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1 Introduction and summary

The purpose of this paper is to present and discuss a rather general solution to the

Bogomol’nyi-Prasad-Sommerfield (BPS) equations, for a rather general class of Wess-

Zumino (WZ) models. As we shall see the solution has applications in several areas,

including multiparticle amplitudes on threshold, and scalar domain walls in Supersymmet-

ric QCD (SQCD) duality.

Consider the following superpotential for a chiral superfield Φ:

W =
1

2
Φ2 +

1

p
Φp , (1.1)

where we do not place a restriction on the allowed value of the index p (except p > 2),

and where couplings can be trivially reinstated by scaling. The associated scalar potential

(where φ is the scalar component) is

V (φ) =
∣∣φ+ φp−1

∣∣2 , (1.2)

and if p is positive one might seek domain wall solutions between the supersymmetric mini-

mum at φ = 0 and the p−2 supersymmetric minima at φ = e
i nπ
(p−2) , n ∈ Z. Because the po-

tential is a complete square, the equations of motion can be integrated once and factorised,

yielding the familiar BPS equation (see appendix A for a brief discussion of the latter):

dφ

dt
= e2iθ(φ+ φ

p−1
) , (1.3)
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Figure 1. Plot of the solution in eq. (1.4) when p = 3. In the left panel, the colour bar denotes

the argument of the function φ(z, z̄). In the right panel, θ = π as in eq. (1.6).

where t is the coordinate across the wall and θ is an arbitrary constant angle. If we restrict

φ to be real then solving eq. (1.3) is trivial, however the conjugation on the right hand side

makes it difficult to find the general complex solution for arbitrary p. Our central result is

the following solution to eq. (1.3):

φ(z, z) =
z
(

1 + zp−2−zp−2

2p

)
((

1 + zp−2−zp−2

2p

)p
+

zp−2
((

1− zp−2−zp−2

2p

)p
−
(

1+ zp−2−zp−2

2p

)p)
zp−2−zp−2

) 1
p−2

, (1.4)

where z = et+iθ (see appendix C for a few words on the derivation).

This is a generalisation of the BPS domain wall solution of ref. [1] (with appropriate

shifts in φ) which considered p = 3 and real φ. Indeed taking θ = π
p−2 we find

φ(t) =

(
−e(p−2)t

1 + e(p−2)t

) 1
p−2

, (1.5)

which reduces, for p = 3, to the non-singular domain wall solution,

φ(t) = − et

1 + et
, (1.6)

connecting the two minima (φ(−∞) = 0 and φ(∞) = −1) of the WZ model. As an illus-

tration, in figure 1 we plot the generalised BPS solution as given in eq. (1.4) by setting

p = 3. There, we see that, even though φ(z, z̄) is singular for most values of θ, there exist

smooth configurations (along the dashed lines) that correspond to domain walls connecting

two minima of the function V (φ), consistent with eqs. (1.5) and (1.6). For p = 3, when

θ = ±π, the domain wall connects the two minima at φ(−∞) = 0 and φ(∞) = −1 passing

through t = 0, as shown in the right panel of figure 1.

– 2 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
2

The expression in eq. (1.4) is also related to the softly broken O(2) models of ref. [2]

that were examined in the context of multiparticle amplitudes on threshold (which took

p = 3, see appendix B), and some other work in this area (which typically considered real

φ). However, the solution above has a richer structure and is more general than those that

have been previously considered in the literature. Indeed to derive it we imposed only that

φ scales as et as t goes to infinity, which is enough/required for amplitudes.

In the following section we discuss the application of our solution in the amplitude

context, with particular emphasis on the recursion relations of multiparticle amplitudes

on threshold, and their relationship with classical solutions of the equations of motion.

After spending some time reviewing and discussing the classical ways of obtaining these

amplitudes in the WZ model, we demonstrate that the general complex solution presented

above translates into the ability to distinguish chiral fields and their conjugates in the

possible final multiparticle states.

The arbitrariness of the exponent p also makes eq. (1.4) applicable to situations in

which the second term in the superpotential of eq. (1.1) is generated non-perturbatively.

In section 3 we show that this allows one to find exact (classical) domain wall solutions for

the scalar mesons in the magnetic duals of Supersymmetric QCD theories with a quartic

coupling. In SU(Nc) theories with Nf flavours of quark/antiquark, this is relevant in

the free-magnetic window, where Nc + 1 < Nf < 3
2Nc. The exponent is given by p =

Nf/(Nf −Nc), so that p is generally a rational number between 3 and Nf/2. These non-

perturbatively generated domain walls interpolate between two supersymmetric minima,

going from the unbroken magnetic dual at the origin, to one of 2Nc −Nf pure Yang-Mills

minima with meson vacuum expectation values (VEVs). This configuration is of general

interest, and would appear for example in the duality cascade.

2 Multiparticle amplitudes in generalised Wess-Zumino models

Multiparticle amplitudes have been investigated for a long time [2–10], and have been

the subject of renewed scrutiny recently within discussions of the so-called Higgsplosion

mechanism [11–14]. The quantities of interest include the tree-level threshold amplitudes,

which describe the decay of an off-shell particle to many on-shell ones, all taken to be at

rest. Our solution in eq. (1.4) can be understood in this respect as the generating function

of such tree-level multiparticle amplitudes at kinematic threshold for the generalised Wess-

Zumino models of eq. (1.1). One can indeed show that such a generating function must

satisfy a BPS condition (see appendix A for more details), consistent with the fact that a

specific limit of eq. (1.4) has been previously identified as a BPS domain wall solution [1, 15].

As we will also see, eq. (1.4) can be extended to softly broken SUSY scenarios, yielding

either a complete or a partial solution depending on the choice of soft terms.

2.1 Recursion relations and classical solutions

In order to review standard techniques while simultaneously applying them to our specific

problem, we will begin this section by following a diagrammatic approach to tree-level

multiparticle amplitudes at kinematic threshold before linking it to classical solutions of

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
2

Figure 2. Kinematic setup (particles/anti-particles are represented using direct/reversed arrows).

the equations of motion. We will then show that eq. (1.4) indeed generates the amplitudes

for the model of eq. (1.1), for specified numbers of emitted particles/anti-particles. In the

next section we will extend the discussion to WZ models with specific sets of soft terms.

We are interested in evaluating tree-level amplitudes connecting an ingoing off-shell

particle to outgoing on-shell ones, all taken to be at rest,1 for generalised Wess-Zumino

models of a chiral superfield Φ. Let us take a canonical Kähler potential and for this

discussion reinstate the couplings in the superpotential,

W =
M

2
Φ2 +

λ

p
Φp , (2.1)

where p−3 ∈ N, giving rise to the following scalar potential for the complex scalar excitation

φ:

V (φ) =
∣∣Mφ+ λφp−1

∣∣2 . (2.2)

The kinematic situation is summed up in figure 2. Since there are two possible kinds of

scalar excitation, the outgoing state is labelled by two integers m and n, denoting the

number of particles and antiparticles respectively.

The WZ model also includes scalar-fermion interactions. However, since we will be

interested in tree-level amplitudes with initial and final states only made out of scalars,

those interactions (which preserve fermion number) will not play any role.

Following earlier works on multiparticle amplitudes [3, 4], one can recursively calculate

such amplitudes following the scheme of figure 3. From this, after working out the correct

combinatorics, one finds the following recursion relation:

anm
m!n!

= −(p− 1)i2p−2|λ|2

|M |2(2p−3)

∑
∑
ni = n∑
mi = m

bn1m1bn2m2 . . . bnp−2mp−2anp−1mp−1 . . . an2p−3m2p−3∏
i=1...2p−3 ni!mi![(ni +mi)2 − 1]

(2.3)

− ip

|M |2(p−1)

∑
∑
ni = n∑
mi = m

λMan1m1an2m2 . . . anp−1mp−1 + (p− 1)λMan1m1bn2m2 . . . bnp−1mp−1∏
i=1...p−1 ni!mi![(ni +mi)2 − 1]

,

where anm symbolises the amplitude φ −→ n × φ + m × φ and bnm the amplitude φ −→
n × φ + m × φ. Viewing anm as a function of λ and M , we can immediately deduce that

bnm(λ,M) = amn(λ,M) since V (φ) is hermitian.

1Exact results are much harder to obtain at loop-level or in the out of threshold regime [7–10, 16–18].
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Figure 3. Recursion scheme for the amplitudes, drawn here for p = 3.

Inspection of the lowest amplitudes shows that the recursion is correctly initialised by

imposing the following conditions:

anm
[(n+m)2 − 1]

∣∣∣∣
n=1,m=0

= −i|M |2 , anm
[(n+m)2 − 1]

∣∣∣∣
n=0,m=1 or n=0,m=0

= 0 , (2.4)

which, combined with eq. (2.3), imply that bnm = −amn.

A convenient factorisation can be performed:

anm = −i|M |2Anm n!m! [(n+m)2 − 1]

(
λ

M

)n−1
p−2
(
λ

M

) m
p−2

(2.5)

with coefficients Anm satisfying
((n+m)2−1)Anm = (p−1)

∑
Am1n1 . . .Amp−2np−2Anp−1mp−1 . . .An2p−3m2p−3

+
∑(

An1m1 . . .Anp−1mp−1 +(p−1)An1m1Am2n2 . . .Amp−1np−1

)
A10 = 1 , A01 =A00 = 0 ,

,

(2.6)

where the summations over indices match those in eq. (2.3). In particular, it implies that

all Anm are real and positive. The fact that all coupling constants disappeared from the

above relation is a consequence of the (R-)symmetries of eq. (2.1) and of holomorphicity.2

Defining a generating function

A(z, z) =
∑
n,m

Anmz
nzm , (2.7)

2Indeed, the effective superpotential generating tree-level diagrams can only take the form

W =
M

2
Φ2
∑
n

(
λΦp−2

M

)n
,

and each amplitude has a dependence on λ,M fixed by this expression.
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the recursion yields the differential equation3

{[
(z∂z + z∂z)

2 − 1
]
A = (p− 1)Ap−1A

p−2
+Ap−1 + (p− 1)AA

p−2

A(z = 0, z) = 0 , ∂zA(0, 0) = 1 , ∂zA(0, 0) = 0
. (2.8)

Finally, defining z = et+iθ, this system becomes{
∂2
tA = (p− 1)Ap−1A

p−2
+Ap−1 + (p− 1)AA

p−2
+A = ∂

∂A
V (A)

A(t = −∞, θ) = 0 , ∂tA(t = −∞, θ) = eiθ
, (2.9)

where the potential is as in eq. (1.2). The last equality in the first line illustrates the method

of classical solutions of ref. [6], which states that tree-level multiparticle amplitudes can be

derived from the expansion of classical solutions with specific initial conditions. Besides,

integrating it once and taking the square root yields the condition in eq. (1.3).

One can verify that our solution in eq. (1.4) indeed satisfies all of the conditions listed

in eq. (2.9). Consequently φ ≡ A is the generating function of the diagrams of figure 2.

That is, Taylor expanding it with respect to z and z yields the amplitudes Anm.

2.2 Soft terms in the Wess-Zumino model

Given the generality of the solution in eq. (1.4), it is natural to ask if one might be

able to extend the analysis to non-supersymmetric cases, by deforming the theory with

supersymmetry breaking operators. The renormalizable p = 3 WZ model allows for the

following soft terms [19] in addition to the supersymmetric potential:

V =
∣∣λφ2 +mφ

∣∣2 + δm2|φ|2 + (µ3φ
3 + µ2φ

2 + h.c.) , (2.10)

which can be expressed in terms of real parameters by defining µ3 = c3 + id3, µ2 = c2 + id2

and φ = ϕ+ iχ as

V = λ2(ϕ2 + χ2)2 + (2λm+ 2c3)ϕ3 − 6d3ϕ
2χ+ (2λm− 6c3)ϕχ2 + 2d3χ

3

+ (m2 + δm2 + 2c2)ϕ2 − 4d2ϕχ+ (m2 + δm2 − 2c2)χ2 ,
(2.11)

where we take λ and m to be real by making a suitable U(1) rotation on φ.

Specific choices for the soft terms can be related to the softly broken O(2) model

described in appendix B. Starting with eq. (B.2) and performing rotations and shifts on ϕ

and χ, one can only generate

V =
∣∣λφ2 +mφ

∣∣2 +
δm2

2

(
φ− φ

2i

)2

. (2.12)

3The first condition on the second row is a slight generalisation of A01 = A00 = 0 since, due to the φ

dependence of V (φ), the number of φ or φ can only increase in a tree-level diagram.
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Then implementing the same series of rotations and shifts on the solution obtained for the

softly broken O(2) model yields a classical solution of the model in eq. (2.12):

φ(z, z) =

z + λ
m i(z − z̄)

i(z−z̄)+i
(√

2
mIm(φ)
|m| −1

)2
(z+z̄)

4

(
2
m2

Im(φ)

m2 −1

)

1− λ
m
z+z̄

2 +
(
λ
m

)2 (z−z̄)2

4

(
2
m2

Im(φ)

m2 −1

) − ( λm)3
(√

2
mIm(φ)
|m| −1

)4
(z−z̄)2(z+z̄)

8

(
2
m2

Im(φ)

m2 −1

)3

, (2.13)

where m2
Im(φ) = 2m2 +δm2. It reduces to eqs. (1.4) and (B.1), if δm2 = 0 (and λ = m = 1).

Its limit when m→ 0, which both cancels the cubic vertices and makes Re(φ) massless, is

the usual “ϕ4” real scalar solution, where “ϕ” is here the imaginary part of φ:

lim
m→0

φ(z, z) = i
Im(z)

1− λ
2m2

Im(φ)

Im(z)2
. (2.14)

2.3 Towards a solution for symmetric soft masses

As stated in section 2.2, there are more general soft terms than those of eq. (2.12). In

particular, it is tempting to consider soft masses for the full complex scalar φ,

V =
∣∣λφ2 +mφ

∣∣2 +
δm2

2
|φ|2 , (2.15)

if we, for instance, want to leave some state light and decouple its superpartner. Thus far,

we have not found a closed form solution, but we have been able to identify various limits

of it. This could be used to either check or guess a more complete expression.

For simplicity, up to redefinitions in the recursion relation like the one we performed

in eq. (2.5), we can restrict ourselves to the study of

V =
∣∣A2 +A

∣∣2 +
1− α
α
|A|2 , (2.16)

and of the associated recursion relation/differential equation:{
((n+m)2−1)Anm = 2α3

∑
Am1n1An2m2An3m3 +α2

∑
(An1m1An2m2 +2An1m1Am2n2)[

(z∂z+z∂z)
2−1

]
A= 2α3A2A+α2(A2 +2AA)

.

(2.17)

Then, one can solve for real A, or use only the vertices AA
2

or A2A (see appendix C for

details), to determine the properties of the solution in various limits:

A(−ρ,−ρ) = − ρ

1 + αρ− α1−α
4 ρ2

,

A(z, 0) =
z

α(1− αz
6 )2

,

(
A/z

)
(z = 0, z) =

(1 + αz
6 )

α(1− αz
6 )3

. (2.18)

– 7 –
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Note that, the first of these is no longer a domain wall solution: depending on the value

of α, it either diverges or it describes a regular solution oscillating once in a potential

well. Indeed, if 0 < α < 1 (the positive soft mass case), the denominator vanishes for

ρ = 2(α±
√
α)

α(α−1) . On the other hand, when 1 ≤ α, the potential has three extrema: A =

0,
−3+

√
9α−8
α

4 ,
−3−

√
9α−8
α

4 . The last one is the true minimum, whereas the other two being a

local minimum and a local maximum, respectively. In this case the solution corresponds to

the field rolling on the inverse potential, from φ = 0 in the direction of the global minimum

until it gets blocked by the potential barrier, then settling back at φ = 0. Like a domain

wall solution, it has a finite action
∫
dt
(∣∣dA

dt

∣∣2 + V
)

(for α = 2 it is ≈ 0.06).

3 SQCD with quartic couplings

The solution of eq. (1.4) is also of interest in SQCD, whose dynamics for Nc colours and

Nf flavours has been studied in great detail over the years (for reviews see [20–26]). We

are particularly interested in the free magnetic regime, Nc + 1 < Nf < 3Nc, in which there

exist WZ domain walls described by eq. (1.4), as we shall now see (see [1, 15, 27, 28] for

other studies of domain walls in SQCD theories).

Consider SQCD in such a phase, with a quartic superpotential

W (el) =
1

µX
Tr
[
(Q · Q̃)2

]
, (3.1)

where the dot indicates colour contractions, and the trace is over flavours of quarks and

antiquarks Qai , Q̃
j
a, which are respectively in the fundamental and anti-fundamental repre-

sentations of SU(Nc). This operator could be generated by the integrating out of heavier

fields of mass O(µX), as happens generically in the duality cascade [26]. For physical

consistency we will therefore require that µX > Λ, with Λ being the dynamical scale of

the electric theory. Below the scale Λ, the electric SQCD theory described above becomes

strongly coupled, and physics is best described by its magnetic dual. This theory also has

Nf flavours, but SU(N) gauge group, where N = Nf −Nc, and a classical superpotential

W
(mag)
cl = h qΦq̃ +

µΦ

2
Tr
(
Φ2
)
. (3.2)

Here Φi
j are the flavour mesons of the infrared (IR) free theory, h is a Yukawa coupling of

order unity, and qai , q̃ja are fundamental and anti-fundamental quarks of SU(N). The Φ

mass term is µΦ ≈ Λ2/µX � Λ.

This theory has supersymmetric minima at the origin. In order to be able to count

them and compare with the original SU(Nc) theory, it is useful to also allow the addition

of a mass term for the quarks in the electric theory, W (el) ⊃ mQ Tr
(
Q · Q̃

)
which must

have mQ < Λ (to avoid the quarks being integrated out of the electric theory before

we ever reach the scale Λ). In the magnetic theory this becomes a linear meson term,

W
(mag)
cl ⊃ mQΛ Tr Φ. The conditions for supersymmetric minima then become

FΦij
= h qi.q̃

j + µΦ φji +mQΛ δji = 0 , (3.3)

– 8 –
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along with the Fq = Fq̃ = 0 condition, which has solutions at 〈q〉 = 〈q̃〉 = 0 and 〈φji 〉 =

−δjimQΛ/µΦ, parametrically close to the origin (whereas earlier we use φji to denote the

scalar component of the superfield). This VEV gives a mass |hmQΛ/µΦ| to all the magnetic

quarks, and therefore by the usual Witten index theorem, we expect N vacua corresponding

to the low energy pure SU(N) Yang-Mills theory.

The remaining supersymmetric minima are separated from the origin by domain walls,

beyond which φ develops a much larger VEV. Along this direction one is still in a pure

SU(N) Yang-Mills theory, but non-perturbative contributions to the superpotential be-

come important. Including these (and neglecting the quark mass term), the complete

superpotential for the mesons is as in eq. (1.1)

W (mag) =
µΦ

2
Tr
(
Φ2
)

+N

(
hNfdetNfΦ

ΛNf−3N

) 1
N

, (3.4)

where the effective exponent, p ≡ Nf
N , is generically a rational number. In the regime of

interest, Nc + 2 ≤ Nf <
3
2Nc, we have

3 < p ≤ Nf

2
. (3.5)

In principle using eq. (1.4) one can get the exact domain wall solutions for this magnetic

theory, for any p.

To find them let us first locate the minima which are along φji = δjiφ (where we use

φ to also stand for the trace component of the scalar). Setting FΦ = 0, we find non-

perturbatively generated SUSY preserving minima at

〈φji 〉 = δjiφ0 = δji Λ

(
−h

Nf
Nf−Nc

Λ

µΦ

) Nf−Nc
Nf−2Nc

. (3.6)

The exponent here is negative so that 〈φ〉 < Λ as required for the minima to be found in the

IR theory. Also note that, as there are no massless quarks, there are generically 2Nc −Nf

solutions corresponding to the roots of −1. Together with the N = Nf−Nc minima near the

origin this gives the full complement of Nc vacua predicted by the Witten index theorem.

For the domain walls we define

Φ̂ =
Φ

|φ0|
; Ŵ =

W (mag)

µΦ|φ0|2
, (3.7)

giving Ŵ = Φ̂2

2 + Φ̂p

p with p = Nf/N . We will henceforth drop the hats.

In order to determine the possible phases of the solution to the BPS condition in

eq. (1.3), letting φ(t) = |φ|ei(θ+η) we find two equations:

∂tη = − sin((p− 2)θ + pη)|φ|p−2 − sin(2η) ,

∂t log |φ| = cos((p− 2)θ + pη)|φ|p−2 + cos(2η) , (3.8)

– 9 –
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Figure 4. Domain wall solution for SQCD with p = 15. In the right panel we plot the potential

as a function of t.

where we recall that now both W and Φ are dimensionless. It is clear that domain wall

solutions with constant phase require η = 0 and θ = nπ/(p − 2) for integer n. Eq. (1.4)

then has z̄p−2 − zp−2 → 0 along this direction, and we find

φ(t) =
eiθet(

1− (−1)ne(p−2)t
) 1
p−2

, (3.9)

which is non-singular if n is odd. Hence, there is a domain wall with constant phase between

each minimum and the origin. To illustrate this, we show a solution in figure 4 with p = 15.

In the large p limit these solutions tend to a universal form, φ(t)
p→∞
= 1 + ϑ(−t)(et − 1),

where ϑ is the Heaviside theta function.

4 Conclusion

In this paper, we have presented an exact classical BPS solution of generalised Wess-Zumino

models. It extends expressions previously known in the literature by being a solution for

a complex scalar field (or equivalently for two real scalar fields), which goes beyond the

usual single real scalar field limit via its two-parameters dependence, and by corresponding

to a general class of dynamics which encompasses the few two-fields solutions which were

obtained earlier. Moreover, the derivation of the complete result required the combined

use of several non-trivial techniques.

We have discussed the applications of our solution as a generating function for multi-

particle tree-level amplitudes on threshold, where its complex nature is essential to describe

both particles and antiparticles, and as a generalisation of known expressions for domain

walls in Wess-Zumino models, which are for instance relevant for the vacuum structure of

Supersymmetric QCD or for tunneling in the metastable ISS scenario.

We have also pointed out natural extensions of our work, mostly in the context of

models with spontaneously or softly broken supersymmetry. There, our methods yield

partial expressions which would be interesting to complete, since they would be for instance

of relevance for supersymmetric versions of the standard model.
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A The BPS condition

In this appendix we recap some facts about the BPS condition that underlie the discussion

in the main text. A field configuration is BPS [29, 30] if it preserves some amount of

supersymmetry. For scalar field configurations (transformed into fermions by supersym-

metry), it amounts to requiring that fermions remain equal to zero when the preserved

supersymmetry generators act. For a chiral superfield Φ such as the one in the WZ model,

the fermion variation is:4

δξψ = i
√

2σmξ∂mφ+
√

2ξF , (A.1)

for Φ = φ +
√

2θψ + θ2F . When calculating multiparticle amplitudes or domain wall

profiles, we are interested in one-dimensional problems, so without loss of generality we

choose φ(xµ) = φ(x), x being the spatial coordinate along which the wall extends. Then,

demanding that δξψ = 0 translates into

ξ
2dφ

dx
= iξ1F and ξ

1dφ

dx
= iξ2F . (A.2)

Whenever the scalars verify dφ
dx = −ei2θF for some real number θ, eq. (A.2) can be satisfied.

Using the on-shell value for F , for a trivial Kähler potential and a superpotential W , we find

dφ

dx
= e2iθ dW

dφ
. (A.3)

For the WZ model in eq. (1.1), this reduces to eq. (1.3).

Equation (A.3) can also be understood as a factorisation of the equations of motion.

Indeed, imposing the former is enough to satisfy the latter:

d2φ

dx2
= e2iθ d

2W

dφ
2

dφ

dx
=
d2W

dφ
2

dW

dφ
=
dV

dφ
, (A.4)

since V =
∣∣∣dWdφ (φ)

∣∣∣2 for a chiral superfield.

Equation (A.3) can finally be understood as the condition that minimises the energy

per unit surface of a time-independent wall [32–34]:

E =

∫
dx

(∣∣∣∣dφdx
∣∣∣∣2 +

∣∣∣∣dWdφ
∣∣∣∣2
)

=

∫
dx

∣∣∣∣dφdx − e2iθ dW

dφ

∣∣∣∣2 + 2 Re(e−2iθ∆W ) , (A.5)

4We use the conventions of ref. [31].
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where ∆W = W (x = +∞)−W (x = −∞). The fact that this condition is valid regardless

of θ implies the so-called BPS bound:

E ≥ 2|∆W | . (A.6)

In order to saturate this bound, one must again enforce eq. (A.3).

The fact that the generating function of multiparticle amplitudes verifies a BPS condi-

tion can be understood from [35]: smooth field configurations which solve the equations of

motion and originate from a supersymmetric vacuum state must verify the BPS condition.

Eq. (2.9), which defines the generating function in eq. (1.4), thus implies eq. (A.3).

B Link with softly broken O(2) models

Here we draw links with the special case in [2]. When p = 3, eq. (1.4) reduces to:

A(z, z) =
z(1 + z−z

6 )

1− z+z
2 + (z−z)2

12 − (z+z)(z−z)2
216

=

∣∣∣∣
z=et+iθ

et+iθ(1− 2iet sin(θ)
6 )

1− et cos(θ)− e2t sin2(θ)
3 + e3t cos(θ) sin2(θ)

27

.

(B.1)

Equation (B.1) can be identified with generating functions in softly broken O(2) models [2]

of two real scalar fields ϕ and χ, with potential

V (ϕ, χ) = µ(ϕ2 + χ2)2 +
m2

1

2
ϕ2 +

m2
2

2
χ2 . (B.2)

Indeed, defining B = A + 1
2 , V =

∣∣A2 +A
∣∣2 =

∣∣B2 − 1
4

∣∣2 matches (up to the constant

term) with V (ϕ = Re(B), χ = Im(B)) if we take µ = m2
2 = −m2

1 = 1. Then, the “broken

reflection symmetry” solution given in [2] matches eq. (B.1) once we identify A = ϕ− 1
2 +iχ.

C Derivation of the solution

Here, we outline the way eq. (1.4) was found. Although one can check from the solution

itself that it solves the BPS condition for the model of eq. (1.2), different methods have been

used in its derivation, so we quickly list them here, following our chronological progression.

First, for the p = 3 case one can start by solving eq. (2.8) with θ = 0 or π (i.e. z real),

which makes A(z, z = z) real, giving

A(z, z = z) =
z

1− z . (C.1)

In order to derive this expression, we impose that A scales as z as z goes to 0, which

is enough/required for walls or amplitudes. One then seeks the multiparticle amplitudes

where an incoming φ goes into n φ’s (and no φ’s) in the final states. This corresponds

to graphs where only φ propagates since, at each vertex, the number of φ’s, or φ’s, in the

– 12 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
2

out-states is always larger (or equal) than the one in the in-states. It amounts to solving

the equation ∂2
tA = A+A2, which determines A(z, 0). The solution is

A(z, z = 0) =
z(

1− z
6

)2 . (C.2)

Then, one can make an educated guess of the form

A(z, z = 0) =
z(

1− z
6

)2
+ zf(z, z)

, (C.3)

and numerically solve the first steps of the recursion relation in eq. (2.6) to get the (z, z)

expansion of f(z, z), from which one can surmise the following fully resummed expression:(
A/z

)
(z = 0, z) =

(
1 + z

6

)(
1− z

6

)3 . (C.4)

After some more recursive steps one can deduce the full p = 3 solution:

A(z, z) =
z(1 + z−z

6 )

1− z+z
2 + (z−z)2

12 − (z+z)(z−z)2
216

. (C.5)

This solution turns out to be a reshuffling of the one found in [2].

Higher p solutions are derived in the following way: the Hamilton-Jacobi equation for

the WZ model with p = 4 can be solved with a variable separation, as in [2], by defining:

A =
√

2(ξ2 − 1)(1− η2) + i
√

2ξη . (C.6)

Ultimately this gives

A(z, z) =
z
(

1 + z2−z2
8

)
√[

1− (z−z)2
4 + (z2−z2)2

64

] [
1− (z+z)2

4 + (z2−z2)2

64

] . (C.7)

From this example one can guess that, for general p,

A(z, z) =
z
(

1 + zp−2−zp−2

2p

)
P (z, z)

, (C.8)

with P (z, z) being a real function. This parametrisation makes it possible to solve the BPS

condition of eq. (1.3), which gives a simple first order equation for P (z, z) whose solution,

with our boundary conditions, is eq. (1.4). The latter yields expressions in particular limits

that match the results of derivations similar to the discussions for eqs. (C.1) and (C.2):

A(z, z = z) =
z

(1− zp−2)
1
p−2

, A(z, z = 0) =
z(

1− zp−2

2p

) 2
p−2

. (C.9)
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