
the HOD parameters are not very relevant for this paper, and so
we opt to not report them here, but simply note that the galaxy
catalogues correspond to redshift, z = 0.5, have a galaxy number
density of ng � 3.2 × 10−4[ h−1 Mpc]−3, and that RSD effects on the
coordinates of our mock galaxies were implemented by displacing
the galaxies, according to their peculiar velocities from the HOD,
along the three axes of the simulation box, by adopting the distant
observer approximation:1 this means that for a given simulation we

1However, the method described here is not limited to the distant observer
approximation.
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3456 Y. Wang, B. Li and M. Cautun

have produced three HOD galaxy catalogues in redshift space. We
have five independent realizations of simulations and therefore 15
galaxy catalogues at z = 0.5; in the analysis of Section 3, we will
only use the first galaxy catalogue, whilst all 15 are used in Section 4.

2.4 Implementation of the algorithm

The description of our iterative reconstruction algorithm in the previ-
ous subsection is quite schematic, and therefore in this subsection we
give more technical details of its implementation. The presentation
here shall follow the logic as depicted in the flowchart, Fig. 1, and
for clarity we also list all the physical or numerical parameters, and
their meanings, in Table 1.

The main ingredients of the reconstruction algorithm are listed
below (where a superscript (k) denotes the corresponding quantities
after the kth reconstruction iteration):

(i) Creating the galaxy density field δ(k)
g on a uniform grid using

the approximate real-space coordinates of the galaxies, x(k): This
is done using the triangular-shaped cloud (TSC) mass assignment
scheme implemented in the DTFE public code (Cautun & van de
Weygaert 2011). Note that we do not use actual Delaunay tessellation
to calculate the density field, as it has been shown by Birkin et al.
(2019) – and checked again in this project – that this leads to a poorer
reconstruction performance.

The size of the uniform grid on which δ(k)
g is calculated has some

effect on the reconstruction result, and in this work we have adopted
a grid with 5123 cells, i.e. with cell size dx = 2 h−1 Mpc, because
using a grid with even higher resolution does not make a significant
difference (Birkin et al. 2019).

(ii) Calculating the displacement field � and performing recon-
struction: Here, things become a bit tricky: even though we are
trying to simultaneously do reconstructions of the initial density
field and the real-space galaxy coordinates, the optimal technical
specifications are not the same in the two cases. As a result, we
actually do two reconstruction calculations of � for a given δ(k)

g

field, both using the ECOSMOG code developed by Shi et al. (2018)
and Birkin et al. (2019).

In the first calculation, the objective is to undo the RSD and thus
to bring the galaxy coordinates, x(k), closer to their true real-space
values, x. Here, our concern is that the stretching effects of FoG could
lead to erroneous estimation of the large-scale density field, causing
worse performance of the method. To reduce its impact, we follow
Hada & Eisenstein (2018) and calculate the density field, δ(k)

g , using
an anisotropic smoothing function. The filtering function is chosen
to be a skewed Gaussian that has a different smoothing length along
the line-of-sight direction, and the smoothed galaxy density field is
given, in Fourier space, as2

δ̃
(k)
g,S(k) = δ̃(k)

g G̃(k) ≡ δ̃(k)
g exp

[− (
k2

nS
2
n + k2

pS2
p

)]
, (13)

where k is the wavenumber with kn and kp representing the wave
numbers along the line of sight and perpendicular to it. The functions
δ̃(k)

g , G̃(k) are the Fourier transformations of δ(k)
g and the filter

mentioned above. This introduces two extra parameters for the
algorithm, Sn and Sp, and in what follows we express them by S =
Sp (the smoothing length perpendicular to LOS) and a dimensionless
parameter Cani ≡ Sn/S, with Cani > 1 representing a larger smoothing
length along the LOS. The calculation from here on is similar as

2Note the slight abuse of notation here: k is used both to denote the iteration
number and to represent the wavenumber/vector in Fourier space.

before, but with δ
(k)
g,S instead of δ(k)

g being fed into ECOSMOG, and b(k)

is applied again to convert this to an approximated non-linear matter
density field.3 The displacement field obtained here is denoted as
�

(k)
S , from which we can derive the ‘improved’ real-space galaxy

coordinates, x(k + 1), as

x(k+1) = s − f �
(k)
S , (14)

where f is the linear growth rate introduced above, which we take
as a scale-independent (but time-dependent) constant, as is the case
for 
CDM and several dark energy and modified gravity models. At
z = 0.5, the equation

f (z) � [�m(z)]0.55 (15)

is a very good approximation, which gives a value of f = 0.735, in
good agreement with numerical result obtained by using the cosmo-
logical parameters given above. However, in the actual calculation
we have left f to be a free parameter to be varied because its value is
a priori unknown in observations.

In the second calculation, the aim is to obtain the reconstructed
matter density field, δ(k)

rec, using the relation

δ(k)
rec = −∇q · � (k), (16)

where the displacement field at the kth iteration, � (k), is calculated
by applying ECOSMOG to δ(k)

g /b(k), without doing any smoothing
(which would degrade the performance; see below and Birkin et al.
2019). Here, b(k) is the linear bias parameter such that δ(k)

g /b(k) is an
approximation to the non-linear matter density field; note that here
we assume different values of b(k) need to be used in the different
iterations.

(iii) Checking for convergence. As an iterative solution scheme,
we need a criterion (or a set of criteria) to decide when the iterations
can be stopped. Usually, convergence is deemed to be achieved if
the error (defined in whatever way) is reduced to below some preset
tolerance, e.g. some small number. The problem at hand is more
complicated in that, a priori, there is no ‘target’ solution to be used
to clearly define the ‘error’. Therefore, here we opt for a set of loose
criteria for convergence:

C1: A set of estimators obtained from the reconstruction outcome
‘stabilize’ and do not change further with increasing number of
iterations (k). This is a generic convergence criterion which is
essential for the method to work, and we require it to be satisfied
for any estimator to be considered. This criterion is also practi-
cally useful, as it applies to both statistics extracted directly from
observations (such as estimator E3 to be introduced below) and
theoretical quantities that are only known in controlled experiments,
such as simulations. The latter, however, are also helpful since they
offer other ways to assess the performance of and to determine the
optimal parameters for the reconstruction; for this reason, we also
introduce two more convergence criteria that apply only to theoretical
quantities.

C2: Assuming that convergence is achieved after iteration k = K,
then reconstructed matter density field δ(K)

rec is ‘closer’ to the initial
density field δini than any of the pre-convergence results, δ(k)

rec, ∀k <

K; here, δini is a theoretical quantity.
C3: The reconstructed galaxy coordinates x(K) are ‘closer’ to

the true real-space galaxy coordinates x than any pre-convergence
results, x(k), ∀k < K; here, x is a theoretical quantity.

3In principle, the b(k) parameters used here can be different from the ones
used in the first calculation above, but in our implementation, we have used
the same b(k) for a given k iteration.
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Iterative RSD reconstruction 3457

It is not our objective to be very quantitative in defining conver-
gence, and instead we simply check that ‘by eye’, i.e. we stop the
iterations if the statistic or estimator of interest has stabilized and does
not change significantly after further iterations. Four estimators are
defined, which can be constructed from the reconstruction outcome,
to allow us to test these criteria. Different estimators may need
different numbers of iterations before convergence, and these are
shown in Table 1.

For Criterion C2, we use the usual cross-correlation coefficient, r,
between the reconstructed and initial density fields, to characterize
the similarity between them. The correlation coefficient between any
two fields δa and δb is defined as

r[a, b] ≡ δ̃a δ̃
∗
b + δ̃∗

a δ̃b

2
√

δ̃a δ̃∗
a

√
δ̃bδ̃

∗
b

, (17)

where δ̃a and δ̃b are the Fourier transforms of δa and δb and a
superscript ∗ denotes taking the complex conjugate. A value of r[a,
b] = 1 means perfect correlation, whilst r[a, b] = 0 means that a
and b are completely random. In other words, for C2 we would like
that r[δ(K)

rec , δini] to be closer to 1 than r[δ(k)
rec, δini], for ∀k < K. Since

r[a, b] is a function of scale, or Fourier wave number, k, ideally we
hope the above applies for all wavenumber values or, if that is not
possible, at least for the range of wavenumbers of most interest to
us.

For C3 we have defined a similar estimator by cross-correlating
δ(k)

g with the final real-space galaxy density field, δr
g, and requiring

that r[δ(K)
g , δr

g] is closer to 1 than r[δ(k)
g , δr

g], ∀k < K.
We have also defined two more estimators based on the argument

that, if x(K) is close enough to x, then the two-point correlation
functions obtained from these two galaxy catalogues should also
be close to each other. In particular, the RSD-induced anisotropy
in the two-point correlation function of the redshift-space (s) galaxy
catalogue should be largely removed in the reconstructed, x(K), galaxy
catalogue. Therefore, we require that ξ 2[x(K)], the quadrupole of the
two-point galaxy correlation function of the x(K) catalogue, be closer
to 0 than ξ 2[x(k)], ∀k < K.4

In addition, we would also expect that ξ 0[x(K)], the monopole of
the two-point galaxy correlation function of the x(K) catalogue, to
be close to the real-space galaxy correlation function ξ gg. Therefore,
a further requirement is that the ratio ξ 0[x(K)]/ξ gg be closer to 1
than ξ 0[x(k)]/ξ gg, ∀k < K. In this paper, we measure ξ 0 and ξ 2

using the publicly available code ‘Correlation Utilities and Two-
point Estimators’ (CUTE; Alonso 2012).

Note that in certain situations we may need to loosen the above
requirements. Taking ξ 2[x(k)] for example, it is possible that for some
intermediate k < K the result coincidentally gets very close to zero
(this may happen if ξ 2[x(k)] oscillates around 0 for increasing k).
Therefore, it is always safe to try a couple more iterations even if the
result seems to have converged.

(iv) Finalizing the code. Finally, once convergence is deemed to
have been achieved, we stop the iterations at k = K.

In what follows, to avoid carrying cumbersome notations every-
where, we shall call the four estimators introduced above E1, E2,
E3, and E4, respectively. Note that out of these estimators, only E3

4Note that we have used [] to highlight that x(k) is not an argument of ξ2

but simply is a symbol to represent a given galaxy catalogue. The proper
argument for ξ2(s), not shown here to lighten the notation, is the galaxy pair
distance in redshift space, s. As above, ideally we would like ξ2[x(K)] to be
close to 0 on all scales or, if it is not possible, at least in the scales of most
interest to us.

is applicable in real observations because the other three all require
something that only exists in simulations in their definitions – δini

for E1, δr
g for E2, and ξ gg(r) for E4. As a result, the latter estimators

are mainly used in this work as theoretical tools to demonstrate
the performance of the iterative reconstruction algorithm and to
determine the optimal technical parameters.

On the other hand, E3 can be estimated using observational data
alone. Therefore, our objective in the following parts of this paper
is to check what is the potential of using E3 alone to determine the
‘best-fitting’ values of the physical parameters, such as f and b(k), and
to do the RSD reconstruction. If f, b could be precisely determined
in this process, then that would be an additional benefit of this
new algorithm, along with simultaneously giving us approximate
reconstructions of the initial (linear) and final (non-linear) matter
density fields and the final real-space galaxy density field (or
coordinates). These will turn out to be very useful information as
we exemplify and discuss later. In the less ideal scenario, if f, b could
not be accurately determined (for example because the reconstruction
outcome is not very sensitive to them), then the other benefits would
remain.

Note that we can also use higher-order multipole moments, such
as the hexadecapole ξ 4[x(k)](s), as more estimators to check the
convergence, namely ξ 4[x(K)] must be closer to 0 than ξ 4[x(k)], ∀k
< K. These have the advantage that they can be obtained from real
observational data. In particular, it would be interesting to see if
they offer consistent (or complementary) constraints on the physical
parameters, such as f and b. However, for our galaxy catalogues
the number density ng � 3.2 × 10−4[ h−1 Mpc]−3 is too low and the
measurements of ξ 4[x(k)] are too noisy. Therefore, we shall leave a
check of the impacts of such additional estimators to a future work,
where we’ll test the reconstruction algorithm using galaxy catalogues
with various number density cuts.

3 R ECONSTRUCTI ON TESTS AND
P E R F O R M A N C E

We tested the reconstruction pipeline for a large number of combi-
nations of the physical and technical parameters, {f, b(k), S, Cani},
in which b(k) were allowed to vary with the iteration number, k, in
order to settle to the most optimal choices of S, Cani and to explore
the potential of constraining f, b as a byproduct of reconstruction.
The optimal values for these parameters are summarized in the last
column of Table 1, and in this section, we will show the impacts of
varying these parameters on the reconstruction performance. As we
have a relatively large parameter space, we shall only vary a subset
of them – whilst fixing the others to the optimal values – at a given
time.

Before going to the details, in Fig. 2 we present a quick visual
inspection of the impact of RSD on the reconstruction performance.
The red dashed line is estimator E1, r[δrec, δini], between the initial
matter density field, δini, and the reconstructed matter density field,
δrec, from the final galaxy catalogue in real space. The red solid line
differs by replacing δrec with δ(0)

rec, which is the reconstructed matter
density field from the zeroth-iteration of our RSD reconstruction,
namely by incorrectly assuming that the redshift-space coordinates
of the galaxies are also their real-space coordinates without any
corrections, or equivalently applying the reconstruction code of
Birkin et al. (2019) directly to our redshift-space galaxy catalogue
without using iterations. We can see that not cleaning up RSD
effects causes the correlation to become smaller than in real-space
reconstruction, which is as expected. However, the impact is mild,
which is perhaps because of the relatively low galaxy number density
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3458 Y. Wang, B. Li and M. Cautun

Figure 2. The cross-correlation coefficients of the initial density field with
the reconstructed matter density field from the real-space galaxy catalogue
(r[δrec, δini]; dashed lines) and with the reconstructed matter density field
from the redshift-space galaxy catalogue (r[δ(0)

rec, δini]; solid lines) using no
iterations. The various coloured lines correspond to the results for which
the galaxy density field has been smoothed by a skewed Gaussian filter
with Cani = 1.0 and S = 0 (no smoothing; red; rightmost curve), 2, 5, 10,
and 15 h−1 Mpc (brown; leftmost curve). The bias parameter used here is
b(0) = 2.0.

used here. As a result, we expect that any improvement by iterative
reconstruction will be mild as well (but note that both conclusions
might not hold for galaxy catalogues with much higher ng).

The dashed and solid lines with other colours in Fig. 2 are very
similar, but they correspond to results where both the real- and the
redshift-space galaxy density fields are further smoothed – after the
TSC mass assignment – using the skewed Gaussian filter described
above, with Cani = 1, S = 2 (blue), 5 (green), 8 (grey), 10 (purple),
and 15 h−1 Mpc (brown). Notice that the red lines described above
are results from unsmoothed galaxy density field and correspond to
S = 0. We can see a clear trend that smoothing the galaxy density
field leads to poorer outcomes of the reconstruction (as mentioned
earlier), which is because the smoothing effectively suppresses the
small-scale features of the density field. This is why when describing
the flowchart (Fig. 1) above we emphasized that smoothing is used
in calculating the displacement field �

(k)
S which is needed to correct

galaxy coordinates, and not in calculating the displacement field � (k)

which is used to obtain the reconstructed matter density field. Also
note that for all tests in Fig. 2 we have used b(0) = 2.0 and that f is
not used here.

Another interesting feature in Fig. 2 is that, as the smoothing
length S increases, the difference between real and redshift-space
reconstructions reduces, and with S = 15 h−1 Mpc (brown lines) the
two cases almost agree perfectly with each other. This is again not
surprising given that the effect of RSD is to shift galaxy positions
whilst smoothing to certain extent undoes that shift. However, this is
at a price of suppressing small-scale features and leading to poorer
reconstruction results for both real and redshift spaces.

We now present the results of a wide range of tests to illustrate
the (lack of) impacts of varying different physical and technical
parameters used in the iterative procedure on the estimators defined

in the previous section. As mentioned above, these parameters serve
both as fitting parameters used to identify the optimal reconstruction
specifications, as well as informative vehicles that can provide
valuable insights into the formation of large-scale structures.

3.1 Smoothing parameters S and Cani

Let us first discuss the smoothing-related parameters S and Cani. S
represents the overall smoothing length, whilst Cani characterizes
the amount of anisotropic smoothing, with Cani = 1.0 indicating no
anisotropy in the smoothing function and Cani > 1.0 indicating a
longer smoothing length along the line-of-sight direction to suppress
the impact of the FoG effect.

In Fig. 3, we compare estimator E2 constructed from the recon-
struction outputs for 4 × 3 combinations of (S, Cani): four choices of
S – 5, 8, 9, and 15 h−1 Mpc – and three choices of Cani – 1.0, 1.5, and
2.0. The results for each of the 12 combinations are shown in one
of the 12 subpanels on the top left of Fig. 3, and in each subpanel,
the different lines are the results after different numbers of iterations,
k, r[δ(k)

g , δr
g], with k = 1, 2, 3, 4. As a comparison, the dashed line

represents r[δs
g, δ

r
g], namely the cross-correlation between the final

real and redshift-space galaxy density fields. Within each row, the
smoothing scale perpendicular to the LOS, Sp, is fixed whilst Sn, as
being the product of S and Cani, changes across the columns.

By comparing the different columns in a given row in Fig. 3, it is
evident that the effect of Cani on estimator E2 is only significant for
first few iterations. For k = 4, the difference between Cani = 1.0, 1.5,
and 2.0 is much smaller. The convergence criterion C1 is satisfied by
all tests, regardless of the value of Cani.

The overall behaviour of r[δ(k)
g , δr

g] for small smoothing scale is as
expected. One can consider the FoG effect as some ‘redistribution’ of
galaxies around the centres of their host haloes, where virial motions
of the former can lead to the measured galaxy coordinates differing
from their actual values by an amount much larger the radii of the
dark matter haloes. If uncorrected, this could cause a galaxy 1 which
is closer to us than another galaxy 2 in real space to actually appear
to be farther away than galaxy 2 in redshift space. In other words,
a ‘shell crossing’ takes place due purely to the use of redshift space
coordinates, and this violates one of the basic assumptions of the
reconstruction method, which leads to a degraded performance of
the latter. This impact can be alleviated if the galaxy density field
is smoothed using a large filter, whose size is at least comparable
to the typical peculiar-velocity-induced changes of galaxy distances
in redshift space. Choosing a too large smoothing scale reduces the
correlation due to the loss of information, so an optimal scale must
be found that balances the FoG effect without compromising the
accuracy of the reconstruction.

The physical reasoning given in the above paragraph is supported
by the following observation of Fig. 3, namely in the cases of
smaller smoothing lengths, for both S and Cani, the cross-correlation
r[δ(k)

g , δr
g] is generally larger. Since the smoothing length Sn along

the LOS direction is the product of S and Cani, we have Sn = 9
for (S, Cani) = (9, 1) which are sufficiently large to smooth out the
FoG effect (notice that for typical galaxies the LOS velocities are
smaller than 2000 km s–1 so that v · n/aH � 20 h−1 Mpc). Overall,
we find that for a fixed Cani value, increasing S (or equivalently Sp)
leads to a slightly faster convergence for E2 (as can be observed
when comparing the first and fourth rows in Fig. 3); however, the
final reconstruction is slightly worse (see the last row in Fig. 3); the
same happens for increasing Cani at fixed S, but the effect is much
smaller, as indicated by the rightmost column of this figure; this is
likely because our mock galaxy catalogues have a small fraction of
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Iterative RSD reconstruction 3459

Figure 3. Estimator E2, r[δ(k)
g , δr

g](k), for various combinations of technical parameters S and Cani. Each of the first four rows includes tests using a fixed S,

which takes value of 5, 8, 9, and 15 h−1 Mpc, respectively; each of the first three columns corresponds to tests using a fixed Cani, which takes value of 1.0, 1.5,
and 2.0, respectively. The 4 × 3 block of subpanels on the top left show how E2 changes with increasing number of iterations for a given (S, Cani). Each of the
three subpanels at the bottom compares the results for fixed Cani and varying S, at the last iteration; each of the four subpanels on the far right compares the
results for fixed S and varying Cani, again at the last iteration. The sparseness of the dashes lines increases with k, S, or Cani in the three different regions (see
the legends). The grey solid lines are the same in all subpanels and show r[δs

g, δ
r
g](k), which is the cross-correlation between the final galaxy density fields in

redshift and real spaces. The grey dotted lines are zero.

satellites (∼11 per cent), so that the FoG effect is not particularly
important.

We next move on to estimator E3. Fig. 4 shows the quadrupole
moments of reconstructed galaxy catalogues, ξ 2[x(k)](s), for the same
(S, Cani) parameter combinations as in Fig. 3. The two grey dashed
lines, which are the same in all subpanels, are, respectively, the
quadrupole moments measured from the final galaxy catalogues at
z = 0.5 in real (upper) and redshift (lower) space, and as expected
the former is zero on all scales probed here (r � 10 h−1 Mpc), whilst
the latter is negative as a result of the Kaiser effect.

There are a few features in Fig. 4 that are noticeable. First of
all, we find rapid and monotonic convergences, with the solutions
generally never requiring more than just a few iterations for all the
parameter combinations. The convergence becomes slower for small
smoothing lengths (S = 5 h−1 Mpc), but the differences are minor.
Secondly, unlike for E2, here the choice of S can have a significantly
greater impact on the converged result of ξ 2[x(K)]: in the better
scenarios, such as (S,Cani) = (9 h−1 Mpc, 1.0), we can observe that
ξ 2[x(K)](s) � 0 for s � 20 h−1 Mpc, whilst in the less good cases,
such as (S,Cani) = (15 h−1 Mpc, 2.0) this can only be achieved at
s � 50 h−1 Mpc. Thirdly, overall speaking, if the smoothing length
S is too large, there is insufficient correction to make ξ 2[x(K)] go
to zero on all but the largest scales (s � 50 h−1 Mpc), whilst if S

is too small, the correction seems to ‘overshoot’ and make ξ 2[x(K)]
positive. This can be reasonably explained, given that oversmoothing
(i.e. a too large S) would lead to �

(k)
S values which are appropriate

only for large scales and therefore the resulting corrections to galaxy
coordinates are not enough on small scales, whilst in the case of
undersmoothing (a too small S) the resulting values of �

(k)
S can be

strongly affected by structures on very small scales, causing ‘too
much’ correction. Finally, for a specific S, varying Cani between 1.0
and 2.0 does not seem to have a significant impact on the converged
result of E3 (after four iterations, see the right column of Fig. 4).

Fig. 5 is similar to Fig. 4, but shows the impact of (S, Cani) on
estimator E4, i.e. ξ 0[x(k)](s)/ξ gg(r). The convergence properties are
comparable to the case of E3, with convergence achieved after two
to four iterations in all cases, and the observation in the cases of E2
and E3 that Cani has a negligible effect holds here as well. The result
is again sensitive to S, with a value of S that is too small producing
insufficient correction to bring E4 to 1.0 on all scales, whilst an S
value that is too large causes an incorrect shape of E4 as a function of
s by deviating it from a constant value in s. Overall, we find that S =
8–9 h−1 Mpc is capable of bringing E4 closest to 1.0 on all scales
s � 20 h−1 Mpc.

Very reassuringly, in general, for combinations (S, Cani) that bring
ξ 2[x(k)] closer to zero down to small s values, the corresponding
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3460 Y. Wang, B. Li and M. Cautun

Figure 4. The same as Fig. 3, but for estimator E3, ξ2[x(k)](s). The grey dotted and solid lines are the same in all subpanels: the former, which is very close to
0 on the entire range of scales, is the quadrupole moment measured from the real-space galaxy catalogue at z = 0.5, whilst the latter, which is negative in the
whole s range, is that measured from the redshift-space galaxy catalogue at z = 0.5.

ξ 2[x(k)]/ξ gg(r) curves are also close to 1.0, which suggests that
the reconstruction can get the two correct simultaneously (as it is
expected to).

To summarize, we find that

(i) estimator E2 prefers a larger smoothing length S, and the value
of Cani is not as important;

(ii) compared with the E2 estimator, E3 and E4 are more sensitive
to S, and disfavour either very large or very small values of S;

(iii) the key objective of the reconstruction algorithm, namely to
accurately remove the RSD effects (or equivalently to bring E3 to 0
and E4 to 1), can be achieved for S ∼ 8–9 h−1 Mpc and Cani = 1.0.

These have motivated us to choose 9 h−1 Mpc as the optimal value
for S (for galaxy number density ng = 3.2 × 10−4[ h−1 Mpc]−3). As
for Cani, given its weak impact on all estimators, we opt for the simple
choice by setting its default value to 1.0. This simplifies our pipeline
as it now adopts isotropic smoothing, but note that for other ng values
this needs to be checked separately.

The results for E1 are very similar to E2, and to avoid getting this
paper too heavy on technical details, we refrain from showing them
here.

3.2 Galaxy bias parameter b(k)

Next, we explore the impact on reconstruction of the linear galaxy
bias parameter, b(k). As mentioned above, this parameter is used to
convert a non-linear galaxy density field to a non-linear matter density
field, since it is the latter that enters the reconstruction equation (Shi
et al. 2018; Birkin et al. 2019). In the 
CDM scenario, linear bias
is time dependent but scale independent on large and linear scales.
Therefore, given that we work at a fixed redshift, z = 0.5, we simply
take b(k) as a constant number.

Whilst the linear galaxy bias is a physical parameter, we do not
necessarily know its value accurately as this depends on the galaxy
population. This is especially true in observations, where we do not
even have precise knowledge of the cosmological parameters. As a
result, by trying different values of b(k), we can test whether the exact
value adopted is important – if yes, then the reconstruction can be
used to determine this value; if not, then not precisely knowing its
value would not impact the reconstruction outcome strongly.

We do, on the other hand, allow the bias b(k) to vary between
the different iterations in the reconstruction process – and there is a
reason for this. Usually, when speaking about galaxy bias, one refers
to the bias in real space, δr

g ≡ bδm, where δr
g and δm are the density

contrasts of galaxies and matter in real space, respectively. However,
at a given iteration of reconstruction, especially when k = 0, what we
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Iterative RSD reconstruction 3461

Figure 5. The same as Fig. 3, but for estimator E4, ξ0[x(k)](s)/ξgg(r). The straight dotted and the wiggly solid grey lines are the same in all subpanels: the
former is the constant 1.0 to guide the eyes, whilst the latter is the ratio between the monopole moments measured from the redshift- and real-space galaxy
catalogues at z = 0.5.

have are not exactly the galaxy coordinates in real space but some
approximations (for k > 0), or their coordinates in redshift space (for
k = 0). Therefore, to convert the galaxy density field δs

g or δ(k)
g to

the real-space matter density field, an additional bias is needed and
this additional bias depends on how much deviation δs

g or δ(k)
g has

with respect to the real-space galaxy density field, δr
g. One can argue

that b(0) should be the largest because the additional bias will apply
to δs

g that differs most from δr
g, whilst for k > 0 the additional bias

correction required should decrease as δ(k)
g gets closer to δr

g.5

For this reason, in the tests here we sample a 2 × 3 × 3 grid of
the parameter space, with b(0) ∈ {2.3, 2.0}, b(1) ∈ {1.8, 2.0, 2.2},
and b(2) ∈ {1.9, 2.0, 2.1}. For further iterations (k ≥ 3), we simply
fix b(k) = 2.0 because, as we shall see shortly, whilst differences can
be spotted between b being 1.8, 2.0, and 2.2, it is very mild between
1.9, 2.0, and 2.1. The other reconstruction and physical parameters
are fixed to S = 9.0 h−1 Mpc, Cani = 1.0, and f = 0.735 for the b(k)

tests presented in this subsection.
The test results for the E3 estimator (the quadrupole moment) are

presented in Fig. 6, which demonstrate how marginal the differences

5This additional bias is also one of the reasons why the tests do not use the
galaxy bias value directly measured from simulations, bsim. However, just for
completeness, we report the simulation result here – bsim = 1.956, which is
obtained as the ratio of the galaxy autocorrelation function ξgg(r) and galaxy-
matter cross-correlation function ξgm(r) at r � 5 h−1 Mpc, both measured
from the simulation using the CUTE code (Alonso 2012).

are between the different choices of b(k). For all curves in this figure
we have fixed b(0) = 2.3 because we have checked that the results for
b(0) = 2.0 are almost identical. In the block of 3 × 3 panels at the top
left corner, each row has a fixed b(1) and each column has a fixed b(2);
the legend for each curve not only shows the corresponding values
of b(k) but also indicates the current iteration number k: for example,
‘b(2) = 1.9’ in the top left-hand panel means that this is the result
after iteration k = 3, with b(0) = 2.3, b(1) = 1.8 and b(2) = 1.9,6 and so
on. In all cases, we find that without iterations (k = 0) the estimator
E3 of the unreconstructed galaxy catalogue is visibly non-zero at
s � 60 h−1 Mpc, whilst it rapidly converged to 0 at s � 15 h−1 Mpc
after one or two iterations. The precise values of b(1), in the range of
[1.8, 2.2], and b(2), in the range of [1.9, 2.1], have little impact on the
final converged results.

Fig. 7 has the same layout as Fig. 6, but shows the results for
estimator E4, or ξ 0[x(k)](s)/ξ gg(r). This plot again indicates that the
exact choices of b(k) have a relatively small effect, with a larger
b(1) tending to ‘undo’ the improvement by iterative reconstruction
(cf. blue curves in the second and third rows), whilst further iterations
tending to restore that improvement (black curves in the same panels).
In all cases, having b(k) = 2.0 for k > 0 makes E4 close to 1.0, which is

6Note that b(k) is applied to the galaxy density field δ
(k)
g,s in the (k + 1)th

iteration, whilst its effect can be seen in ξ0, 2[x(k + 1)], i.e. after the (k + 1)th
iteration, only. Therefore, the curve labelled as ‘b(2)’ is actually the result
after three iteration. The convention of using k is indicated in Fig. 1.
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3462 Y. Wang, B. Li and M. Cautun

Figure 6. Estimator E2, ξ2[x(k)](s) for the set of updated galaxy coordinates xk after kth iterations for different combinations of galaxy bias parameter b(k).
The bias, b(k), is the one used in the k+1th iteration of the reconstruction method. The values of the b(1) and b(2) bias parameters are shown in the label of each
plot, whilst b(0) = 2.2 is the same for all panels and thus is not shown. The first three rows contains the tests that use a fixed b(1) = 1.8, 2.0, and 2.2 whilst each
column gives the results for a fixed b(2) = 1.9, 2.0, and 2.1, respectively. So the upper left corner contains 3 × 3 subplots and each of the subplot represents a
unique combination of b(1) and b(2), showing the variation of E2 as the iteration number increases. The sparseness of the dashed lines increases with k, b(1) or
b(2), respectively, in the three different regions (see the legends). The grey dotted and solid lines have the same meaning as in Fig. 4. Each of the subpanels on
the rightmost side show how varying b(2) for a fixed b(1) affects the reconstruction outcome, whilst each of the subpanels at the bottom illustrate the effect of
varying b(1) for fixed b(2) values.

not surprising, given that 2.0 is close to the linear bias value measured
from the simulations 1.956.

In the left-hand panel of Fig. 8, we present the b(k) test results for
estimator E2. The grey dashed curve at the very bottom is r[δs

g, δ
r
g] or

equivalently r[δ(0)
g , δr

g], and the black solid curve immediately above
that is r[δ(1)

g , δr
g] with b(0) = 2.2, which indicates that the first iteration

substantially improves the correlation between the reconstructed and
the real-space galaxy fields. Finally, the top blue curve actually
represents a bunch of 12 lines that are so close to each other that
they are indistinguishable by eye: these include three lines after the
second iteration with b(1) = 1.8, 2.0, 2.2, and 9 lines after one further
iteration, with b(2) = 1.9, 2.0, 2.1. Together these show that after two
iterations the results have converged well. Again, for this estimator
we find a weak dependence of the converged result on the values
of b(k).

The right-hand panel of Fig. 8 presents the results for E1, in which
the black and the grey solid curves are, respectively, r[δr

g, δini] and
r[δs

g, δini] – the cross-correlations between the initial matter density
field δini and the (non-linear) galaxy density fields from the real- and
redshift-space galaxy catalogues (with no iterations in both cases).
The purple and grey dashed lines denote, respectively, r[δrec, δini] and
r[δ(0)

rec, δini] – the cross-correlations between the initial matter density

field and the reconstructed matter density fields from the real- and
redshift-space galaxy catalogues (again with no iteration in the latter
case). In between the two dashed lines are a bunch of 12 green solid
lines – indistinguishable by eye – which show the reconstruction
results after three iterations for different combinations of b(0,1,2).
The iterative RSD reconstruction improves the reconstruction of the
initial density field on all scales, whilst there is still some residual
RSD effect that it fails to remove.

3.3 Linear growth rate f

Finally, we have tested the effect of the linear growth rate, f, in the
reconstruction result, using a range of values between 0.5 and 0.9.
In our reconstruction algorithm, the size of f determines how much
correction is applied to the redshift-space coordinates of galaxies –
a f value that is too large will make the coordinates overcorrected
and vice versa. Therefore, we expect that there is a limited range of
f which would lead to sensible reconstruction result.

We have adopted the following values of the other parameters –
S = 9 h−1 Mpc, Cani = 1, b(0) = 2.3, and b(k > 0) = 1.9 – in all the tests
mentioned in this subsection. The left-hand panels of Fig. 9 show the
estimator E3, ξ 2[x(k)](s), respectively, for f from 0.5 to 0.9 (the first
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Iterative RSD reconstruction 3463

Figure 7. The same as Fig. 6, but for estimator E4, ξ0[x(k)](s)/ξgg(r). The straight dotted and the wiggly solid grey lines are the same in all subpanels: the
former is the constant 1.0 to guide the eyes, whilst the latter is the ratio between the multipole moments measured from the redshift- and real-space galaxy
catalogues at z = 0.5.

five rows); the last row compares the results from using the different
f values after the fifth iteration. As anticipated above, we confirm that
using f values that are too small (f = 0.5, 0.6) leads to incomplete
elimination of the quadrupole at s � 30 h−1 Mpc. Likewise, when
the adopted value of f (e.g. f = 0.8, 0.9) is larger than the correct
one, f = 0.735, the quadrupole is overcorrected and becomes slightly
positive between 30 and 40 h−1 Mpc, though both effects are weak.

The right-hand panels of Fig. 9 are the same as the left-hand panels,
but for the estimator E4, ξ 0[x(k)](s)/ξ gg(r). The behaviour is broadly
consistent with what we have found for E3: when f is too small,
the reconstruction, even after convergence, is unable to completely
remove the RSD effect and bring E4 to unity, whilst using a value
of f that is too large overcorrects the monopole by making it smaller
than the real-space galaxy correlation function.

Their findings seem to suggest that we can use the reconstruction
algorithm to place a constraint on f. However, recall that in linear
RSD studies there is a degeneracy between f and the linear galaxy
bias b. Schematically, the velocity divergence θ and linear matter
perturbation δ are related by θ = aHfδ, whereas the galaxy density
field δg = bδ, so that θ ∝ (f/b)δg ≡ βδg. Although f and b enter
the reconstruction pipeline at different places, this degeneracy will
persist in the following way: the galaxy density contrast δg is first
divided by b to get the matter density field; the latter is used to
find the displacement field �; whilst the reconstruction solves a
non-linear equation to calculate � from δ, for large scales the two

quantities satisfy a linear relation to a good approximation, so that
� is ‘proportional’ to 1/b; then as � is multiplied by f according to
equation (7) we get the f/b dependence. As in the tests of this section
we have fixed b, we expect the situation will get more complicated
when we allow both b and f to be chosen without prior knowledge.
Indeed, as we will see in the next section, using estimator E3 alone
only gives a constraint on β.

The results for estimators E2 (correlation between the recon-
structed and real galaxy density fields) and E1 (correlation between
the reconstructed and initial matter density fields) are presented,
respectively, in the left-hand and right-hand panels of Fig. 10. Only
results after five iterations are shown. The impact of using different
values of f on these estimators is again mild. From the left-hand
panel, we can see that for all f values the correlation is substantially
improved compared with the case of no reconstruction (dashed
line), and whereas using small values of f can slightly degrade the
performance, using f = 0.9 gives practically indistinguishable result
from the case of f = 0.735. The same happens to estimator E1
which is shown in the right-hand panel, for which the difference
between different f values is even smaller. Overall, we find that, for
our chosen galaxy number density, ng = 3.2 × 10−4[ h−1 Mpc]−3,
the RSD effect on reconstruction is small, e.g. by comparing r[δrec,
δini] with r[δ(0)

rec, δini], and the improvement of the iterations is even
smaller, e.g. by comparing the black dotted line with r[δ(0)

rec, δini] (the
grey dashed line).
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3464 Y. Wang, B. Li and M. Cautun

Figure 8. Left-hand panel: The estimator E2, r[δ(k)
g , δr

g] after one (red solid line in the middle), two and three (twelve blue solid lines, which are indistinguishable

and appear as the single thick solid line on the top) iterations where the value of b(k) is allowed to vary across the different iterations; in all cases we have used
b(0) = 2.2, b(1) ∈ {1.8, 2.0, 2.2}, and b(2) ∈ {1.9, 2.0, 2.1}. The blue line is actually 12 overlapping curves, of which 3 have k = 2 and b(1) = 1.8, 2.0 and 2.2,
and a further 9 lines which have k = 3 and correspond to all possible combinations of b(1) and b(2). Right-hand panel: The same as the left-hand panel, but for
estimator E1, r[δ(k)

rec, δini]. Only the results after three iterations are shown (nine green solid lines, which are indistinguishable and appear as the single solid line
on the right). The black sparsely dashed (second from the left) and grey dot–dashed (leftmost) lines are the correlation coefficients of the initial matter density
field δini with the real- and redshift-space galaxy density fields, respectively; the purple long dashed (rightmost) and grey short dashed (left to the solid line)
lines are the correlation coefficients of δini with the reconstructed matter density field from the real- and redshift-space galaxy density field (no iteration in the
latter case), respectively.

4 A N A P P L I C AT I O N O F TH E M E T H O D

Having now acquired a more complete picture about the behaviour
of the reconstruction algorithm and its dependence on the physical
and technical parameters, we naturally would like to understand the
potential of applying it to real galaxy data to extract cosmological
information. Due to the limited scope of this paper, in this section
we only attempt to explore this issue for an idealized set-up –
reconstruction from mock galaxy catalogues in cubic simulation
boxes – and we shall comment on some of the complications when
working with real data and leave detailed studies to future works.

As mentioned in the introduction, we wish the reconstruction
algorithm to work in a ‘self-calibration’ sense, such that the physical
parameters, such as f and b, can be determined during the recon-
struction process itself. In the previous section, we have seen that it
is possible to ‘optimize’ the method using estimator E3, ξ 2[x(K)](s),
and also that there is a degeneracy between f and b so that it is
their combination β ≡ f/b that matters. Here, we investigate whether
the value β can be accurately fixed by demanding that ξ 2[x(K)](s)
vanishes for the range of scales in which the iterative reconstruction
method works.

In linear perturbation theory, the integration of Kaiser formula
(Kaiser 1987) to relate the real- and redshift-space galaxy density
contrasts,

δs
g(s, μ) = (

1 + βμ2
)
δr

g(r), (18)

where β is the distortion parameter introduced above, and μ is the
cosine of the angle between the galaxy pair separation vector s and
the LOS direction, gives the monopole and quadrupole moments of
the galaxy correlation function in redshift space (Hamilton 1993)

ξ0(s) =
(

1 + 2

3
β + 1

5
β2

)
ξgg(r), (19)

ξ2(s) =
(

4

3
β + 4

7
β2

) [
ξgg(r) − ξ̄gg(r)

]
, (20)

where ξ̄gg(r) is the average correlation function with r:

ξ̄gg(r) ≡ 3r−3
∫ r

0
ξgg(r ′)r ′2dr ′. (21)

In practice, whilst ξ 0,2 can be directly measured from observations,
these equations cannot be used to infer β because the real-space
correlation function ξ gg(r) is not observable. However, it is possible
to combine these equations to estimate β from the ratio of redshift-
space quadrupole and monopole moments:

ξ2(s)

ξ0(s) − ξ̄0(s)
=

4
3 β + 4

7 β2

1 + 2
3 β + 1

5 β2
, (22)

with

ξ̄0(s) ≡ 3s−3
∫ s

0
ξ0(s ′)s ′2ds ′. (23)

The method has been applied to galaxy redshift surveys (Peacock
et al. 2001; Hawkins et al. 2003), but studies using simulation data
show that it is difficult to accurately recover the actual value of β

(e.g. Cole et al. 1994; Hernández-Aguayo et al. 2019), whilst the
estimator ξ 0(s)/ξ gg(r) gives better measurement of β. One reason for
this is that the estimator given in equation (22) suffers from the often
noisier measurement of ξ 2(s). Furthermore, whilst Kaiser effect only
takes account for the coherent linear motion of galaxies, the non-
linearity induced by FoG effect could have a non-negligible impact
on the quadrupole down to s ∼ 50 h−1 Mpc (Cole et al. 1994), which
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Iterative RSD reconstruction 3465

Figure 9. Left-hand panels: The estimator E3, ξ2[x(k)](s) for f = 0.5, 0.6, 0.735 (theoretical value), 0.8 and 0.9 in the first five rows after kth iteration,
respectively, plotted in dashed lines with their sparsenesses increasing with k (see the legends). The grey dotted curve (close to constant zero) is the quadrupole
measured from the real-space galaxy catalogue, whilst the grey solid curve is that measured from the redshift-space catalogue before reconstruction. The last row
compares the results from using the different f values after the fifth iteration, with the sparsenesses of the curves increasing with f (see the legends). Right-hand
panels: The same as the left, but for estimator E4, ξ0[x(k)](s)/ξgg(r). The grey solid curve is ξ0(s)/ξgg(r), i.e. result before reconstruction, and the horizontal grey
dotted line is 1.

invalidates the linear assumption in equation (22). Thus, using only
the monopole moment in extracting information according to linear
theory could be desirable over the traditional method equation (22):
even though this requires knowledge of ξ gg(r) which is unobservable,
we have seen that reconstruction gives ξ 0[x(K)](s) that can be used as
an approximation to ξ gg(r).

In order to more quantitatively assess the accuracy of this approx-
imation, we have measured ξ 2, 0[x(K)](s) from the 15 realizations of
mock galaxy catalogues, and the results are shown, respectively, in
the upper left and upper middle panels of Fig. 11. There we have
adopted the theoretical values of f = 0.735 and b = 1.95, so that

β = f/b = 0.376, for reconstructions in all 15 realizations; the thin
lines are the results from the individual realizations whilst the thick
lines are their means. We can see that using the ‘correct’ values of f,
b gives ξ 2[x(K)](s) = 0 and ξ 0[x(K)](s)/ξ gg(r) = 1 at s � 20, with an
accuracy of ∼0.01 and ∼1 per cent, respectively. This confirms that
we can actually replace ξ gg in equation (19) with ξ 0[x(K)] as a way
to estimate β:

R(s) ≡ ξ0(s)

ξ0

[
x(K)

]
(s)

= 1 + 2

3
β(s) + 1

5
β2(s). (24)
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3466 Y. Wang, B. Li and M. Cautun

Figure 10. Left-hand panel: Estimator E2, r[δ(k)
g , δr

g] (the correlation between the reconstructed and real-space galaxy density fields), for different values of f
after five iterations of the reconstruction procedure. The black dotted line represents f = 0.734 and other f values are shown by coloured solid lines as indicated
in the legend (note that all the coloured solid lines but the case for f = 0.5 – which is the lowest of them – are indistinguishable). The grey dashed curve is the
correlation between the redshift-space galaxy density field before reconstruction, δ

(0)
g , and the real-space galaxy density field δr

g. Right-hand panel: The same as

the left, but for estimator E1, r[δ(k)
rec, δini] (the correlation between the reconstructed and initial matter density fields). The black sparsely dashed (second from the

left) and grey dot–dashed (leftmost) lines are the correlation coefficients of the initial matter density field δini with the real- and redshift-space galaxy density
fields, respectively; the purple long dashed (rightmost) and grey dashed (third from the left) lines are the correlation coefficients of δini with the reconstructed
matter density field from the real- and redshift-space galaxy density field (no iteration in the latter case), respectively. Note that all the coloured solid lines (for
different f values) are indistinguishable from each other, and the black dotted line, which is for f = 0.734, is on top of them [they appear as a single line (second
from the right)].

Note that in linear theory β is a constant, but here we have kept the
s-dependence because the estimator itself can fluctuate around the
constant value from one s bin to another.

To use the estimator R(s), we must first specify the range of s,
[smin, smax], within which R(s) is evaluated. We choose smin, smax

to ensure that R(s) is approximately constant in that range, which
gives smin � 22 h−1 Mpc; for smax, we have checked three different
values, 71.6 h−1 Mpc, 90.2 h−1 Mpc, and 98.9 h−1 Mpc: in principle,
we expect that R(s) is closer to a constant at larger s, but in practice the
estimator becomes quite noisy and the uncertainty becomes large in
that regime due to cosmic variance, so that we expect including larger
s bins should have a relative small impact on the overall fitting result.
We divide [smin, smax] into N = 10 bins equally spaced in logarithmic
scale and use a least chi-square method to find the best-fitting by
minimizing χ2

χ2 = 1

N − 1

N∑
i=1

(Ri − R)2

σ 2
i

, (25)

where R ≡ 1 + 2
3 βBF + 1

5 β2
BF with βBF the best-fitting value of β, Ri

is the average value of R(s) in the ith bin, and σ i is the corresponding
standard deviation of the 15 realizations.

In the upper right-hand panel of Fig. 11, we have compared the
estimator in equation (24) with the estimator R

′
(s) ≡ ξ 0(s)/ξ gg(r)

from equation (19), in which the thin blue (grey) lines denote the
latter (former) for the 15 individual realizations, whilst the thick
red (black) line denotes the mean of them. This plot shows that at
s � 20 h−1 Mpc R(s) and R

′
(s) agree with each other at per cent

level. We have also checked the inferred βBF values, following
the method described in the previous paragraph, from these two
estimators respectively, and found a good agreement too. Note that a

small error in the estimator R(s) or R
′
(s) can be translated to a larger

error in β because of the 1 in 1 + 2
3 β + 1

5 β2.
It is also interesting to note in the upper right-hand panel of Fig. 11

that the reconstruction result R(s) (thick black line) is slightly less
noisier than the theoretical result R

′
(s) (thick red line). The noise

in R
′
(s) is generated because the random phases of the galaxy

field are changed by the RSD mapping from real space (δr
g(r)) to

redshift space (δs
g(s)) – i.e. δs

g(s) is not simply a constant amplitude
enhancement of δr

g(r) – so that when taking the ratio ξ 0(s)/ξ gg(r)
there is no perfect cancellation. The reconstruction works to revert
this change of phases, but in practice this cannot be done perfectly,
which means that, compared with the real-space galaxy field, the
phases of the reconstructed galaxy field are ‘more similar’ to those
of the redshift-space galaxy field. Thus, by dividing the two function
as in equation (24), there is a better cancellation of the phase
effect.

In practice, we do not know the theoretical values of f and b a
priori, and it is interesting to know what happens to the inferred β

value if incorrect values of f, b are used in the reconstruction. In
Birkin et al. (2019), for example, it was found that the reconstruction
result of the initial condition phases is not particularly sensitive to
the value of the linear bias b used. Here, we have checked this by
running the reconstruction pipeline on the 15 realizations of mock
galaxy catalogues, using 7 different (f, b) combinations, including
two which give very similar values of β = f/b. More explicitly, we
have adopted a 3 × 2 grid with f ∈ {0.694, 0.712, 0.734}, b ∈ {1.96,
2.0}, and two points with (f, b) = (0.75, 1.92) and (0.734, 1.956) to
enrich the result. The corresponding β ranges from 0.347 to 0.391
passing through 0.354, 0.356, 0.363, 0.367, 0.374 (theoretical value),
and 0.375. In these tests, the other reconstruction parameters are fixed
to S = 9 h−1 Mpc and Cani = 1.0.
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Iterative RSD reconstruction 3467

Figure 11. The quadrupole (ξ2[x(5)](s); left column), monopole (ξ0[x(5)](s)/ξgg(r); central column), and R(s) ≡ ξ0(s)/ξ0[x(5)](s) (right column) of the
reconstructed galaxy catalogues from the 15 realizations of mock redshift-space galaxy catalogues. The results for individual realizations are plotted as thin grey
solid curves with their mean as thick black solid curves. In the right column, we also show the results of R

′
(s) ≡ ξ0(s)/ξgg(r), the ratio between the redshift-space

monopole and the real-space galaxy correlation function for comparison, with the thin blue dash–dotted lines showing the individual realizations and the thick
red dash-dotted lines their mean. The top row shows the reconstruction result using theoretical values f = 0.734 and b = 1.95, whilst the bottom row shows the
result using the best-fitting value of β = f/b obtained by minimizing the derivation of ξ2[x(5)](s) from 0 (see Section 4 for details), which corresponds to β =
0.356. The dotted horizontal lines in the left and central columns mark the ±0.01 deviation from and 0 and 1, and in the right column they mark the ± per cent1
deviation from R(s) calculated according to equation (24) with the theoretical value of β.

From the reconstructed catalogues we then measure R(s) and use
them to find the best-fitting βBF. In the upper left-hand panel of
Fig. 12, we plot βBF against f/b for these points as crosses; for each f/b
value, there are three βBF values with different colours, respectively,
obtained by using smax = 98.9 h−1 Mpc (green), 90.2 h−1 Mpc (red),
and 71.6 h−1 Mpc (blue). We make the following observations from
this plot:

(i) βBF versus f/b falls nicely on a straight line with slope 1 (the
solid line). However, note that the relation βBF = f/b (the dashed
line) does not exactly hold: we have checked that the actual value
of βBF depends on the smin used, decreasing as smaller smin is used;
the results here are for smin = 22.1 h−1 Mpc. The trend suggests that,
roughly speaking, the reconstruction simply spits out the ‘input’ β

value, and therefore has no predictive power regarding β, unless we
look beyond R(s).

(ii) The two (f, b) pairs that give similar β = f/b ≈ 0.375 produce
very similar βBF: this is a consequence of the f–b degeneracy
mentioned above.

(iii) For comparison, we include the best-fitting βBF values ob-
tained using R

′
(s) as filled circles, using the same colour scheme.

Because there is no reconstruction and therefore no input (f, b), we
simply plot the points at a fixed horizontal coordinate f/b = 0.376 (the
theoretical value). We note that βBF obtained in this way is indeed
∼1 per cent larger than the theoretical value, but this is well within
the 1σ uncertainty indicated by the grey error bar; at this stage, we
cannot accurately assess the impact on βBF due to the small sample
size or the simulation resolution, which is beyond the scope of this

work. As mentioned above, a small (per cent-level) error in R
′
(s)

leads to a larger error in βBF.

This has motivated us to consider an alternative approach to
find the best-fitting value of β from the reconstruction process, by
demanding that ξ 2[x(K)](s) is closest to zero on large, linear, scales. In
practice, we quantify this using the mean value of ξ 2[x(K)](s) between
s ′

min � 40 h−1 Mpc and smax = 98.9, 90.2, 80.4 h−1 Mpc, ξ̄ [x(K)]. In
the lower left-hand panel of Fig. 12, we present ξ̄ [x(K)] for the seven
(f, b) pairs as used above; the data points with different colours
indicate the three choices of smax and the dashed lines are the best-
fitting straight lines through the points. We note that as f/b increases
ξ̄ [x(K)] goes from negative to positive, crossing zero at f/b ≈ 0.36.
This is indeed ∼4 per cent smaller than the theoretical value f/b =
0.376, but note that the resulting βBF corresponding to this f/b value
(inferred from the upper left panel of Fig. 12) is actually closer to the
best-fitting value βBF ≈ 0.38 from R

′
(s). This result is not surprising

given that, as we shall see shortly, when using input value f/b �
0.36 the E4 estimator is very close to 1.0 and R(s) agrees better with
R

′
(s) at s � 20 h−1 Mpc than the case where f/b takes the theoretical

value 0.376. We suspect that this small discrepancy is again due to
the limited sample size or simulation resolution, and a more detailed
investigation into this issue will be conducted in a forthcoming work
with larger data sets.

The results of ξ 2[x(K)](s) and of ξ 0[x(K)](s)/ξ gg(r) for the seven
(f, b) pairs are respectively displayed in the upper right and lower
right-hand panels of Fig. 12. The (f, b) pair whose corresponding β

value is closest to 0.38 is f/b = 0.356 (the third point from the left
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3468 Y. Wang, B. Li and M. Cautun

Figure 12. Upper left: The best-fitting βBF values obtained using the estimator R(s) and the reconstructed galaxy catalogues, for seven choices of input
parameters f and b supplied to the reconstruction pipeline (crosses). R(s) is measured as the weighted average between smin = 22.1 h−1 Mpc and smax =
98.9 (green), 90.2 (red), and 71.6 h−1 Mpc (blue), respectively, and the error bars are the standard deviations obtained from 15 realizations for the case of
smax = 71.6 h−1 Mpc as the error bars for remaining smax values are similar. The filled circles are the same, but obtained from the estimator R

′
(s): since there

is no reconstruction in this case, these data are plotted against the theoretical value β = f/b = 0.376. The dashed line represents β = f/b, whilst the solid line is
a line of slope 1.0 to guide the eyes. Lower left: ξ̄2[x(k)], the constant value fitting ξ2[x(k)](s) between s′

min = 39.4 h−1 Mpc and the three smax values smax =
98.9 (green, densely dashed), 90.2 (red, dashed), and 80.4 h−1 Mpc (blue, sparesly dashed), respectively, for the same seven choices of input (f, b). The vertical
dotted lines mark the best-fitting βBF at which ξ̄2[x(k)] is closest to zero, and the error bars are again the standard deviations of the 15 realizations. Right-hand
panels: the estimator E4 (upper) and E3 (lower) for the seven choices of reconstruction parameters (f, b), with their corresponding values of β indicated in the
legend and increase with the sparsenesses of the curves [β increases from to the top (bottom) to the bottom (top) line in the upper (lower) right-hand panels].
Note that according to the lower left-hand panel, the best value of β, amongst the seven choices, is β = 0.356, and results for this choice are shown as triangles
in the upper left-hand panel.

in the upper/lower left-hand panels of Fig. 12), and we can see that
for this value ξ 2[x(K)](s) is actually closest to zero (as expected) and
ξ 0[x(K)](s)/ξ gg(r) closest to 1.0. This latter observation in particular
indicates that by demanding ξ̄ [x(K)] to be closest to zero for the
best-fitting β, we automatically obtain the ξ 0[x(K)](s) that is closest
to ξ gg(r).

To compare the performance of this new method to determine
βBF, in the lower panels of Fig. 11 we have shown the same curves
as in the upper panels, but this time β = f/b = 0.356. A careful visual
inspection shows that the results of ξ 2[x(K)](s) (lower left-hand panel)
and of ξ 0[x(K)](s)/ξ gg(r) (lower middle panel) are actually closer to
0.0 and 1.0, respectively, than the cases shown in the upper panels of
Fig. 11, where the theoretical value f/b = 0.376 is used. In the lower
right-hand panel, we again find that R(s) (black thick line) with f/b =
0.356 is nearly identical to R

′
(s) (red thick line, which is the same

as in the upper right-hand panel) for s � 20 h−1 Mpc. This is why in
the above we have adopted smin � 22 h−1 Mpc for constraining βBF

using R(s) and R
′
(s).

As highlighted above, in this section we have proposed to obtain
the best-fitting value of β using a ‘self-calibration’ of the observed
(or mock) galaxy field, namely tune β to minimize ξ 2[x(K)]. From
lower left-hand and upper right-hand panels of Fig. 12, we have
seen that the quadrupole of the reconstructed galaxy field changes
slowly with f/b. The reconstruction method is a backward modelling
approach, where one starts with a late-time observed galaxy field
to infer information about the early-time density field, the peculiar
velocity field and the cosmological model (β). This is different from

the standard forward modelling approach where one starts with a
given cosmological model, makes prediction and compares it against
observations (see e.g. Sanchez et al. 2017). It is possible to adopt a
hybrid approach. For example, one can start with a specific model,
e.g. �m, σ 8, and predict the linear growth rate f and linear matter
correlation function at a z. The latter, together with ξ 0[x(K)](s) as an
approximation to ξ gg(r), can be used to determine the linear bias b
and break its degeneracy with f. The former can then be checked
against the f determined as the ratio between the best-fitting βBF and
the b obtained in this way, and against the velocity power spectrum
from the reconstructed galaxy catalogue. A detailed investigation of
this, however, is beyond the scope of this work.

5 D I SCUSSI ON AND C ONCLUSI ONS

We have proposed and tested a new iterative scheme to reconstruct,
simultaneously, the real-space galaxy coordinates at late times and
the initial matter density field, from a given late-time redshift-space
galaxy catalogue. The method builds on the non-linear reconstruction
algorithm developed by Shi et al. (2018), Birkin et al. (2019), taking
into account the (linear) galaxy bias b and RSDs. It employs a
number of (semi)-free parameters related to the smoothing of the
galaxy field, b and linear growth rate f. Since this is a new method
and code, we have performed various checks not only to assess its
reliability in obtaining physical results but also to understand how
the reconstruction outcomes react to the specific choices of technical
parameters.
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The iterative reconstruction consists of continuous updates of the
trial real-space galaxy coordinates based on improved knowledge of
the large-scale displacement field �, until the results, as quantified
by estimators E1–E4,7 converge. We have found that for reasonable
choices of parameters – mainly the smoothing length S – convergence
can be achieved quickly, often after 2 ∼ 4 iterations. The final
results are fairly insensitive to the galaxy bias parameters after three
iterations, but depend more strongly on the smoothing parameters S,
Cani and the linear growth rate f (particularly when f is too small).
With our optimal choice of S, Cani, b(k), f, we find that the method
can accurately eliminate the quadrupole moment of the correlation
function of the reconstructed galaxy catalogue and reproduce the
monopole at s � 20 h−1 Mpc. One thing worthwhile to note here is
that the elimination of galaxy correlation quadrupole by tuning S and
Cani can be done on real observational data without the use of mock
catalogues, which means that the method (with appropriate general-
ization to include effects such as survey geometry and completeness)
can be applied directly to real data. This can be considered as some
sort of self or internal calibration of reconstruction parameters, which
may help us to avoid relying too heavily on mock data for guiding
the choice of parameters.

We can quantify the resulting improvement of the reconstruction
method by measuring k90 and k50 which are, respectively, the values
of k where the correlation coefficient between two distribution drops
below 90 per cent and 50 per cent. In Table 2, we summarize the
values read from Fig. 8. The result of k50 shows that our iterative
RSD removal method increases the k-range that has a good (i.e. higher
than 50 per cent) correlation between the reconstructed and the true
real-space galaxy positions by 50 per cent. The improvement is even
stronger when estimating the initial conditions, with an 80 per cent
increase of k50 in the correlation between the reconstructed matter
density and the true linear density field, compared with the case in
which no reconstruction has been applied, if the reconstruction is
performed on the redshift-space galaxy distribution. This is similar
to, albeit slightly lower than, the case when the initial condition is
reconstructed from the real-space galaxy distribution; in this latter
case k50 increases by a factor of 2. This confirms that redshift-
space distortions have a negative impact that cannot be completely
undone by this iterative RSD removal method, but the latter leads to
a substantial gain.

The galaxy catalogue we used in this work for tests has a relatively
low number density, ng � 3.2 × 10−4[ h−1 Mpc]−3, as a result of
which the RSD effect on the reconstruction of initial matter density
field is small (e.g. by comparing the dashed grey lines in the right-
hand panel of Fig. 8 or Fig. 10). Nevertheless, correcting for RSD
still improves the reconstruction result, by increasing the correlation
of the reconstructed density field with the true initial density field of
our test simulation. It will be interesting to analyse how the method
works for galaxy catalogues with higher number density or with
other tracers (such as 21cm intensity maps or quasars), in particular
whether different choices of parameters need to be made in those
cases; we will leave a more detailed investigation of these issues into
a future publication.

The observations that the quadrupole moment can be successfully
brought back to 0.0, and the monopole close to the real-space

7As we discussed, in practice only E3, the quadrupole of the reconstructed
galaxy catalogue, can be directly used to test convergence as the other
estimators require knowledge that is not readily available from observations.
However, as we have seen, if the convergence happens for E3, then it happens
for the other estimators as well.

galaxy correlation function, by the iterative reconstruction method at
s � 20 h−1 Mpc, raise the interesting question whether the method
here has done more than removing linear RSD on these scales. This
question would be best answered by quantifying how the constraints
on cosmological parameters can be improved by going from linear
RSD modelling to analysing summary statistics that are extracted
from a reconstructed galaxy catalogue. This is beyond the scope of
this work, not least because the current pipeline still needs further
extensions to account for various observational systematics (as
mentioned below), but also because future work is needed to under-
stand the covariance after reconstruction (which is non-trivial given
that cosmological parameters are used in both the reconstruction-
based RSD removal itself and the theoretical modelling of said
summary statistics). Without such an analysis available, a somehow
indirect way to gain some insight into this question is to look at
the scale at which non-linearity already needs to be accounted for
when theoretically predicting the redshift-space correlation function
quadrupole. As an example, Cuesta-Lazaro et al. (2020, fig. 14)
compared the quadrupoles measured from N-body simulations and
from a Gaussian streaming model where the real-space correlation
function and galaxy pairwise velocity moments were obtained using
the convolutional Lagrangian perturbation theory, and found the latter
deviates from simulation results already at scales as large as 40–
50h−1 Mpc. We also know that the linear Kaiser model does not match
simulation data well at scales �40–50 h−1 Mpc (see e.g. the right-
hand panel of fig. 5 in Hernández-Aguayo et al. 2019, which used
the same set of GR simulations as in this paper). These imply that the
iterative method does more than linear RSD removal – which is not
surprising given that, unlike the standard Zel’dovich approximation,
here the reconstruction method gives a non-linear displacement field.

The results also imply that it might be possible to use this
reconstruction method to infer statistical information about the large-
scale peculiar velocity field. The exact details of this information, the
ranges of scale and velocity within which it can be reliably extracted,
as well as the accuracy of the results, are again beyond the scope of
a single paper. Velocity reconstruction has been studied by several
groups (e.g. Wang et al. 2012; Yu & Zhu 2019) in a similar context,
but with different reconstruction algorithms, including the one used
here but with no iterations. It will be of interest to test the iterative
reconstruction method presented in this paper for galaxy catalogues
with different number densities and at different redshifts in a future
work.

We checked the possibility of using this reconstruction method
to determine the value of β, and found that the best-fitting β from
the estimator R(s) = ξ 0(s)/ξ 0[x(k)](s) follows the β corresponding
to the input values of f, b in the reconstruction, and therefore R(s)
alone cannot fix β. However, demanding that the average value of
ξ 2[x(k)](s) on large scales, ξ̄2[x(k)], vanishes could be an alternative
way to fix β. We also discussed briefly the possibility of using a
hybrid approach to break the degeneracy in β and determine both f
and b. In this sense, the reconstruction can simultaneously give us
the cosmological parameter values, the real-space galaxy catalogue,
the large-scale peculiar velocity field, and the initial matter density
field. Alternatively, one can use the standard methods to determine
f, b, and use such values to do reconstruction, which still gives the
other quantities and this has the advantage that these quantities are
for our particular realization of the universe.

The removal of peculiar-velocity-induced modifications to the real
galaxy coordinates means that it is possible to get rid of the need to
model the effect of RSD on observables, as we have seen above with
the example of galaxy two-point correlation function. The latter is
indeed one of the most well-understood probes of galaxy clustering,
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Table 2. The correlation coefficients before and after the reconstruction procedure. We present the correlation between galaxy and matter distribution,
and their combinations. The correlations are characterized in terms of k90 and k50, which are the k values where the correlation coefficient falls to
90 per cent and 50 per cent, respectively. k50 and k90 are quoted in unit of h Mpc−1. The results shown here are found by reading the corresponding
values from Fig. 8.

Correlation coefficient between Notation k90 k50

Real-space galaxy distribution and
Redshift-space galaxy distribution r[δs

g, δ
r
g] 0.23 0.68

Reconstructed real-space galaxy distribution (starting from redshift space) r[δ(3)
g , δr

g] 0.32 1.02

Initial matter density field and
Real-space galaxy distribution r[δr

g, δini] 0.08 0.19

Redshift-space galaxy distribution r[δs
g, δini] 0.07 0.17

Reconstructed linear matter density from real-space galaxy distribution r[δrec, δini] 0.12 0.35
Reconstructed linear matter density from redshift-space galaxy distribution (without iterative RSD removal) r[δ(0)

rec, δini] 0.11 0.30

Reconstructed linear matter density from redshift-space galaxy distribution (with iterative RSD removal) r[δ(3)
rec, δini] 0.12 0.31

and there are other probes for which the modelling of RSD effects is
less widely studied. Some examples are the higher order correlation
functions of galaxies (e.g. Slepian & Eisenstein 2017) and the cross-
correlation of galaxies with clusters (e.g. Zu & Weinberg 2013)
or voids (e.g. Hamaus et al. 2015; Cai et al. 2016; Nadathur &
Percival 2019). These are situations where reconstruction can be
useful by producing reconstructed galaxy catalogues from which the
corresponding real-space quantities can be measured; this also has
the advantage that the same reconstructed galaxy catalogue can be
used to study different probes, rather than having to build a RSD
model for each of them. We note that reconstruction-based method
has recently been applied to study voids by Nadathur, Carter &
Percival (2019). We also note that, even for the redshift-space two-
point galaxy correlation function, obtaining per cent-level accuracy
in the theoretical predictions down to s ∼ 20 h−1 Mpc is challenging
(see e.g. Bianchi, Chiesa & Guzzo 2015; Bianchi, Percival & Bel
2016; Kuruvilla & Porciani 2018, for some recent efforts to improve
the modelling).

Another field where reconstruction can be helpful is the study of
dark energy and modified gravity models (see e.g. Baker et al. 2019;
Li et al. 2019 for some latest reviews). In these models, large-scale
structure formation can be more complicated than in 
CDM, making
it more challenging to predict RSD effects (e.g. Bose & Koyama
2016; Valogiannis, Bean & Aviles 2019). The removal of such
effects through reconstruction can help to simplify the development
of theoretical templates for constraining these models (e.g. Koyama,
Taruya & Hiramatsu 2009; Aviles & Cervantes-Cota 2017). However,
we caution that in the current implementation of our reconstruction
algorithm we have used the assumption that linear bias is scale-
independent on large scales. Whilst this assumption is a good one for
some models, it may break down for others for which a more detailed
study is needed to understand how best to incorporate their non-trivial
bias behaviour. We note that including galaxy biases beyond linear
order has been studied in Birkin et al. (2019) that demonstrated its
feasibility.

Finally, in this work we have studied the reconstruction in
‘idealized’ galaxy catalogues in periodic cubic simulation boxes,
whilst observational systematics such as survey geometry, selection
function, and redshift failure are not included in the analysis. These
must be tested carefully using more realistic mock catalogues where
such systematics exist (e.g. Smith et al. 2017), such as done by
Hada & Eisenstein (2019). One advantage of reconstruction in real
space is that survey boundary effects are localized and the induced

error is primarily restricted to regions near the boundaries (Mao &
Wang 2019), and we expect the same will apply to our reconstruction
algorithm as well. We also expect the effect of redshift evolution
on galaxy clustering to be small in our reconstruction method, as
long as the redshift dependence of galaxy bias is properly accounted
for. Another complication not taken into account in the analysis
here is that, even without peculiar velocities, translating a galaxy’s
redshift to its radial coordinate requires the assumption of a fiducial
cosmological model – an incorrect one would lead to anisotropies in
the galaxy correlation function even before RSD effects are included,
and these anisotropies could be confused as an RSD signal, leading
to incorrect reconstruction outcomes. In the standard approach, it is
possible to transform the theoretical prediction of the redshift space
correlation function to the fiducial cosmology (e.g. Sanchez et al.
2017) used to infer the correlation function from galaxy redshifts.
We expect the hybrid approach mentioned in the end of Section 4
(for which a cosmological model also has to be assumed) will help
to break this degeneracy in a similar way, but a detailed investigation
of this will be left for future work.
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