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Abstract. We establish spectral convergence results of approximations of un-
bounded non-selfadjoint linear operators with compact resolvents by operators

that converge in generalized strong resolvent sense. The aim is to establish

general assumptions that ensure spectral exactness, i.e. that every true eigen-
value is approximated and no spurious eigenvalues occur. A main ingredient

is the discrete compactness of the sequence of resolvents of the approximat-

ing operators. We establish sufficient conditions and perturbation results for
strong convergence and for discrete compactness of the resolvents.

1. Introduction

The spectra of linear operators T , e.g. describing the time evolution of a physical
system, are usually not known analytically and need to be computed numerically by
approximating the operators and determining the eigenvalues of simpler operators.
However, it is well-known that spectral computations may lead to spectral pollution,
i.e. to numerical artefacts which do not belong to the spectrum of T , so-called
spurious eigenvalues. Vice versa, not every eigenvalue or spectral point of T may
be approximated; an approximation (Tn)n∈N is called spectrally inclusive if this
phenomenon does not occur. If spectral inclusion prevails and no spectral pollution
occurs, then (Tn)n∈N is said to be a spectrally exact approximation of T .

The existing spectral exactness results in the literature are restricted either to
bounded operators or to particular classes of differential operators, or they are only
local spectral exactness results, e.g. for spectral gaps of selfadjoint operators. On
the other hand, many important applications in physics such as linear stability
problems in fluid mechanics, magnetohydrodynamics, or elasticity theory require
reliable knowledge on the spectra of unbounded non-selfadjoint linear operators.

The present paper aims at filling this gap. The novelty of the results established
here lies in 1) their far-reaching generality covering wide classes of unbounded
non-selfadjoint linear operators; 2) their simultaneous applicability to different ap-
proximation schemes such as the Galerkin (finite section) method and the domain
truncation method; 3) their global nature which yields spectral exactness in the
entire complex plane; and 4) a comprehensive analysis of necessary conditions and
perturbation results for spectral exactness. We present applications to interval
truncation of singular 2× 2 differential operator matrices, to domain truncation of
magnetic Schrödinger operators with complex-valued potentials on Rd, and to the
Galerkin method for operators of block-diagonally dominant form.

The first main theorem (Theorem 2.6) is the following global spectral conver-
gence result: If (Tn)n∈N converges in generalized strong resolvent (gsr) sense to T
and the resolvents are compact and form a discretely compact sequence, then the
approximation is spectrally exact. In the second main result (Theorem 2.7) we prove
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that under the additional assumptions that the operators act in Hilbert spaces and
(T ∗n)n∈N converges to T ∗ in gsr-sense, then the resolvents converge even in oper-
ator norm. The third group of important results comprise additive perturbation
results: For a sequence (Sn)n∈N of relatively bounded perturbations Sn of Tn with
(uniform) relative bound < 1, we establish perturbation results for gsr-convergence
(Theorem 3.3) and discrete resolvent compactness (Theorem 4.2). A fourth group
of results guarantee gsr-convergence and discrete resolvent compactness of a se-
quence of block operator matrices by means of easily verifiable assumptions that
are formulated in terms of the matrix entries. First we prove results for unbounded
finite operator matrices and then for infinite matrices (Theorems 3.15 and 4.9).

The notions of spectral inclusion and spectral exactness were introduced by
Bailey et al. [2] for regular approximations of singular selfadjoint Sturm-Liouville
problems via interval truncation. They were further studied, in particular, by
Brown and Marletta for the domain truncation procedure of non-selfadjoint differ-
ential operators [7, 8, 9]. The notion of generalized norm/strong resolvent conver-
gence developed in this paper for approximations of unbounded linear operators
is closely related to norm or strong resolvent convergence studied by Kato [17,
Sections IV.2,VIII.1], Reed-Simon [22, Theorems VIII.23-25] and Weidmann [28,
Section 9.3]; in the latter two, only selfadjoint operators were considered. In gen-
eral, the approximating operators Tn cannot be chosen to act in the same space
as T , so we compare the projected resolvents (Tn − λ)−1Pn and (T − λ)−1P in a
common larger space. Note that the meaning of “generalized” used in this paper
is different from Kato’s generalized convergence (meaning resolvent convergence)
where it indicates that the operators are unbounded. The spectral exactness result
(Theorem 2.6) relies on gsr-convergence, however we are also interested in general-
ized norm resolvent convergence (see Theorem 2.7) since the latter is used to prove
convergence of pseudospectra in Hausdorff metric (see [4, Theorem 2.1]).

To conclude spectral exactness, it is not enough to assume that the operators
T and Tn, n ∈ N, have compact resolvents and converge in gsr-sense. In fact,
even in the selfadjoint case, if the operator T is unbounded below and above,
then the Galerkin method may produce spurious eigenvalues anywhere on the real
line (see [19, Theorem 2.1]). We prove spectral exactness under the additional
assumption that the sequence ((Tn − λ)−1)n∈N is discretely compact. The latter
notion was introduced by Stummel who established a spectral convergence theory
for bounded operators in [25, 26]. Similar result were obtained by Anselone-Palmer
and Osborn [1, 21] for the closely related notion of collectively compact sets of
bounded operators. For relations between the various results and notions, we refer
to Chatelin’s monograph [10] (see, in particular, Sections 3.1-3.6, 5.1-5.5).

We mention that if the assumptions of Theorem 2.6 are not satisfied (in particular
if essential spectrum is present), a different approach is to establish local spectral
exactness results, i.e. to identify regions in the complex plane where no spectral
pollution occurs or to find enclosures for true eigenvalues. This was done for the
Galerkin approximation of selfadjoint operators by means of higher order relative
spectra (introduced by Davies in [11], see also the comprehensive overviews by
Shargorodsky et al. [24, 19]), the closely related methods of Davies-Plum [12] and
Mertins-Zimmermann [20], and the perturbation method of Hinchcliffe-Strauss [16].
For non-selfadjoint operators, we prove local spectral exactness results in terms of
the region of boundedness (see Theorem 2.3). An alternative but computationally
very expensive method to obtain reliable information on isolated eigenvalues uses
interval arithmetic which yields eigenvalue enclosures with absolute certainty (see
e.g. Brown et al. [6] and the references therein).
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This paper is organized as follows. In Section 2 we prove convergence results for
operators and their spectra under the assumptions that the operators have compact
and discretely compact resolvents and converge in gsr-sense. In Section 3 and Sec-
tion 4 we derive sufficient conditions and perturbation results for gsr-convergence
and for discrete resolvent compactness, respectively. In both sections we comple-
ment the general theorems by results for finite and for infinite unbounded operator
matrices. Applications to the domain truncation method for singular differential
operators (and operator matrices) and to the Galerkin method are given in Sec-
tion 5.

We use the following notation. The norm of a normed space E is denoted by ‖·‖E .
The convergence in E, i.e. ‖xn−x‖E → 0, is written as xn → x. In a Hilbert spaceH
the scalar product is 〈·, ·〉H . Weak convergence in H, i.e. 〈xn, z〉H → 〈x, z〉H for all

z ∈ H, is denoted by xn
w→ x. For two normed vector spaces D and E we denote

by L(D,E) the space of all bounded linear operators from D to E; we write L(E)
if D = E. Analogously, the space of all closed operators in E is denoted by C(E).
The spectrum, point spectrum, approximate point spectrum and resolvent set of
a linear operator T are denoted by σ(T ), σp(T ), σapp(T ) and %(T ), respectively,
and the Hilbert space adjoint operator of T is T ∗. For an operator T ∈ C(E) the
graph norm is ‖ · ‖T := ‖ · ‖E + ‖T · ‖E ; then (D(T ), ‖ · ‖T ) is a Banach space.

For bounded linear operators we write Tn → T and Tn
s→ T for norm and strong

convergence in L(D,E). An identity operator in a Banach or Hilbert space is
denoted by I; scalar multiples λI are written as λ. Analogously, the operator of
multiplication with a function m in some L2-space is also denoted by m. Given
λ ∈ C and a subset Ω ⊂ C, the distance of λ to Ω is dist(λ,Ω) := infz∈C |z − λ|,
and Br(λ) := {z ∈ C : |z − λ| < r} for r > 0. Let N := {1, 2, 3, . . . }, in particular,
0 /∈ N. Finally, for a subset I ⊂ N, we denote by #I the number of elements in I.

2. Convergence of operators and their spectra

In this section we establish convergence results for operators acting in different
spaces and spectral convergence results. In Subsection 2.1 are the main convergence
results. Before we prove these results in Subsection 2.3, we recall the notions of
discretely compact sequences or collectively compact sets of bounded operators and
we analyze their effect on strong or norm operator convergence (see Subsection 2.2).

In the following, we assume that E0 is a Banach space and E, En ⊂ E0, n ∈ N,
are closed complemented subspaces, i.e. E0 = E + Ẽ = En + Ẽn with E ∩ Ẽ =

En ∩ Ẽn = {0} for n ∈ N. Let P : E0 → E be the projection on E along Ẽ and,

for n ∈ N, let Pn : E0 → En be the projection on En along Ẽn converging strongly,

Pn
s→ P ; note that then ‖P‖ ≤ lim infn→∞ ‖Pn‖ < ∞ by [17, Equation III.(3.2)].

Throughout, in results for Hilbert spaces H0 := E0, H := E, Hn := En, n ∈ N,
we assume that P , Pn, n ∈ N, are the orthogonal projections onto the respective
subspaces; then ‖P‖ = ‖Pn‖ = 1, n ∈ N.

2.1. Main convergence results for unbounded linear operators and their
spectra. The following definition of generalized strong and norm resolvent con-
vergence is due to Weidmann [28, Section 9.3], and the region of boundedness was
introduced by Kato [17, Section VIII.1].

Definition 2.1. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N.

i) The sequence (Tn)n∈N is said to converge in generalized strong resolvent

sense to T , Tn
gsr→ T , if there exist n0 ∈ N and λ ∈

⋂
n≥n0

%(Tn) ∩ %(T ) with

(Tn − λ)−1Pn
s−→ (T − λ)−1P, n→∞.
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ii) The sequence (Tn)n∈N is said to converge in generalized norm resolvent

sense to T , Tn
gnr→ T , if there exist n0 ∈ N and λ ∈

⋂
n≥n0

%(Tn) ∩ %(T ) with

(Tn − λ)−1Pn −→ (T − λ)−1P, n→∞.

iii) The region of boundedness of the sequence (Tn)n∈N is defined as

∆b ((Tn)n∈N) :=

{
λ ∈ C : ∃n0 ∈ Nwith

λ ∈ %(Tn), n ≥ n0,(
‖(Tn − λ)−1‖

)
n≥n0

bounded

}
.

The following notions of spectral inclusion and spectral exactness were intro-
duced by Bailey et al. in [2]. We will also use local versions of these notions.

Definition 2.2. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N.

i) The approximation (Tn)n∈N of T is called spectrally inclusive if for every
λ ∈ σ(T ) there exists a sequence (λn)n∈N of elements λn ∈ σ(Tn), n ∈ N,
with λn → λ.

ii) An element λ ∈ C for which there exist an infinite subset I ⊂ N and
λn ∈ σ(Tn), n ∈ I, with λn → λ but λ /∈ σ(T ) is called spurious eigenvalue.
The occurrence of such a point is known as spectral pollution.

iii) The approximation (Tn)n∈N of T is called spectrally exact if it is spectrally
inclusive and no spectral pollution occurs.

The following result yields local spectral exactness in the region of boundedness.

Theorem 2.3. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N. Suppose that Tn
gsr→ T .

i) For each λ ∈ σ(T ) such that for some ε > 0 we have

Bε(λ)\{λ} ⊂ ∆b ((Tn)n∈N) ∩ %(T ), (1)

there exist λn ∈ σ(Tn), n ∈ N, with λn → λ as n→∞.
ii) No spectral pollution occurs in ∆b ((Tn)n∈N).

Next we generalize results that are known for the special case E0 = E = En and
resolvent convergence to generalized resolvent convergence. Claim i) is a general-
ization of [17, Theorem IV.2.25] and [28, Satz 9.26 b)]; the latter result only applies
to selfadjoint operators. Claim ii) is a generalization of [28, Satz 9.24 a)].

Theorem 2.4. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N.

i) If Tn
gnr→ T , then no spectral pollution occurs.

ii) Let E0, E, En, n ∈ N, be Hilbert spaces, and let T , Tn, n ∈ N, be selfadjoint

with Tn
gsr→ T . Then

σ(T ) ⊂ C\∆b

(
(Tn)n∈N

)
=
{
λ ∈ C : lim inf

n→∞
dist(λ, σ(Tn)) = 0

}
, (2)

and hence (Tn)n∈N is a spectrally inclusive approximation of T .

To formulate the main results (Theorems 2.6 and 2.7 below), we use Stummel’s
notions of discrete compactness of a sequence of bounded operators (see [25, Defi-
nition 3.1.(k)]).

Definition 2.5. Let Dn, n ∈ N, be arbitrary Banach spaces and An ∈ L(Dn, En),
n ∈ N. The sequence (An)n∈N is said to be discretely compact if for each infinite
subset I ⊂ N and each bounded sequence of elements xn ∈ Dn, n ∈ I, there exist

y ∈ E and an infinite subset Ĩ ⊂ I so that ‖Anxn − y‖E0
→ 0 as n ∈ Ĩ, n→∞.

The following theorem is the main spectral convergence result of this section.
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Theorem 2.6. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N. Assume that there exists
an element λ0 ∈

⋂
n∈N

%(Tn) ∩ %(T ) such that (T − λ0)−1, (Tn − λ0)−1, n ∈ N, are

compact operators and the sequence
(
(Tn − λ0)−1

)
n∈N is discretely compact. If

Tn
gsr→ T , then the following hold:

i) The region of boundedness coincides with the resolvent set of T ,

∆b ((Tn)n∈N) = %(T ),

and, for any λ ∈ %(T ),

(Tn − λ)−1Pn
s−→ (T − λ)−1P, n→∞. (3)

ii) The sequence (Tn)n∈N is a spectrally exact approximation of T . More pre-
cisely, no spectral pollution occurs, and if λ ∈ C is an eigenvalue of T of
algebraic multiplicity m, then, for n large enough, Tn has exactly m eigen-
values (repeated according to their algebraic multiplicities) in a neighbour-
hood of λ which converge to λ as n→∞ and the corresponding normalized
elements of the algebraic eigenspaces converge (with respect to ‖ · ‖E0

).

Now we assume that the underlying spaces are Hilbert spaces. We establish suffi-
cient conditions guaranteeing that generalized strong resolvent convergence implies
generalized norm resolvent convergence.

Theorem 2.7. Let T ∈ C(H) and Tn ∈ C(Hn), n ∈ N. Assume that there exists an
element λ0 ∈

⋂
n∈N

%(Tn)∩ %(T ) such that (Tn− λ0)−1, n ∈ N, are compact operators

and the sequence
(
(Tn − λ0)−1

)
n∈N is discretely compact. If

(Tn − λ0)−1Pn
s−→ (T − λ0)−1P, (T ∗n − λ0)−1Pn

s−→ (T ∗ − λ0)−1P, n→∞,
then, for every λ ∈ %(T ), the operator (T − λ)−1 is compact and

(Tn − λ)−1Pn −→ (T − λ)−1P, n→∞.

2.2. Convergence and compactness concepts for bounded operators. In
this subsection we study discretely compact operator sequences and the effect of
this notion on strong operator convergence.

First we prove multiplicative and additive perturbation results on discrete com-
pactness. Denote by Dn, n ∈ N, arbitrary Banach spaces.

Lemma 2.8. i) Let An ∈ L(En), Bn ∈ L(Dn, En), n ∈ N. If (An)n∈N is
discretely compact and (Bn)n∈N is a bounded sequence, then (AnBn)n∈N is
discretely compact.

ii) Let An ∈ L(En), Bn ∈ L(Dn, En), n ∈ N. If (Bn)n∈N is discretely compact

and there exists A ∈ L(E) with AnPn
s→ AP , then (AnBn)n∈N is discretely

compact.

iii) For j = 1, . . . , k, let A
(j)
n ∈ L(Dn, En), n ∈ N. If the sequences

(
A

(j)
n

)
n∈N,

j = 1, . . . , k, are discretely compact, then so is( k∑
j=1

A(j)
n

)
n∈N

.

Proof. i) Let I ⊂ N be an infinite subset, M > 0 and xn ∈ Dn, n ∈ I, with
‖xn‖Dn ≤ M for all n ∈ I. Define C := supn∈I ‖Bn‖. Then ‖Bnxn‖En ≤ CM ,
n ∈ I. Now the discrete compactness of (An)n∈N (see Definition 2.5) implies that
a subsequence of (AnBnxn)n∈I is convergent in E0 with limit in E. So (AnBn)n∈N
is discretely compact.

ii) Let I ⊂ N be an infinite subset, M > 0 and xn ∈ Dn, n ∈ I, with ‖xn‖Dn ≤
M , n ∈ I. The discrete compactness of (Bn)n∈N implies that there exist y ∈ E
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and an infinite subset Ĩ ⊂ I such that ‖Bnxn − y‖E0
→ 0 as n ∈ Ĩ, n → ∞.

By the assumptions, we have AnPn
s→ AP , so the element z := Ay ∈ E satisfies

‖AnBnxn − z‖E0 → 0. Hence (AnBn)n∈N is discretely compact.
iii) Let I ⊂ N be an infinite subset, M > 0 and xn ∈ Dn, n ∈ I, with ‖xn‖Dn ≤

M , n ∈ I. By the discrete compactness of
(
A

(1)
n

)
n∈N, there exists an infinite subset

I(1) ⊂ I such that the sequence
(
A

(1)
n xn

)
n∈I(1) is convergent in E0 with limit in E.

Now, inductively for every j = 2, . . . , k, the discrete compactness of
(
A

(j)
n

)
n∈N

implies that there exists an infinite subset I(j) ⊂ I(j−1) such that
(
A

(j)
n xn

)
n∈I(j) is

convergent in E0 with limit in E. Therefore( k∑
j=1

A(j)
n xn

)
n∈I(k)

is convergent in E0 with limit in E. �

Analogously to the result that the limit of a sequence of compact operators
is compact (see e.g. [17, Theorem III.4.7]), one can show the following result for
discrete compactness. An application of Proposition 2.9 is given in Theorem 4.9
where infinite diagonal operator matrices are approximated by k × k matrices.

Proposition 2.9. Let E0 = E. For each n ∈ N let An, A
(k)
n ∈ L(Dn, En), k ∈ N,

with

sup
n∈N

∥∥A(k)
n −An

∥∥ −→ 0, k →∞. (4)

If all sequences
(
A

(k)
n

)
n∈N, k ∈ N, are discretely compact, then so is (An)n∈N.

Proof. Consider an infinite subset I ⊂ N and a bounded sequence of elements
xn ∈ Dn, n ∈ I, i.e. there exists M > 0 such that ‖xn‖Dn ≤ M, n ∈ I. We show

the existence of an infinite subset Ĩ ⊂ I such that for all ε > 0 there exists Nε ∈ N
with

‖Anxn −Amxm‖E < ε, n,m ∈ Ĩ , n,m ≥ Nε.
Then the claim follows from the completeness of E.

The sequence
(
A

(1)
n

)
n∈N is discretely compact by the assumptions, hence there

exists an infinite subset I(1) ⊂ I such that
(
A

(1)
n xn

)
n∈I(1) is convergent in E.

Inductively, for each k ≥ 2, we find an infinite subset I(k) ⊂ I(k−1) such that(
A

(k)
n xn

)
n∈I(k) is convergent in E. Therefore, there exists an increasing sequence

(N (k))k∈N ⊂ N such that N (k) ∈ I(k), k ∈ N, and∥∥A(k)
n xn −A(k)

m xm
∥∥
E
<

1

k
, n,m ∈ I(k), n,m ≥ N (k).

We define Ĩ :=
{
N (k) : k ∈ N

}
. Let ε > 0 be fixed. By the assumption (4), we find

Kε ∈ N such that Kε ≥ 3
ε and∥∥A(k)
n −An

∥∥ < ε

3M
, n ∈ N, k ≥ Kε.

Altogether, for k ≥ Kε (which yields 1
k ≤

1
Kε
≤ ε

3 ) and l ≥ k, the elements

n = N (k), m = N (l) ∈ Ĩ satisfy n,m ≥ N (Kε) =: Nε and

‖Anxn −Amxm‖E
≤
∥∥An −A(k)

n

∥∥ ‖xn‖En +
∥∥Am −A(k)

m

∥∥ ‖xm‖En +
∥∥A(k)

n xn −A(k)
m xm

∥∥
E

<
ε

3M
M +

ε

3M
M +

1

k
≤ ε. �
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Now we assume that the underlying spaces are Hilbert spaces. It is well-known
that an operator is compact if and only if so is its adjoint (see e.g. [17, Theo-
rem III.4.10]). We prove an analogous result for discrete compactness of a sequence
of operators.

Proposition 2.10. Let A ∈ L(H) and An ∈ L(Hn), n ∈ N. If

AnPn
s−→ AP, A∗nPn

s−→ A∗P, n→∞,

then the following are equivalent:

i) the sequence (An)n∈N is discretely compact;
ii) the sequence (A∗nAn)n∈N is discretely compact;

iii) the sequence (A∗n)n∈N is discretely compact.

Proof. The claim “i) =⇒ ii)” follows from Lemma 2.8 ii). To prove the reverse
implication (and thus equivalence), let M > 0 and let I ⊂ N be an infinite subset
and yn ∈ Hn, n ∈ I, with ‖yn‖Hn ≤ M , n ∈ I. We show that there exists a
convergent subsequence of (Anyn)n∈I ⊂ H0 with limit in H.

Since H0 is weakly compact, there exists an infinite subset I2 ⊂ I such that

(yn)n∈I2 ⊂ H0 is weakly convergent; denote the weak limit by y. Since Pn
s→ P , it

is easy to see that y = Py ∈ H. In addition, A∗nPn
s→ A∗P implies

Anyn
w−→ Ay, n ∈ I2, n→∞.

Below we show that (‖Anyn‖H0
)n∈I3 converges to ‖Ay‖H0

for some infinite subset
I3 ⊂ I2; then we obtain the desired convergence ‖Anyn − Ay‖H0

→ 0 as n ∈ I3,
n→∞.

By the assumptions, the sequence (A∗nAn)n∈N is discretely compact, thus there
exist an infinite subset I3 ⊂ I2 and x ∈ H such that (A∗nAnyn)n∈I3 converges in H0

to x. On the other hand, the strong convergences AnPn
s→ AP and A∗nPn

s→ A∗P
imply the weak convergence

A∗nAnyn
w−→ A∗Ay, n ∈ I3, n→∞.

By the uniqueness of the weak limit, we have A∗Ay = x. So we obtain, for n ∈ I3,

‖Anyn‖2H0
= 〈A∗nAnyn, yn〉H0

−→ 〈x, y〉H0
= 〈A∗Ay, y〉H0

= ‖Ay‖2H0
, n→∞;

this proves “ii) =⇒ i)”.
The claim “iii) =⇒ ii)” follows from Lemma 2.8 i). Altogether we conclude

“iii) =⇒ i)”. Now the reverse implication (and thus equivalence) follows from
taking the adjoint operators. �

Related to discrete compactness is the notion of collectively compact sets of
bounded linear operators (see Anselone and Palmer [1]).

Definition 2.11. Let B be the closed unit ball in E0. A subset K ⊂ L(E0) is
called collectively compact if the set

KB = {Kx : K ∈ K, x ∈ B} ⊂ E0

is relatively compact in E0.

Remark 2.12. i) Every operator of a collectively compact set is compact.
ii) A set {An : n ∈ N} is collectively compact if and only if the operators

An, n ∈ N, are compact and the sequence (An)n∈N is discretely compact.

The following result yields sufficient conditions on Hilbert space operators such
that strong convergence implies norm convergence.
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Proposition 2.13. Let A ∈ L(H) and An ∈ L(Hn), n ∈ N. Assume that An,
n ∈ N, are all compact operators and (An)n∈N is a discretely compact sequence. If

AnPn
s→ AP and A∗nPn

s→ A∗P , then A is compact and AnPn → AP .

Proof. It is well-known that if An, n ∈ N, are all compact operators, then so are
AnPn, A∗nPn, n ∈ N. Proposition 2.10 yields the discrete compactness of the se-
quence (A∗n)n∈N. By Lemma 2.8 i), the sequences (AnPn)n∈N, (A∗nPn)n∈N are
discretely compact. Remark 2.12 ii) implies that {AnPn : n ∈ N}, {A∗nPn : n ∈ N}
are collectively compact sets. Then, by [1, Proposition 2.1 (a) =⇒ (b)], so are the
sets {AnPn − AP : n ∈ N}, {A∗nPn − A∗P : n ∈ N}, and AP (and thus A) is a
compact operator. Now the claim follows from [1, Theorem 3.4 (c)]. �

2.3. Proofs of main results. In this subsection we prove the theorems in Sub-
section 2.1.

The following two elementary results will be used later on.

Lemma 2.14. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N. Assume that Tn
gsr→ T .

Then for all x ∈ D(T ) there exists a sequence of elements xn ∈ D(Tn), n ∈ N, such
that

‖xn − x‖E0
+ ‖Tnxn − Tx‖E0

−→ 0, n→∞. (5)

Proof. By Definition 2.1 i) of Tn
gsr→ T , there exist n0 ∈ N and λ ∈

⋂
n≥n0

%(Tn)∩%(T )

such that
(Tn − λ)−1Pn

s−→ (T − λ)−1P, n→∞. (6)

Let x ∈ D(T ) and define

xn := (Tn − λ)−1Pn(T − λ)x ∈ D(Tn), n ≥ n0.

Then, using Pn
s→ P and (6), it is easy to verify that (5) holds. �

Lemma 2.15. Let Tn ∈ C(En), n ∈ N, and let K ⊂ ∆b

(
(Tn)n∈N

)
be a compact

subset. Then there exist MK > 0 and nK ∈ N such that

∀λ ∈ K : λ ∈ %(Tn), ‖(Tn − λ)−1‖ ≤MK , n ≥ nK .

Proof. Assume that the claim is false, i.e. no such MK > 0 exists. Then there
exist an infinite subset I1 ⊂ N and (λn)n∈I1 ⊂ K such that ‖(Tn − λn)−1‖ → ∞
as n ∈ I1, n → ∞. By the compactness of K, there are λ ∈ K and an infinite
subset I2 ⊂ I1 so that (λn)n∈I2 converges to λ. Since λ ∈ ∆b

(
(Tn)n∈N

)
, there exist

Mλ > 0 and an infinite subset I3 ⊂ I2 such that λ ∈ %(Tn) and ‖(Tn−λ)−1‖ ≤Mλ

for all n ∈ I3. Then, for every n ∈ I3 so large that |λn−λ| ≤ 1/(2Mλ), a Neumann
series argument yields

‖(Tn − λn)−1‖ =
∥∥(Tn − λ)−1

(
I − (λn − λ)(Tn − λ)−1

)−1∥∥ ≤ 2Mλ.

The obtained contradiction proves the claim. �

For generalized strong/norm resolvent convergence we assume the resolvents to
converge for one particular λ. In the following result we investigate for which points
the resolvents then converge as well.

Proposition 2.16. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N.

i) Assume that Tn
gsr→ T . Then ∆b

(
(Tn)n∈N

)
⊂ C\σapp(T ) and, for any

λ ∈ ∆b

(
(Tn)n∈N

)
∩ %(T ),

(Tn − λ)−1Pn
s−→ (T − λ)−1P, n→∞. (7)

ii) Assume that Tn
gnr→ T . Then %(T ) ⊂ ∆b

(
(Tn)n∈N

)
and, for any λ ∈ %(T ),

(Tn − λ)−1Pn −→ (T − λ)−1P, n→∞. (8)
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Proof. i) By Definition 2.1 i) of Tn
gsr→ T , there exist n0 ∈ N and an element

λ0 ∈
⋂

n≥n0

%(Tn) ∩ %(T ) such that

(Tn − λ0)−1Pn
s−→ (T − λ0)−1P, n→∞. (9)

Let λ ∈ ∆b

(
(Tn)n∈N

)
. By Definition 2.1 iii) of the region of boundedness, there

exists n1 ∈ N (without loss of generality n1 ≥ n0) such that λ ∈ %(Tn), n ≥
n1, and M := supn≥n1

‖(Tn − λ)−1‖ < ∞. First assume that λ belongs to the
approximate point spectrum σapp(T ). Then there exists x ∈ D(T ) with ‖x‖E = 1
and ‖(T − λ)x‖E < 1/(2M). By Lemma 2.14, there exists a sequence of elements
xn ∈ D(Tn), n ∈ N, such that ‖xn‖En = 1 and ‖(Tn − λ)xn‖En < 1/(2M) for all
large enough n ∈ N. The obtained contradiction to M = supn≥n1

‖(Tn − λ)−1‖
implies λ /∈ σapp(T ).

Now assume that λ ∈ ∆b

(
(Tn)n∈N

)
∩ %(T ). If we set, for n ≥ n1,

Sn(λ) := I + (λ0 − λ)(Tn − λ0)−1Pn = (Tn − λ)(Tn − λ0)−1Pn + (I − Pn),

then a straightforward application of the first resolvent identity yields

Sn(λ)
(
(Tn − λ)−1Pn − (T − λ)−1P

)
=
(
(Tn − λ0)−1Pn − (T − λ0)−1P

)(
I + (λ− λ0)(T − λ)−1P

)
, n ≥ n1.

(10)

The operators Sn(λ), n ≥ n1, are invertible,

Sn(λ)−1 = (Tn − λ0)(Tn − λ)−1Pn + (I − Pn) = I + (λ− λ0)(Tn − λ)−1Pn, (11)

and the inverses are uniformly bounded since λ ∈ ∆b

(
(Tn)n∈N

)
. Now the claimed

convergence (7) follows from (9) and (10).

ii) Let λ ∈ %(T ). By Definition 2.1 ii) of Tn
gnr→ T , there exist n0 ∈ N and an

element λ0 ∈
⋂

n≥n0

%(Tn) ∩ %(T ) such that

(Tn − λ0)−1Pn −→ (T − λ0)−1P, n→∞. (12)

This implies

Sn(λ) = I + (λ0 − λ)(Tn − λ0)−1Pn −→ I + (λ0 − λ)(T − λ0)−1P =: S, n→∞.

Since S is boundedly invertible, [17, Theorem IV.1.16] yields the existence of some
n1 ∈ N such that the operators Sn(λ), n ≥ n1, are uniformly boundedly invertible.
Then (Tn − λ), n ≥ n1, are uniformly boundedly invertible because, by (11),

(Tn − λ)−1 = (λ− λ0)−1
(
Sn(λ)−1 − I

)∣∣
En
, n ≥ n1.

Now, analogously as in i), the claim (8) follows from (12) and (10). �

Now we are ready to prove the main results of Subsection 2.1.

Proof of Theorem 2.3. i) Let λ ∈ σ(T ) and ε > 0 satisfy (1). Choose δ > 0 with
δ < ε. Assume that there exists an infinite subset I ⊂ N with dist(λ, σ(Tn)) ≥ δ,
n ∈ I. For Γ := ∂Bδ/2(λ) define the contour integrals

PΓ :=
1

2πi

∫
Γ

(T − z)−1 dz, PΓ,n :=
1

2πi

∫
Γ

(Tn − z)−1 dz, n ∈ I.

The operator PΓ is the spectral projection corresponding to λ ∈ σ(T ). However,
since z 7→ (Tn − z)−1 is holomorphic in Bδ(λ), we have PΓ,n = 0, n ∈ I. Let
x ∈ E0 be arbitrary. For n ∈ I define the function fn : Γ → [0,∞) by fn(z) :=
‖(T − z)−1Px− (Tn − z)−1Pnx‖E0 . Then

‖PΓPx− PΓ,nPnx‖E0
≤ 1

2π

∫
Γ

fn(z) d|z|, n ∈ I.



10 SABINE BÖGLI

Note that, by Proposition 2.16 i), fn(z) → 0, n → ∞, for every z ∈ Γ. Moreover,
fn, n ∈ N, are uniformly bounded by the compactness of Γ ⊂ ∆b

(
(Tn)n∈N

)
and

by Lemma 2.15. Lebesgue’s dominated convergence theorem implies ‖PΓPx −
PΓ,nPnx‖E0

→ 0 as n→∞. Hence PΓ,nPn
s→ PΓP, n→∞, and so we arrive at the

contradiction PΓ = 0. Therefore, there exists nδ ∈ N such that dist(λ, σ(Tn)) < δ,
n ≥ nδ. Since δ can be chosen arbitrarily small, we finally obtain dist(λ, σ(Tn))→ 0,
n→∞.

ii) Let λ ∈ %(T ) ∩∆b ((Tn)n∈N). Definition 2.1 iii) of the region of boundedness
implies that there exist n0 ∈ N and M > 0 such that λ ∈ %(Tn), n ≥ n0, and∥∥(Tn − λ)−1

∥∥ ≤M , n ≥ n0. As a consequence,

dist(λ, σ(Tn)) ≥ 1

‖(Tn − λ)−1‖
≥ 1

M
, n ≥ n0,

so λ cannot be the limit of a sequence of points in the spectra of Tn, n ≥ n0. �

Proof of Theorem 2.4. i) By Proposition 2.16 ii), we have %(T ) ⊂ ∆b

(
(Tn)n∈N

)
.

Now the claim follows from Theorem 2.3 ii).
ii) Since T is assumed to be selfadjoint, it satisfies σ(T ) = σapp(T ) and thus

Proposition 2.16 i) implies ∆b

(
(Tn)n∈N

)
⊂ %(T ). In addition, since Tn is selfadjoint,

we have dist(λ, σ(Tn)) = ‖(Tn − λ)−1‖−1 for any λ ∈ %(Tn), which implies (2). �

Proof of Theorem 2.6. i) Since T has compact resolvent, it satisfies σ(T ) = σp(T ) =
σapp(T ). Proposition 2.16 i) implies that ∆b

(
(Tn)n∈N

)
⊂ %(T ).

Conversely, take λ ∈ C\∆b

(
(Tn)n∈N

)
. Note that σ(Tn) = σp(Tn) since Tn is

assumed to have compact resolvent. Then there are an infinite subset I ⊂ N and
xn ∈ D(Tn), n ∈ I, with

‖xn‖En = 1, n ∈ I, ‖(Tn − λ)xn‖En −→ 0, n→∞. (13)

Define yn := (Tn−λ0)xn for n ∈ I. Then (‖yn‖En)n∈I is a bounded sequence. Since(
(Tn − λ0)−1

)
n∈N is discretely compact by the assumptions, there exist x ∈ E and

an infinite subset Ĩ ⊂ I so that ‖xn−x‖E0
→ 0 as n ∈ Ĩ, n→∞. By (13), we have

‖x‖E = 1 and ‖yn − (λ − λ0)x‖E0 → 0. However, (Tn − λ0)−1Pn
s→ (T − λ0)−1P

then yields

xn = (Tn − λ0)−1yn −→ (λ− λ0)(T − λ0)−1x ∈ D(T ), n ∈ Ĩ , n→∞.

By the uniqueness of the limit, we obtain x ∈ D(T ) and Tx = λx. Since x 6= 0, we
have λ ∈ σ(T ).

The convergence (3) for all λ ∈ %(T ) now follows from Proposition 2.16 i).
ii) Spectral exactness follows from claim i) and Theorem 2.3; note that all λ ∈

σ(T ) are isolated since T is assumed to have compact resolvent. In an analogous way
as in the proof of 2.3 i), one may prove that the corresponding spectral projections

converge strongly, PΓ,nPn
s→ PΓP . This implies that for x = PΓPx in the algebraic

eigenspace of λ there exists a sequence of elements xn := PΓ,nPnx ∈ R(PΓ,n),
n ∈ N, with ‖xn − x‖E0

→ 0, and the normalized elements converge as well. This
proves that m = rankPΓ ≤ lim infn→∞ rankPΓ,n.

To prove that lim supn→∞ rankPΓ,n ≤ m (and thus rankPΓ,n = m for all suffi-
ciently large n), let λn ∈ σ(Tn), n ∈ N, such that λn → λ ∈ σ(T ) as n → ∞.
For n ∈ N denote by kn the ascent of λn, i.e. the smallest k ∈ N such that
(Tn − λn)kPΓ,n = (Tn − λn)k+1PΓ,n; then there exist kn orthonormal elements

x
(k)
n ∈ R(PΓ,n) with (Tn−λn)x

(1)
n = 0 and (Tn−λn)x

(k)
n = x

(k−1)
n for k = 2, . . . , kn.

By induction over k ∈ N, we prove that if there exists an infinite subset I(k) ⊂ N
such that k ≤ kn, n ∈ I(k), then there exist x(k) ∈ R(PΓ) and an infinite subset
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Ĩ(k) ⊂ I(k) such that ‖x(k)‖E = 1, (T − λ)kx(k) = 0 and ‖x(k)
n − x(k)‖E0

→ 0 as

n ∈ Ĩ(k), n→∞; then we obtain lim supn→∞ rankPΓ,n ≤ m.

If k = 1, then the claim follows from the proof of i) since λn → λ and thus x
(1)
n ,

n ∈ I(1), satisfy (13). If k > 1, set y
(k)
n := (Tn − λ0)x

(k)
n = x

(k−1)
n + (λn − λ0)x

(k)
n ,

n ∈ I(k). Since λn → λ, the sequence (‖y(k)
n ‖En)n∈I(k) is bounded. By proceeding

as in i) and using the induction hypothesis, we obtain the claim. �

Remark 2.17. Theorem 2.6 would also follow from Stummel’s results [26, Sätze
2.2.(1), 3.2.(8)] applied to the bounded operators A,B ∈ L(D,E) and An, Bn ∈
L(Dn, En), n ∈ N, where the Banach spaces D := D(T ), Dn := D(Tn) are equipped
with the graph norm of T , Tn, respectively, the operators B : D → E, Bn : Dn →
En are the natural embeddings, and A,An are defined by Ax := Tx, Anxn := Tnxn.
However, it is very technical to check that the assumptions of Stummel’s results
are satisfied (see [3, Chapter 1] for this approach).

Proof of Theorem 2.7. The claim for λ = λ0 is an immediate consequence of Propo-
sition 2.13 applied to A = (T − λ0)−1, An = (Tn − λ0)−1, n ∈ N. The generalized
norm resolvent convergence for every λ ∈ %(T ) follows from Proposition 2.16 ii). �

3. Generalized strong resolvent (gsr) convergence

In this section we establish sufficient conditions for gsr-convergence of a sequence
of linear operators in varying Banach spaces. First, we find conditions that directly
yield gsr-convergence, but then we also give sufficient conditions for gsr-convergence
of a sequence of operators An = Tn + Sn ∈ C(En), n ∈ N, if we know it for the
operators Tn, n ∈ N (see Subsection 3.1). Afterwards, in Subsection 3.2, we derive
sufficient conditions on a sequence of 2× 2 block operator matrices that imply gsr-
convergence. Then we consider gsr-convergence of infinite operator matrices (see
Subsections 3.3, 3.4).

3.1. Direct criteria and perturbation results. As in Section 2, let E0 be a
Banach space and E, En ⊂ E0, n ∈ N, be closed complemented subspaces, with
P : E0 → E, Pn : E0 → En, n ∈ N, denoting the projections on the respective

subspaces (along the respective complements) that converge strongly, Pn
s→ P .

The next proposition is a generalization of Weidmann’s result [28, Satz 9.29 a)]
who considers selfadjoint operators.

Theorem 3.1. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N. Let Φ ⊂ D(T ) be a core of
T such that for all x ∈ Φ there exists n0(x) ∈ N with

∀n ≥ n0(x) : Pnx ∈ D(Tn), ‖TnPnx− Tx‖E0 −→ 0, n→∞.

Suppose that ∆b ((Tn)n∈N) ∩ %(T ) 6= ∅. Then Tn
gsr→ T .

Proof. The proof of Weidmann’s result [28, Satz 9.29 a)] remains valid in the non-
selfadjoint case. The only place in the latter result where the selfadjointness of
T ∈ C(E), Tn ∈ C(En), n ∈ N, is used is the consequence

∆b ((Tn)n∈N) ∩ %(T ) 6= ∅ (14)

(since C\R belongs to the intersection). Since here T ∈ C(E), Tn ∈ C(En), n ∈ N,
are not assumed to be selfadjoint, we require (14) to be satisfied by assumption. �

For bounded operators strong convergence implies gsr-convergence.

Lemma 3.2. Let B ∈ L(E) and Bn ∈ L(En), n ∈ N, satisfy BnPn
s→ BP . Then{

λ ∈ C : |λ| > lim sup
n→∞

‖Bn‖
}
⊂ ∆b

(
(Bn)n∈N

)
, (15)
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and

∀λ ∈ ∆b

(
(Bn)n∈N

)
∩ %(B) : (Bn − λ)−1Pn

s−→ (B − λ)−1P, n→∞.

Proof. Let λ ∈ C satisfy |λ| > lim supn→∞ ‖Bn‖ =: M . Then there exist ε > 0 and
n0 ∈ N with

|λ| > ‖Bn‖+ ε, n ≥ n0.

Now a Neumann series argument yields that, for n ≥ n0, the operator (Bn − λ) is
invertible, with

(Bn − λ)−1 = −λ−1(I − λ−1Bn)−1, ‖(Bn − λ)−1‖ ≤ |λ−1|
1− |λ−1|‖Bn‖

≤ 1

ε
.

This proves the inclusion (15).
Let λ ∈ ∆b

(
(Bn)n∈N

)
∩ %(B). Then there exists n0 ∈ N such that λ ∈ %(Bn),

n ≥ n0, and
(
(Bn − λ)−1

)
n≥n0

is a bounded sequence. Let y ∈ E0 and define

x := (B − λ)−1Py. It is easy to verify that, for every n ≥ n0,(
(Bn − λ)−1Pn − (B − λ)−1P

)
y

= (Bn − λ)−1Pn(BP −BnPn)x− (Bn − λ)−1Pn(P − Pn)y − (P − Pn)x. (16)

Since the sequence
(
‖(Bn − λ)−1‖

)
n≥n0

is bounded, the assumptions BnPn
s→ BP

and Pn
s→ P imply that the right-hand side of (16) converges to 0. �

Now we consider sums A = T + S and An = Tn + Sn, n ∈ N. We study
perturbation results for generalized strong resolvent convergence, i.e. we establish

sufficient conditions that Tn
gsr→ T implies An

gsr→ A.

Theorem 3.3. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N. Let S and Sn, n ∈ N,
be linear operators in E and En, n ∈ N, with D(T ) ⊂ D(S) and D(Tn) ⊂ D(Sn),
n ∈ N, respectively. Define

A := T + S, An := Tn + Sn, n ∈ N.

Suppose that there exist λ ∈
⋂
n∈N

%(Tn) ∩ %(T ) and γλ < 1 with∥∥S(T − λ)−1
∥∥ < 1,

∥∥Sn(Tn − λ)−1
∥∥ ≤ γλ, n ∈ N. (17)

If

(Tn − λ)−1Pn
s−→ (T − λ)−1P,

Sn(Tn − λ)−1Pn
s−→ S(T − λ)−1P,

n→∞, (18)

then λ ∈
⋂
n∈N

%(An) ∩ %(A) and (An − λ)−1Pn
s→ (A− λ)−1P as n→∞.

Remark 3.4. The inequalities (17) imply that S is T -bounded with T -bound < 1
and Sn is Tn-bounded with Tn-bound ≤ γλ < 1.

Proof of Theorem 3.3. Let λ and γλ < 1 satisfy the assumptions. For n ∈ N, by a
Neumann series argument, (An − λ) is boundedly invertible and

(An − λ)−1 = (Tn − λ)−1
(
I + Sn(Tn − λ)−1

)−1
,∥∥ (I + Sn(Tn − λ)−1

)−1 ∥∥ ≤ 1

1− γλ
.

(19)

Analogously we obtain

(A− λ)−1 = (T − λ)−1
(
I + S(T − λ)−1

)−1
. (20)
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Thus λ ∈
⋂
n∈N

%(An)∩%(A). Let x ∈ E0 and define y :=
(
I + S(T − λ)−1

)−1
Px ∈ E.

Since
(
(Tn−λ)−1

)
n∈N is strongly convergent, C := supn∈N ‖(Tn−λ)−1‖ <∞. Then∥∥(An − λ)−1Pnx− (A− λ)−1Px

∥∥
E0

≤
∥∥∥(Tn − λ)−1Pn

((
I + Sn(Tn − λ)−1

)−1
Pnx−

(
I + S(T − λ)−1

)−1
Px
)∥∥∥

E0

+
∥∥∥((Tn − λ)−1Pn − (T − λ)−1P

) (
I + S(T − λ)−1

)−1
Px
∥∥∥
E0

≤ C
∥∥∥(I + Sn(Tn − λ)−1

)−1
Pnx−

(
I + S(T − λ)−1

)−1
Px
∥∥∥
E0

+
∥∥((Tn − λ)−1Pn − (T − λ)−1P

)
y
∥∥
E0
.

The first convergence in (18) yields∥∥((Tn − λ)−1Pn − (T − λ)−1P
)
y
∥∥
E0
−→ 0, n→∞.

By (19) and (20), we have −1 ∈ ∆b

(
(Sn(Tn − λ)−1)n∈N

)
∩ %(S(T − λ)−1). Hence,

the second convergence in (18) implies that, by Lemma 3.2,∥∥∥(I + Sn(Tn − λ)−1
)−1

Pnx−
(
I + S(T − λ)−1

)−1
Px
∥∥∥
E0

−→ 0, n→∞.

Altogether, we have (An − λ)−1Pn
s→ (A− λ)−1P, n→∞. �

The following result is an immediate consequence of Theorem 3.3 for the case
that the perturbations are bounded operators.

Corollary 3.5. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N. Let S ∈ L(E) and
Sn ∈ L(En), n ∈ N. Define

A := T + S, An := Tn + Sn, n ∈ N.
Suppose that, for some λ ∈

⋂
n∈N

%(Tn) ∩ %(T ) and some γλ < 1, we have

‖S‖ < ‖(T − λ)−1‖−1, ‖Sn‖ ≤ γλ ‖(Tn − λ)−1‖−1, n ∈ N,
and

(Tn − λ)−1Pn
s−→ (T − λ)−1P, SnPn

s−→ SP, n→∞.

Then λ ∈
⋂
n∈N

%(An) ∩ %(A) and (An − λ)−1Pn
s→ (A− λ)−1P as n→∞.

3.2. Results for 2× 2 block operator matrices. In this subsection we consider
diagonally dominant 2 × 2 operator matrices. To this end, all spaces are assumed

to consist of two components. For i = 1, 2, let E
(0)
i be a Banach space and let

Ei, E
(n)
i ⊂ E(0)

i , n ∈ N, be closed complemented subspaces; denote by Pi : E
(0)
i →

Ei, P
(n)
i : E

(0)
i → E

(n)
i , n ∈ N, projections on the respective subspaces (along

the respective complements) that converge strongly, P
(n)
i

s→ Pi, n → ∞. In the
product space E := E1 ⊕ E2 we consider a 2× 2 block operator matrix

A :=

(
A B
C D

)
, D(A) := (D(A) ∩ D(C))⊕ (D(B) ∩ D(D))

where A : E1 → E1, B : E2 → E1, C : E1 → E2, D : E2 → E2 are closable
operators with dense domains. We assume that A is densely defined.

Definition 3.6. [27, Definition 2.2.3] Let δ ≥ 0. The block operator matrix A is
called

i) diagonally dominant (of order δ) if C is A-bounded with A-bound δC , B is
D-bounded with D-bound δB , and δ = max{δC , δB},
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ii) off-diagonally dominant (of order δ) if A is C-bounded with C-bound δA,
D is B-bounded with B-bound δD, and δ = max{δA, δD}.

In the product space E(n) := E
(n)
1 ⊕ E(n)

2 we consider a 2 × 2 block operator
matrix

A(n) :=

(
A(n) B(n)

C(n) D(n)

)
, D(A(n)) :=

(
D(A(n))∩D(C(n))

)
⊕
(
D(B(n))∩D(D(n))

)
with operators A(n) : E

(n)
1 → E

(n)
1 , B(n) : E

(n)
2 → E

(n)
1 , C(n) : E

(n)
1 → E

(n)
2 ,

D(n) : E
(n)
2 → E

(n)
2 that are assumed to be closable with dense domains. We

assume that A(n) is densely defined as well.

Theorem 3.7. Suppose that the following holds:

i) the block operator matrices A, A(n), n ∈ N, are diagonally dominant;
ii) there exists a core Φ1 ⊂ D(A) of A such that for all x1 ∈ Φ1 there exists

n1(x1) ∈ N with the property that

P
(n)
1 x1 ∈ D(A(n)), n ≥ n1(x1),∥∥A(n)P

(n)
1 x1 −Ax1

∥∥
E

(0)
1

+
∥∥C(n)P

(n)
1 x1 − Cx1

∥∥
E

(0)
1
−→ 0, n→∞;

iii) there exists a core Φ2 ⊂ D(D) of D such that for all x2 ∈ Φ2 there exists
n2(x2) ∈ N with the property that

P
(n)
2 x2 ∈ D(D(n)), n ≥ n2(x2),∥∥D(n)P

(n)
2 x2 −Dx2

∥∥
E

(0)
2

+
∥∥B(n)P

(n)
2 x2 −Bx2

∥∥
E

(0)
2
−→ 0, n→∞;

iv) ∆b

(
(A(n))n∈N

)
∩ %(A) 6= ∅.

Then A(n) gsr→ A.

Proof. First note that A is closed by the assumption %(A) 6= ∅. Define the subspace
Φ := Φ1 ⊕ Φ2 ⊂ D(A). We show that Φ is a core of A.

It suffices for each x := (x1, x2) ∈ D(A) ⊕ D(D) = D(A) to find a sequence(
x(m)

)
m∈N ⊂ Φ such that x(m) → x, Ax(m) → Ax as m→∞. Since Φ1 is a core of

A and Φ2 is a core of D, there exist sequences
(
x

(m)
1

)
m∈N ⊂ Φ1,

(
x

(m)
2

)
m∈N ⊂ Φ2

with

x
(m)
1 −→ x1, Ax

(m)
1 −→ Ax1,

x
(m)
2 −→ x2, Dx

(m)
2 −→ Dx2,

m→∞.

Since C is A-bounded and B is D-bounded, there exist a1, b1, a2, b2 ≥ 0 such that∥∥C(x(m)
1 − x1

)∥∥
E1

≤ a1

∥∥x(m)
1 − x1

∥∥
E1

+ b1
∥∥A(x(m)

1 − x1

)∥∥
E1
−→ 0,∥∥B(x(m)

2 − x2

)∥∥
E2

≤ a2

∥∥x(m)
2 − x2

∥∥
E2

+ b2
∥∥D(x(m)

2 − x2

)∥∥
E2
−→ 0,

m→∞.

Define x(m) :=
(
x

(m)
1 , x

(m)
2

)
∈ Φ, m ∈ N. The above convergences imply x(m) → x,

Ax(m) → Ax as m→∞; hence Φ is a core of A.
Let x := (x1, x2) ∈ Φ. Then, for n ≥ n0(x) := max{n1(x1), n2(x2)},(

P
(n)
1 ⊕ P (n)

2

)
x =

(
P

(n)
1 x1, P

(n)
2 x2

)
∈ D(A(n))⊕D(D(n)) = D(A(n)),

A(n)
(
P

(n)
1 ⊕ P (n)

2

)
x−Ax =

((
A(n)P

(n)
1 x1 −Ax1

)
+
(
B(n)P

(n)
2 x2 −Bx2

)(
C(n)P

(n)
1 x1 − Cx1

)
+
(
D(n)P

(n)
2 x2 −Dx2

)) −→ 0

as n→∞. Now the claim follows from Theorem 3.1. �
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3.3. Results for bounded infinite operator matrices. In this subsection we
prove some useful lemmas about convergence of bounded infinite operator matrices;
the unbounded case is considered in the next subsection.

Definition 3.8. Let E
(0)
j , j ∈ N, be Banach spaces. Define

E(0) := l2
(
E

(0)
j : j ∈ N

)
:=

{
(xj)j∈N : xj ∈ E(0)

j ,
∑
j∈N
‖xj‖2E(0)

j

<∞
}
,

‖x‖E(0) :=

(∑
j∈N
‖xj‖2E(0)

j

) 1
2

, x = (xj)j∈N ∈ E(0).

For each j ∈ N let Ej , E
(n)
j ⊂ E

(0)
j , n ∈ N, be closed complemented subspaces; let

Pj : E
(0)
j → Ej and P

(n)
j : E

(0)
j → E

(n)
j , n ∈ N, be projections on the respective

subspaces (along the respective complements). Then

E := l2 (Ej : j ∈ N) , E(n) := l2
(
E

(n)
j : j ∈ N

)
⊂ E(0), n ∈ N,

are Banach spaces. Denote the projections of E(0) onto the respective subspaces by
the diagonal block operator matrices

P := diag(Pj : j ∈ N), P(n) := diag
(
P

(n)
j : j ∈ N

)
, n ∈ N.

The following lemma is very useful for applications. It may be viewed as a
Lebesgue’s dominated convergence theorem with respect to a counting measure.

Lemma 3.9. Let x(n) :=
(
x

(n)
j

)
j∈N ∈ E

(0), n ∈ N, and x := (xj)j∈N ∈ E(0) with

∀ j ∈ N :
∥∥x(n)

j

∥∥
E

(0)
j

≤ ‖xj‖E(0)
j
, n ∈ N,

∥∥x(n)
j

∥∥
E

(0)
j

−→ 0, n→∞. (21)

Then
∥∥x(n)

∥∥
E(0) → 0, n→∞.

Notation 3.10. For i, j ∈ N, let Bij ∈ L(Ej , Ei) and B
(n)
ij ∈ L

(
E

(n)
j , E

(n)
i

)
, n ∈ N.

Consider the infinite block operator matrices B, B(n), n ∈ N, in E , E(n), n ∈ N,
respectively, defined by

B := (Bij)
∞
i,j=1, B(n) :=

(
B

(n)
ij

)∞
i,j=1

, n ∈ N.

i) For each i ∈ N denote by Ni ⊂ N the set of indices j such that Bij 6= 0 or

B
(n)
ij 6= 0 for some n ∈ N.

ii) For each j ∈ N denote by Mj ⊂ N the set of indices i such that Bij 6= 0 or

B
(n)
ij 6= 0 for some n ∈ N.

For B := (Bij)
∞
i,j=1 ∈ L(E) and B(n) :=

(
B

(n)
ij

)∞
i,j=1

∈ L(E(n)), n ∈ N, we

consider the following cases:

(a) We have N := supi∈N #Ni <∞, M := supj∈N #Mj <∞, and there exists
C ≥ 0 such that

∀ i, j ∈ N :
∥∥Bij∥∥ ≤ C, ∥∥B(n)

ij

∥∥ ≤ C, n ∈ N.

(b) There exist Ci ≥ 0, i ∈ N, such that
∑∞
i=1 C

2
i #Ni <∞ and

∀ i, j ∈ N :
∥∥Bij∥∥ ≤ Ci, ∥∥B(n)

ij

∥∥ ≤ Ci, n ∈ N.

(c) There exist Dj ≥ 0, j ∈ N, such that
∑∞
j=1D

2
j#Mj <∞ and

∀ i, j ∈ N :
∥∥Bij∥∥ ≤ Dj ,

∥∥B(n)
ij

∥∥ ≤ Dj , n ∈ N.
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Remark 3.11. i) Typical examples for case (a) are (uniformly) banded op-
erator matrices for which there exists L ∈ N with

Bij = B
(n)
ij = 0, |i− j| > L, n ∈ N;

in this case we have N ≤ 2L+ 1, M ≤ 2L+ 1.
ii) Typical examples for cases (b) and (c) are respectively lower and upper

(uniformly) semibanded operator matrices for which there exists L ∈ N
with

Bij = B
(n)
ij = 0 for

{
j − i > L (case (b)),

i− j > L (case (c));

we then have #Ni ≤ i+ L and #Mj ≤ j + L, respectively.
iii) Note that, in general, neither (a) is a special case of (b) or (c) nor vice

versa. In fact, for (b) and (c), the norms of the entries need to decrease as
i→∞ (in (b)) or j →∞ (in (c)), whereas in case (a) the norms just need
to be uniformly bounded; vice versa, for (a), (#Ni)i∈N and (#Mj)j∈N need
to be bounded sequences, whereas for (b) an (c) they may be unbounded.

Proposition 3.12. Let B := (Bij)
∞
i,j=1 ∈ L(E) and B(n) :=

(
B

(n)
ij

)∞
i,j=1

∈ L(E(n)),

n ∈ N, satisfy one of the cases (a), (b), (c). If

K := sup
j∈N

max
{

sup
n∈N

∥∥P (n)
j

∥∥, ‖Pj‖} <∞
and

∀ i, j ∈ N : B
(n)
ij P

(n)
j

s−→ BijPj , n→∞, (22)

then we have B(n)P(n) s−→ BP as n→∞.

Proof. (a) Let y := (yj)j∈N ∈ E(0). For each i ∈ N choose ei ∈ E
(0)
i such that

‖ei‖E(0)
i

= 1 and define, with the constant C from (a),

xi :=

( ∑
j∈Ni

‖yj‖E(0)
j

)
2CKei, x

(n)
i :=

∑
j∈Ni

(
B

(n)
ij P

(n)
j −BijPj

)
yj ∈ E(0)

i , n ∈ N.

The element x := (xi)i∈N belongs to E(0) since

‖x‖2E(0) =

∞∑
i=1

‖xi‖2E(0)
i

= 4C2K2
∞∑
i=1

( ∑
j∈Ni

‖yj‖E(0)
j

)2

≤ 4C2K2
∞∑
i=1

#Ni
∑
j∈Ni

‖yj‖2E(0)
j

≤ 4C2K2N

∞∑
j=1

Mj‖yj‖2E(0)
j

≤ 4C2K2NM‖y‖2E(0) <∞.

We fix an i ∈ N. Since Ni is a finite set, the convergences in (22) imply∥∥x(n)
i

∥∥
E

(0)
i

≤
∥∥xi∥∥E(0)

i

, n ∈ N,
∥∥x(n)

i

∥∥
E

(0)
i

−→ 0, n→∞.

Now Lemma 3.9 applied to x(n) :=
(
x

(n)
i

)
i∈N ∈ E

(0), n ∈ N, yields∥∥(B(n)P(n) − BP
)
y
∥∥
E(0) =

∥∥x(n)
∥∥
E(0) −→ 0, n→∞.

(b) First note that Ni is a finite set for every i ∈ N. Proceed as in (a) with C
replaced by Ci in the definition of xi. Then

∞∑
i=1

‖xi‖2E(0)
i

≤ 4K2
∞∑
i=1

C2
i

( ∑
j∈Ni

‖yj‖E(0)
j

)2

≤ 4K2
∞∑
i=1

C2
i #Ni

∞∑
j=1

‖yj‖2E(0)
j

<∞.

The rest of the proof is analogous to (a).
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(c) For i ∈ N define x
(n)
i , n ∈ N, as in (a), and set

xi :=

( ∑
j∈Ni

Dj‖yj‖E(0)
j

)
2Kei ∈ E(0)

i , i ∈ N.

Then x := (xi)i∈N belongs to E(0) since

∞∑
i=1

‖xi‖2E(0)
i

≤ 4K2
∞∑
i=1

∑
j∈Ni

D2
j

∑
k∈Ni

‖yk‖2E(0)
k

≤ 4K2
∞∑
j=1

D2
j (#Mj)

∞∑
k=1

‖yk‖2E(0)
k

<∞;

in particular, xi is well-defined. It is left to show

∀ i ∈ N :
∥∥x(n)

i

∥∥
E

(0)
i

−→ 0, n→∞; (23)

then the rest of the proof is completely analogous to (a). We fix an i ∈ N and let
ε > 0 be arbitrary. First note that, for every n ∈ N,∥∥x(n)

i

∥∥
E

(0)
i

≤
∑
j∈Ni

∥∥(B(n)
ij P

(n)
j −BijPj

)
yj
∥∥
E

(0)
j

≤
∑
j∈Ni

2DjK‖yj‖E(0)
j

= ‖xi‖E(0)
i
<∞.

There exists jε ∈ N such that∑
j∈Ni
j≥jε

∥∥(B(n)
ij P

(n)
j −BijPj

)
yj
∥∥
E

(0)
j

≤
∑
j∈Ni
j≥jε

2DjK‖yj‖E(0)
j
<
ε

2
, n ∈ N.

The convergences in (22) imply the existence of Nε ∈ N such that∑
j∈Ni
j<jε

∥∥(B(n)
ij P

(n)
j −BijPj

)
yj
∥∥
E

(0)
j

<
ε

2
, n ≥ Nε.

Altogether we have
∥∥x(n)

i

∥∥
E

(0)
i

< ε for all n ≥ Nε; hence (23) is satisfied. �

Corollary 3.13. If supj,n∈N
∥∥P (n)

j

∥∥ < ∞ and P
(n)
j

s→ Pj , n → ∞, for all j ∈ N,

then P(n) s→ P, n→∞.

Proof. The claim follows immediately from Proposition 3.12, case (a); note that

‖Pj‖ ≤ lim infn→∞
∥∥P (n)

j

∥∥ by [17, Equation III.(3.2)]. �

3.4. Results for unbounded infinite operator matrices. In this subsection
we analyze whether a sequence of diagonally dominant infinite operator matrices
converges in gsr-sense if the sequences for all diagonal elements do so.

Denote by E(0), E , E(n), n ∈ N, the same spaces as in the previous subsection.

For i, j ∈ N, let Aij : Ej → Ei and A
(n)
ij : E

(n)
j → E

(n)
i , n ∈ N, be closable and

densely defined, and let

A := (Aij)
∞
i,j=1, D(A) := l2

(⋂
i∈N
D(Aij) : j ∈ N

)
,

A(n) :=
(
A

(n)
ij

)∞
i,j=1

, D
(
A(n)

)
:= l2

(⋂
i∈N
D
(
A

(n)
ij

)
: j ∈ N

)
, n ∈ N.

We assume that A and A(n), n ∈ N, are densely defined in E and E(n), n ∈ N,
respectively.

Definition 3.14. The block operator matrix A is called diagonally dominant if,
for every j ∈ N, the operators Aij , i ∈ N, are Ajj-bounded. Diagonal dominance

of A(n), n ∈ N, is defined analogously.
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Theorem 3.15. Assume that A, A(n), n ∈ N, are diagonally dominant. Let

T := diag(Ajj : j ∈ N), D(T ) := l2
(
D(Ajj) : j ∈ N

)
,

T (n) := diag
(
A

(n)
jj : j ∈ N

)
, D

(
T (n)

)
:= l2

(
D
(
A

(n)
jj

)
: j ∈ N

)
, n ∈ N,

(24)

and

S := A− T , S(n) := A(n) − T (n), n ∈ N.

Suppose that there exist λ ∈
⋂
n∈N

%
(
T (n)

)
∩ %(T ) and Cλ > 0, γλ < 1 such that

∥∥(T (n) − λ)−1
∥∥ ≤ Cλ, n ∈ N,∥∥S(T − λ)−1
∥∥ < 1,

∥∥S(n)(T (n) − λ)−1
∥∥ ≤ γλ, n ∈ N.

(25)

Further assume that the bounded operator matrices

B := S(T − λ)−1, B(n) := S(n)(T (n) − λ)−1, n ∈ N,

satisfy one of the cases (a), (b), (c) after Notation 3.10. If

∀ j ∈ N : (A
(n)
jj − λ)−1P

(n)
j

s−→ (Ajj − λ)−1Pj ,

∀ i, j ∈ N : A
(n)
ij (A

(n)
jj − λ)−1P

(n)
j

s−→ Aij(Ajj − λ)−1Pj ,

∀ j ∈ N : P
(n)
j

s−→ Pj ,

n→∞,

then λ ∈
⋂
n∈N

%(A(n)) ∩ %(A) and (A(n) − λ)−1P(n) s→ (A− λ)−1P as n→∞.

Remark 3.16. The inequalities (25) imply that S is T -bounded with T -bound < 1
and S(n) is T (n)-bounded with T (n)-bound ≤ γλ < 1.

Proof of Theorem 3.15. Let λ ∈
⋂
n∈N

%
(
T (n)

)
∩ %(T ), Cλ > 0 and γλ < 1 satisfy the

assumptions, and set C := max{‖(T − λ)−1‖, Cλ}. Then∥∥(Ajj − λ)−1
∥∥ ≤ ∥∥(T − λ)−1

∥∥ ≤ C,∥∥(A(n)
jj − λ

)−1∥∥ ≤ ∥∥(T (n) − λ)−1
∥∥ ≤ C, n ∈ N.

Proposition 3.12, case (a) applied to (T − λ)
−1

and
(
T (n) − λ

)−1
, n ∈ N, yields

(T (n) − λ)−1P(n) s−→ (T − λ)−1P, n→∞.

By applying Proposition 3.12 to B, B(n), n ∈ N, we obtain, for all of the cases
(a), (b), (c),

S(n)(T (n) − λ)−1P(n) s−→ S (T − λ)
−1 P, n→∞.

Corollary 3.13 yields P(n) s→ P, n → ∞. Now the assertion follows from Theo-
rem 3.3. �

The following example illustrates Theorem 3.15, case (c).

Example 3.17. Let E(0) = E = E(n) := l2(N), n ∈ N. We define upper triangular

matrices A := (Aij)
∞
i,j=1,A(n) :=

(
A

(n)
ij

)∞
i,j=1

∈ C(l2(N)) by

Aij :=


j, i < j,

j3, i = j,

0, otherwise,

A
(n)
ij :=


j, i < j ≤ n,
j3, i = j ≤ n,
0, otherwise.
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Let T , T (n), n ∈ N, be defined as in (24). Since the latter are selfadjoint operators,
it is obvious that C\R ⊂

⋂
n∈N

%
(
T (n)

)
∩ %(T ) and, for every λ ∈ C\R,

∀ j ∈ N :
(
A

(n)
jj − λ

)−1 s−→ (Ajj − λ)−1, n→∞.
Moreover, we have, for i 6= j,

Aij(Ajj − λ)−1 =

{
j

j3−λ , i < j,

0, otherwise,
A

(n)
ij

(
A

(n)
jj − λ

)−1
=

{
j

j3−λ , i < j ≤ n,
0, otherwise.

Obviously, for |Im(λ)| sufficiently large, the matrices satisfy the assumptions of
Theorem 3.15, case (c), with

Dj :=
j

j3 − λ
=

1

j2 − λ
j

, #Mj = j − 1, j ∈ N.

So we conclude λ ∈
⋂
n∈N

%(A(n)) ∩ %(A) and (A(n) − λ)−1 s→ (A− λ)−1 as n→∞.

4. Discretely compact resolvents

In this section we establish sufficient conditions for a sequence of operators Tn,
n ∈ N, in varying Banach spaces to have discretely compact resolvents, i.e.

∃λ0 ∈
⋂
n∈N

%(Tn) :
(
(Tn − λ0)−1

)
n∈N discretely compact;

for the definition of discrete compactness see Definition 2.5.
As in Subsection 3.1, we first prove direct criteria and perturbation results (see

Subsection 4.1). Secondly, we establish results for operator matrices, both 2×2 and
infinite matrices (see Subsection 4.2). Finally, we study the case that the operator
domains are contained in (varying) Sobolev spaces and derive discretely compact
Sobolev embeddings (see Subsection 4.3).

Consider a Banach space E0 and closed complemented subspaces E, En ⊂
E0, n ∈ N; as usual, we assume that the corresponding projections converge strongly,

Pn
s→ P .

4.1. Direct criteria and perturbation results. The following result relates (dis-
crete) resolvent compactness to (discrete) compactness of embeddings.

Proposition 4.1. Let T ∈ C(E) and Tn ∈ C(En), n ∈ N. Define the Banach
spaces D := D(T ), Dn := D(Tn), n ∈ N, equipped with the graph norms ‖ · ‖D :=
‖ · ‖T , ‖ · ‖Dn := ‖ · ‖Tn , n ∈ N, respectively. Let J : D → E, Jn : Dn → En, n ∈ N,
be the natural embeddings.

i) Let %(T ) 6= ∅. The operator J is compact if and only if T has compact
resolvent. The analogous result holds for Jn and Tn.

ii) Let ∆b

(
(Tn)n∈N

)
6= ∅. The sequence (Jn)n∈N is discretely compact if and

only if for some (and hence for all) λ ∈ ∆b ((Tn)n∈N) there exists n0 ∈ N
such that the sequence

(
(Tn − λ)−1

)
n≥n0

is discretely compact.

Proof. We prove claim ii); claim i) is similar and well-known.
Let λ ∈ ∆b

(
(Tn)n∈N

)
and n0 ∈ N such that λ ∈ %(Tn) for n ≥ n0. Consider an

infinite subset I ⊂ N and yn ∈ En, n ∈ I, and define xn := (T − λ)−1yn ∈ Dn,
n ∈ I. First note that we have

‖xn‖Tn = ‖xn‖En + ‖Tnxn‖En ≤ (1 + |λ|)‖xn‖En + ‖(Tn − λ)xn‖En
≤
(
(1 + |λ|)‖(Tn − λ)−1‖+ 1

)
‖yn‖En ,

‖yn‖En = ‖(Tn − λ)xn‖En ≤ ‖Tnxn‖En + |λ| ‖xn‖En ≤ (1 + |λ|) ‖xn‖Tn .
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Hence (‖xn‖Tn)n∈N is bounded if and only if (‖yn‖En)n∈I is bounded.
Assume that (Jn)n∈N is discretely compact and (‖xn‖Tn)n∈I is bounded. Then

the sequence of elements (Tn − λ)−1yn = xn ∈ Dn, n ∈ I, has a subsequence that
converges in E0 with limit in E; hence

(
(Tn − λ)−1

)
n≥n0

is discretely compact. Vice

versa, the discrete compactness of
(
(Tn − λ)−1

)
n≥n0

implies discrete compactness

of (Jn)n∈N. �

We prove a perturbation result for discrete compactness of the resolvents. Note
that the assumptions are similar to the ones used in the perturbation result for
gsr-convergence (compare Theorem 3.3).

Theorem 4.2. Let Tn ∈ C(En), n ∈ N. Let Sn, n ∈ N, be linear operators in En,
n ∈ N, with D(Tn) ⊂ D(Sn), n ∈ N, respectively. Define

An := Tn + Sn, n ∈ N.
Suppose that there exist λ ∈

⋂
n∈N

%(Tn) and γλ < 1 with∥∥Sn(Tn − λ)−1
∥∥ ≤ γλ, n ∈ N. (26)

Then λ ∈
⋂
n∈N

%(An). If the sequence
(
(Tn − λ)−1

)
n∈N is discretely compact, then

so is
(
(An − λ)−1

)
n∈N.

Remark 4.3. The inequalities (26) imply that, for every n ∈ N, Sn is Tn-bounded
with Tn-bound ≤ γλ < 1.

Proof of Theorem 4.2. Let λ satisfy the assumptions. Then, using (19) and Lemma
2.8 i), the discrete compactness of

(
(Tn − λ)−1

)
n∈N implies that the sequence(

(An − λ)−1
)
n∈N is discretely compact. �

The following result is an immediate consequence of Theorem 4.2 for the case
that the perturbations are bounded operators.

Corollary 4.4. Let Tn ∈ C(En), n ∈ N, and Sn ∈ L(En), n ∈ N. Define

An := Tn + Sn, n ∈ N.
Suppose that there exist λ ∈

⋂
n∈N

%(Tn) and γλ < 1 with

‖Sn‖ ≤ γλ ‖(Tn − λ)−1‖−1, n ∈ N.
Then λ ∈

⋂
n∈N

%(An). If the sequence
(
(Tn − λ)−1

)
n∈N is discretely compact, then

so is
(
(An − λ)−1

)
n∈N.

4.2. Results for block operator matrices. In this subsection we consider (fi-
nite and infinite) operator matrices. We study whether a sequence of diagonally
dominant operator matrices

A(n) :=
(
T

(n)
ij

)N
i,j=1

, n ∈ N,

has discretely compact resolvents if the sequences
(
T

(n)
ii

)
n∈N, i ∈ N, of all diagonal

entries have discretely compact resolvents.
First, we consider diagonally dominant 2× 2 operator matrices, i.e. N = 2. We

use the same notation as in Subsection 3.2.

Theorem 4.5. Suppose that the block operator matrices satisfy the following:

i) the operators A(n), n ∈ N, and D(n), n ∈ N, have discretely compact resol-
vents, respectively;

ii) the matrices A(n), n ∈ N, are diagonally dominant;
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iii) there exist λ ∈
⋂
n∈N

(
%(A(n)) ∩ %(D(n))

)
and constants γACλ , γDBλ ≥ 0 such

that (
(A(n) − λ)−1

)
n∈N,

(
(D(n) − λ)−1

)
n∈N

are bounded sequences,∥∥C(n)(A(n) − λ)−1
∥∥ ≤ γACλ ,

∥∥B(n)(D(n) − λ)−1
∥∥ ≤ γDBλ , n ∈ N, (27)

and

γACλ γDBλ < 1. (28)

Then λ ∈
⋂
n∈N

%(A(n)) and the sequence
(
(A(n) − λ)−1

)
n∈N is discretely compact.

Remark 4.6. The inequalities (27) imply that A(n) is diagonally dominant of
order max{γACλ , γDBλ } (see Definition 3.6 i)). Note that (28) is more general than
max{γACλ , γDBλ } < 1 and it implies min{γACλ , γDBλ } < 1.

Proof of Theorem 4.5. Let λ satisfy the assumption iii). We show the claim in the
case γDBλ = min

{
γACλ , γDBλ

}
< 1; the other case is analogous. For each n ∈ N

define

T (n) :=

(
A(n) 0
C(n) D(n)

)
, S(n) := A(n) − T (n) =

(
0 B(n)

0 0

)
.

Then, for each n ∈ N,

(T (n) − λ)−1 =

(
(A(n) − λ)−1 0

0 0

)
+

(
0 0
0 (D(n) − λ)−1

)
+

(
0 0

−(D(n) − λ)−1C(n)(A(n) − λ)−1 0

)
;

denote the matrices on the right-hand side by U (n), V(n), W(n), respectively. The
assumption i) implies that

(
U (n)

)
n∈N,

(
V(n)

)
n∈N are discretely compact sequences.

By the assumption iii),
(
C(n)(A(n) − λ)−1

)
n∈N is a bounded sequence. Now i) and

Lemma 2.8 i) imply the discrete compactness of
(
W(n)

)
n∈N. By Lemma 2.8 iii),

the sequence
(
(T (n) − λ)−1

)
n∈N is discretely compact. Assumption iii) yields the

estimate∥∥S(n)(T (n) − λ)−1
∥∥

≤ max
{∥∥B(n)(D(n) − λ)−1C(n)(A(n) − λ)−1

∥∥, ∥∥B(n)(D(n) − λ)−1
∥∥}

≤ max{γACλ γDBλ , γDBλ } < 1, n ∈ N.

Now the claim follows from Theorem 4.2. �

Example 4.7. Let the operators A(n), n ∈ N, and D(n), n ∈ N, be selfadjoint and
have discretely compact resolvents, respectively. If the operators B(n), C(n), n ∈ N,
are uniformly bounded, then the sequence of operators

A(n) :=

(
A(n) B(n)

C(n) D(n)

)
, n ∈ N,

has discretely compact resolvents. This follows from Theorem 4.5 since for every
γ < 1 there exists λ ∈ C\R with |Im(λ)| sufficiently large such that the assump-
tion iii) of Theorem 4.5 holds with

γACλ = γDBλ :=
1

|Im(λ)|
sup
n∈N

max
{
‖B(n)‖, ‖C(n)‖

}
.
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Now we study sequences of diagonal operator matrices; first for finitely many
diagonal elements, then for infinitely many. For block operator matrices that are
not diagonal, one may combine Theorem 4.8/4.9 with Theorem 4.2 or its corollary
(as in Theorem 4.5 for the 2× 2 case).

Let E
(0)
j , j ∈ N, be Banach spaces and, for every j ∈ N, let Ej , E

(n)
j ⊂ E

(0)
j ,

n ∈ N, be closed subspaces.

Theorem 4.8. Let k ∈ N and consider Banach spaces

E :=
⊕

j=1,...,k

Ej , E(n) :=
⊕

j=1,...,k

E
(n)
j ⊂ E(0) :=

⊕
j=1,...,k

E
(0)
j , n ∈ N.

Define

T (n) := diag
(
T

(n)
j : j = 1, . . . , k

)
∈ C(E(n)), n ∈ N.

Suppose that there exists λ ∈
⋂

j=1,...,k

⋂
n∈N

%
(
T

(n)
j

)
such that

(
(T

(n)
j − λ)−1

)
n∈N, j = 1, . . . , k,

are discretely compact sequences. Then we have λ ∈
⋂
n∈N

%(T (n)) and the sequence(
(T (n) − λ)−1

)
n∈N is discretely compact.

Proof. For k = 2 the claim is an immediate consequence of Lemma 2.8 iii) applied
to

A(1)
n =

((
T

(n)
1 − λ

)−1
0

0 0

)
, A(2)

n =

(
0 0

0
(
T

(n)
2 − λ

)−1

)
, n ∈ N.

For k ∈ N with k > 2 the claim follows by induction. �

Theorem 4.9. Assume that E
(0)
j = Ej, j ∈ N. Consider Banach spaces

E(n) := l2
(
E

(n)
j : j ∈ N

)
⊂ E := l2

(
Ej : j ∈ N

)
, n ∈ N.

Define

T (n) := diag
(
T

(n)
j : j ∈ N

)
∈ C(E(n)), n ∈ N.

Suppose that there exists λ ∈
⋂
j∈N

⋂
n∈N

%
(
T

(n)
j

)
such that

(
(T

(n)
j − λ)−1

)
n∈N, j ∈ N,

are discretely compact sequences. We further assume that

sup
n∈N

∥∥(T (n)
j − λ

)−1∥∥ −→ 0, j →∞. (29)

Then we have λ ∈
⋂
n∈N

%(T (n)) and the sequence
(
(T (n) − λ)−1

)
n∈N is discretely

compact.

Proof. Let λ satisfy the assumptions. Fix an n ∈ N. Since, by the assumption (29),

the sequence
(
(T

(n)
j − λ)−1

)
j∈N is bounded, λ belongs to %(T (n)). We define

A(n) := (T (n) − λ)−1 = diag
(
(T

(n)
j − λ)−1 : j ∈ N

)
,

A(n;k) := diag
(
(T

(n)
j − λ)−1 : j = 1, . . . , k

)
⊕ 0 ∈ L

(
E(n)

)
, k ∈ N.

From the assumption (29), it follows that

lim
k→∞

sup
n∈N

∥∥A(n) −A(n;k)
∥∥ = lim

k→∞
sup
j>k

sup
n∈N

∥∥(T
(n)
j − λ)−1

∥∥ = 0.
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Since, by the assumptions,
(
(T

(n)
j − λ)−1

)
n∈N, j ∈ N, are discretely compact se-

quences, Theorem 4.8 implies that
(
A(n;k)

)
n∈N is discretely compact for each k ∈ N.

Altogether, Proposition 2.9 yields that (A(n))n∈N =
(
(T (n)−λ)−1

)
n∈N is discretely

compact. �

4.3. Discretely compact Sobolev embeddings. In this subsection we assume
that E0 := Lp(Rd) and E := Lp(Ω), where p ∈ (1,∞), d ∈ N and Ω ⊂ Rd is an
open subset. The space En is assumed to be Lp(Ωn) for some open subset Ωn ⊂ Rd
that may vary in n ∈ N. Denote by md the Lebesgue measure on Rd.

We consider operators Tn ∈ C(En), n ∈ N, whose domains are assumed to be
subspaces of Sobolev spaces Wm,p(Ωn), n ∈ N, for some m ∈ N. In this case it is
sufficient to study discrete compactness of the Sobolev embeddings

J̃n : Wm,p(Ωn)→ Lp(Ωn), n ∈ N,

in order to conclude that the sequence of embeddings Jn : Dn → En, n ∈ N, (as
defined in Proposition 4.1) is discretely compact (see Theorem 4.13 below).

Definition 4.10. Let Ω, Ωn, n ∈ N, be bounded open subsets of Rd.
i) The set Ω is said to have the segment property if there exist a finite open

covering {Ok : k = 1, . . . , r} of ∂Ω and corresponding vectors αk ∈ Rd\{0},
k = 1, . . . , r, such that

Ω ∩Ok + tαk ⊂ Ω, t ∈ (0, 1), k = 1, . . . , r.

ii) The pair {Ω, {Ωn : n ∈ N}} is said to have the uniform segment property if
there exist an open covering {Ok : k = 1, . . . , r} of ∂Ω and corresponding
vectors αk ∈ Rd\{0}, k = 1, . . . , r, such that {Ok : k = 1, . . . , r} is an open
covering of ∂Ωn for sufficiently large n ∈ N, say n ≥ n0, and

∀n ≥ n0 : Ωn ∩Ok + tαk ⊂ Ωn, t ∈ (0, 1), k = 1, . . . , r,

∀ ε ∈ (0, 1)∃nε ∈ N :
⋃
n≥nε

(Ωn ∩Ok) + εαk ⊂ Ω, k = 1, . . . , r.

Remark 4.11. i) It is easy to see that if the pair {Ω, {Ωn : n ∈ N}} has the
uniform segment property, then Ωn, n ≥ n0, all have the segment property.

ii) If each compact subset S ⊂ Ω satisfies S ⊂ Ωn for all sufficiently large
n ∈ N, then Ω ⊂

⋃
n≥nε Ωn for each nε ∈ N. If, in addition, the pair

{Ω, {Ωn : n ∈ N}} has the uniform segment property, then Ω has the seg-
ment property since, for each ε ∈ (0, 1),

Ω ∩Ok + εαk ⊂
⋃
n≥nε

(Ωn ∩Ok) + εαk ⊂ Ω, k = 1, . . . , r.

Example 4.12. i) The motivation for defining the segment property is that
the interior of the set Ω shall not lie on both sides of the boundary. For
instance, in R2 the set B1(0)\ ((0, 1)× {0}) does not have the segment
property.

ii) In dimension d = 1, it is easy to see that an open bounded subset Ω ⊂ R
has the segment property if Ω is the finite union of open bounded intervals
Il, l = 1, . . . , L, where the distance between any two different intervals is
positive. Then r = 2L and each Ok contains exactly one endpoint of an
interval Il; the number αk is positive (negative) if it is the left (right)
endpoint, with |αk| less than the length of Il.
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iii) An example in dimension d = 1 for bounded open sets Ω,Ωn ⊂ R, n ∈ N,
such that the pair {Ω, {Ωn : n ∈ N}} has the uniform segment property is

Ω :=
⋃

l=1,...,L

(al, bl), al < bl < al+1,

Ωn :=
⋃

l=1,...,L

(
a

(n)
l , b

(n)
l

)
, a

(n)
l < b

(n)
l < a

(n)
l+1,

with a
(n)
l → al, b

(n)
l → bl, n→∞, for every l = 1, . . . , L.

In the following we establish discretely compact Sobolev embeddings using earlier
results by Grigorieff [14]. As Grigorieff’s results are confined to dimension d ≥ 2,
we prove the case d = 1 separately; to avoid unnecessarily technicalities, in d = 1
we prove the result directly for the case studied in Example 4.12 iii) where Ωn,
n ∈ N, are unions of L <∞ intervals whose endpoints converge to the ones of Ω.

Theorem 4.13. For d ≥ 2, suppose that Ω, Ωn ⊂ Rd, n ∈ N, are bounded open
subsets that satisfy the following:

(i) each compact subset S ⊂ Ω is also a subset of Ωn for all sufficiently large
n ∈ N;

(ii) the pair {Ω, {Ωn : n ∈ N}} has the uniform segment property;
(iii) we have md(Ωn\Ω)→ 0, n→∞.

For d = 1, suppose that Ω, Ωn ⊂ R, n ∈ N, are as in Example 4.12 iii).
Let Tn ∈ C(En), n ∈ N, with D(Tn) ⊂ Wm,p(Ωn), n ∈ N, for some m ∈ N. If

the embeddings

Bn :
(
D(Tn), ‖ · ‖Tn

)
→Wm,p(Ωn), n ∈ N,

are uniformly bounded, then the sequence (Jn)n∈N of embeddings

Jn :
(
D(Tn), ‖ · ‖Tn

)
→ Lp(Ωn), n ∈ N,

is discretely compact.

Proof. For dimension d ≥ 2, the sequence (J̃n)n∈N of embeddings

J̃n : Wm,p(Ωn)→ Lp(Ωn), n ∈ N,

is discretely compact by [14, Satz 4.(9)]. Since (Bn)n∈N is a bounded sequence by
the assumptions, the claim follows from Lemma 2.8 i).

For dimension d = 1, let I ⊂ N be an infinite subset and let fn ∈ D(Tn), n ∈ I,
satisfy that (‖fn‖Tn)n∈I is bounded. Then

(
‖fn‖Wm,p(Ωn)

)
n∈I is bounded since

(Bn)n∈N is a bounded sequence. Define

Λ := Ω× (0, 1), Λn := Ωn × (0, 1), n ∈ N.

These sets are bounded open subsets of R2. The idea of the proof is to show
that Λ,Λn, n ∈ N, satisfy assumptions (i)–(iii) for d = 2; then the sequence of
embeddings

J̃ (2)
n : Wm,p(Λn)→ Lp(Λn), n ∈ N, (30)

is discretely compact by [14, Satz 4.(9)]. From this, at the end, we conclude that
the sequence of elements fn ∈ Lp(Ωn), n ∈ I, has a convergent subsequence in
Lp(R) with limit function in Lp(Ω).

It is easy to see that properties (i) and (iii) are satisfied for Λ, Λn, n ∈ N. It
remains to check (ii), i.e. the uniform segment property. There exists δ > 0 such
that bl−al > 3δ for all l = 1, . . . , L and al+1− bl > 2δ for all l = 1, . . . , L−1. Note
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that the latter implies (bl− δ, bl + δ)∩ (al+1− δ, al+1 + δ) = ∅. Since a
(n)
l → al and

b
(n)
l → bl as n→∞, there exists n0 ∈ N with

∀n ≥ n0 :
∣∣a(n)
l − al

∣∣ < δ,
∣∣b(n)
l − bl

∣∣ < δ, l = 1, . . . , L.

Since bl − al > 3δ we thus have, for all t ∈ (0, 1),

∀n ≥ n0 :
[
a

(n)
l , al+ δ

]
+ tδ ⊂ Ωn,

[
bl− δ, b(n)

l

]
− tδ ⊂ Ωn, l = 1, . . . , L. (31)

For any ε ∈ (0, 1) there exists nε ≥ n0 such that

sup
n≥nε

∣∣a(n)
l − al

∣∣ < εδ, sup
n≥nε

∣∣b(n)
l − bl

∣∣ < εδ, l = 1, . . . , L.

Hence, again with bl − al > 3δ,⋃
n≥nε

(
a

(n)
l , al + δ

)
+ εδ ⊂ (al − εδ, al + δ] + εδ ⊂ Ω,⋃

n≥nε

(
bl − δ, b(n)

l

)
− εδ ⊂ [bl − δ, bl + εδ)− εδ ⊂ Ω,

l = 1, . . . , L. (32)

Now (31) and (32) imply that {Λ, {Λn : n ∈ N}} has the uniform segment property
with finite open covering{

(al − δ, al + δ)× (−1/2, 2/3), (al − δ, al + δ)× (1/3, 3/2),

(bl − δ, bl + δ)× (−1/2, 2/3), (bl − δ, bl + δ)× (1/3, 3/2),

(al + δ/2, bl − δ/2)× (−1/2, 1/3), (al + δ/2, bl − δ/2)× (2/3, 3/2) : l = 1, . . . , L
}

and corresponding set of non-zero vectors in R2{(
δ

1/3

)
,

(
δ
−1/3

)
,

(
−δ
1/3

)
,

(
−δ
−1/3

)
,

(
0

1/3

)
,

(
0
−1/3

)
: l = 1, . . . , L

}
.

Altogether, assumptions (i)–(iii) are satisfied and thus [14, Satz 4.(9)] yields
that the sequence of embeddings in (30) is discretely compact. Note that fn ∈
Wm,p(Λn), n ∈ I, and

(
‖fn‖Wm,p(Λn)

)
n∈I is bounded. Hence there exist f ∈ Lp(Λ)

and an infinite subset I2 ⊂ I such that (J̃
(2)
n fn)n∈I2 converges to f in Lp(R2).

Since f ∈ Lp(Λ), we have f(·, x2) ∈ Lp(Ω) for almost all x2 ∈ (0, 1); denote by
Θ1 ⊂ (0, 1) the set of such x2. The convergence ‖fn − f‖Lp(R2) → 0 as n ∈ I2,
n→∞, implies the existence of an infinite subset I3 ⊂ I2 so that, for n ∈ I3,∫

R
|fn(x1)− f(x1, x2)|p dx1 −→ 0, n→∞,

for almost all x2 ∈ (0, 1) (see e.g. [18, Theorem B.98 (iii)] with u ≡ 0, p = 1); denote
by Θ2 ⊂ (0, 1) the set of such x2. For x2 ∈ Θ1∩Θ2 we hence obtain f(·, x2) ∈ Lp(Ω)
and ‖fn − f(·, x2)‖Lp(R) → 0 as n ∈ I3, n→∞. So we have shown that (Jnfn)n∈I
has a convergent subsequence in Lp(R) with limit in Lp(Ω). �

5. Applications to domain truncation method and Galerkin method

In this section we give examples of spectrally exact operator approximations. All
underlying spaces are Hilbert spaces H and Hn ⊂ H, n ∈ N, with corresponding

orthogonal projections Pn with Pn
s→ I. For an operator T ∈ C(H) and approx-

imating operators Tn ∈ C(Hn), n ∈ N, we check whether there exists an element
λ0 ∈

⋂
n∈N

%(Tn) ∩ %(T ) such that

(a) (T − λ0)−1, (Tn − λ0)−1, n ∈ N, are compact operators;
(b) the sequence

(
(Tn − λ0)−1

)
n∈N is discretely compact;

(c) the resolvents converge strongly, (Tn − λ0)−1Pn
s→ (T − λ0)−1;

(d) the adjoint resolvents converge strongly, (T ∗n − λ0)−1Pn
s→ (T ∗ − λ0)−1.
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If (a)–(c) are satisfied, then Theorem 2.6 is applicable which yields, in partic-
ular, that (Tn)n∈N is a spectrally exact approximation of T . If, in addition,
(d) holds, then Theorem 2.7 yields generalized norm resolvent convergence, i.e.
(Tn − λ)−1Pn → (T − λ)−1 for every λ ∈ %(T ).

5.1. Operator matrices with singular Sturm-Liouville operator entries.
We study 2×2 block operator matrices with singular Sturm-Liouville-type operator
entries and prove that the regularization via interval truncation is a spectrally exact
approximation.

Let (a, b) ⊂ R be a finite interval. We consider Sturm-Liouville differential
expressions τ of the form

(τf)(x) := −(p(x)f ′(x))′ + q(x)f(x), x ∈ (a, b),

where p, q : (a, b) → R are measurable functions with 1/p, q ∈ L1
loc(a, b). Suppose

that there exist pmin > 0 and qmin ∈ R such that

p ≥ pmin, q ≥ qmin almost everywhere.

We assume that τ is regular at b and in limit point case at a. Let (an)n∈N ⊂ (a, b)
with an ↘ a, n → ∞. For n ∈ N let Pn : L2(a, b) → L2(an, b) be the orthogonal
projection given by multiplication with the characteristic function of [an, b], i.e.
Pnf := χ[an,b]f , n ∈ N. For β ∈ [0, π) let Tτ (β), Tτ,n(β), n ∈ N, be the selfadjoint

realizations of τ in the Hilbert spaces L2(a, b), L2(an, b), n ∈ N, respectively, with
domains

D(Tτ (β)) :=

{
f ∈ L2(a, b) :

f, pf ′ ∈ ACloc(a, b), τf ∈ L2(a, b),
f(b) cosβ − (pf ′)(b) sinβ = 0

}
,

D(Tτ,n(β)) :=

{
f ∈ L2(an, b) :

f, pf ′ ∈ ACloc(an, b), τf ∈ L2(an, b),
f(b) cosβ − (pf ′)(b) sinβ = 0, f(an) = 0

}
.

Theorem 5.1. For i = 1, 2 let τi be a differential expression of the above form, let
βi ∈ [0, π) and γi ∈ C\{0}. Denote by ϑ ∈ [0, π2 ] the angle between γ1R and γ2R.
Let s, t, u, v ∈ L∞(a, b) satisfy

‖u‖∞‖s‖∞
|γ1||γ2|

(
cos ϑ2

)2 < 1, (33)

and set

sn := s|[an,b], tn := t|[an,b], un := u|[an,b], vn := v|[an,b], n ∈ N.

Define the orthogonal projections P(n) := diag(Pn, Pn), n ∈ N, and the 2× 2 block
operator matrices A, A(n), n ∈ N, by

A :=

(
γ1Tτ1(β1) sTτ2(β2) + t

uTτ1(β1) + v γ2Tτ2(β2)

)
, D(A) := D(Tτ1(β1))⊕D(Tτ2(β2)),

A(n) :=

(
γ1Tτ1,n(β1) snTτ2,n(β2) + tn

unTτ1,n(β1) + vn γ2Tτ2,n(β2)

)
,

D(A(n)) := D(Tτ1,n(β1))⊕D(Tτ2,n(β2)).

Then there exists λ0 ∈ C\(γ1R ∪ γ2R) such that A, A(n), n ∈ N, satisfy the claims
(a)–(c). If, in addition, D(Tτ1(β1)) = D(Tτ2(β2)), D(Tτ1,n(β1)) = D(Tτ2,n(β2)),
n ∈ N, and (33) is replaced by the stronger assumption

max

{
‖u‖∞
|γ1| cos ϑ2

,
‖s‖∞
|γ2| cos ϑ2

}
< 1, (34)

then there exists λ0 ∈ C\(γ1R ∪ γ2R) so that all claims (a)–(d) are satisfied.
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For the proof we need the following lemma.

Lemma 5.2. Let β ∈ [0, π). Then, for every λ0 ∈ C\R, the operators Tτ (β),
Tτ,n(β), n ∈ N, satisfy the claims (a)–(d).

Proof. Since the differential expression τ is in limit point case at the singular end-
point x = a, the fact that

Φτ (β) := {f ∈ D(Tτ (β)) : f = 0 near x = a} ⊂ L2(a, b)

is a core of Tτ (β) is a well-known result from Sturm-Liouville theory (see e.g. the
proof of [29, Satz 14.12]). For f ∈ Φτ (β) let n0(f) ∈ N be such that f(x) = 0
for x ∈ [a, an0(f)]. This implies Pnf ∈ D

(
Tτ,n(β)

)
for n ≥ n0(f). The strong

convergence Pn
s→ I, n→∞, implies

Pnf ∈ D(Tτ,n(β)), n ≥ n0(f),∥∥Tτ,n(β)Pnf − Tτ (β)f
∥∥ =

∥∥PnTτ (β)f − Tτ (β)f
∥∥ −→ 0, n→∞.

(35)

The selfadjointness of Tτ (β), Tτ,n(β), n ∈ N, implies

C\R ⊂ ∆b

(
(Tτ,n(β))n∈N

)
∩ %(Tτ (β)). (36)

Thus Tτ,n(β)
gsr→ Tτ (β) by Theorem 3.1. Therefore, (c) and (d) are satisfied for

every λ0 ∈ C\R.
Now we prove that (b) is satisfied for every λ0 ∈ C\R; the proof of (a) is

analogous. To this end, we show that the embeddings

Bn :
(
D(Tτ,n(β)), ‖ · ‖Tτ,n(β)

)
→W 1,2(an, b), n ∈ N,

are uniformly bounded. Then Theorem 4.13 implies that the sequence (Jn)n∈N of
embeddings Jn :

(
D(Tτ,n(β)), ‖·‖Tτ,n(β)

)
→ L2(an, b), n ∈ N, is discretely compact,

and hence (b) follows from Proposition 4.1 ii) and (36). We fix an n ∈ N and denote
by ‖·‖n, 〈·, ·〉n the norm and scalar product of L2(an, b). Let fn ∈ D(Tτ,n(β)) satisfy
‖fn‖Tτ,n(β) = ‖fn‖n + ‖Tτ,n(β)fn‖n ≤ 1. We estimate

1 ≥ ‖Tτ,n(β)fn‖n ‖fn‖n ≥ 〈Tτ,n(β)fn, fn〉n =

∫ b

an

(
− (pf ′n)′ fn + q|fn|2

)
(x) dx

=
(
− pf ′nfn

)
(x)
∣∣∣x=b

x=an
+

∫ b

an

(
p|f ′n|2 + q|fn|2

)
(x) dx.

If β = 0, then fn(b) = 0 and
(
− pf ′nfn

)
(x)
∣∣x=b

x=an
= 0. If β ∈ (0, π), then (pf ′n)(b) =

cotβ fn(b) and
(
− pf ′nfn

)
(x)
∣∣x=b

x=an
= − cotβ |fn(b)|2. If β ∈ [π/2, π), then the

latter is non-negative. If β ∈ (0, π/2), then(
− pf ′nfn

)
(x)
∣∣∣x=b

x=an
=
(
− cotβ |fn|2

)
(x)
∣∣∣x=b

x=an
= − cotβ

∫ b

an

d

dx

(
|fn(x)|2

)
dx

≥ − cotβ 2‖f ′n‖n ‖fn‖n ≥ − cotβ

(
ε‖f ′n‖2n +

1

ε
‖fn‖2n

)
,

where ε > 0 is arbitrary. We also use the estimate∫ b

an

(
p|f ′n|2

)
(x) dx ≥ pmin‖f ′n‖2n.

Then, if we set ε := pmin/(2 cotβ), we obtain altogether

1 ≥ 1

2
pmin‖f ′n‖2n + cβ‖fn‖2n, cβ :=

{
qmin, β ∈ [π/2, π),

qmin − 2(cot β)2

pmin
, β ∈ [0, π/2).
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From this it is easy to see that the embeddings Bn, n ∈ N, are uniformly bounded,
and thus the claim follows. �

Proof of Theorem 5.1. Let λ0 ∈ C\(γ1R∪ γ2R) be on the unique line γR (for some
γ ∈ C\{0}) so that for i = 1, 2 the angle ϑi between γiR and γR is π−ϑ

2 . Then

sup
ξ∈γiR

|ξ|
|ξ − λ0|

=
1

sinϑi
=

1

cos ϑ2
, i = 1, 2.

Then, using the selfadjointness of Tτ,n(βi), i = 1, 2, and [17, Equation V.(3.17)],

‖(unTτ,n(β1) + vn)(γ1Tτ,n(β1)− λ0)−1‖ ≤ ‖u‖∞
|γ1|

sup
ξ∈γ1R

|ξ|
|ξ − λ0|

+
‖v‖∞

dist(λ0, γ1R)

=
‖u‖∞
|γ1| cos ϑ2

+
‖v‖∞

dist(λ0, γ1R)
=: γ

(1)
λ0
,

‖(snTτ,n(β1) + tn)(γ2Tτ,n(β2)− λ0)−1‖ ≤ ‖s‖∞
|γ2|

sup
ξ∈γ2R

|ξ|
|ξ − λ0|

+
‖t‖∞

dist(λ0, γ2R)

=
‖s‖∞
|γ2| cos ϑ2

+
‖t‖∞

dist(λ0, γ2R)
=: γ

(2)
λ0
.

Note that, by the assumption (33), every λ0 ∈ γR with |λ0| sufficiently large satisfies

γ
(1)
λ0
γ

(2)
λ0

< 1. Then Lemma 5.2 and Theorem 4.5 imply that
(
(A(n) − λ0)−1

)
n∈N is

discretely compact, i.e. (b) is satisfied. Claim (a) is shown analogously.
The generalized strong resolvent convergence in (c) follows from Lemma 5.2, (35)

in its proof, and from Theorem 3.7 using that λ0 ∈ ∆b

(
(A(n))n∈N

)
∩ %(A) 6= ∅.

To prove (d), we first note that if (34) holds, then max
{
γ

(1)
λ0
, γ

(2)
λ0

}
< 1 for all

λ0 ∈ γR with |λ0| sufficiently large. Therefore, the operator matrices A, A(n),
n ∈ N, are relatively bounded perturbations of diagonal operators with relative
bound < 1, and the same holds for the adjoint matrices if we assume that, in
addition, D(Tτ1(β1)) = D(Tτ2(β2)) and D(Tτ1,n(β1)) = D(Tτ2,n(β2)) for n ∈ N.
Then [15, Corollary 1] yields

A∗ =

(
γ1Tτ1(β1) uTτ1(β1) + v
sTτ2(β2) + t γ2Tτ2(β2)

)
, D(A∗) = D(A),

(
A(n)

)∗
=

(
γ1Tτ1,n(β1) unTτ1,n(β1) + vn

snTτ2,n(β2) + tn γ2Tτ2,n(β2)

)
, D

((
A(n)

)∗)
= D

(
A(n)

)
.

Now the strong convergence
((
A(n)

)∗ − λ0

)−1P(n) s→ (A∗ − λ0)−1 is shown analo-
gously as (c). �

5.2. Domain truncation of magnetic Schrödinger operators on Rd. Let
Ωn ⊂ Rd, n ∈ N, be nested open sets that exhaust Rd eventually. Denote by
‖ · ‖, 〈·, ·〉, ‖ · ‖n, 〈·, ·〉n, n ∈ N, the norm and scalar product of L2(Rd) and L2(Ωn),
n ∈ N, respectively. Let Pn, n ∈ N, be the orthogonal projections of L2(Rd) onto the
respective subspaces, given by multiplication with the characteristic function χΩn .

Then Pn
s→ I as n→∞.

Consider the differential expression τ := −∆ + p · ∇+ v with a vector potential
p : Rd → Cd and a scalar potential v : Rd → C. An important application is given
by the magnetic Schrödinger operator τ = (−i∇+A)2 + V = −∆ + p · ∇+ v with
p = −iA and v = −i∇ ·A+A2 + V . The case p ≡ 0 was already studied in [5].

We assume that p and v = q + r satisfy

(i) p ∈ L∞(Rd);
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(ii) q ∈ ACloc(Rd), Re q ≥ 0, |q(x)| → ∞ as |x| → ∞, and there are a∇, b∇ ≥ 0
with

|∇q(x)|2 ≤ a∇ + b∇ |q(x)|2 for almost all x ∈ Rd; (37)

(iii) r ∈ L2
loc(Rd), and there exist ar, br ≥ 0 with br < 1 such that

|r(x)|2 ≤ ar + br|q(x)|2 for almost all x ∈ Rd. (38)

Theorem 5.3. Let A and An, n ∈ N, be the Dirichlet realizations of τ in the
respective spaces,

Af := τf, D(A) :=
{
f ∈W 2,2(Rd) : qf ∈ L2(Rd)

}
,

Anf := τf, D(An) := W 2,2(Ωn) ∩W 1,2
0 (Ωn), n ∈ N.

Then, for every real λ0 < 0 with sufficiently large |λ0|, the operators A, An, n ∈ N,
satisfy the claims (a)–(c). If, in addition, p ∈ W 1,∞(Rd), then (d) is satisfied as
well.

For the proof we use the following result.

Lemma 5.4. Let T and Tn, n ∈ N, be the Dirichlet realizations of the Schrödinger
differential expression τ0 := −∆ + q in the respective spaces,

Tf := τ0f, D(T ) :=
{
f ∈W 2,2(Rd) : qf ∈ L2(Rd)

}
,

Tnf := τ0f, D(Tn) := W 2,2(Ωn) ∩W 1,2
0 (Ωn), n ∈ N.

Then, for every real λ0 < 0, the operators T , Tn, n ∈ N, satisfy the claims (a)–(d).

Proof. To prove claim (b), we fix an n ∈ N. First note that qn := q|Ωn is bounded
and thus Tn is a bounded perturbation of the Dirichlet Laplacian on Ωn. By [13,
Theorem VI.1.4], the operator Tn is m-accretive with compact resolvent. Therefore,
every λ0 < 0 satisfies λ0 ∈ %(Tn) and, using [17, Problem V.3.31],

‖(Tn − λ0)−1‖ ≤ 1

|λ0|
, ‖Tn(Tn − λ0)−1‖ ≤ 1. (39)

So we have, in particular,

∀λ0 < 0 : λ0 ∈ ∆b

(
(Tn)n∈N

)
. (40)

For any f ∈ D(Tn) we obtain, using integration by parts and Re qn ≥ 0 by
assumption (ii),

‖Tnf‖2n =‖∆f‖2n+‖qnf‖2n+2Re〈−∆f, qnf〉n≥‖∆f‖2n+‖qnf‖2n+2Re〈∇f,(∇qn)f〉n.
Now, again using integration by parts and with (37), for any ε, δ > 0,∣∣2Re〈∇f, (∇qn)f〉n

∣∣
≤ 1

ε
‖∇f‖2n + ε‖(∇qn)f‖2n ≤

1

ε
〈−∆f, f〉n + εa∇‖f‖2n + εb∇‖qnf‖2n

≤
(
εa∇ +

1

4εδ

)
‖f‖2n +

δ

ε
‖∆f‖2n + εb∇‖qnf‖2n.

Let α ∈ (0, 1) be arbitrary. We choose ε > 0 and then δ > 0 both so small that
max{δ/ε, εb∇} ≤ α. With these ε, δ, we set Cα := εa∇ + 1/(4εδ) and arrive at

‖Tnf‖2n + Cα‖f‖2n ≥ (1− α)
(
‖∆f‖2n + ‖qnf‖2n

)
. (41)

Now let I ⊂ N be an infinite subset and let fn ∈ D(Tn), n ∈ I, be such that
the sequence of graph norms (‖fn‖Tn)n∈I is bounded. Then (41) implies that
(‖∆fn‖n)n∈I and (‖qnfn‖n)n∈I are bounded, and hence so is (‖∇fn‖n)n∈I since
2‖∇fn‖2n ≤ ‖fn‖2n + ‖∆fn‖2n, n ∈ I. By extending every fn by zero outside its
domain Ωn, we obtain (fn)n∈I ⊂ W 1,2(Rd), and the sequences (‖∇fn‖)n∈I and
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(‖qf‖)n∈I are both bounded. Since |q(x)| → ∞ as |x| → ∞ by assumption (ii),
Rellich’s criterion (see [23, Theorem XIII.65]) implies that (fn)n∈I has a subse-
quence that is convergent in L2(Rd). So we have shown that the sequence (Jn)n∈N
of embeddings Jn :

(
D(Tn), ‖ · ‖Tn

)
→ L2(Ωn), n ∈ N, is discretely compact, and

hence, by Proposition 4.1 ii) and (40), claim (b) follows for every λ0 < 0.
Let Tmin, Tmax be the realizations of τ0 = −∆ + q with

D(Tmin) = Φ := C∞0 (Rd), D(Tmax) := {f ∈ L2(Rd) : τf ∈ L2(Rd)}.

By [13, Theorem VII.2.6, Corollary VII.2.7], Tmax is m-accretive and the closure of
Tmin. Be proceeding as before, we arrive at the inequality (41) with Tn replaced by
Tmin; since Tmax = Tmin, the inequality also holds for Tmax. Therefore, it is easy to
see that Tmax = T . So T is m-accretive and Φ is a core of T . Claim (a) is shown
analogously as (b).

For every f ∈ Φ there exists n0(f) ∈ N such that f ∈ D(Tn) and Tnf = PnTf
for n ≥ n0(f). Hence Theorem 3.1 and (40) imply that (c) is satisfied for every
λ0 < 0. Since, by [13, Theorem VII.2.5], the adjoint operators T ∗, T ∗n , n ∈ N, are
the Dirichlet realizations of τ∗ = −∆ + q and q satisfies the assumption (ii), we
obtain analogously that (d) is satisfied for every λ0 < 0. �

Proof of Theorem 5.3. Let λ0 < 0. The assumption (i) yields, for any β > 0,

‖p · ∇f‖2 ≤ ‖p‖2∞‖∇f‖2 ≤
‖p‖4∞

4β
‖f‖2 + β‖∆f‖2. (42)

Define pn := p|Ωn and rn := r|Ωn for n ∈ N, and S := A−T , Sn := An−Tn, n ∈ N.
Then the estimates (42) and (38) imply, for any ν > 0,

‖Sn(Tn − λ0)−1‖2 ≤
(

1 +
1

4ν

)
‖(p · ∇)(Tn − λ0)−1‖2 + (1 + ν)‖rn(Tn − λ0)−1‖2

≤
(
‖p‖4∞

4β

(
1 +

1

4ν

)
+ ar(1 + ν)

)
‖(Tn − λ0)−1‖2

+ β

(
1 +

1

4ν

)
‖∆(Tn − λ0)−1‖2 + br(1 + ν)‖qn(Tn − λ0)−1‖2.

We choose ν and then β so small that b := max{β(1 + 1/(4ν)), br(1 + ν)} < 1. Set

a :=
‖p‖4∞

4β

(
1 +

1

4ν

)
+ ar(1 + ν).

Then, by (41) and (39),

‖Sn(Tn − λ0)−1‖2 ≤
(
a+

bCα
1− α

)
‖(Tn − λ0)−1‖2 +

b

1− α
‖Tn(Tn − λ0)−1‖2

≤
(
a+

bCα
1− α

)
1

|λ0|2
+

b

1− α
=: (γλ0,α)2.

Now we choose α ∈ (0, 1) so small that b/(1 − α) < 1 and then |λ0| so large that
γλ0,α < 1. Then Theorem 4.2 yields that λ0 ∈ %(An), n ∈ N, and

(
(An−λ0)−1

)
n∈N

is discretely compact, i.e. claim (b) holds for this λ0. Claim (a) is shown analogously.
Analogously as ‖Sn(Tn − λ0)−1‖ ≤ γλ0,α < 1, n ∈ N, if |λ0| is sufficiently large,

one may show that ‖S(T − λ0)−1‖ < 1 if |λ0| is sufficiently large. Now claim (c)

follows from Theorem 3.3 provided that Sn(Tn − λ0)−1Pn
s→ S(T − λ0)−1. To

show the latter, we take f ∈ Φ = C∞0 (Rd); the latter is a core of T (see the proof
of Lemma 5.4). Define g := (T − λ0)f . Then there exists n0(f) ∈ N such that
supp g ⊂ supp f ⊂ Ωn, n ≥ n0(f). Hence, for n ≥ n0(f),

Sn(Tn − λ0)−1g = Sn(Tn − λ0)−1(T − λ0)f = Snf = Sf = S(T − λ0)−1g.
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Now Sn(Tn − λ0)−1Pn
s→ S(T − λ0)−1 follows since {(T − λ0)f : f ∈ Φ} ⊂ L2(Rd)

is a dense subset and ‖Sn(Tn − λ0)−1‖, n ∈ N, are uniformly bounded.
Now assume that, in addition, p ∈ W 1,∞(Rd). Then A∗ and A∗n, n ∈ N, are

Dirichlet realizations of the adjoint differential expression

τ∗ = −∆− p · ∇+ (−∇ · p+ v).

Since the vector potential p̃ := p and the scalar potential ṽ := q̃ + r̃ with q̃ := q
and r̃ := r − ∇ · p satisfy assumptions (i)–(iii), the above arguments imply that

(A∗n − λ0)−1Pn
s→ (A∗ − λ0)−1 for every λ0 < 0 with |λ0| large enough; thus (d) is

satisfied. �

5.3. Galerkin approximation of block-diagonally dominant matrices. Let
{ek : k ∈ N} be the standard orthonormal basis of H := l2(N). Define the k-
dimensional subspace Hk := span{ei : i = 1, . . . , k} ⊂ H. Denote by Pk : H → Hk,

k ∈ N, the corresponding orthogonal projections. Obviously, Pk
s→ I as k →∞.

We study the Galerkin approximation of a closed operator A ∈ C(H). To this
end, we identify A with its matrix representation with respect to {ek : k ∈ N},

A = (Aij)
∞
i,j=1, Aij = 〈Aej , ei〉, i, j ∈ N.

With k0 := 0 and a strictly increasing sequence (kn)n∈N ⊂ N define the diagonal
blocks

Bn := (Aij)
kn
i,j=kn−1+1, n ∈ N,

and split A as A = T + S with T := diag(Bn : n ∈ N). Define the Galerkin
approximations An := PknA|Hkn , n ∈ N.

Theorem 5.5. Assume that there exists λ0 ∈
⋂
n∈N

%(Bn) with ‖(Bn − λ0)−1‖ → 0

as n → ∞. Then λ0 ∈ %(T ). If D(T ) ⊂ D(S) and ‖S(T − λ0)−1‖ < 1, then
A, An, n ∈ N, satisfy the claims (a)–(c). If, in addition, D(T ∗) ⊂ D(S∗) and
‖S∗(T ∗ − λ0)−1‖ < 1, then (d) is satisfied as well.

The proof relies on the following lemma.

Lemma 5.6. If ‖(Bn − λ0)−1‖ → 0 as n → ∞, then the block-diagonal operators
T and Tn := diag(Bk : k = 1, . . . , n), n ∈ N, satisfy the claims (a)–(d).

Proof. The assumption ‖(Bn − λ0)−1‖ → 0 implies that (T − λ0)−1 is the norm
limit of the finite-rank (and thus compact) operators (Tn − λ0)−1Pkn and hence
compact by [17, Theorem III.4.7]. In addition, (Tn − λ0)−1 = Pkn(T − λ0)−1|Hkn
and therefore (Tn − λ0)−1, n ∈ N, are compact and form a discretely compact
sequence. Thus (a) and (b) are satisfied.

Again using ‖(Bn−λ0)−1‖ → 0, we see that (Tn−λ0)−1Pkn → (T −λ0)−1 which
implies, in particular, that (c) and (d) hold. �

Proof of Theorem 5.5. Define the Galerkin approximations Sn := PknS|Hkn , n ∈ N.
Note that

Sn(Tn − λ0)−1 = PknS(T − λ0)−1|Hkn , n ∈ N.

So we readily conclude that ‖Sn(Tn − λ0)−1‖ ≤ ‖S(T − λ0)−1‖ =: γλ0
< 1 and

Sn(Tn − λ0)−1Pkn
s→ S(T − λ0)−1. Using Lemma 5.6 and Theorems 3.3, 4.2, we

obtain claims (b) and (c) (and (a) analogously).
If the additional assumptions D(T ∗) ⊂ D(S∗) and ‖S∗(T ∗ − λ0)−1‖ < 1 hold,

then claim (d) is proved analogously; note that (T + S)∗ = T ∗ + S∗ by [15, Corol-
lary 1]. �
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Remark 5.7. If the assumptions of Theorem 5.5 are satisfied, then the Galerkin
approximation (An)n∈N with An := PknA|Hkn , n ∈ N, is spectrally exact. However,
if we consider all PkA|Hk , k ∈ N, then spurious eigenvalues may occur. As an
example, let A be the selfadjoint Jacobi operator

A =


0 q1 0 . . .

q1 0 q2
. . .

0 q2 0
. . .

...
. . .

. . .
. . .

 , qk :=

{
k + 1, k odd,

k/2, k even.

One may check that the assumptions of Theorem 5.5 are satisfied for λ0 = 0 and

kn = 2n, Bn =

(
0 q2n−1

q2n−1 0

)
, n ∈ N.

So the operators P2nA|H2n
, n ∈ N, form a spectrally exact approximation of A.

However, by induction over n ∈ N one may check that det(P2n−1A|H2n−1
) = 0;

hence λ0 = 0 ∈ %(A) is an eigenvalue of every P2n−1A|H2n−1
, n ∈ N, and thus a

point of spectral pollution.
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[3] Bögli, S. Spectral approximation for linear operators and applications. Ph.D. thesis. 222
pages, 2014.
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