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ABSTRACT  

Objective 

The KDIGO urine output criteria for acute kidney injury (AKI) have been shown to lack 
specificity for identifying patients at risk of adverse renal outcomes.  The objective was to 
develop an alternative system to analyse urine output and identify those at risk of developing 
severe oliguria.     

Design 

This was a retrospective cohort study utilising prospectively collected data.  

Setting 

A cardiac intensive care unit in the UK. 

Patients 

Patients undergoing cardiac surgery between January 2013 and November 2017 

Measurement and main results 

Patients were randomly assigned to development (n=981) and validation (n=2389) datasets.  
A patient-specific, dynamic Bayesian model was developed to predict future urine output.  
Model discrimination and calibration for predicting severe oliguria (<0.3ml/kg/hr for 6 hours) 
occurring within the next 12 hours were tested in the validation dataset at multiple time 
points. Patients with a high-risk (probability of severe oliguria >0.8) were identified and their 
outcomes were compared with those for low-risk patients and for patients who suffered AKI 
based on KDIGO urine output criteria.   

Model discrimination was excellent at all time points (AUC >0.9 for all).  Calibration of the 
model’s predictions was also excellent.  Multivariable logistic regression demonstrated that 
patients in the high-risk group were more likely to require renal replacement therapy (OR 
10.4, 95%CI 5.9-18.1), suffer prolonged hospital stay (OR 4.4, 95% CI 3.0-6.4) and die in 
hospital (OR 6.4, 95%CI 2.8-14.0) (p<0.001 for all).  Outcomes for those identified as high-
risk by the model were significantly worse than those classified as suffering AKI based on 
KDIGO urine output criteria.  

Conclusions 

This novel, patient-specific model accurately identifies patients at increased risk of severe 
oliguria.  Classification according to model predictions outperformed the KDIGO urine output 
criteria.  As the new model identifies patients at risk before severe oliguria develops it could 
potentially facilitate intervention to improve patient outcomes.   

300/300 words 
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Introduction  

Acute kidney injury (AKI) is defined and stratified by the KDIGO AKI guidelines(1) and occurs 

in up to 75% of patients in general intensive care units(2, 3) and up to 30% of patients 

following cardiac surgery(4).  The KDIGO guidelines stratify the severity of AKI based on 

serum creatinine concentration and urine output.  Studies in both cardiac surgery and 

general ICU patients have shown that the guidelines’ creatinine criteria successfully identify 

patients with increased risk of prolonged length of stay, short-term mortality and long term 

mortality.(3, 5-8)  However, there is less agreement about the value of the guidelines’ urine 

output criteria which define AKI as urine output below 0.5ml/kg/hr for more than 6 hours.  

Most large studies were unable to obtain enough urine output data to adequately assess the 

importance of the urine output criteria in the prediction of adverse outcomes.(3, 7, 8)  Some 

smaller studies demonstrated that calibration of the KDIGO urine output thresholds may be 

inadequate by showing that patients diagnosed with AKI by urine output alone had relatively 

good outcomes compared with those who also met the guideline’s serum creatinine 

criteria.(2, 9-11)  Ralib et al demonstrated that a urine output threshold of 0.3ml/kg/hr for 6 

hours (severe oliguria) was more closely associated with adverse outcomes in general ICU 

patients.(9)  However, use of this threshold rather than the 0.5ml/kg/hr for 6 hours threshold 

specified in the KDIGO stage 1 definitions could lead to adverse patient outcomes related to 

the 6 hours of marked oliguria required to before risk stratification could occur.  Dynamic 

Bayesian modelling(12, 13) has been used in related settings (14, 15) and could provide a 

solution to this problem by identifying those at greatest risk of severe oliguria early enough to 

allow treatment to be administered.  The objective of this study was to develop and validate 

a patient-specific dynamic Bayesian model which could run in real time to predict the risk of 

developing severe oliguria.  To confirm the clinical usefulness of the model, associations 

between those at a high predicted risk of severe oliguria and adverse outcomes were also 

investigated.  Outcomes of the high-risk group were also compared with patients who met 

existing KDIGO urine output criteria.    
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Materials and Methods 

Data 

Prospectively collected data from adult patients admitted to the cardiac intensive care unit 

(CICU) following cardiac surgery between January 2013 and November 2017 were 

analysed.  Patients receiving mechanical circulatory support (MCS) or cardiac 

transplantation were excluded.  Patients who received renal replacement therapy (RRT) 

preoperatively were also excluded.  

Hourly urine output values and the time of any decision to initiate RRT were extracted from 

the electronic patient record.   Only urine output data recorded before the initiation of RRT 

was analysed.   Outcome data was collected from the hospital’s clinical governance 

database.  All data were cleaned and stored in the Vascular Governance NorthWest 

(VGNW) database, handled according to the database’s ethical approvals and anonymised 

prior to analysis.  All data cleaning and analysis was performed using R Studio (R 

Foundation for statistical computing).(16) 

Model development 

Eligible patients were randomly assigned to either model development or model validation 

datasets in a ratio of 1:2.5 to ensure a development group of around 1000 patients.  A 

dynamic linear model was developed using data the development dataset.  The model 

analysed each patient’s own previous hourly urine output values and then from the 6th hour 

on CICU predicted that individual’s urine output for the next 6 hours.  The model produced 

updated predictions on an hourly basis throughout the CICU stay as each new measurement 

became available.  The probability of the next 6 hours’ urine output being below 0.3ml/kg/hr 

was calculated using Bayesian forecasting.   The model applied weightings to the 

contributions of urine output values according to how recent they were with the most recent 

values deemed the most relevant.  This allowed the forecast to update quickly in response to 

changing trends.  Model development is described in detail in the appendix. 
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Model validation (statistical analyses) 

It was recognised that for a subgroup of patients the model could potentially provide 

inappropriate reassurance to clinicians.  The model could predict a low risk of severe oliguria 

occurring within 6 hours and the patient could pass enough urine to prevent severe oliguria 

occurring within 6 hours but go on to suffer severe oliguria soon afterwards.  In this scenario 

while statistically correct, the model’s output could limit its clinical usefulness.  The validation 

analyses therefore tested the model’s ability to identify which patients would suffer severe 

oliguria (UO <0.3ml/kg/hr for 6 hours) within 12 hours of the prediction.  Risk classifications 

made during the last 12 hours of a patient’s admission were disregarded as it was not 

possible to confirm if severe oliguria subsequently occurred following discharge from CICU.  

Discrimination (the ability to distinguish those who would suffer severe oliguria from those 

who would not) was assessed using Receiver Operator Curve (ROC) analyses.   The 95% 

confidence intervals for the area under the curves (AUC) were calculated using DeLong’s 

method.(17) As the dataset was unbalanced (severe oliguria was relatively rare) precision 

recall curves were also used to test model performance.(18)  Calibration (how well predicted 

risk matched observed outcomes) was assessed using the ratio of observed to expected 

outcomes (O:E ratio) and calibration plots.(19)  The calibration plots show the observed and 

predicted risk of severe oliguria for patients grouped into twenty evenly sized groups 

according to their predicted risk.  For completeness, performance of the model when 

predicting severe oliguria limited to the six hours following predictions was also assessed 

with full results in the appendix. 

Although in clinical practice clinicians are likely to interpret the model’s continually updated 

risk predictions rather than a binary risk classification, to allow comparison of the model’s 

predictions with the existing categorical KDIGO classification, patients were assigned to 

either a high-risk or a low-risk group.  Patients for whom the probability of severe oliguria 

reached >0.8 during their stay were arbitrarily classified as high-risk and those who did not 

were classified as low-risk.  This relatively high threshold was selected a priori as the aim 
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was to produce a classification with a high specificity.  Associations between this 

classification and postoperative RRT, prolonged length of stay (PLOS) and hospital mortality 

were tested using univariable and multivariable analyses. Outcomes for patients grouped 

according to classification by the model and the KDIGO criterion were also compared.  

PLOS was defined as a hospital stay >10 days.  If RRT was initiated within three hours of 

CICU admission, the patient was excluded from the analyses as case note analyses 

revealed that all of these decisions to start RRT had been made during surgery before the 

patient arrived on CICU.  If the decision to initiate RRT was made before a high-risk 

classification, the patient was assigned to the low-risk group and the RRT was considered to 

have been administered to a low risk patient.  Univariable analyses were performed using 

the Chi Square test or Fisher’s exact test in the event of sparse data. Multivariable logistic 

regression was used to adjust for the confounding effects of pre- and perioperative variables 

associated with adverse outcomes using the extensively validated logistic EuroSCORE 

model. (20, 21) Cardiopulmonary bypass (CPB) time was used as a surrogate marker to 

adjust for intra-operative procedure complexity. 

The sensitivity, specificity, positive predictive value and negative predictive value of 

classification by the new model based on the arbitrary threshold of 0.8 for the identification of 

those at risk of subsequent RRT were calculated.  These values were compared with 

equivalent values obtained when classifying patients according to i) the KDIGO UO criterion 

(UO <0.5ml/kg/hr for 6 hours) and ii) observed severe oliguria (UO<0.3ml/kg/hr for 6 hours).  

Missing data 

Where hourly urine output was recorded as “0” this value was used.  Where hourly values 

were blank, the next recorded urine output was divided by the number of hours that had 

elapsed since the previous reading and this value was substituted for the blank values.  

Where this imputation resulted in urine output lower than the 0.5ml/kg for 6 hours the cases 

notes were examined and the urine output entries verified through entries in the nursing 
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notes.  Where weight was missing, the value was imputed using the median weight for a 

patient of that gender. 

Results 

In total 3,602 patients were admitted to CICU following cardiac surgery, 228 were excluded 

as they underwent cardiac transplantation or received  MCS and four patients were excluded 

as they received RRT preoperatively.  Of the eligible 3370 patients, 981 were randomly 

assigned to the development group and the remaining 2389 patients were assigned to the 

validation group.  The patient characteristics of each group are shown in Table 1.  Patient 

weight was missing for 13 (1.3%) and 23 (1.0%) patients in the development and validation 

cohorts respectively. 

In the validation cohort, 2088 (87.4%) patients suffered at least one hour of urine output 

below 0.3ml/kg/h. There were 197 (8.2%) patients who experienced severe oliguria and 89 

(3.7%) patients who required RRT.  In total, 4942 (2.8%) hourly urine output entries were 

missing and these values were imputed using the methods described in the previous 

section.  A total of 19 (0.8%) patients received RRT within three hours of arrival on CICU 

and these patients were excluded from the RRT analyses.  PLOS was observed in 589 

(24.7%) patients and 36 (1.5%) died prior to hospital discharge.  There were no missing 

outcome data. 

Predicting severe oliguria  

The Receiver operating characteristic curves for the prediction of severe oliguria within the 

next 12 hours for predictions made at 12, 24, 36, 48 and 72 hours are shown in Figure 1a.  

At each time point the AUC for the predictions was >0.9 representing excellent 

discrimination between those who did and did not go on to suffer severe oliguria within the 

next 12 hours. As illustrated by Figure 2 and the O:E ratios detailed in Table A1 of the 

appendix, calibration was also excellent.  
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The precision recall curves (Figures appendix 1) illustrate the trade-off between ensuring 

that every patient who will go on to suffer AKI is identified and that the number of false 

positives is minimised.  As shown in Figure appendix , as recall (also known as sensitivity) 

approaches 1 the Precision (positive predictive value) falls.  This effect was most 

pronounced for predictions made in the first 24 hours. 

Table A2 of the appendix describes the model’s performance when predicting severe oliguria 

occuring within 6 hours of prediction. Discriminination was consistently better than when 

predicting severe oliguira occuring within 12 hours following predictions but risk was 

consistenty overestimated.  Across the 5 time points analysed there were 258 incidences 

where a patient developed severe oliguria within 12 hours of predictions, however on 109 

occasions patients severe oliguria only developed between 7 and 12 hours after prediction.   

 

Classification task 

In the validation dataset 158 patients experienced a probability of severe oliguria >0.8 and 

were assigned to the high-risk group. The remaining 2231 patients were assigned to the low-

risk group.  Outcomes for these two groups are reported in Table A3.  High-risk patients 

experienced increased rates of subsequent RRT, PLOS and hospital mortality compared 

with those classified as low-risk (P<0.001 for all outcomes).  On multivariable analysis, high-

risk classification was associated with increased risk of RRT (OR 10.4, 95%CI 5.9-18.1), 

PLOS (OR 4.4, 95% CI 3.0-6.4) and hospital mortality (OR 6.4, 95%CI 2.8-14.0) (p<0.001 

for all outcomes).  The multivariable models used for risk adjustment are shown in the 

Appendix (Tables A4-A6).  The median (IQR) time from high-risk classification to the onset 

of severe oliguria of 3.0 (0.0-4.0) hours 

The KDIGO urine output criterion identified 628 patients (26.3%) as suffering AKI by urine 

output.  The outcomes for classification of risk using the new model and the KDIGO criterion 

are compared in Table 2.  Outcomes for those classified as being at high risk by the model 
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and those meeting the KDIGO criteria could not be compared directly as some patients 

would have been include in multiple groups.  Patients who met the KDIGO urine output 

criterion for AKI but were classified as low-risk by the model (n=506) experienced rates of 

RRT (3.6%), PLOS (34.8%) and mortality (2.4%) which were significantly lower than the 

risks for those classified as high-risk by the Bayesian model (p<0.001 for all).    When used 

to predict future RRT requirement, the Bayesian model achieved greater specificity and 

positive predictive value (but lower sensitivity) than the KDIGO AKI criterion.  The 

performance of the dynamic Bayesian model was almost identical to that achieved by 

classification according to actual observed oliguria.  (Table 3)   

Discussion 

This patient-specific Dynamic Bayesian model was developed and validated in separate 

cohorts which together contained high quality, prospectively-gathered data for over 3000 

patients. The model successfully identified patients at risk of severe oliguria demonstrating 

excellent discrimination and calibration at each time point. Outcomes were significantly 

worse for patients with a high-risk of severe oliguria than for those assigned to the low-risk 

group.  Those identified as high risk by the model also suffered worse outcomes than those 

who only met the KDIGO urine output criterion for AKI. 

The unbalanced nature of the data had the potential to make the AUC statistics seem overly 

impressive.  Indeed, precision recall curve analyses showed that the excellent discrimination 

identified on ROC curve analyses of predictions made at 12 and 24 hours was partly due to 

the large proportion of patients who did not suffer severe oliguria and whom the model 

identified as being at low risk of oliguria.  However, this effect was less significant for 

predictions made after this time.    

During the validation of predictions made at hours 12, 24, 36, 48 and 72, 109 incidences 

were identified in which a patient suffered severe oliguria between 7 and 12 hours following 

predictions.  In some cases it is likely that the model apprpriately predicted severe oliguira 
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would occur within 6 hours but an intervention such as a fluid challenge or a trial of diuretic 

therapy was impemented at this time.  In some patients the response would be transitory, 

causing a the urine output to rise briefly above the 0.3ml/kg/hr threshold before falling back 

to a lower level.  Such patients would therefore only meet the 0.3ml/kg/hour for 6 hours later.  

Nevertheless, these patients suffered an adverse event and the identifiction of such a 

significant number of incidences of severe oliguria occurring between hours 7 and 12 justies 

the selection of severe oliguira occurring with 12 hours of prediction as the outcome used 

when validating predictions. 

 

In clinical practice, classification into high and low-risk groups based on an arbitrary 

threshold is unlikely to be necessary and significantly diminishes the usefulness of the 

model.   Rather, patient monitoring software would analyse the individual’s urine output data 

in real-time and display updated estimates of the absolute risk of developing severe oliguria.  

This information, together with the trend of risk for that patient would inevitably be much 

more useful to a treating clinician than knowledge of the patient’s risk group.  

In this study a threshold was used to dichotomise the patients purely to allow the comparison 

of outcomes observed in patients classified as high and low-risk by the model.  The 

categorisation also allowed comparison of outcomes between patients classified as high-risk 

by the model and patients who met the existing KDIGO AKI criteria. The threshold used for 

the classification exercise was deliberately high at 0.8 to reduce the number of false positive 

high-risk classifications which are a weakness of the existing KDIGO AKI classification.(2, 9, 

10) As a result a large subgroup (n=506) met the KDIGO AKI criterion but were classified as 

low-risk by the model. Outcomes for these patients were significantly better than for the 

group classified as high-risk by the model suggesting that for a large proportion of those who 

meet the KDIGO urine output criterion risk of adverse outcomes is actually relatively low. 
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The significant increase in risk of adverse outcomes found to be associated with a predicted 

or observed fall in urine output to < 0.3ml/kg/hr for 6 hours is similar to that found in general 

ICU patients(9) and justifies the selection of this threshold in this study.  Risk stratification 

was not significantly improved when classification was made according to observed rather 

than predicted severe oliguria.  The main advantage of using the dynamic Bayesian model is 

that it provides reliable, early warnings of impending severe oliguria before it occurs, 

allowing time to deliver treatments to prevent the severe oliguria and its consequences.  

Even if a warning were only raised when a probability of 0.8 for severe oliguria was reached 

- as in our classification exercise – this would allow interventions aimed at preserving renal 

function.  In reality patients for whom risk of severe oliguria is increasing are likely to be 

reviewed before a probability of 0.8 is reached, affording even more time for intervention. 

Clinical use of a urine output screening protocol which employs this dynamic Bayesian 

model is perfectly feasible because although mathematically complex, the model is 

computationally inexpensive and can run on standard computers or tablets available at the 

bedside. The model uses the trend of urine output rather than comparison of point values 

against arbitrary thresholds.  The progressive decline in urine output towards the defined 

threshold of 0.3ml/kg is intuitively more relevant than the occurrence of a point value below 

an arbitrary “normal”.  Indeed, over 85% of those classified as low-risk suffered at least one 

hour of urine output below 0.3ml/kg/hr but this group had excellent outcomes.  As the only 

data required by the model are patient weight and hourly urine output values, the model 

should be transferrable across all patients on critical care units.  In this study we chose to 

calculate the probability of urine output dropping below 0.3ml/kg/hr but this threshold could 

be altered to suit different patient cohorts.   Under these circumstances the model could be 

useful across a range of settings, alerting clinicians to the risk of urine output dropping below 

a threshold they consider to be clinically significant.  

While these results are encouraging, analyses of urine output alone cannot identify all 

patients at risk of adverse outcomes related to renal dysfunction.  Indeed, 41 patients 
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received RRT despite being classified as low-risk because their urine output was maintained 

around or above 0.3ml/kg/hr.  Analysis of the EPR for these patients, identified deranged 

biochemistry (elevated urea and/or creatinine concentrations, hyperkalaemia or metabolic 

acidosis) (n=31), fluid overload (n=16), hyperlactataemia (n=4) and sepsis (n=1) as the 

indications for RRT initiation.  In addition, while the novel model accurately predicted severe 

oliguria, less than 20% of those who suffered severe oliguria went on to require RRT.  

Currently, creatinine concentration performs a key role in the identification of those at risk of 

adverse outcomes related to renal dysfunction.  The existing KDIGO(1) creatinine criteria - 

which are shared by the AKIN and RIFLE guidelines (22, 23) - have been shown to stratify 

risk accurately in both cardiac surgery patients (24, 25) and the general inpatient population 

(26, 27).  Similarly, recent advances in the use of biomarkers have been shown to enable 

the early identification of those at increased risk of adverse outcomes related to renal 

dysfunction (28-30).  Moreover, the combination of biomarkers and serum creatinine 

analyses increases the accuracy of patient risk classification. (29, 30)  Future work should 

focus on integrating the novel analysis of urine output described in this study with other 

physiological variables measured in real-time together with biomarker and serum creatinine 

results to optimise the early detection of deranged renal physiology. 

Limitations  

Most patients in this study received interventions with the intention of normalising urine 

output. A total of 488 (20.4%) patients received diuretics during their ICU admission. Data on 

the success of such interventions has not been investigated as part of this study but is likely 

to be of value as part of future work. The development of this model benefited from being 

conducted in a group of patients undergoing cardiac surgery in one institution where the risk 

of complications is well known but the single centre design could limit transferability across 

other health care settings.  The methodology developed will therefore need to be validated in 

different patient groups and in different institutions. With appropriate development, it could 

easily be applicable to all intensive care unit patients.  The ability of the model to improve 
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patient outcome through early recognition of impending severe oliguria should then be 

tested. 

Conclusions 

This dynamic Bayesian model, which analyses a patient’s current urine output in the context 

of their previous urine output, can be used to accurately predict the risk of severe oliguria 

occurring within the next 12 hours.  Classification according to the model’s predictions was 

shown to outperform the current method for screening patient urine output; the KDIGO AKI 

criteria. Crucially, the use of dynamic Bayesian modelling allows those at high-risk to be 

identified before they suffer a prolonged period of severe oliguria and in time to offer 

treatment.  The model requires no additional information other than hourly urine output 

values and the patient’s weight, can be easily run by computers routinely available at the 

bedside and provides an output that is easily interpreted by the clinical team. Before 

widespread adoption, the model requires validation in a range of critical care units and 

across the full range of critical care patients.   
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Figure Legends 
 

Figure 1 Legend.  Receiver operating characteristic curves for the prediction of severe 
oliguria (<0.3ml/kg/hr for 6 hours) during the next 12 hours following each predictions made 
by the model at 12, 24, 36, 48 and 72 hours. 

Figure 2 Legend. Calibration plots for the Bayesian model’s prediction of severe oliguria 
(0.3ml/kg/hr for 6 hours) during the next 12 hours at a)12 hours, b)24 hours, c)36 hours, 
d)48 hours and e)72 hours.  Patients were grouped into deciles according to predicted risk.  
For each of the ten groups mean observed risk is plotted against mean predicted risk. 



16 
 

Figure 1 
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Figure 2 
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Tables 
 

Table 1 – Patient Characteristics 

Characteristic Development group (n=981) Validation group (=2389) 

Age, mean (sd) , years 66.4 (11.2) 66.7 (10.9) 

Female gender, % 279 (28.2) 660 (27.6) 

Weight, mean (sd), Kg 82.2 (15.9) 81.8 (16.4) 

Logistic EuroSCORE, median 

(Interquartile range) 

3.8 (2.1-7.4) 3.7 (2.0-7.0) 

Operation, n (%)   

  CABG  544 (55.5) 1394 (58.4) 

  Valve 227 (23.1) 505 (21.1) 

  CABG and Valve 125 (12.7) 337 (14.1) 

  Aortic 65 (6.6) 118 (5.0) 

  Other – minor 3 (0.3) 5 (0.2) 

  Other – major 17 (1.7) 30 (1.3) 

Urgency, n (%)   

  Elective 574 (58.5) 1380 (57.8) 

  Urgent 395 (40.3) 958( 40.1) 

  Emergency 9 (0.9) 44 (1.8) 

  Salvage 3 (0.3) 7 (0.3) 

CPB time, median (Interquartile 

range), minutes 

102.0 (81.0-129.0) 102.0 (82.0-129.0) 
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Table 2 – Outcomes for patients grouped according to risk level as determined by analysis of 
urine output by KDIGO-AKI guideline and the Bayesian model. 

 

Group N (% of total)* RRT, N (%) PLOS, N (%)  Hospital mortality, N(%) 

Low-risk by model 
and no KDIGO AKI  1725 (72.2%) 15 (0.9) 320 (18.6) 10 (0.6) 

Low-risk by model but  
KDIGO AKI  506 (21.2) 18 (3.6) 176 (34.8) 12 (2.4) 

High-risk by model 
but no KDIGO AKI  36 (1.5) 3 (8.3) 30(83.3) 3 (8.3) 

High-risk by model 
and KDIGO AKI  122 (5.1) 26 (21.3) 73 (59.8) 11 (9.0) 

KDIGO =Kidney Disease Improving Global Outcomes,  UO = urine output, AKI = Acute 
Kidney Injury, PLOS = prolonged length of stay in hospital, RRT = renal replacement therapy 

 

 

Table 3 - Performance of the Bayesian model, existing KDIGO AKI-UO criterion and severe 
oliguria when identifying those at risk of RRT. 

Classification 
Method 

Sensitivity Specificity Positive Predictive Value Negative Predictive Value 

AKI-UO 0.74 0.75 0.08 0.99 

Model 0.41 0.94 0.18 0.98 

Severe oliguria 0.41 0.94 0.18 0.98 
Severe oliguria = observed UO <0.3ml/kg for 6 hours,  AKI-UO = observed UO <0.5ml/kg for 
6 hours, RRT = renal replacement therapy 
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Appendix 
 
Table A1 – Comparison of observed outcomes and model’s predictions for severe oliguria  

Time point (number of 
patients still on CICU) 

Observed severe 
oliguria within 12 hours, 
n(%) 

Predicted severe oliguria 
within 12 hours, n(%) 

O:E 
ratio 

12 hours (1947) 61 (3.1) 82 (4.2) 0.74 
24 hours (1694) 57 (3.4) 61 (3.6) 0.93 
36 hours (1137) 51 (4.5) 44 (3.9) 1.16 
48 hours (909) 54 (5.9) 48(5.3) 1.13 
72 hours (545) 35 (6.4) 30 (5.6) 1.15 

 

Table A2 - Performance of models when predicting severe oliguria occurring with the next 6 hours 

Time point (number of 
patients still on CICU) 

AUC (95% CI) Observed 
severe oliguria 
within 6 hours 

Predicted 
severe oliguria 
within 6 hours 

O:E 
ratio 

12 hours 0.98 (0.96-0.99) 21 90 0.23 

24 hours 0.98 (0.97-0.99) 30 61 0.49 

36 hours 0.99 (0.98-1.00) 34 49 0.69 

48 hours 0.99 (0.98-1.00) 36 49 0.73 

72 hours 0.99 (0.98-1.00) 38 31 0.92 

 

 

Table A3 -Outcome of patients according to classification by the Bayesian model 

Group RRT (n,%) PLOS (n,%) Mortality (n,%) 

High-risk (n=158) 29(18.4)* 93 (58.9) * 14 (8.9) * 

Low-risk (n=2231) 41(1.8%) 496 (22.2) 22 (1.0)  

 p<0.001 when compared to low-risk classification by the model 

RRT = renal replacement therapy, PLOS = prolonged length of stay in hospital 
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Logistic regression models used to adjust for confounders during multivariable analyses 
 

Table A4 – Model for prediction of Renal replacement therapy  

Variable Beta coefficient Odds ratio 95% CI for Odds 
ratio 

P value 

Intercept -4.53   <0.001 
Model high-risk 
classification 

2.34 10.36 5.86-18.07 <0.001 

Logistic 
EuroSCORE 

0.04 1.03 1.01-1.06 <0.001 

CPB (minutes) 0.00 1.00 1.00-1.01 0.34 
  

 

 

Table A5 – Model for prediction of prolonged length of stay 

Variable Beta coefficient Odds ratio 95% CI for Odds 
ratio 

P value 

Intercept -2.41   <0.001 
Model high-risk 
classification 

1.48 4.38 2.99-6.44 <0.001 

Logistic 
EuroSCORE 

0.07 1.08 1.06-1.09 <0.001 

CPB (minutes) 0.01 1.00 1.00-1.01 <0.001 
  

 

Table A6 – Model for prediction of hospital mortality 

Variable Beta coefficient Odds ratio 95% CI for Odds 
ratio 

P value 

Intercept -6.13   <0.001 
Model high-risk 
classification 

1.86 6.44 2.82-13.98 <0.001 

Logistic 
EuroSCORE 

0.03 1.03 1.00-1.05 0.06 

CPB (minutes) 0.01 1.01 1.00-1.01 <0.001 
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